1
|
Chung J, Pierce J, Franklin C, Olson RM, Morrison AR, Amos-Landgraf J. Translating animal models of SARS-CoV-2 infection to vascular, neurological and gastrointestinal manifestations of COVID-19. Dis Model Mech 2025; 18:dmm052086. [PMID: 40195851 PMCID: PMC12010913 DOI: 10.1242/dmm.052086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) initiated a global pandemic resulting in an estimated 775 million infections with over 7 million deaths, it has become evident that COVID-19 is not solely a pulmonary disease. Emerging evidence has shown that, in a subset of patients, certain symptoms - including chest pain, stroke, anosmia, dysgeusia, diarrhea and abdominal pain - all indicate a role of vascular, neurological and gastrointestinal (GI) pathology in the disease process. Many of these disease processes persist long after the acute disease has been resolved, resulting in 'long COVID' or post-acute sequelae of COVID-19 (PASC). The molecular mechanisms underlying the acute and systemic conditions associated with COVID-19 remain incompletely defined. Appropriate animal models provide a method of understanding underlying disease mechanisms at the system level through the study of disease progression, tissue pathology, immune system response to the pathogen and behavioral responses. However, very few studies have addressed PASC and whether existing models hold promise for studying this challenging problem. Here, we review the current literature on cardiovascular, neurological and GI pathobiology caused by COVID-19 in patients, along with established animal models of the acute disease manifestations and their prospects for use in PASC studies. Our aim is to provide guidance for the selection of appropriate models in order to recapitulate certain aspects of the disease to enhance the translatability of mechanistic studies.
Collapse
Affiliation(s)
- James Chung
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Julia Pierce
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Research, Ocean State Research Institute, Inc., Providence, RI 02908-4734, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - Craig Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Rachel M. Olson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, MO 65211, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI 02908, USA
- Department of Research, Ocean State Research Institute, Inc., Providence, RI 02908-4734, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, RI 02908, USA
| | - James Amos-Landgraf
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Toprak M, Kesim E, Karasu B, Celebi ARC. Choroidal vascularity ındex findings ın patients recovered from mild course COVID-19 pneumonia. Int Ophthalmol 2025; 45:84. [PMID: 40045062 DOI: 10.1007/s10792-025-03450-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/03/2025] [Indexed: 05/13/2025]
Abstract
PURPOSE To assess the choroidal vascularity index (CVI) in individuals who have recovered from moderate pneumonia caused by COVID-19, using enhanced depth imaging optical coherence tomography (EDI-OCT). METHODS This study included 43 patients who had recovered from SARS-CoV-2 infection with mild pneumonia (Group 1-COVID group), as well as 45 healthy individuals (Group 2- healthy control group). The study comprised COVID-19 patients who fully recovered from COVID-19 pneumonia. These patients were assessed 6 months after their pneumonia had totally resolved. The measurements were acquired via EDI-OCT investigations of the choroidal structures. The primary measure of interest was the CVI, which is defined as the ratio of the luminal area (LA) to the total choroidal area (TCA). RESULTS Patients from Group 1 (COVID group) who had totally recovered exhibited significantly higher mean TCA, stromal area (SA), and LA compared to patients from Group 2 (control or healthy group). The two groups did not show a significant difference in CVI (p = 0.080). CONCLUSION Choroidal vascularity index can reveal the choroidal vascular physiology in patients who have fully recovered from COVID-19 pneumonia. EDI-OCT can be utilized to evaluate choroidal vascular alterations, serving as a non-invasive indicator for early vascular impairment following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Muge Toprak
- Kocaeli City Hospital, Evliya Celebi Mh. Ertas Sk. Cornercity B Block No:12, 34944, Tuzla, Istanbul, Kocaeli, Turkey.
| | - Enes Kesim
- Department of Ophthalmology, Okan University Medical School, Istanbul, Turkey
| | - Buğra Karasu
- Department of Ophthalmology, Tuzla State Hospital, Istanbul, Turkey
| | - Ali Riza Cenk Celebi
- Department of Ophthalmology, Acibadem University Medical School, Istanbul, Turkey
| |
Collapse
|
3
|
Fekete R, Simats A, Bíró E, Pósfai B, Cserép C, Schwarcz AD, Szabadits E, Környei Z, Tóth K, Fichó E, Szalma J, Vida S, Kellermayer A, Dávid C, Acsády L, Kontra L, Silvestre-Roig C, Moldvay J, Fillinger J, Csikász-Nagy A, Hortobágyi T, Liesz A, Benkő S, Dénes Á. Microglia dysfunction, neurovascular inflammation and focal neuropathologies are linked to IL-1- and IL-6-related systemic inflammation in COVID-19. Nat Neurosci 2025; 28:558-576. [PMID: 40050441 PMCID: PMC11893456 DOI: 10.1038/s41593-025-01871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/17/2024] [Indexed: 03/12/2025]
Abstract
COVID-19 is associated with diverse neurological abnormalities, but the underlying mechanisms are unclear. We hypothesized that microglia, the resident immune cells of the brain, are centrally involved in this process. To study this, we developed an autopsy platform allowing the integration of molecular anatomy, protein and mRNA datasets in postmortem mirror blocks of brain and peripheral organ samples from cases of COVID-19. We observed focal loss of microglial P2Y12R, CX3CR1-CX3CL1 axis deficits and metabolic failure at sites of virus-associated vascular inflammation in severely affected medullary autonomic nuclei and other brain areas. Microglial dysfunction is linked to mitochondrial injury at sites of excessive synapse and myelin phagocytosis and loss of glutamatergic terminals, in line with proteomic changes of synapse assembly, metabolism and neuronal injury. Furthermore, regionally heterogeneous microglial changes are associated with viral load and central and systemic inflammation related to interleukin (IL)-1 or IL-6 via virus-sensing pattern recognition receptors and inflammasomes. Thus, SARS-CoV-2-induced inflammation might lead to a primarily gliovascular failure in the brain, which could be a common contributor to diverse COVID-19-related neuropathologies.
Collapse
Affiliation(s)
- Rebeka Fekete
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Alba Simats
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eduárd Bíró
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Pósfai
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Csaba Cserép
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Anett D Schwarcz
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Eszter Szabadits
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Környei
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | | | - János Szalma
- Cytocast Hungary Kft, Budapest, Hungary
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Sára Vida
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Anna Kellermayer
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Csaba Dávid
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - László Acsády
- Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Levente Kontra
- Bioinformatics Unit, HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Carlos Silvestre-Roig
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation, WWU Muenster, Muenster, Germany
| | - Judit Moldvay
- I. Department of Pulmonology, National Korányi Institute of Pulmonology, Budapest, Hungary
- Pulmonology Clinic, Szeged University, Albert Szent-Gyorgyi Medical School, Szeged, Hungary
| | - János Fillinger
- Department of Pathology, National Korányi Institute of Pulmonology, Budapest, Hungary
| | - Attila Csikász-Nagy
- Cytocast Hungary Kft, Budapest, Hungary
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Tibor Hortobágyi
- Institute of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Institute of Neuropathology, Universitätsspital Zürich, Zurich, Switzerland
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Szilvia Benkő
- Laboratory of Inflammation-Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
- Mercator Fellow, Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
4
|
Maatz H, Lindberg EL, Adami E, López-Anguita N, Perdomo-Sabogal A, Cocera Ortega L, Patone G, Reichart D, Myronova A, Schmidt S, Elsanhoury A, Klein O, Kühl U, Wyler E, Landthaler M, Yousefian S, Haas S, Kurth F, Teichmann SA, Oudit GY, Milting H, Noseda M, Seidman JG, Seidman CE, Heidecker B, Sander LE, Sawitzki B, Klingel K, Doeblin P, Kelle S, Van Linthout S, Hubner N, Tschöpe C. The cellular and molecular cardiac tissue responses in human inflammatory cardiomyopathies after SARS-CoV-2 infection and COVID-19 vaccination. NATURE CARDIOVASCULAR RESEARCH 2025; 4:330-345. [PMID: 39994453 PMCID: PMC11913730 DOI: 10.1038/s44161-025-00612-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/10/2025] [Indexed: 02/26/2025]
Abstract
Myocarditis, characterized by inflammatory cell infiltration, can have multiple etiologies, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or, rarely, mRNA-based coronavirus disease 2019 (COVID-19) vaccination. The underlying cellular and molecular mechanisms remain poorly understood. In this study, we performed single-nucleus RNA sequencing on left ventricular endomyocardial biopsies from patients with myocarditis unrelated to COVID-19 (Non-COVID-19), after SARS-CoV-2 infection (Post-COVID-19) and after COVID-19 vaccination (Post-Vaccination). We identified distinct cytokine expression patterns, with interferon-γ playing a key role in Post-COVID-19, and upregulated IL16 and IL18 expression serving as a hallmark of Post-Vaccination myocarditis. Although myeloid responses were similar across all groups, the Post-Vaccination group showed a higher proportion of CD4+ T cells, and the Post-COVID-19 group exhibited an expansion of cytotoxic CD8+ T and natural killer cells. Endothelial cells showed gene expression changes indicative of vascular barrier dysfunction in the Post-COVID-19 group and ongoing angiogenesis across all groups. These findings highlight shared and distinct mechanisms driving myocarditis in patients with and without a history of SARS-CoV-2 infection or vaccination.
Collapse
Affiliation(s)
- Henrike Maatz
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| | - Eric L Lindberg
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | - Eleonora Adami
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Natalia López-Anguita
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alvaro Perdomo-Sabogal
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lucía Cocera Ortega
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Giannino Patone
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniel Reichart
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital Boston, Boston, MA, USA
| | - Anna Myronova
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sabine Schmidt
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ahmed Elsanhoury
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Oliver Klein
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Uwe Kühl
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institut für Biologie, Humboldt Universität zu Berlin, Berlin, Germany
| | - Schayan Yousefian
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simon Haas
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, DKFZ and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Sarah A Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Bad Oeynhausen, Germany
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre for Research Excellence and Centre for Regenerative Medicine, Imperial College London, London, UK
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Cardiovascular Division, Brigham and Women's Hospital Boston, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Bettina Heidecker
- Department of Cardiology, Angiology and Intensive Medicine CBF, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Leif E Sander
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt - Universität zu Berlin, Berlin, Germany
| | - Birgit Sawitzki
- Translational Immunology, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Patrick Doeblin
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care, Campus Virchow, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Kelle
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care, Campus Virchow, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sophie Van Linthout
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Norbert Hubner
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Helmholtz-Institute for Translational AngioCardioScience (HI-TAC) of the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) at Heidelberg University, Heidelberg, Germany.
| | - Carsten Tschöpe
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany.
- Department of Cardiology, Angiology and Intensive Care, Campus Virchow, Deutsches Herzzentrum der Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Lee C, Khan R, Mantsounga CS, Sharma S, Pierce J, Amelotte E, Butler CA, Farinha A, Parry C, Caballero O, Morrison JA, Uppuluri S, Whyte JJ, Kennedy JL, Zhang X, Choudhary G, Olson RM, Morrison AR. IL-1β-driven NF-κB transcription of ACE2 as a Mechanism of Macrophage Infection by SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.24.630260. [PMID: 39763770 PMCID: PMC11703209 DOI: 10.1101/2024.12.24.630260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Coronavirus disease 2019 (COVID-19), caused by infection with the enveloped RNA betacoronavirus, SARS-CoV-2, led to a global pandemic involving over 7 million deaths. Macrophage inflammatory responses impact COVID-19 severity; however, it is unclear whether macrophages are infected by SARS-CoV-2. We sought to identify mechanisms regulating macrophage expression of ACE2, the primary receptor for SARS-CoV-2, and to determine if macrophages are susceptible to productive infection. We developed a humanized ACE2 (hACE2) mouse whereby hACE2 cDNA was cloned into the mouse ACE2 locus under control of the native promoter. We validated the susceptibility of hACE2 mice to SARS-CoV-2 infection relative to wild-type mice and an established K18-hACE2 model of acute fulminating disease. Intranasal exposure to SARS-CoV-2 led to pulmonary consolidations with cellular infiltrate, edema, and hemorrhage, consistent with pneumonia, yet unlike the K18-hACE2 model, hACE2 mice survived and maintained stable weight. Infected hACE2 mice also exhibited a unique plasma chemokine, cytokine, and growth factor inflammatory signature relative to K18-hACE2 mice. Infected hACE2 mice demonstrated evidence of viral replication in infiltrating lung macrophages, and infection of macrophages in vitro revealed a transcriptional profile indicative of altered RNA and ribosomal processing machinery as well as activated cellular antiviral defense. Macrophage IL-1β-driven NF-κB transcription of ACE2 was an important mechanism of dynamic ACE2 upregulation, promoting macrophage susceptibility to infection. Experimental models of COVID-19 that make use of native hACE2 expression will allow for mechanistic insight into factors that can either promote host resilience or increase susceptibility to worsening severity of infection.
