1
|
Winsor NJ, Tsang DK, Ranger A, Singh O, Goyal S, Philpott DJ, Girardin SE. The IL-18 receptor is expressed on murine small-intestinal enterochromaffin cells and executes a recovery program upon injury. Proc Natl Acad Sci U S A 2025; 122:e2417149122. [PMID: 40424129 DOI: 10.1073/pnas.2417149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Upon injury, epithelial-derived IL-18 is released and induces an inflammatory response in underlying IL18R1+ lamina propria cells. Notably, Il18r1 is also predicted to be expressed and functional in intestinal epithelial cells (IECs), since epithelial IL18R1 deficiency contributes to worsened outcomes upon inflammatory challenge. However, the nature of Il18r1+ IECs, and their subsequent role in epithelial-intrinsic IL-18 signaling is poorly characterized. Here, we show that, in the murine small intestine, the IL-18 receptor is expressed by rare IECs that we identified to be a subset of enterochromaffin cells (ECC). While these cells are the major producers of serotonin in the intestine, we found no evidence that IL-18 regulated serotonin metabolism or release. Rather, upon radiation-induced injury, Il18r1+ cells appeared in the crypt base and took on a revival stem cell (revSC) program, marked by mixed expression of YAP/TAZ and enteroendocrine genes signatures. Functionally, irradiated Il18-/- mice display reduced epithelial proliferation and altered differentiation in the small intestine, characterized by increased Paneth cells (PC) and elevated Wnt3 levels, which was partially recapitulated in Il18-/- ileal organoids. In sum, we identified an Il18r1+ population in the epithelium and revealed a role for IEC-intrinsic IL-18 signaling during injury.
Collapse
Affiliation(s)
- Nathaniel J Winsor
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Derek K Tsang
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
| | - Adrienne Ranger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Ojas Singh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Shawn Goyal
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| | - Dana J Philpott
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
| | - Stephen E Girardin
- Department of Immunology, University of Toronto, ON M5S 1A8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
An C, Jiang C, Pei W, Li A, Wang M, Wang Y, Wang H, Zuo L. Intestinal epithelial cells in health and disease. Tissue Barriers 2025:2504744. [PMID: 40401816 DOI: 10.1080/21688370.2025.2504744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/23/2025] [Accepted: 05/06/2025] [Indexed: 05/23/2025] Open
Abstract
This comprehensive review delves into the pivotal role of intestinal epithelial cells in the context of various diseases. It provides an in-depth analysis of the diverse types and functions of these cells, explores the influence of multiple signaling pathways on their differentiation, and elucidates their critical roles in a spectrum of diseases. The significance of the gastrointestinal tract in maintaining overall health is extremely important and cannot be exaggerated. This complex and elongated organ acts as a crucial link between the internal and external environments, making it vulnerable to various harmful influences. Preserving the normal structure and function of the gut is essential for well-being. Intestinal epithelial cells serve as the primary defense mechanism within the gastrointestinal tract and play a crucial role in preventing harmful substances from infiltrating the body. As the main components of the digestive system, they not only participate in the absorption and secretion of nutrients and the maintenance of barrier function but also play a pivotal role in immune defense. Therefore, the health of intestinal epithelial cells is of vital importance for overall health.
Collapse
Affiliation(s)
- Chenchen An
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Chonggui Jiang
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Wangxiang Pei
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| | - Ao Li
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Minghui Wang
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yufei Wang
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
- The First College of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Hua Wang
- Inflammation and Immune- Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Zuo
- Laboratory of Molecular Biology, Department of Biochemistry, School of Basic Medical Science, Anhui Medical University, Hefei, China
- Innovation and Entrepreneurship Laboratory for college students, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Menghini P, Buttó LF, Gomez-Nguyen A, Aladyshkina N, Buela KA, Osme A, Chan R, Wargo HL, De Santis S, Bamias G, Pizarro T, Cominelli F. Tumor Necrosis Factor-Like Ligand 1A/Death Receptor 3 Signaling Regulates the Generation of Pathogenic T Helper 9 Cells in Experimental Crohn's Disease. Gastroenterology 2025:S0016-5085(25)00606-7. [PMID: 40204100 DOI: 10.1053/j.gastro.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 02/13/2025] [Accepted: 03/03/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND & AIMS Death receptor 3 (DR3) and its ligand, tumor necrosis factor-like ligand 1A (TL1A), regulate the balance between effector and regulatory T cells in inflammatory bowel disease (IBD). Although interleukin 9 (IL9)-secreting T helper 9 (Th9) cells are linked to ulcerative colitis, their role in Crohn's disease (CD) is unclear. We investigated the role of DR3 signaling in Th9 cell differentiation in mouse models of CD-like ileitis and colitis. METHODS Polarized Th9 cells with functional DR3 and DR3-deficient Th9 cells from SAMP wild-type (Th9WT) and DR3-/-×SAMP knockout (Th9KO) mice, respectively, were characterized and adoptively transferred into Rag2-/- and SAMP×Rag2-/- recipients. Expression of Th9-associated molecules from experimental mice and IBD patients/controls was compared. RESULTS