Collapse
Affiliation(s)
- Cadence Lee
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Rachel Khan
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Chris S. Mantsounga
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Sheila Sharma
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Julia Pierce
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Elizabeth Amelotte
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Celia A. Butler
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Andrew Farinha
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Crystal Parry
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Olivya Caballero
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jeremi A. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Saketh Uppuluri
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | - Jeffrey J. Whyte
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri Division of Research, Innovation and Impact, Columbia, Missouri, USA
| | - Joshua L. Kennedy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Arkansas Children’s Research Institute, Little Rock, Arkansas, USA
| | - Xuming Zhang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
- Cardiovascular Research Center, Lifespan Cardiovascular Research Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Rachel M. Olson
- Department of Veterinary Pathobiology, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
- Laboratory for Infectious Disease Research, University of Missouri Division of Research, Innovation and Impact, Columbia, Missouri, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island 02908, USA
- Ocean State Research Institute, Inc., Providence, Rhode Island 02908, USA
- Department of Internal Medicine, Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
- Lead contact and corresponding author
| |
Collapse
|
6
|
Saha I, Banerjee O, Sarkar (Biswas) S, Mukherjee S. COVID-19 beyond the lungs: Unraveling its vascular impact and cardiovascular complications-mechanisms and therapeutic implications. Sci Prog 2025; 108:368504251322069. [PMID: 40091392 PMCID: PMC11912160 DOI: 10.1177/00368504251322069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
COVID-19, caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), is primarily a respiratory illness but significantly affects the cardiovascular system as well. After entering the body through the respiratory tract, the virus directly and indirectly disrupts the vascular system. Vascular endothelial cells (ECs), which express ACE2 and TMPRSS2, are targets for viral invasion. However, the predominant cause of widespread vascular damage is the "cytokine storm" induced by the immune response. This leads to EC activation, inflammation, neutrophil activation, and neutrophil-platelet aggregation, causing endothelial injury. Additionally, increased expression of plasminogen activator inhibitor-1 disrupts the balance between prothrombotic and fibrinolytic processes, while activation of the renin-angiotensin-aldosterone system adds oxidative stress to the vascular endothelium. In the heart, SARS-CoV-2 invades ECs, leading to apoptosis and pyroptosis, exacerbated by inflammation and elevated catecholamines. These factors contribute to arrhythmias, strokes, and myocardial infarction in severe cases of COVID-19. This narrative review aims to explore the mechanisms by which SARS-CoV-2 affects the cardiovascular system and to highlight the resulting complications. It also identifies research gaps and discusses potential therapeutic strategies to mitigate the cardiovascular impacts of COVID-19.
Collapse
Affiliation(s)
- Ishita Saha
- Department of Physiology, Medical College & Hospital, Kolkata, West Bengal, India
| | - Oly Banerjee
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Bara Kanthalia, West Bengal, India
| | | | - Sandip Mukherjee
- Department of Physiology, Serampore College, Hooghly, West Bengal, India
| |
Collapse
|
7
|
Gultom M, Lin L, Brandt CB, Milusev A, Despont A, Shaw J, Döring Y, Luo Y, Rieben R. Sustained Vascular Inflammatory Effects of SARS-CoV-2 Spike Protein on Human Endothelial Cells. Inflammation 2024:10.1007/s10753-024-02208-x. [PMID: 39739157 DOI: 10.1007/s10753-024-02208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been associated with systemic inflammation and vascular injury, which contribute to the development of acute respiratory syndrome (ARDS) and the mortality of COVID-19 infection. Moreover, multiorgan complications due to persistent endothelial dysfunction have been suspected as the cause of post-acute sequelae of SARS-CoV-2 infection. Therefore, elucidation of the vascular inflammatory effect of SARS-CoV-2 will increase our understanding of how endothelial cells (ECs) contribute to the short- and long-term consequences of SARS-CoV-2 infection. Here, we investigated the interaction of SARS-CoV-2 spike protein with human ECs from aortic (HAoEC) and pulmonary microvascular (HPMC) origins, cultured under physiological flow conditions. We showed that the SARS-CoV-2 spike protein triggers prolonged expression of cell adhesion markers in both ECs, similar to the effect of TNF-α. SARS-CoV-2 spike treatment also led to the release of various cytokines and chemokines observed in severe COVID-19 patients. Moreover, increased binding of leucocytes to the endothelial surface and a procoagulant state of the endothelium were observed. Transcriptomic profiles of SARS-CoV-2 spike-activated HPMC and HAoEC showed prolonged upregulation of genes and pathways associated with responses to virus, cytokine-mediated signaling, pattern recognition, as well as complement and coagulation pathways. Our findings support experimental and clinical observations of the vascular consequences of SARS-CoV-2 infection and highlight the importance of EC protection as one of the strategies to mitigate the severe effects as well as the possible post-acute complications of COVID-19 disease.
Collapse
Affiliation(s)
- Mitra Gultom
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Lin Lin
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Camilla Blunk Brandt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anastasia Milusev
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Alain Despont
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Jane Shaw
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Yvonne Döring
- Department for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Angiology, Inselspital, Bern University Hospital, Bern, Switzerland
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum Für Herz-Kreislauf-Forschung, DZHK), Munich Heart Alliance Partner Site, Munich, Germany
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Robert Rieben
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Dhariwal R, Dave K, Jain M. Omics-based analysis of mitochondrial dysfunction and BBB integrity in post-COVID-19 sequelae. Sci Rep 2024; 14:31016. [PMID: 39730725 DOI: 10.1038/s41598-024-82180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
The SARS-CoV-2 virus that resulted in the COVID-19 pandemic has been implicated in a range of neurological issues, such as encephalopathy, stroke, and cognitive decline. Although the precise mechanism causing these issues is unknown, mounting evidence shows that blood-brain barrier (BBB) disruption is probable2 a major factor. The integrity of the blood-brain barrier (BBB), a highly selective barrier that divides the brain from the systemic circulation, is crucial for preserving normal brain function. By analysing the multi-transcriptome data, this work explores the neurological impacts of the SARS-CoV-2 virus and provides insight into the molecular mechanisms behind BBB breakdown and neurological symptoms in COVID-19 patients. The endothelial cells of BBB expresses inflammatory genes in response to the systemic inflammation induced due to SARS-CoV-2 remnants in the body. This raises the possibility that systemic inflammation brought on by SARS-CoV-2 and BBB integrity are correlated. Furthermore, the study highlights the pathways involved in oxidative stress and endothelial cell activation, revealing their role in COVID-19 passage through BBB and induction of systemic inflammation and advancement toward neurological disorders. The article showcases the evidence that mitochondrial dysfunction is a major aftermath associated with SARS-CoV-2 infection as the impaired Mitochondria leads to an accumulation of reactive oxygen species (ROS), triggering endothelial dysfunction, and leading to the passage of harmful molecules across the BBB. This study offers insightful information that may open up the possibilities for new treatment plans by targeting biomarkers specifically associated with inflammation and BBB dysfunctioning conditions.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Cell and Developmental Biology Laboratory, Research and Development Cell, PIMSR, Parul University, Vadodara, Gujarat, 391760, India
- Parul Institute of Applied Sciences, Department of Life Sciences, Parul University, Vadodara, 391760, Gujarat, India
| | - Kirtan Dave
- Bioinformatics Laboratory, Research & Development Cell, Parul University, Vadodara, Gujarat, 391760, India.
- Parul Institute of Paramedical and Health Sciences Faculty of Medicine, Parul University,, Vadodara, Gujarat-391760, India.
| | - Mukul Jain
- Cell and Developmental Biology Laboratory, Research and Development Cell, PIMSR, Parul University, Vadodara, Gujarat, 391760, India.
- Parul Institute of Applied Sciences, Department of Life Sciences, Parul University, Vadodara, 391760, Gujarat, India.
| |
Collapse
|
9
|
Ghanem L, Essayli D, Kotaich J, Zein MA, Sahebkar A, Eid AH. Phenotypic switch of vascular smooth muscle cells in COVID-19: Role of cholesterol, calcium, and phosphate. J Cell Physiol 2024; 239:e31424. [PMID: 39188012 PMCID: PMC11649971 DOI: 10.1002/jcp.31424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Although the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), primarily manifests as severe respiratory distress, its impact on the cardiovascular system is also notable. Studies reveal that COVID-19 patients often suffer from certain vascular diseases, partly attributed to increased proliferation or altered phenotype of vascular smooth muscle cells (VSMCs). Although the association between COVID-19 and VSMCs is recognized, the precise mechanism underlying SARS-CoV-2's influence on VSMC phenotype remains largely under-reviewed. In this context, while there is a consistent body of literature dissecting the effect of COVID-19 on the cardiovascular system, few reports delve into the potential role of VSMC switching in the pathophysiology associated with COVID-19 and the molecular mechanisms involved therein. This review dissects and critiques the link between COVID-19 and VSMCs, with particular attention to pathways involving cholesterol, calcium, and phosphate. These pathways underpin the interaction between the virus and VSMCs. Such interaction promotes VSMC proliferation, and eventually potentiates vascular calcification as well as worsens prognosis in patients with COVID-19.
Collapse
MESH Headings
- Animals
- Humans
- Calcium/metabolism
- Cell Proliferation
- Cholesterol/metabolism
- COVID-19/metabolism
- COVID-19/pathology
- COVID-19/virology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/virology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/virology
- Phenotype
- Phosphates/metabolism
- SARS-CoV-2/pathogenicity
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/virology
Collapse
Affiliation(s)
- Laura Ghanem
- Faculty of Medical SciencesLebanese UniversityHadathLebanon
| | - Dina Essayli
- Faculty of Medical SciencesLebanese UniversityHadathLebanon
| | - Jana Kotaich
- Faculty of Medical SciencesLebanese UniversityHadathLebanon
- MEDICA Research InvestigationBeirutLebanon
| | | | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar UniversityDohaQatar
| |
Collapse
|
10
|
Berra S, Parolin D, Suffritti C, Folcia A, Zanichelli A, Gusso L, Cogliati C, Riva A, Gidaro A, Caccia S. Patterns of C1-Inhibitor Plasma Levels and Kinin-Kallikrein System Activation in Relation to COVID-19 Severity. Life (Basel) 2024; 14:1525. [PMID: 39768234 PMCID: PMC11679851 DOI: 10.3390/life14121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Although more than four years have passed since the pandemic began, SARS-CoV-2 continues to be of concern. Therefore, research into the underlying mechanisms that contribute to the development of the disease, especially in more severe forms, remains a priority. Sustained activation of the complement (CS), contact (CAS), and fibrinolytic and kinin-kallikrein systems (KKS) has been shown to play a central role in the pathogenesis of the disease. Since the C1 esterase inhibitor (C1-INH) is a potent inhibitor of all these systems, its role in the disease has been investigated, but some issues remained unresolved. METHODS We evaluated the impact of C1-INH and KKS on disease progression in a cohort of 45 COVID-19 patients divided into groups according to disease severity. We measured plasma levels of total and functional C1-INH and its complexes with kallikrein (PKa), reflecting KKS activation and kallikrein spontaneous activity. RESULTS We observed increased total and functional plasma concentrations of C1-INH in COVID-19 patients. A direct correlation (positive Spearman's r) was observed between C1-INH levels, especially functional C1-INH, and the severity of the disease. Moreover, a significant reduction in the ratio of functional over total C1-INH was evident in patients exhibiting mild to intermediate clinical severity but not in critically ill patients. Accordingly, activation of the KKS, assessed as an increase in PKa:C1-INH complexes, was explicitly observed in the mild categories. CONCLUSIONS Our study's findings on the consumption of C1-INH and the activation of the KKS in the less severe stages of COVID-19 but not in the critical stage suggest a potential role for C1-INH in containing disease severity. These results underscore the importance of C1-INH in the early phases of the disease and its potential implications in COVID-19 progression and/or long-term effects.
Collapse
Affiliation(s)
- Silvia Berra
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Department of Internal Medicine, Ospedale Fatebenefratelli, 20121 Milan, Italy
| | - Debora Parolin
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
| | - Chiara Suffritti
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, 20122 Milan, Italy
| | - Andrea Folcia
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Division of Oncology, Unit of Urology, Urological Research Institute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Andrea Zanichelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milan, Italy;
- Operative Unit of Medicine, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Luca Gusso
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Internal Medicine Unit, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Chiara Cogliati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Department of Internal Medicine, Ospedale Luigi Sacco, 20157 Milan, Italy
| | - Agostino Riva
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
- Department of Infectious Diseases, Ospedale Luigi Sacco, 20157 Milan, Italy
| | - Antonio Gidaro
- Department of Internal Medicine, Ospedale Luigi Sacco, 20157 Milan, Italy
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (S.B.); (D.P.); (C.S.); (A.F.); (L.G.); (C.C.); (A.R.)
| |
Collapse
|
11
|
Schwendinger F, Infanger D, Maurer DJ, Radtke T, Carrard J, Kröpfl JM, Emmenegger A, Hanssen H, Hauser C, Schwehr U, Hirsch HH, Ivanisevic J, Leuzinger K, Martinez AE, Maurer M, Sigrist T, Streese L, von Känel R, Hinrichs T, Schmidt-Trucksäss A. Medium- to long-term health condition of patients post-COVID-19, exercise intolerance and potential mechanisms: A narrative review and perspective. SAGE Open Med 2024; 12:20503121241296701. [PMID: 39902344 PMCID: PMC11789121 DOI: 10.1177/20503121241296701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/14/2024] [Indexed: 02/05/2025] Open
Abstract
Background Patients recovering from COVID-19 often present with impaired health and persisting symptoms such as exercise intolerance ⩾3 months post-infection. Uncertainty remains about long-term recovery. We aimed to review studies examining cardiac function, macro- or microvascular function, blood biomarkers and physical activity in adult patients post-COVID-19 and highlight current knowledge gaps. Results Using echocardiography, persistent cardiac involvement of the left ventricle was observed in a fraction of patients both hospitalized and non-hospitalized. Ventricular dysfunction was often subclinical but may partly contribute to exercise intolerance post-COVID-19. Endothelial dysfunction was seen on micro- and macrovascular levels using retinal vessel imaging methods and brachial artery flow-mediated dilation, respectively. Studies reporting blood biomarkers of disease-specific impairment and endothelial dysfunction yielded upregulated inflammation, hypercoagulability, organ and endothelial damage up to several months after infection. Omics' scale lipid profiling studies provide preliminary evidence of alterations in several lipid subspecies, mostly during acute COVID-19, which might contribute to subsequent endothelial and cardiometabolic dysfunction. Yet, more robust evidence is warranted. Physical activity may be reduced up to 6 months post-COVID-19. However, studies measuring physical activity more precisely using accelerometry are sparse. Overall, there is growing evidence for long-term multiple organ dysfunction. Conclusion Research combining all the above methods in the search for underlying mechanisms of post-COVID-19 symptoms is mostly missing. Moreover, studies with longer follow-ups (i.e. ⩾18 months) and well-matched control groups are lacking. The findings may aid the development of rehabilitation regimes for post-COVID-19 syndrome. Condensed abstract This review examined cardiac function, vascular function, blood biomarkers and physical activity in patients post-COVID-19. Evidence suggests long-term dysfunction in multiple organ systems and exercise intolerance due to various factors, including endothelial damage and, in some patients, subclinical ventricular dysfunction. We highlight knowledge gaps for further research to aid post-COVID-19 rehabilitation.
Collapse
Affiliation(s)
- Fabian Schwendinger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Denis Infanger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Debbie J Maurer
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Thomas Radtke
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zürich, Switzerland
| | - Justin Carrard
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Julia M Kröpfl
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Aglaia Emmenegger
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Henner Hanssen
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Christoph Hauser
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Udo Schwehr
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Hans H Hirsch
- Clinical Virology, University Hospital Basel, Basel, Switzerland
- Transplantation and Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Quartier UNIL-CHUV, Lausanne, Switzerland
| | - Karoline Leuzinger
- Clinical Virology, University Hospital Basel, Basel, Switzerland
- Transplantation and Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Aurélien E Martinez
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Marc Maurer
- Department of Pneumology, Cantonal Hospital Olten, Olten, Switzerland
| | - Thomas Sigrist
- Department of Pulmonology, Clinic Barmelweid, Barmelweid, Switzerland
| | - Lukas Streese
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Roland von Känel
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Timo Hinrichs
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Arno Schmidt-Trucksäss
- Division of Sports and Exercise Medicine, Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Bathrinarayanan PV, Hallam SM, Grover LM, Vigolo D, Simmons MJH. Microfluidics as a Powerful Tool to Investigate Microvascular Dysfunction in Trauma Conditions: A Review of the State-of-the-Art. Adv Biol (Weinh) 2024; 8:e2400037. [PMID: 39031943 DOI: 10.1002/adbi.202400037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Indexed: 07/22/2024]
Abstract
Skeletal muscle trauma such as fracture or crush injury can result in a life-threatening condition called acute compartment syndrome (ACS), which involves elevated compartmental pressure within a closed osteo-fascial compartment, leading to collapse of the microvasculature and resulting in necrosis of the tissue due to ischemia. Diagnosis of ACS is complex and controversial due to the lack of standardized objective methods, which results in high rates of misdiagnosis/late diagnosis, leading to permanent neuro-muscular damage. ACS pathophysiology is poorly understood at a cellular level due to the lack of physiologically relevant models. In this context, microfluidics organ-on-chip systems (OOCs) provide an exciting opportunity to investigate the cellular mechanisms of microvascular dysfunction that leads to ACS. In this article, the state-of-the-art OOCs designs and strategies used to investigate microvasculature dysfunction mechanisms is reviewed. The differential effects of hemodynamic shear stress on endothelial cell characteristics such as morphology, permeability, and inflammation, all of which are altered during microvascular dysfunction is highlighted. The article then critically reviews the importance of microfluidics to investigate closely related microvascular pathologies that cause ACS. The article concludes by discussing potential biomarkers of ACS with a special emphasis on glycocalyx and providing a future perspective.
Collapse
Affiliation(s)
- P Vasanthi Bathrinarayanan
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - S M Hallam
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| | - L M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - D Vigolo
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - M J H Simmons
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B152TT, UK
| |
Collapse
|
13
|
Triantafyllis AS, Sfantou D, Karapedi E, Peteinaki K, Kotoulas SC, Saad R, Fountoulakis PN, Tsamakis K, Tsiptsios D, Rallidis L, Tsoporis JN, Varvarousis D, Hamodraka E, Giannakopoulos A, Poulimenos LE, Ikonomidis I. Coronary Implications of COVID-19. Med Princ Pract 2024; 34:1-12. [PMID: 39307131 PMCID: PMC11805551 DOI: 10.1159/000541553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Patients with SARS-CoV-2 infection carry an increased risk of cardiovascular disease encompassing various implications, including acute myocardial injury or infarction, myocarditis, heart failure, and arrhythmias. A growing volume of evidence correlates SARS-CoV-2 infection with myocardial injury, exposing patients to higher mortality risk. SARS-CoV-2 attacks the coronary arterial bed with various mechanisms including thrombosis/rupture of preexisting atherosclerotic plaque, de novo coronary thrombosis, endotheliitis, microvascular dysfunction, vasculitis, vasospasm, and ectasia/aneurysm formation. The angiotensin-converting enzyme 2 receptor plays pivotal role on the cardiovascular homeostasis and the unfolding of COVID-19. The activation of immune system, mediated by proinflammatory cytokines along with the dysregulation of the coagulation system, can pose an insult on the coronary artery, which usually manifests as an acute coronary syndrome (ACS). Electrocardiogram, echocardiography, cardiac biomarkers, and coronary angiography are essential tools to set the diagnosis. Revascularization is the first-line treatment in all patients with ACS and obstructed coronary arteries, whereas in type 2 myocardial infarction treatment of hypoxia, anemia and systemic inflammation are indicated. In patients presenting with coronary vasospasm, nitrates and calcium channel blockers are preferred, while treatment of coronary ectasia/aneurysm mandates the use of antiplatelets/anticoagulants, corticosteroids, immunoglobulin, and biologic agents. It is crucial to untangle the exact mechanisms of coronary involvement in COVID-19 in order to ensure timely diagnosis and appropriate treatment. We have reviewed the current literature and provide a detailed overview of the pathophysiology and clinical spectrum associated with coronary implications of SARS-COV-2 infection. Patients with SARS-CoV-2 infection carry an increased risk of cardiovascular disease encompassing various implications, including acute myocardial injury or infarction, myocarditis, heart failure, and arrhythmias. A growing volume of evidence correlates SARS-CoV-2 infection with myocardial injury, exposing patients to higher mortality risk. SARS-CoV-2 attacks the coronary arterial bed with various mechanisms including thrombosis/rupture of preexisting atherosclerotic plaque, de novo coronary thrombosis, endotheliitis, microvascular dysfunction, vasculitis, vasospasm, and ectasia/aneurysm formation. The angiotensin-converting enzyme 2 receptor plays pivotal role on the cardiovascular homeostasis and the unfolding of COVID-19. The activation of immune system, mediated by proinflammatory cytokines along with the dysregulation of the coagulation system, can pose an insult on the coronary artery, which usually manifests as an acute coronary syndrome (ACS). Electrocardiogram, echocardiography, cardiac biomarkers, and coronary angiography are essential tools to set the diagnosis. Revascularization is the first-line treatment in all patients with ACS and obstructed coronary arteries, whereas in type 2 myocardial infarction treatment of hypoxia, anemia and systemic inflammation are indicated. In patients presenting with coronary vasospasm, nitrates and calcium channel blockers are preferred, while treatment of coronary ectasia/aneurysm mandates the use of antiplatelets/anticoagulants, corticosteroids, immunoglobulin, and biologic agents. It is crucial to untangle the exact mechanisms of coronary involvement in COVID-19 in order to ensure timely diagnosis and appropriate treatment. We have reviewed the current literature and provide a detailed overview of the pathophysiology and clinical spectrum associated with coronary implications of SARS-COV-2 infection.
Collapse
Affiliation(s)
| | - Danai Sfantou
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | - Eleni Karapedi
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | | | | | - Richard Saad
- Department of Cardiology, Asklepeion General Hospital, Athens, Greece
| | | | | | - Dimitrios Tsiptsios
- Department of Neurology, School of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Loukianos Rallidis
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - James N. Tsoporis
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | - Ignatios Ikonomidis
- Second Department of Cardiology, Attikon University Hospital, Athens, Greece
| |
Collapse
|
14
|
Li J, Kong X, Liu T, Xian M, Wei J. The Role of ACE2 in Neurological Disorders: From Underlying Mechanisms to the Neurological Impact of COVID-19. Int J Mol Sci 2024; 25:9960. [PMID: 39337446 PMCID: PMC11431863 DOI: 10.3390/ijms25189960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has become a hot topic in neuroscience research in recent years, especially in the context of the global COVID-19 pandemic, where its role in neurological diseases has received widespread attention. ACE2, as a multifunctional metalloprotease, not only plays a critical role in the cardiovascular system but also plays an important role in the protection, development, and inflammation regulation of the nervous system. The COVID-19 pandemic further highlights the importance of ACE2 in the nervous system. SARS-CoV-2 enters host cells by binding to ACE2, which may directly or indirectly affect the nervous system, leading to a range of neurological symptoms. This review aims to explore the function of ACE2 in the nervous system as well as its potential impact and therapeutic potential in various neurological diseases, providing a new perspective for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Xiangrui Kong
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| |
Collapse
|
15
|
Nor Rashid N, Amrani L, Alwan A, Mohamed Z, Yusof R, Rothan H. Angiotensin-Converting Enzyme-2 (ACE2) Downregulation During Coronavirus Infection. Mol Biotechnol 2024:10.1007/s12033-024-01277-5. [PMID: 39266903 DOI: 10.1007/s12033-024-01277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Angiotensin-converting enzyme-2 (ACE2) downregulation represents a detrimental factor in people with a baseline ACE2 deficiency associated with older age, hypertension, diabetes, and cardiovascular diseases. Human coronaviruses, including HCoV-NL63, SARS-CoV-1, and SARS CoV-2 infect target cells via binding of viral spike (S) glycoprotein to the ACE2, resulting in ACE2 downregulation through yet unidentified mechanisms. This downregulation disrupts the enzymatic activity of ACE2, essential in protecting against organ injury by cleaving and disposing of Angiotensin-II (Ang II), leading to the formation of Ang 1-7, thereby exacerbating the accumulation of Ang II. This accumulation activates the Angiotensin II type 1 receptor (AT1R) receptor, leading to leukocyte recruitment and increased proinflammatory cytokines, contributing to organ injury. The biological impacts and underlying mechanisms of ACE2 downregulation during SARS-CoV-2 infection have not been well defined. Therefore, there is an urgent need to establish a solid theoretical and experimental understanding of the mechanisms of ACE2 downregulation during SARS-CoV-2 entry and replication in the host cells. This review aims to discuss the physiological impact of ACE2 downregulation during coronavirus infection, the relationship between ACE2 decline and virus pathogenicity, and the possible mechanisms of ACE2 degradation, along with the therapeutic approaches.
Collapse
Affiliation(s)
- Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| | - Hussin Rothan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Pfizer, Pearl River, NY, USA.
| |
Collapse
|
16
|
Qu HQ, Hakonarson H. Navigating Complexity in Postural Orthostatic Tachycardia Syndrome. Biomedicines 2024; 12:1911. [PMID: 39200375 PMCID: PMC11352109 DOI: 10.3390/biomedicines12081911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 09/02/2024] Open
Abstract
Postural Orthostatic Tachycardia Syndrome (POTS) affects up to 1% of the US population, predominantly women, and is characterized by a complex, elusive etiology and heterogeneous phenotypes. This review delves into the intricate physiology and etiology of POTS, decoding the roles of the sinoatrial node, the autonomic nervous system, fluid dynamics, and the interplay between the immune and endocrine systems. It further examines key contributing factors such as dysautonomia, thoracic hypovolemia, autonomic neuropathies, sympathetic denervation, autoimmune responses, and associations with conditions such as small-fiber neuropathy and mast cell activation syndrome. Given the numerous mysteries surrounding POTS, we also cautiously bring attention to sinoatrial node and myocardial function, particularly in how the heart responds to stress despite exhibiting a normal cardiac phenotype at rest. The potential of genomic research in elucidating the underlying mechanisms of POTS is emphasized, suggesting this as a valuable approach that is likely to improve our understanding of the genetic underpinnings of POTS. The review introduces a tentative classification system for the etiological factors in POTS, which seeks to capture the condition's diverse aspects by categorizing various etiological factors and acknowledging co-occurring conditions. This classification, while aiming to enhance understanding and optimize treatment targets, is presented as a preliminary model needing further study and refinement. This review underscores the ongoing need for research to unravel the complexities of POTS and to develop targeted therapies that can improve patient outcomes.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- Division of Human Genetics, Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 191104, USA
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
17
|
Xiang Y, Feng Y, Qiu J, Zhang R, So HC. Association of COVID-19 vaccination with risks of hospitalization due to cardiovascular and other diseases: A study using data from the UK Biobank. Int J Infect Dis 2024; 145:107080. [PMID: 38701913 DOI: 10.1016/j.ijid.2024.107080] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
OBJECTIVES To explore whether COVID-19 vaccination protects against hospital admission by preventing infections and severe disease. METHODS We leveraged the UK Biobank and studied associations of COVID-19 vaccination (BioNTech-BNT162b2 or Oxford-AstraZeneca-ChAdOx1) with hospitalizations from cardiovascular and other selected diseases (N = 393,544; median follow-up = 54 days among vaccinated individuals). Multivariable Cox, Poisson regression, propensity score matching, and inverse probability treatment weighting analyses were performed. We also performed adjustment using prescription-time distribution matching, and prior event rate ratio. RESULTS We observed that COVID-19 vaccination (at least one dose), compared with no vaccination, was associated with reduced short-term risks of hospitalizations from stroke (hazard ratio [HR] = 0.178, 95% confidence interval [CI]: 0.127-0.250, P = 1.50e-23), venous thromboembolism (HR = 0.426, CI: 0.270-0.673, P = 2.51e-4), dementia (HR = 0.114, CI: 0.060-0.216; P = 2.24e-11), non-COVID-19 pneumonia (HR = 0.108, CI: 0.080-0.145; P = 2.20e-49), coronary artery disease (HR = 0.563, CI: 0.416-0.762; P = 2.05e-4), chronic obstructive pulmonary disease (HR = 0.212, CI: 0.126-0.357; P = 4.92e-9), type 2 diabetes (HR = 0.216, CI: 0.096-0.486, P = 2.12e-4), heart failure (HR = 0.174, CI: 0.118-0.256, P = 1.34e-18), and renal failure (HR = 0.415, CI: 0.255-0.677, P = 4.19e-4), based on standard Cox regression models. Among the previously mentioned results, reduced hospitalizations for stroke, heart failure, non-COVID-19 pneumonia, and dementia were consistently observed across regression, propensity score matching/inverse probability treatment weighting, prescription-time distribution matching, and prior event rate ratio. The results for two-dose vaccination were similar. CONCLUSIONS Taken together, this study provides further support to the safety and benefits of COVID-19 vaccination, and such benefits may extend beyond reduction of infection risk or severity per se. However, causal relationship cannot be concluded and further studies are required.
Collapse
Affiliation(s)
- Yong Xiang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yaning Feng
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinghong Qiu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ruoyu Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Hong Kong, China; CUHK Shenzhen Research Institute, Shenzhen, China; Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong; Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong; Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong; Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
18
|
Recchia Luciani G, Barilli A, Visigalli R, Dall’Asta V, Rotoli BM. Cytokines from SARS-CoV-2 Spike-Activated Macrophages Hinder Proliferation and Cause Cell Dysfunction in Endothelial Cells. Biomolecules 2024; 14:927. [PMID: 39199315 PMCID: PMC11353037 DOI: 10.3390/biom14080927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Endothelial dysfunction plays a central role in the severity of COVID-19, since the respiratory, thrombotic and myocardial complications of the disease are closely linked to vascular endothelial damage. To address this issue, we evaluate here the effect of conditioned media from spike S1-activated macrophages (CM_S1) on the proliferation of human umbilical endothelial cells (HUVECs), focusing on the specific role of interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Results obtained demonstrate that the incubation with CM_S1 for 72 h hinders endothelial cell proliferation and induces signs of cytotoxicity. Comparable results are obtained upon exposure to IFN-γ + TNF-α, which are thus postulated to play a pivotal role in the effects observed. These events are associated with an increase in p21 protein and a decrease in Rb phosphorylation, as well as with the activation of IRF-1 and NF-kB transcription factors. Overall, these findings further sustain the pivotal role of a hypersecretion of inflammatory cytokines as a trigger for endothelial activation and injury in the immune-mediated effects of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.R.L.); (A.B.); (R.V.); (B.M.R.)
| | | |
Collapse
|
19
|
Noble O, Sprung K, Diaz O, Coulter S, Hernandez-Vila E. Spontaneous Right Intrapetrous Internal Carotid Dissection in a Patient With Active COVID-19. Tex Heart Inst J 2024; 51:e248403. [PMID: 39051844 PMCID: PMC11284446 DOI: 10.14503/thij-24-8403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Spontaneous cervical artery dissection, a nontraumatic tear in the wall of an internal carotid or vertebral artery, is a common cause of stroke, particularly in patients younger than 40 years of age; however, petrous internal carotid artery dissection is extremely rare. This case report describes a 50-year-old woman who had a spontaneous intrapetrous internal carotid dissection thought to be secondary to active SARS-CoV-2 infection; the dissection was treated successfully with a flow-diverter stent.
Collapse
Affiliation(s)
- Oscar Noble
- Tecnológico de Monterrey, School of Medicine and Health Science, Monterrey, Nuevo Leon, México
| | - Keri Sprung
- Center for Women’s Heart and Vascular Health, The Texas Heart Institute, Houston, Texas
| | - Orlando Diaz
- Diagnostic Radiology, Houston Methodist Hospital, Houston, Texas
| | - Stephanie Coulter
- Center for Women’s Heart and Vascular Health, The Texas Heart Institute, Houston, Texas
| | | |
Collapse
|
20
|
Villacampa A, Shamoon L, Valencia I, Morales C, Figueiras S, de la Cuesta F, Sánchez-Niño D, Díaz-Araya G, Sánchez-Pérez I, Lorenzo Ó, Sánchez-Ferrer CF, Peiró C. SARS-CoV-2 S Protein Reduces Cytoprotective Defenses and Promotes Human Endothelial Cell Senescence. Aging Dis 2024; 16:1626-1638. [PMID: 39012668 PMCID: PMC12096926 DOI: 10.14336/ad.2024.0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Premature vascular aging and endothelial cell senescence are major risk factors for cardiovascular diseases and atherothrombotic disturbances, which are main complications of both acute and long COVID-19. The S protein of SARS-CoV2, which acts as the receptor binding protein for the viral infection, is able to induce endothelial cells inflammation and it has been found as an isolated element in the circulation and in human tissues reservoirs months after infection. Here, we investigated whether the S protein is able to directly induce endothelial cell senescence and deciphered some of the mechanisms involved. In primary cultures of human umbilical vein endothelial cells (HUVEC), SARS-CoV-2 S protein enhanced in a concentration-dependent manner the cellular content of senescence and DNA damage response markers (senescence-associated-β galactosidase, γH2AX), as well as growth-arrest effectors (p53, p21, p16). In parallel, the S protein reduced the availability of cytoprotective proteins, such as the anti-aging protein klotho, Nrf2 or heme oxygenase-1, and caused functional harm by impairing ex vivo endothelial-dependent vasorelaxation in murine microvessels. These effects were prevented by the pharmacological inhibition of the NLRP3 inflammasome with MCC950. Furthermore, the supplementation with either recombinant klotho or angiotensin-(1-7), equally protected against the pro-senescence, pro-inflammatory and pro-oxidant action of the S protein. Globally, this study proposes novel mechanisms of disease in the context of COVID-19 and its vascular sequelae and provides pharmacological clues in order to prevent such complications.
Collapse
Affiliation(s)
- Alicia Villacampa
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain.
| | - Licia Shamoon
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain.
| | - Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, Madrid, Spain.
| | - Cristina Morales
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain.
| | - Sofía Figueiras
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain.
| | - Fernando de la Cuesta
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain.
| | - Dolores Sánchez-Niño
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain.
- Nephrology and Hypertension Lab, IIS-Fundación Jimenez Diaz, Madrid, Spain.
| | - Guillermo Díaz-Araya
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Isabel Sánchez-Pérez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" IIBM-CSIC-UAM, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer (BioPAC) Group. Area 3 Cancer -Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
- Biomedical Research Networking Centre on Rare Diseases, CIBERER, ISCIII, Madrid, Spain.
| | - Óscar Lorenzo
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
- Laboratory of Diabetes and Vascular pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain.
- Biomedical Research Networking Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| | - Carlos Félix Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain.
| |
Collapse
|
21
|
de Jong MJM, Schaftenaar FH, Depuydt MAC, Lozano Vigario F, Janssen GMC, Peeters JAHM, Goncalves L, Wezel A, Smeets HJ, Kuiper J, Bot I, van Veelen P, Slütter B. Virus-Associated CD8 + T-Cells Are Not Activated Through Antigen-Mediated Interaction Inside Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol 2024; 44:1302-1314. [PMID: 38511327 DOI: 10.1161/atvbaha.123.320539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Viral infections have been associated with the progression of atherosclerosis and CD8+ T-cells directed against common viruses, such as influenza, Epstein-Barr virus, and cytomegalovirus, have been detected inside human atherosclerotic lesions. These virus-specific CD8+ T-cells have been hypothesized to contribute to the development of atherosclerosis; however, whether they affect disease progression directly remains unclear. In this study, we aimed to characterize the activation status of virus-specific CD8+ T-cells in the atherosclerotic lesion. METHODS The presence, clonality, tissue enrichment, and phenotype of virus-associated CD8+ T-cells in atherosclerotic lesions were assessed by exploiting bulk T-cell receptor-β sequencing and single-cell T-cell receptor (α and β) sequencing datasets on human endarterectomy samples and patient-matched blood samples. To investigate if virus-specific CD8+ T-cells can be activated through T-cell receptor stimulation in the atherosclerotic lesion, the immunopeptidome of human plaques was determined. RESULTS Virus-associated CD8+ T-cells accumulated more in the atherosclerotic lesion (mean=2.0%), compared with patient-matched blood samples (mean=1.4%; P=0.05), and were more clonally expanded and tissue enriched in the atherosclerotic lesion in comparison with nonassociated CD8+ T-cells from the lesion. Single-cell T-cell receptor sequencing and flow cytometry revealed that these virus-associated CD8+ T-cells were phenotypically highly similar to other CD8+ T-cells in the lesion and that both exhibited a more activated phenotype compared with circulating T-cells. Interestingly, virus-associated CD8+ T-cells are unlikely to be activated through antigen-specific interactions in the atherosclerotic lesion, as no virus-derived peptides were detected on HLA-I in the lesion. CONCLUSIONS This study suggests that virus-specific CD8+ T-cells are tissue enriched in atherosclerotic lesions; however, their potential contribution to inflammation may involve antigen-independent mechanisms.
Collapse
MESH Headings
- Humans
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/virology
- Plaque, Atherosclerotic
- Lymphocyte Activation
- Atherosclerosis/immunology
- Atherosclerosis/virology
- Atherosclerosis/pathology
- Male
- Phenotype
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Female
- Middle Aged
- Aged
- Carotid Artery Diseases/immunology
- Carotid Artery Diseases/virology
- Carotid Artery Diseases/pathology
- Host-Pathogen Interactions
Collapse
Affiliation(s)
- Maaike J M de Jong
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Frank H Schaftenaar
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Marie A C Depuydt
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Fernando Lozano Vigario
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - George M C Janssen
- Department of Immunology, Leiden University Medical Centre, Center for Proteomics and Metabolomics, the Netherlands (G.M.C.J., P.v.V.)
| | - Judith A H M Peeters
- Department of Surgery, Haaglanden Medical Center - location Westeinde, Lijnbaan, The Hague, the Netherlands (J.A.H.M.P., L.G., A.W., H.J.S.)
| | - Lauren Goncalves
- Department of Surgery, Haaglanden Medical Center - location Westeinde, Lijnbaan, The Hague, the Netherlands (J.A.H.M.P., L.G., A.W., H.J.S.)
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center - location Westeinde, Lijnbaan, The Hague, the Netherlands (J.A.H.M.P., L.G., A.W., H.J.S.)
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center - location Westeinde, Lijnbaan, The Hague, the Netherlands (J.A.H.M.P., L.G., A.W., H.J.S.)
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| | - Peter van Veelen
- Department of Immunology, Leiden University Medical Centre, Center for Proteomics and Metabolomics, the Netherlands (G.M.C.J., P.v.V.)
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Division of BioTherapeutics, Leiden University, the Netherlands (M.J.M.J., F.H.S., M.A.C.D., F.L.V., J.K., I.B., B.S.)
| |
Collapse
|
22
|
Nguyen CT, Nakayama M, Ishigaki H, Kitagawa Y, Kakino A, Ohno M, Shingai M, Suzuki Y, Sawamura T, Kida H, Itoh Y. Increased expression of CD38 on endothelial cells in SARS-CoV-2 infection in cynomolgus macaques. Virology 2024; 594:110052. [PMID: 38507920 DOI: 10.1016/j.virol.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
SARS-CoV-2 infection causes activation of endothelial cells (ECs), leading to dysmorphology and dysfunction. To study the pathogenesis of endotheliopathy, the activation of ECs in lungs of cynomolgus macaques after SARS-CoV-2 infection and changes in nicotinamide adenine dinucleotide (NAD) metabolism in ECs were investigated, with a focus on the CD38 molecule, which degrades NAD in inflammatory responses after SARS-CoV-2 infection. Activation of ECs was seen from day 3 after SARS-CoV-2 infection in macaques, with increases of intravascular fibrin and NAD metabolism-associated enzymes including CD38. In vitro, upregulation of CD38 mRNA in human ECs was detected after interleukin 6 (IL-6) trans-signaling induction, which was increased in the infection. In the presence of IL-6 trans-signaling stimulation, however, CD38 mRNA silencing induced significant IL-6 mRNA upregulation in ECs and promoted EC apoptosis after stimulation. These results suggest that upregulation of CD38 in patients with COVID-19 has a protective role against IL-6 trans-signaling stimulation induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cong Thanh Nguyen
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Akemi Kakino
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan; Central Research Laboratory, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
23
|
Ono R, Takayama S, Abe M, Arita R, Abe T, Ishii T. Growth Differentiation Factor-15 Is Considered a Predictive Biomarker of Long COVID in Non-hospitalized Patients. Cureus 2024; 16:e59433. [PMID: 38826986 PMCID: PMC11140824 DOI: 10.7759/cureus.59433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 06/04/2024] Open
Abstract
Mitochondrial dysfunction is associated with various diseases. Mitochondria plays a regulatory role during infection. The association between mitokines and subsequent COVID progression has not been previously studied. The retrospective cohort study aimed to investigate the potential of serum mitokines as long COVID biomarkers in non-hospitalized patients. Patients with confirmed SARS-CoV-2 infection and blood test reports between January 2021 and April 2023 were included. Patients were categorized into two groups, the recovered and long COVID groups, based on fatigue, decline in focus, and pain. Serum levels of growth differentiation factor 15 (GDF-15) and fibroblast growth factor-21 (FGF-21), which are affected by mitochondrial function, along with inflammatory and vascular endothelium markers, were measured using enzyme-linked immunosorbent assays (ELISA). A receiver operating characteristic curve was used to screen the biomarkers. The threshold value of GDF-15 in the acute phase was 965 pg/mL (sensitivity: 71.4%, specificity: 83.3%), indicating that GDF-15 may be associated with the presence of symptoms three months post onset. No association with inflammatory markers and vascular structures was observed. Therefore, elevated GDF-15 levels in the acute phase may act as a predictive biomarker of long COVID.
Collapse
Affiliation(s)
- Rie Ono
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, JPN
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, JPN
- Department of Anesthesiology and Perioperative Medicine, Tohoku University Hospital, Sendai, JPN
| | - Shin Takayama
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, JPN
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, JPN
- Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine, Sendai, JPN
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, JPN
| | - Ryutaro Arita
- Department of Kampo Medicine, Tohoku University Hospital, Sendai, JPN
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, JPN
- Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine, Sendai, JPN
| | - Takaaki Abe
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, JPN
- Department of Nephrology, Endocrinology, and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai, JPN
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, JPN
- Department of Kampo and Integrative Medicine, Tohoku University Graduate School of Medicine, Sendai, JPN
| |
Collapse
|
24
|
Karakasis P, Nasoufidou A, Sagris M, Fragakis N, Tsioufis K. Vascular Alterations Following COVID-19 Infection: A Comprehensive Literature Review. Life (Basel) 2024; 14:545. [PMID: 38792566 PMCID: PMC11122535 DOI: 10.3390/life14050545] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, has revealed a broader impact beyond the respiratory system, predominantly affecting the vascular system with various adverse manifestations. The infection induces endothelial dysfunction and immune system dysregulation, creating an inflammatory and hypercoagulable state. It affects both microvasculature and macrovasculature, leading to thromboembolic events, cardiovascular manifestations, impaired arterial stiffness, cerebrovascular complications, and nephropathy, as well as retinopathy-frequently observed in cases of severe illness. Evidence suggests that SARS-CoV-2 infection may result in persistent effects on the vascular system, identified as long-term COVID-19. This is characterized by prolonged inflammation, endotheliopathy, and an increased risk of vascular complications. Various imaging modalities, histopathological studies, and diagnostic tools such as video capillaroscopy and magnetic resonance imaging have been employed to visualize vascular alterations. This review aims to comprehensively summarize the evidence concerning short and long-term vascular alterations following COVID-19 infection, investigating their impact on patients' prognosis, and providing an overview of preventive strategies to mitigate associated vascular complications.
Collapse
Affiliation(s)
- Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (P.K.); (A.N.); (N.F.)
| | - Athina Nasoufidou
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (P.K.); (A.N.); (N.F.)
| | - Marios Sagris
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
| | - Nikolaos Fragakis
- Second Department of Cardiology, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece; (P.K.); (A.N.); (N.F.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece;
| |
Collapse
|
25
|
Cezard GI, Denholm RE, Knight R, Wei Y, Teece L, Toms R, Forbes HJ, Walker AJ, Fisher L, Massey J, Hopcroft LEM, Horne EMF, Taylor K, Palmer T, Arab MA, Cuitun Coronado JI, Ip SHY, Davy S, Dillingham I, Bacon S, Mehrkar A, Morton CE, Greaves F, Hyams C, Davey Smith G, Macleod J, Chaturvedi N, Goldacre B, Whiteley WN, Wood AM, Sterne JAC, Walker V. Impact of vaccination on the association of COVID-19 with cardiovascular diseases: An OpenSAFELY cohort study. Nat Commun 2024; 15:2173. [PMID: 38467603 PMCID: PMC10928172 DOI: 10.1038/s41467-024-46497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Infection with SARS-CoV-2 is associated with an increased risk of arterial and venous thrombotic events, but the implications of vaccination for this increased risk are uncertain. With the approval of NHS England, we quantified associations between COVID-19 diagnosis and cardiovascular diseases in different vaccination and variant eras using linked electronic health records for ~40% of the English population. We defined a 'pre-vaccination' cohort (18,210,937 people) in the wild-type/Alpha variant eras (January 2020-June 2021), and 'vaccinated' and 'unvaccinated' cohorts (13,572,399 and 3,161,485 people respectively) in the Delta variant era (June-December 2021). We showed that the incidence of each arterial thrombotic, venous thrombotic and other cardiovascular outcomes was substantially elevated during weeks 1-4 after COVID-19, compared with before or without COVID-19, but less markedly elevated in time periods beyond week 4. Hazard ratios were higher after hospitalised than non-hospitalised COVID-19 and higher in the pre-vaccination and unvaccinated cohorts than the vaccinated cohort. COVID-19 vaccination reduces the risk of cardiovascular events after COVID-19 infection. People who had COVID-19 before or without being vaccinated are at higher risk of cardiovascular events for at least two years.
Collapse
Affiliation(s)
- Genevieve I Cezard
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Rachel E Denholm
- Population Health Sciences, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- Health Data Research UK South-West, Bristol, UK
| | - Rochelle Knight
- Population Health Sciences, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- The National Institute for Health and Care Research Applied Research Collaboration West (NIHR ARC West) at University Hospitals Bristol and Weston, Bristol, UK
| | - Yinghui Wei
- Centre for Mathematical Sciences, School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
| | - Lucy Teece
- Department of Population Health Sciences, University of Leicester, Leicester, UK
| | - Renin Toms
- Population Health Sciences, University of Bristol, Bristol, UK
- Population Wellbeing, School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Harriet J Forbes
- Faculty of Epidemiology and Population Health, London School of Hygiene & tropical Medicine, London, UK
| | - Alex J Walker
- The Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Louis Fisher
- The Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jon Massey
- The Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | | | - Elsie M F Horne
- Population Health Sciences, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Kurt Taylor
- Population Health Sciences, University of Bristol, Bristol, UK
| | - Tom Palmer
- Population Health Sciences, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Marwa Al Arab
- Population Health Sciences, University of Bristol, Bristol, UK
| | | | - Samantha H Y Ip
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Simon Davy
- The Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Iain Dillingham
- The Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Sebastian Bacon
- The Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Amir Mehrkar
- The Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Caroline E Morton
- Digital Environment Research Institute, Queen Mary University of London, London, UK
| | - Felix Greaves
- National Institute for Health and Care Excellence, London, UK
- Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Catherine Hyams
- Population Health Sciences, University of Bristol, Bristol, UK
| | - George Davey Smith
- Population Health Sciences, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - John Macleod
- Population Health Sciences, University of Bristol, Bristol, UK
- Health Data Research UK South-West, Bristol, UK
- The National Institute for Health and Care Research Applied Research Collaboration West (NIHR ARC West) at University Hospitals Bristol and Weston, Bristol, UK
| | - Nishi Chaturvedi
- MRC Unit for Lifelong Health and Ageing, University College London, London, UK
| | - Ben Goldacre
- The Bennett Institute for Applied Data Science, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - William N Whiteley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Angela M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Cambridge Centre of Artificial Intelligence in Medicine, Cambridge, UK
| | - Jonathan A C Sterne
- Population Health Sciences, University of Bristol, Bristol, UK.
- NIHR Bristol Biomedical Research Centre, Bristol, UK.
- Health Data Research UK South-West, Bristol, UK.
| | - Venexia Walker
- Population Health Sciences, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
26
|
Owens CD, Bonin Pinto C, Detwiler S, Olay L, Pinaffi-Langley ACDC, Mukli P, Peterfi A, Szarvas Z, James JA, Galvan V, Tarantini S, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19. Brain Commun 2024; 6:fcae080. [PMID: 38495306 PMCID: PMC10943572 DOI: 10.1093/braincomms/fcae080] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Judith A James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
27
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
28
|
Villacampa A, Alfaro E, Morales C, Díaz-García E, López-Fernández C, Bartha JL, López-Sánchez F, Lorenzo Ó, Moncada S, Sánchez-Ferrer CF, García-Río F, Cubillos-Zapata C, Peiró C. SARS-CoV-2 S protein activates NLRP3 inflammasome and deregulates coagulation factors in endothelial and immune cells. Cell Commun Signal 2024; 22:38. [PMID: 38225643 PMCID: PMC10788971 DOI: 10.1186/s12964-023-01397-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Hyperinflammation, hypercoagulation and endothelial injury are major findings in acute and post-COVID-19. The SARS-CoV-2 S protein has been detected as an isolated element in human tissues reservoirs and is the main product of mRNA COVID-19 vaccines. We investigated whether the S protein alone triggers pro-inflammatory and pro-coagulant responses in primary cultures of two cell types deeply affected by SARS-CoV-2, such are monocytes and endothelial cells. METHODS In human umbilical vein endothelial cells (HUVEC) and monocytes, the components of NF-κB and the NLRP3 inflammasome system, as well as coagulation regulators, were assessed by qRT-PCR, Western blot, flow cytometry, or indirect immunofluorescence. RESULTS S protein activated NF-κB, promoted pro-inflammatory cytokines release, and triggered the priming and activation of the NLRP3 inflammasome system resulting in mature IL-1β formation in both cell types. This was paralleled by enhanced production of coagulation factors such as von Willebrand factor (vWF), factor VIII or tissue factor, that was mediated, at least in part, by IL-1β. Additionally, S protein failed to enhance ADAMTS-13 levels to counteract the pro-coagulant activity of vWF multimers. Monocytes and HUVEC barely expressed angiotensin-converting enzyme-2. Pharmacological approaches and gene silencing showed that TLR4 receptors mediated the effects of S protein in monocytes, but not in HUVEC. CONCLUSION S protein behaves both as a pro-inflammatory and pro-coagulant stimulus in human monocytes and endothelial cells. Interfering with the receptors or signaling pathways evoked by the S protein may help preventing immune and vascular complications driven by such an isolated viral element. Video Abstract.
Collapse
Affiliation(s)
- Alicia Villacampa
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Cristina Morales
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - José Luis Bartha
- Department of Obstetrics and Gynecology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Gynecology and Obstetrics Service, La Paz University Hospital, Madrid, Spain
| | | | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedical Research Networking Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Salvador Moncada
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain.
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM) group, IdiPAZ, Madrid, Spain.
| |
Collapse
|
29
|
Gressett TE, Hossen ML, Talkington G, Volic M, Perez H, Tiwari PB, Chapagain P, Bix G. Molecular interactions between perlecan LG3 and the SARS-CoV-2 spike protein receptor binding domain. Protein Sci 2024; 33:e4843. [PMID: 37996967 PMCID: PMC10731540 DOI: 10.1002/pro.4843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/14/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has caused a global health crisis with significant clinical morbidity and mortality. While angiotensin-converting enzyme 2 (ACE2) is the primary receptor for viral entry, other cell surface and extracellular matrix proteins may also bind to the viral receptor binding domain (RBD) within the SARS-CoV-2 spike protein. Recent studies have implicated heparan sulfate proteoglycans, specifically perlecan LG3, in facilitating SARS-CoV-2 binding to ACE2. However, the role of perlecan LG3 in SARS-CoV-2 pathophysiology is not well understood. In this study, we investigated the binding interactions between the SARS-CoV-2 spike protein RBD and perlecan LG3 through molecular modeling simulations and surface plasmon resonance (SPR) experiments. Our results indicate stable binding between LG3 and SARS-CoV-2 spike protein RBD, which may potentially enhance RBD-ACE2 interactions. These findings shed light on the role of perlecan LG3 in SARS-CoV-2 infection and provide insight into SARS-CoV-2 pathophysiology and potential therapeutic strategy for COVID-19.
Collapse
Affiliation(s)
- Timothy E. Gressett
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
| | - Md Lokman Hossen
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
- Department of PhysicsUniversity of BarishalKornokathiBangladesh
| | - Grant Talkington
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
| | - Milla Volic
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
| | - Hugo Perez
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
| | | | - Prem Chapagain
- Department of PhysicsFlorida International UniversityMiamiFloridaUSA
- Biomolecular Sciences InstituteFlorida International UniversityMiamiFloridaUSA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research CenterTulane University School of MedicineNew OrleansLouisianaUSA
- Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
- Department of NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
30
|
Lipińska-Gediga M, Lemańska-Perek A, Gozdzik W, Adamik B. Changes in plasma endocan level are related to circulatory but not respiratory failure in critically ill patients with COVID-19. Sci Rep 2023; 13:22307. [PMID: 38102316 PMCID: PMC10724176 DOI: 10.1038/s41598-023-48912-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
The aim of this prospective, observational study was to assess whether changes in the level of endocan, a marker of endothelial damage, may be an indicator of clinical deterioration and mortality in critically ill COVID-19 patients. Endocan and clinical parameters were evaluated in 40 patients with acute respiratory failure on days 1-5 after admission to the intensive care unit. Endocan levels were not related to the degree of respiratory failure, but to the presence of cardiovascular failure. In patients with cardiovascular failure, the level of endocan increased over the first 5 days (1.63, 2.50, 2.68, 2.77, 3.31 ng/mL, p = 0.016), while in patients without failure it decreased (1.51, 1.50, 1.56, 1.42, 1.13 ng/mL, p = 0.046). In addition, mortality was more than twice as high in patients with acute cardiovascular failure compared to those without failure (68% vs. 32%, p = 0.035). Baseline endocan levels were lower in viral than in bacterial infections (1.57 ng/mL vs. 5.25 ng/mL, p < 0.001), with a good discrimination between infections of different etiologies (AUC of 0.914, p < 0.001). In conclusion, endocan levels are associated with the occurrence of cardiovascular failure in COVID-19 and depend on the etiology of the infection, with higher values for bacterial than for viral sepsis.
Collapse
Affiliation(s)
- Małgorzata Lipińska-Gediga
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland.
| | - Anna Lemańska-Perek
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, Marii Sklodowskiej-Curie 48/50, 50-369, Wrocław, Poland
| | - Waldemar Gozdzik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| |
Collapse
|
31
|
Kim J, Qiao F, Singh AK, Won J, Singh I. Efficacies of S-nitrosoglutathione (GSNO) and GSNO reductase inhibitor in SARS-CoV-2 spike protein induced acute lung disease in mice. Front Pharmacol 2023; 14:1304697. [PMID: 38143504 PMCID: PMC10748393 DOI: 10.3389/fphar.2023.1304697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which initially surfaced in late 2019, often triggers severe pulmonary complications, encompassing various disease mechanisms such as intense lung inflammation, vascular dysfunction, and pulmonary embolism. Currently, however, there's no drug addressing all these mechanisms simultaneously. This study explored the multi-targeting potential of S-nitrosoglutathione (GSNO) and N6022, an inhibitor of GSNO reductase (GSNOR) on markers of inflammatory, vascular, and thrombotic diseases related to COVID-19-induced acute lung disease. For this, acute lung disease was induced in C57BL/6 mice through intranasal administration of recombinant SARS-CoV-2 spike protein S1 domain (SP-S1). The mice exhibited fever, body weight loss, and increased blood levels and lung expression of proinflammatory cytokines (e.g., TNF-α and IL-6) as well as increased vascular inflammation mediated by ICAM-1 and VCAM-1 and lung infiltration by immune cells (e.g., neutrophils, monocytes, and activated cytotoxic and helper T cells). Further, the mice exhibited increased lung hyperpermeability (lung Evans blue extravasation) leading to lung edema development as well as elevated blood coagulation factors (e.g., fibrinogen, thrombin, activated platelets, and von Willebrand factor) and lung fibrin deposition. Similar to the patients with COVID-19, male mice showed more severe disease than female mice, along with higher GSNOR expression in the lungs. Optimization of GSNO by treatment with exogenous GSNO or inhibition of GSNOR by N6022 (or GSNO knockout) protects against SP-S1-induced lung diseases in both genders. These findings provide evidence for the potential efficacies of GSNO and GSNOR inhibitors in addressing the multi-mechanistic nature of SARS-CoV-2 SP-associated acute-lung disease.
Collapse
Affiliation(s)
- Judong Kim
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Fei Qiao
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Avtar K. Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Pathology and Laboratory Medicine Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| | - Jeseong Won
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson Veterans Administration Medical Center, Charleston, SC, United States
| |
Collapse
|
32
|
Ocampo FF, Promsena P, Chan P. Update on Central Nervous System Effects of the Intersection of HIV-1 and SARS-CoV-2. Curr HIV/AIDS Rep 2023; 20:345-356. [PMID: 37950846 DOI: 10.1007/s11904-023-00676-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
PURPOSE OF REVIEW Research has shown myriad neurologic and mental health manifestations during the acute and subsequent stages of COVID-19 in people with HIV (PWH). This review summarizes the updates on central nervous system (CNS) outcomes following SARS-CoV-2 infection in PWH and highlight the existing knowledge gaps in this area. RECENT FINDINGS Studies leveraging electronic record systems have highlighted the excess risk of developing acute and lingering neurological complications of COVID-19 in PWH compared to people without HIV (PWoH). However, there is a notable scarcity of neuroimaging as well as blood and cerebrospinal fluid (CSF) marker studies that can confirm the potential synergy between these two infections, particularly in PWH receiving suppressive antiretroviral therapy. Considering the unclear potential interaction between SARS-CoV-2 and HIV, clinicians should remain vigilant regarding new-onset or worsening neurological symptoms in PWH following COVID-19, as they could be linked to either infection.
Collapse
Affiliation(s)
- Ferron F Ocampo
- SEARCH Research Foundation, Block 28, 926 Tower C Room C114-C115 Soi Chula 7, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| | - Pathariya Promsena
- SEARCH Research Foundation, Block 28, 926 Tower C Room C114-C115 Soi Chula 7, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Pediatric Infectious Diseases and Vaccines, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phillip Chan
- Department of Neurology, Yale University, New Haven, CT, USA
- Yale Center for Brain and Mind Health, Yale University, New Haven, CT, USA
| |
Collapse
|
33
|
O'Glasser AY. COVID-19 in the perioperative setting: 2023 updates. PERIOPERATIVE CARE AND OPERATING ROOM MANAGEMENT 2023; 33:100353. [DOI: 10.1016/j.pcorm.2023.100353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
34
|
Chen TB, Chang CM, Yang CC, Tsai IJ, Wei CY, Yang HW, Yang CP. Neuroimmunological Effect of Vitamin D on Neuropsychiatric Long COVID Syndrome: A Review. Nutrients 2023; 15:3802. [PMID: 37686834 PMCID: PMC10490318 DOI: 10.3390/nu15173802] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). COVID-19 is now recognized as a multiorgan disease with a broad spectrum of manifestations. A substantial proportion of individuals who have recovered from COVID-19 are experiencing persistent, prolonged, and often incapacitating sequelae, collectively referred to as long COVID. To date, definitive diagnostic criteria for long COVID diagnosis remain elusive. An emerging public health threat is neuropsychiatric long COVID, encompassing a broad range of manifestations, such as sleep disturbance, anxiety, depression, brain fog, and fatigue. Although the precise mechanisms underlying the neuropsychiatric complications of long COVID are presently not fully elucidated, neural cytolytic effects, neuroinflammation, cerebral microvascular compromise, breakdown of the blood-brain barrier (BBB), thrombosis, hypoxia, neurotransmitter dysregulation, and provoked neurodegeneration are pathophysiologically linked to long-term neuropsychiatric consequences, in addition to systemic hyperinflammation and maladaptation of the renin-angiotensin-aldosterone system. Vitamin D, a fat-soluble secosteroid, is a potent immunomodulatory hormone with potential beneficial effects on anti-inflammatory responses, neuroprotection, monoamine neurotransmission, BBB integrity, vasculometabolic functions, gut microbiota, and telomere stability in different phases of SARS-CoV-2 infection, acting through both genomic and nongenomic pathways. Here, we provide an up-to-date review of the potential mechanisms and pathophysiology of neuropsychiatric long COVID syndrome and the plausible neurological contributions of vitamin D in mitigating the effects of long COVID.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Faculty of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - I-Ju Tsai
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
| | - Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| | - Hao-Wen Yang
- Department of Family Medicine, Kuang Tien General Hospital, Taichung 433, Taiwan
| | - Chun-Pai Yang
- Department of Medical Research, Kuang Tien General Hospital, Taichung 433, Taiwan;
- Department of Neurology, Kuang Tien General Hospital, Taichung 433, Taiwan
- Department of Nutrition, HungKuang University, Taichung 433, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
35
|
Bele A, Wagh V, Munjewar PK. A Comprehensive Review on Cardiovascular Complications of COVID-19: Unraveling the Link to Bacterial Endocarditis. Cureus 2023; 15:e44019. [PMID: 37746510 PMCID: PMC10517725 DOI: 10.7759/cureus.44019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has ushered in a new era of understanding the multifaceted nature of infectious diseases. Beyond its well-documented respiratory impact, COVID-19 has unveiled intricate interactions with the cardiovascular system, with potential implications that extend to bacterial endocarditis. This review explores the complex interplay between COVID-19 and bacterial endocarditis, elucidating shared risk factors, theoretical mechanisms, and clinical implications. We examine the diverse cardiovascular manifestations of COVID-19, ranging from myocarditis and thromboembolic events to arrhythmias, and delve into the pathogenesis, clinical features, and diagnostic challenges of bacterial endocarditis. By analyzing potential connections, such as viral-induced endothelial disruption and immune modulation, we shed light on the plausible relationship between COVID-19 and bacterial endocarditis. Our synthesis highlights the significance of accurate diagnosis, optimal management, and interdisciplinary collaboration in addressing the challenges posed by these intricate interactions. In addition, we underscore the importance of future research, emphasizing prospective studies on bacterial endocarditis incidence and investigations into the long-term cardiovascular effects of COVID-19. As the boundaries of infectious diseases and cardiovascular complications converge, this review calls for continued research, vigilance, and coordinated efforts to enhance patient care and public health strategies in a rapidly evolving landscape.
Collapse
Affiliation(s)
- Anurag Bele
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Vasant Wagh
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Pratiksha K Munjewar
- Medical Surgical Nursing, Smt. Radhikabai Meghe Memorial College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
36
|
Petersen E, Chudakova D, Erdyneeva D, Zorigt D, Shabalina E, Gudkov D, Karalkin P, Reshetov I, Mynbaev OA. COVID-19-The Shift of Homeostasis into Oncopathology or Chronic Fibrosis in Terms of Female Reproductive System Involvement. Int J Mol Sci 2023; 24:ijms24108579. [PMID: 37239926 DOI: 10.3390/ijms24108579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 coronavirus remains a global public health concern due to the systemic nature of the infection and its long-term consequences, many of which remain to be elucidated. SARS-CoV-2 targets endothelial cells and blood vessels, altering the tissue microenvironment, its secretion, immune-cell subpopulations, the extracellular matrix, and the molecular composition and mechanical properties. The female reproductive system has high regenerative potential, but can accumulate damage, including due to SARS-CoV-2. COVID-19 is profibrotic and can change the tissue microenvironment toward an oncogenic niche. This makes COVID-19 and its consequences one of the potential regulators of a homeostasis shift toward oncopathology and fibrosis in the tissues of the female reproductive system. We are looking at SARS-CoV-2-induced changes at all levels in the female reproductive system.
Collapse
Affiliation(s)
- Elena Petersen
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Daria Chudakova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Daiana Erdyneeva
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dulamsuren Zorigt
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Denis Gudkov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Pavel Karalkin
- P.A. Herzen Moscow Research Institute of Oncology, 125284 Moscow, Russia
- Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Igor Reshetov
- Institute of Cluster Oncology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Ospan A Mynbaev
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
37
|
Lebrun L, Absil L, Remmelink M, De Mendonça R, D'Haene N, Gaspard N, Rusu S, Racu ML, Collin A, Allard J, Zindy E, Schiavo AA, De Clercq S, De Witte O, Decaestecker C, Lopes MB, Salmon I. SARS-Cov-2 infection and neuropathological findings: a report of 18 cases and review of the literature. Acta Neuropathol Commun 2023; 11:78. [PMID: 37165453 PMCID: PMC10170054 DOI: 10.1186/s40478-023-01566-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/15/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION COVID-19-infected patients harbour neurological symptoms such as stroke and anosmia, leading to the hypothesis that there is direct invasion of the central nervous system (CNS) by SARS-CoV-2. Several studies have reported the neuropathological examination of brain samples from patients who died from COVID-19. However, there is still sparse evidence of virus replication in the human brain, suggesting that neurologic symptoms could be related to mechanisms other than CNS infection by the virus. Our objective was to provide an extensive review of the literature on the neuropathological findings of postmortem brain samples from patients who died from COVID-19 and to report our own experience with 18 postmortem brain samples. MATERIAL AND METHODS We used microscopic examination, immunohistochemistry (using two different antibodies) and PCR-based techniques to describe the neuropathological findings and the presence of SARS-CoV-2 virus in postmortem brain samples. For comparison, similar techniques (IHC and PCR) were applied to the lung tissue samples for each patient from our cohort. The systematic literature review was conducted from the beginning of the pandemic in 2019 until June 1st, 2022. RESULTS In our cohort, the most common neuropathological findings were perivascular haemosiderin-laden macrophages and hypoxic-ischaemic changes in neurons, which were found in all cases (n = 18). Only one brain tissue sample harboured SARS-CoV-2 viral spike and nucleocapsid protein expression, while all brain cases harboured SARS-CoV-2 RNA positivity by PCR. A colocalization immunohistochemistry study revealed that SARS-CoV-2 antigens could be located in brain perivascular macrophages. The literature review highlighted that the most frequent neuropathological findings were ischaemic and haemorrhagic lesions, including hypoxic/ischaemic alterations. However, few studies have confirmed the presence of SARS-CoV-2 antigens in brain tissue samples. CONCLUSION This study highlighted the lack of specific neuropathological alterations in COVID-19-infected patients. There is still no evidence of neurotropism for SARS-CoV-2 in our cohort or in the literature.
Collapse
Affiliation(s)
- Laetitia Lebrun
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Lara Absil
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Myriam Remmelink
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Ricardo De Mendonça
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Nicky D'Haene
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, Erasme University Hospital, Brussels, Belgium
| | - Stefan Rusu
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Marie-Lucie Racu
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Amandine Collin
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
| | - Egor Zindy
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
| | - Andrea Alex Schiavo
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Sarah De Clercq
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium
| | - Olivier De Witte
- Department of Neurosurgery, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital ErasmeErasme University Hospital, Brussels, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium
- Laboratory of Image Synthesis and Analysis, Brussels School of Engineering/École Polytechnique de Brussels, ULB, Brussels, Belgium
| | - Maria-Beatriz Lopes
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Isabelle Salmon
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB)Hôpital Universitaire de Bruxelles (HUB), CUB Hôpital Erasme, 808 Route de Lennik, B-1070, Brussels, Belgium.
- DIAPath, Center for Microscopy and Molecular Imaging (CMMI), ULB, Gosselies, Belgium.
| |
Collapse
|
38
|
Hong SP, Yang MJ, Bae JH, Choi DR, Kim YC, Yang MS, Oh B, Kang KW, Lee SM, Kim B, Kim YD, Ahn JH, Koh GY. Three-dimensional morphologic and molecular atlases of nasal vasculature. NATURE CARDIOVASCULAR RESEARCH 2023; 2:449-466. [PMID: 39196043 PMCID: PMC11358012 DOI: 10.1038/s44161-023-00257-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/22/2023] [Indexed: 08/29/2024]
Abstract
Understanding the function of the nasal vasculature in homeostasis and pathogenesis of common nasal diseases is important. Here we describe an extensive network of venous sinusoids (VSs) in mouse and human nasal mucosa. The endothelium of the VSs expressed Prox1 (considered to be a constitutive marker of lymphatic endothelium) and high levels of VCAM-1 and exhibited unusual cell-to-cell junctions. VSs are supported by circular smooth muscle cells (SMCs) and surrounded by immune cells. The nasal mucosa also showed a rich supply of lymphatic vessels with distinctive features, such as the absence of the lymphatic marker LYVE1 and sharp-ended capillaries. In mouse models of allergic rhinitis or acute Coronavirus Disease 2019 (COVID-19) infection, Prox1+ VSs were regressed or compromised. However, in aged mice, the VSs lost the SMC support and were expanded and enlarged. Our findings demonstrate three-dimensional morphological and molecular heterogeneities of the nasal vasculature and offer insights into their associations with nasal inflammation, infection and aging.
Collapse
Affiliation(s)
- Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jung Hyun Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Du Ri Choi
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
| | - Young-Chan Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Myeon-Sik Yang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Byungkwan Oh
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan, Republic of Korea
| | - Sang-Myeong Lee
- Laboratory of Veterinary Virology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Yong-Dae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Ji Hoon Ahn
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
39
|
Podrug M, Koren P, Dražić Maras E, Podrug J, Čulić V, Perissiou M, Bruno RM, Mudnić I, Boban M, Jerončić A. Long-Term Adverse Effects of Mild COVID-19 Disease on Arterial Stiffness, and Systemic and Central Hemodynamics: A Pre-Post Study. J Clin Med 2023; 12:2123. [PMID: 36983124 PMCID: PMC10055477 DOI: 10.3390/jcm12062123] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
COVID-19-associated vascular disease complications are primarily associated with endothelial dysfunction; however, the consequences of disease on vascular structure and function, particularly in the long term (>7 weeks post-infection), remain unexplored. Individual pre- and post-infection changes in arterial stiffness as well as central and systemic hemodynamic parameters were measured in patients diagnosed with mild COVID-19. As part of in-laboratory observational studies, baseline measurements were taken up to two years before, whereas the post-infection measurements were made 2-3 months after the onset of COVID-19. We used the same measurement protocol throughout the study as well as linear and mixed-effects regression models to analyze the data. Patients (N = 32) were predominantly healthy and young (mean age ± SD: 36.6 ± 12.6). We found that various parameters of arterial stiffness and central hemodynamics-cfPWV, AIx@HR75, and cDBP as well as DBP and MAP-responded to a mild COVID-19 disease. The magnitude of these responses was dependent on the time since the onset of COVID-19 as well as age (pregression_models ≤ 0.013). In fact, mixed-effects models predicted a clinically significant progression of vascular impairment within the period of 2-3 months following infection (change in cfPWV by +1.4 m/s, +15% in AIx@HR75, approximately +8 mmHg in DBP, cDBP, and MAP). The results point toward the existence of a widespread and long-lasting pathological process in the vasculature following mild COVID-19 disease, with heterogeneous individual responses, some of which may be triggered by an autoimmune response to COVID-19.
Collapse
Affiliation(s)
- Mario Podrug
- Laboratory of Vascular Aging, University of Split School of Medicine, 21000 Split, Croatia
- University Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Pjero Koren
- Laboratory of Vascular Aging, University of Split School of Medicine, 21000 Split, Croatia
- University of Split School of Medicine, 21000 Split, Croatia
| | - Edita Dražić Maras
- Infectious Diseases Department, University Hospital of Split, 21000 Split, Croatia
| | - Josip Podrug
- Otorhinolaryngology Department, University Hospital of Split, 21000 Split, Croatia
| | - Viktor Čulić
- University of Split School of Medicine, 21000 Split, Croatia
- Department of Cardiology and Angiology, University Hospital Centre Split, 21000 Split, Croatia
| | - Maria Perissiou
- Physical Activity, Health and Rehabilitation Research Group, School of Sport, Health and Exercise Science, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2UP, UK
| | - Rosa Maria Bruno
- Université Paris Cité, INSERM, PARCC, 75015 Paris, France
- Clinical Pharmacology Unit, AP-HP, Hôpital européen Georges Pompidou, 75015 Paris, France
| | - Ivana Mudnić
- Department of Basic and Clinical Pharmacology, University of Split School of Medicine, 21000 Split, Croatia
| | - Mladen Boban
- Department of Basic and Clinical Pharmacology, University of Split School of Medicine, 21000 Split, Croatia
| | - Ana Jerončić
- Laboratory of Vascular Aging, University of Split School of Medicine, 21000 Split, Croatia
- Department of Research in Biomedicine and Health, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
40
|
Patel MA, Knauer MJ, Nicholson M, Daley M, Van Nynatten LR, Cepinskas G, Fraser DD. Organ and cell-specific biomarkers of Long-COVID identified with targeted proteomics and machine learning. Mol Med 2023; 29:26. [PMID: 36809921 PMCID: PMC9942653 DOI: 10.1186/s10020-023-00610-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Survivors of acute COVID-19 often suffer prolonged, diffuse symptoms post-infection, referred to as "Long-COVID". A lack of Long-COVID biomarkers and pathophysiological mechanisms limits effective diagnosis, treatment and disease surveillance. We performed targeted proteomics and machine learning analyses to identify novel blood biomarkers of Long-COVID. METHODS A case-control study comparing the expression of 2925 unique blood proteins in Long-COVID outpatients versus COVID-19 inpatients and healthy control subjects. Targeted proteomics was accomplished with proximity extension assays, and machine learning was used to identify the most important proteins for identifying Long-COVID patients. Organ system and cell type expression patterns were identified with Natural Language Processing (NLP) of the UniProt Knowledgebase. RESULTS Machine learning analysis identified 119 relevant proteins for differentiating Long-COVID outpatients (Bonferonni corrected P < 0.01). Protein combinations were narrowed down to two optimal models, with nine and five proteins each, and with both having excellent sensitivity and specificity for Long-COVID status (AUC = 1.00, F1 = 1.00). NLP expression analysis highlighted the diffuse organ system involvement in Long-COVID, as well as the involved cell types, including leukocytes and platelets, as key components associated with Long-COVID. CONCLUSIONS Proteomic analysis of plasma from Long-COVID patients identified 119 highly relevant proteins and two optimal models with nine and five proteins, respectively. The identified proteins reflected widespread organ and cell type expression. Optimal protein models, as well as individual proteins, hold the potential for accurate diagnosis of Long-COVID and targeted therapeutics.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Michael J Knauer
- Pathology and Laboratory Medicine, Western University, London, ON, N6A 3K7, Canada
| | | | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology and Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- Room C2-C82, London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
41
|
Beneficial Effects of L-Arginine in Patients Hospitalized for COVID-19: New Insights from a Randomized Clinical Trial. Pharmacol Res 2023; 191:106702. [PMID: 36804278 PMCID: PMC9928676 DOI: 10.1016/j.phrs.2023.106702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
We have recently demonstrated in a double-blind randomized trial the beneficial effects of L-Arginine in patients hospitalized for COVID-19. We hypothesize that one of the mechanisms underlying the favorable effects of L-Arginine is its action on inflammatory cytokines. To verify our hypothesis, we measured longitudinal plasma levels of pro-inflammatory and anti-inflammatory cytokines implied in the pathophysiology of COVID-19 in patients randomized to receive oral L-Arginine or placebo. The study was successfully completed by 169 patients. Patients in the L-Arginine arm had a reduced respiratory support evaluated at 10 and 20 days; moreover, the time to hospital discharge was significantly shorter in the L-Arginine group. The assessment of circulating cytokines revealed that L-Arginine significantly reduced the circulating levels of pro-inflammatory IL-2, IL-6, and IFN-γ and increased the levels of the anti-inflammatory IL-10. Taken together, these findings indicate that adding L-Arginine to standard therapy in COVID-19 patients markedly reduces the need of respiratory support and the duration of in-hospital stay; moreover, L-Arginine significantly regulates circulating levels of pro-inflammatory and anti-inflammatory cytokines.
Collapse
|
42
|
Tudoran C, Bende F, Bende R, Giurgi-Oncu C, Dumache R, Tudoran M. Correspondence between Aortic and Arterial Stiffness, and Diastolic Dysfunction in Apparently Healthy Female Patients with Post-Acute COVID-19 Syndrome. Biomedicines 2023; 11:492. [PMID: 36831027 PMCID: PMC9953636 DOI: 10.3390/biomedicines11020492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background: Abnormally increased arterial and aortic stiffness (AS and AoS), which are often associated with diastolic dysfunction (DD), represent common alterations in COVID-19. In this study, we aimed to assess, by transthoracic echocardiography (TTE) and pulse-wave velocity (PWV), the frequency of these dysfunctions in patients with post-acute COVID-19 syndrome and to highlight potential correlations between their severity and multiple clinical and laboratory parameters. (2) Methods: In total, 121 women were included in our study, all of whom were younger than 55 and had been diagnosed with post-COVID-19 syndrome. Of those women, 67 also had metabolic syndrome (MS) (group A), whereas the other 54 did not (group B); 40 age-matched healthy subjects were used as controls (group C). (3) Results: Patients in group A had worse values of indexes characterizing AS and AoS and had more frequent DD compared to those from group B and group C (p < 0.0001). The statistical analysis evidenced significant associations between these indexes and the time that had elapsed since COVID-19 diagnosis, the factors that characterize the severity of the acute disease and those that specify MS. Multivariate regression analysis identified the following as the main independent predictors for DD: values of the AoS index, the C-reactive protein, and the triglyceride-glucose index. (4) Conclusions: Altered AS, AoS, and DD are common in patients with post-COVID-19 syndrome, especially with concurrent MS, and these parameters are apparently associated not only with the severity and time elapsed since COVID-19 diagnosis but also with MS.
Collapse
Affiliation(s)
- Cristina Tudoran
- Department VII, Internal Medicine II, Discipline of Cardiology, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
- Academy of Romanian Scientists, Ilfov Str. Nr. 3, 50085 Bucuresti, Romania
| | - Felix Bende
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
- Department VII, Internal Medicine II, Discipline of Gastroenterology, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center of Advanced Research in Gastroenterology and Hepatology, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, 300041 Timisoara, Romania
| | - Renata Bende
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
- Center of Advanced Research in Gastroenterology and Hepatology, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, 300041 Timisoara, Romania
| | - Catalina Giurgi-Oncu
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
- Department VIII, Neuroscience, Discipline of Psychiatry, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Raluca Dumache
- Department VIII, Discipline of Forensic Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- Center for Ethics in Human Genetic Identification, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
| | - Mariana Tudoran
- Center of Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babes” Timisoara, E. Murgu Square, Nr. 2, 300041 Timisoara, Romania
- County Emergency Hospital “Pius Brinzeu”, L. Rebreanu, Nr. 156, 300723 Timisoara, Romania
| |
Collapse
|
43
|
Martio AE, Soares PDMR, Karam OR, Padua WL, Manzato LB, Mesquita Filho PM. Intracranial hemorrhage and Covid-19: A retrospective analysis of 1675 hospitalized Covid-19 Brazilian patients. BRAIN HEMORRHAGES 2023:S2589-238X(23)00002-5. [PMID: 36694614 PMCID: PMC9850839 DOI: 10.1016/j.hest.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Background The present study seeks to overcome the lack of data on Covid-19 associated intracranial hemorrhage (ICH) in Brazil. Methods This is a retrospective, single-center case series of consecutive patients. It is a subanalysis of a larger study still in progress, which covers all neurological manifestations that occurred in patients admitted between March 1st, 2020 and June 1st, 2022, with active SARS-CoV-2 infection confirmed by polymerase chain reaction test. All patients with non-traumatic ICH were included. Results A total of 1675 patients were evaluated: 917 (54.75 %) had one or more neurological symptoms and 19 had non-traumatic ICH, comprising an incidence of 1.13 %. All patients had one or more risk factors for ICH. The presence of neurological manifestations before the ICH and ICU admission showed a statistically significant relationship with the occurrence of ICH (X2 = 6.734, p = 0.0095; OR = 4.47; CI = 1.3-15.4; and FET = 9.13; p = <0.001; OR = 9.15; CI = 3.27-25.5 respectively). Discussion and conclusion Our findings were largely congruent with the world literature. We believe that the assessment of risk factors can accurately predict the subgroup of patients at increased risk of ICH, but further studies are needed to confirm these hypotheses.
Collapse
Affiliation(s)
- Artur Eduardo Martio
- Corresponding author at: Jorge Barbieux Street, 235, Cep 99062-570, Passo Fundo, RS, Brazil
| | | | | | | | | | | |
Collapse
|
44
|
Nogueira RS, Salu BR, Nardelli VG, Bonturi CR, Pereira MR, de Abreu Maffei FH, Cilli EM, Oliva MLV. A snake venom-analog peptide that inhibits SARS-CoV-2 and papain-like protease displays antithrombotic activity in mice arterial thrombosis model, without interfering with bleeding time. Thromb J 2023; 21:1. [PMID: 36593467 PMCID: PMC9806807 DOI: 10.1186/s12959-022-00436-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/18/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND (p-BthTX-I)2 K, a dimeric analog peptide derived from the C-terminal region of phospholipase A2-like bothropstoxin-I (p-BthTX-I), is resistant to plasma proteolysis and inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains with weak cytotoxic effects. Complications of SARS-CoV-2 infection include vascular problems and increased risk of thrombosis; therefore, studies to identify new drugs for treating SARS-CoV-2 infections that also inhibit thrombosis and minimize the risk of bleeding are required. OBJECTIVES To determine whether (p-BthTX-I)2 K affects the hemostatic system. METHODS Platelet aggregation was induced by collagen, arachidonic acid, and adenosine diphosphate (ADP) in the Chronolog Lumi-aggregometer. The coagulation activity was evaluated by determining activated partial thromboplastin clotting time (aPTT) and prothrombin time (PT) with (p-BthTX-I)2 K (5.0-434.5 µg) or 0.9% NaCl. Arterial thrombosis was induced with a 540 nm laser and 3.5-20 mg kg- 1 Rose Bengal in the carotid artery of male C57BL/6J mice using (p-BthTX-I)2 K. Bleeding time was determined in mouse tails immersed in saline at 37 °C after (p-BthTX-I)2 K (4.0 mg/kg and 8.0 mg/kg) or saline administration. RESULTS (p-BthTX-I)2 K prolonged the aPTT and PT by blocking kallikrein and FXa-like activities. Moreover, (p-BthTX-I)2 K inhibited ADP-, collagen-, and arachidonic acid-induced platelet aggregation in a dose-dependent manner. Further, low concentrations of (p-BthTX-I)2 K extended the time to artery occlusion by the formed thrombus. However, (p-BthTX-I)2 K did not prolong the bleeding time in the mouse model of arterial thrombosis. CONCLUSION These results demonstrate the antithrombotic activity of the peptide (p-BthTX-I)2 K possibly by kallikrein inhibition, suggesting its strong biotechnological potential.
Collapse
Affiliation(s)
- Ruben Siedlarczyk Nogueira
- grid.411249.b0000 0001 0514 7202Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), SP 04044- 020 São Paulo, Brazil
| | - Bruno Ramos Salu
- grid.411249.b0000 0001 0514 7202Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), SP 04044- 020 São Paulo, Brazil
| | - Vinícius Goulart Nardelli
- grid.411249.b0000 0001 0514 7202Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), SP 04044- 020 São Paulo, Brazil
| | - Camila Ramalho Bonturi
- grid.411249.b0000 0001 0514 7202Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), SP 04044- 020 São Paulo, Brazil
| | - Marina Rodrigues Pereira
- grid.410543.70000 0001 2188 478XDepartment of Biochemistry and Organic Chemistry, Institute of Chemistry, Universidade Estadual Paulista (UNESP), SP 14800-060 São Paulo, Araraquara, Brazil
| | - Francisco Humberto de Abreu Maffei
- grid.410543.70000 0001 2188 478XDepartment of Surgery and Orthopedics, Universidade Estadual Paulista (UNESP), 18618-687 São Paulo, Botucatu, SP Brazil
| | - Eduardo Maffud Cilli
- grid.410543.70000 0001 2188 478XDepartment of Biochemistry and Organic Chemistry, Institute of Chemistry, Universidade Estadual Paulista (UNESP), SP 14800-060 São Paulo, Araraquara, Brazil
| | - Maria Luiza Vilela Oliva
- grid.411249.b0000 0001 0514 7202Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), SP 04044- 020 São Paulo, Brazil
| |
Collapse
|
45
|
Gambardella J, Kansakar U, Sardu C, Messina V, Jankauskas SS, Marfella R, Maggi P, Wang X, Mone P, Paolisso G, Sorriento D, Santulli G. Exosomal miR-145 and miR-885 Regulate Thrombosis in COVID-19. J Pharmacol Exp Ther 2023; 384:109-115. [PMID: 35772782 PMCID: PMC9827505 DOI: 10.1124/jpet.122.001209] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/13/2023] Open
Abstract
We hypothesized that exosomal microRNAs could be implied in the pathogenesis of thromboembolic complications in coronavirus disease 2019 (COVID-19). We isolated circulating exosomes from patients with COVID-19, and then we divided our population in two arms based on the D-dimer level on hospital admission. We observed that exosomal miR-145 and miR-885 significantly correlate with D-dimer levels. Moreover, we demonstrate that human endothelial cells express the main cofactors needed for the internalization of the "Severe acute respiratory syndrome coronavirus 2" (SARS-CoV-2), including angiotensin converting enzyme 2, transmembrane protease serine 2, and CD-147. Interestingly, human endothelial cells treated with serum from COVID-19 patients release significantly less miR-145 and miR-885, exhibit increased apoptosis, and display significantly impaired angiogenetic properties compared with cells treated with non-COVID-19 serum. Taken together, our data indicate that exosomal miR-145 and miR-885 are essential in modulating thromboembolic events in COVID-19. SIGNIFICANCE STATEMENT: This work demonstrates for the first time that two specific microRNAs (namely miR-145 and miR-885) contained in circulating exosomes are functionally involved in thromboembolic events in COVID-19. These findings are especially relevant to the general audience when considering the emerging prominence of post-acute sequelae of COVID-19 systemic manifestations known as Long COVID.
Collapse
Affiliation(s)
- Jessica Gambardella
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Urna Kansakar
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Celestino Sardu
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Vincenzo Messina
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Stanislovas S Jankauskas
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Raffaele Marfella
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Paolo Maggi
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Xujun Wang
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Pasquale Mone
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Giuseppe Paolisso
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Daniela Sorriento
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute (J.G., U.K., S.S.J., X.W., P.Mo.) and Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Institute for Neuroimmunology and Inflammation (INI), Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Aging Research (G.S.), Albert Einstein College of Medicine, New York City, New York; Department of Advanced Biomedical Sciences, International Translational Research and Medical Education (ITME) Consortium, "Federico II" University, Naples, Italy (J.G., D.S., G.S.); Department of Advanced Medical and Surgical Sciences (C.S., R.M., P. Ma., G.P.), and Department of Mental and Physical Health and Preventive Medicine (P.Ma.) University of Campania, Naples, Italy; Infectious Disease Unit, "Sant'Anna and San Sebastiano" Hospital, Caserta, Italy (V.M.)
| |
Collapse
|
46
|
Dimitriadis K, Schmidbauer M, Bösel J. [Neurointensive care medicine and COVID-19]. DER NERVENARZT 2023; 94:84-92. [PMID: 36520214 PMCID: PMC9751507 DOI: 10.1007/s00115-022-01417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/16/2022]
Abstract
This review article summarizes important findings on the interfaces between the coronavirus disease 2019 (COVID-19) pandemic and neurology with an emphasis of the implications for neurointensive care medicine. More specifically, the prevalence, pathomechanisms and impact of neurological manifestations are reported. The most common neurological manifestations of critically ill COVID-19 patients are cerebrovascular complications, encephalopathies and intensive care unit-acquired weakness (ICUAW). A relevant direct pathophysiological effect by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) itself has not yet been established with certainty. In fact, indirect systemic inflammatory processes triggered by the viral infection and side effects of intensive care treatment are much more likely to cause the reported sequelae. The impact of the pandemic on patients with neurological disorders and neurointensive care medicine is far-reaching but not yet sufficiently studied.
Collapse
Affiliation(s)
- Konstantinos Dimitriadis
- Neurologische Klinik, Universitätsklinikum LMU München, München, Deutschland.
- Institut für Schlaganfall- und Demenzforschung (ISD), LMU München, Feodor-Lynen-Str. 17, 81377, München, Deutschland.
| | - Moritz Schmidbauer
- Neurologische Klinik, Universitätsklinikum LMU München, München, Deutschland
| | - Julian Bösel
- Neurologische Klinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
47
|
Ozkok S, Ciftci HO, Keles N, Karatas M, Parsova KE, Kahraman E, Durak F, Pekkan K, Kocogulları CU, Yiyit N. Cardiac magnetic resonance T2* mapping in patients with COVID-19 pneumonia is associated with serum ferritin level? Int J Cardiovasc Imaging 2022; 39:821-830. [PMID: 36542216 PMCID: PMC9768776 DOI: 10.1007/s10554-022-02784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The coronavirus disease of 2019 (COVID-19)-related myocardial injury is an increasingly recognized complication and cardiac magnetic resonance imaging (MRI) has become the most commonly used non-invasive imaging technique for myocardial involvement. This study aims to assess myocardial structure by T2*-mapping which is a non-invasive gold-standard imaging tool for the assessment of cardiac iron deposition in patients with COVID-19 pneumonia without significant cardiac symptoms. Twenty-five patients with COVID-19 pneumonia and 20 healthy subjects were prospectively enrolled.Cardiac volume and function parameters, myocardial native-T1, and T2*-mapping were measured. The association of serum ferritin level and myocardial mapping was analyzed. There was no difference in terms of cardiac volume and function parameters. The T2*-mapping values were lower in patients with COVID-19 compared to controls (35.37 [IQR 31.67-41.20] ms vs. 43.98 [IQR 41.97-46.88] ms; p < 0.0001), while no significant difference was found in terms of native-T1 mapping value(p = 0.701). There was a positive correlation with T2*mapping and native-T1 mapping values (r = 0.522, p = 0.007) and negative correlation with serum ferritin values (r = - 0.653, p = 0.000), while no correlation between cardiac native-T1 mapping and serum ferritin level. Negative correlation between serum ferritin level and T2*-mapping values in COVID-19 patients may provide a non-contrast-enhanced alternative to assess tissue structural changes in patients with COVID-19. T2*-mapping may provide a non-contrast-enhanced alternative to assess tissue alterations in patients with COVID-19. Adding T2*-mapping cardiac MRI in patients with myocardial pathologies would improve the revealing of underlying mechanisms. Further in vivo and ex vivo animal or human studies designed with larger patient cohorts should be planned.
Collapse
Affiliation(s)
- Sercin Ozkok
- Department of Radiology, Acıbadem International Hospital, Istanbul, Turkey.
- Department of Biomedical Engineering, Koç University, Istanbul, Turkey.
| | - Hatice Ozge Ciftci
- Department of Radiology, Dr. Ilhan Varank Sancaktepe Training and Research Hospital, Istanbul, Turkey
| | - Nursen Keles
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Mesut Karatas
- Department of Cardiology, Kartal Kosuyolu Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Kemal Emrecan Parsova
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Erkan Kahraman
- Department of Cardiology, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Furkan Durak
- Department of Cardiology, Sancaktepe Şehit Prof Dr İlhan Varank Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koç University, Istanbul, Turkey
| | - Cevdet Ugur Kocogulları
- Department of Cardiovascular Surgery, Dr. Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Nurettin Yiyit
- Department of Thoracic Surgery, Dr. Ilhan Varank Sancaktepe Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
48
|
He S, Wu K, Cheng Z, He M, Hu R, Fan N, Shen L, Li Q, Fan H, Tong Y. Long COVID: The latest manifestations, mechanisms, and potential therapeutic interventions. MedComm (Beijing) 2022; 3:e196. [PMID: 36514781 PMCID: PMC9732402 DOI: 10.1002/mco2.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
COVID-19 caused by SARS-CoV-2 infection affects humans not only during the acute phase of the infection, but also several weeks to 2 years after the recovery. SARS-CoV-2 infects a variety of cells in the human body, including lung cells, intestinal cells, vascular endothelial cells, olfactory epithelial cells, etc. The damages caused by the infections of these cells and enduring immune response are the basis of long COVID. Notably, the changes in gene expression caused by viral infection can also indirectly contribute to long COVID. We summarized the occurrences of both common and uncommon long COVID, including damages to lung and respiratory system, olfactory and taste deficiency, damages to myocardial, renal, muscle, and enduring inflammation. Moreover, we provided potential treatments for long COVID symptoms manifested in different organs and systems, which were based on the pathogenesis and the associations between symptoms in different organs. Importantly, we compared the differences in symptoms and frequency of long COVID caused by breakthrough infection after vaccination and infection with different variants of concern, in order to provide a comprehensive understanding of the characteristics of long COVID and propose improvement for tackling COVID-19.
Collapse
Affiliation(s)
- Shi‐ting He
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Kexin Wu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Zixuan Cheng
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Mengjie He
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Ruolan Hu
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Ning Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Lin Shen
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Qirui Li
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Huahao Fan
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| | - Yigang Tong
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
49
|
Long Chain N3-PUFA Decreases ACE2 Protein Levels and Prevents SARS-CoV-2 Cell Entry. Int J Mol Sci 2022; 23:ijms232213825. [PMID: 36430303 PMCID: PMC9695276 DOI: 10.3390/ijms232213825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/28/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a target of interest for both COVID-19 and cardiovascular disease management. Even though lower ACE2 levels may be beneficial in SARS-CoV-2 infectivity, maintaining the ACE1/ACE2 balance is also crucial for cardiovascular health. So far, reports describing conditions capable of altering ACE2 protein levels, especially via dietary components, are limited. In this study, the effects of omega-3 polyunsaturated fatty acids (n3-PUFA) on the protein levels of ACE1 and ACE2 in rodent tissues, human endothelial and kidney cell lines, and human plasma were examined. The ability of n3-PUFA to affect the entry of the SARS-CoV-2 pseudovirus into cells was also tested. Docosahexaenoic acid (DHA), and in some cases eicosapentaenoic acid (EPA), but not α-linoleic acid (ALA), reduced both ACE1 and ACE2 (non-glycosylated p100 and glycosylated p130 forms) in the heart, aorta, and kidneys of obese rats, as well as in human EA.hy926 endothelial and HEK293 kidney cells. Dietary supplementation with either DHA or ALA had no effect on plasma soluble ACE2 levels in humans. However, treatment of HEK293 cells with 80 and 125 µM DHA for 16 h inhibited the entry of the SARS-CoV-2 pseudovirus. These results strongly suggest that DHA treatment may reduce the ability of SARS-CoV-2 to infect cells via a mechanism involving a decrease in the absolute level of ACE2 protein as well as its glycosylation. Our findings warrant further evaluation of long-chain n3-PUFA supplements as a novel option for restricting SARS-CoV-2 infectivity in the general population.
Collapse
|
50
|
Labarrere CA, Kassab GS. Glutathione: A Samsonian life-sustaining small molecule that protects against oxidative stress, ageing and damaging inflammation. Front Nutr 2022; 9:1007816. [PMID: 36386929 PMCID: PMC9664149 DOI: 10.3389/fnut.2022.1007816] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/12/2022] [Indexed: 11/26/2022] Open
Abstract
Many local and systemic diseases especially diseases that are leading causes of death globally like chronic obstructive pulmonary disease, atherosclerosis with ischemic heart disease and stroke, cancer and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 19 (COVID-19), involve both, (1) oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels, and (2) inflammation. The GSH tripeptide (γ- L-glutamyl-L-cysteinyl-glycine), the most abundant water-soluble non-protein thiol in the cell (1-10 mM) is fundamental for life by (a) sustaining the adequate redox cell signaling needed to maintain physiologic levels of oxidative stress fundamental to control life processes, and (b) limiting excessive oxidative stress that causes cell and tissue damage. GSH activity is facilitated by activation of the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 that regulates expression of genes controlling antioxidant, inflammatory and immune system responses. GSH exists in the thiol-reduced (>98% of total GSH) and disulfide-oxidized (GSSG) forms, and the concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell. GSH depletion may play a central role in inflammatory diseases and COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of inflammatory diseases and COVID-19 and increasing GSH levels may prevent and subdue these diseases. The life value of GSH makes for a paramount research field in biology and medicine and may be key against systemic inflammation and SARS-CoV-2 infection and COVID-19 disease. In this review, we emphasize on (1) GSH depletion as a fundamental risk factor for diseases like chronic obstructive pulmonary disease and atherosclerosis (ischemic heart disease and stroke), (2) importance of oxidative stress and antioxidants in SARS-CoV-2 infection and COVID-19 disease, (3) significance of GSH to counteract persistent damaging inflammation, inflammaging and early (premature) inflammaging associated with cell and tissue damage caused by excessive oxidative stress and lack of adequate antioxidant defenses in younger individuals, and (4) new therapies that include antioxidant defenses restoration.
Collapse
|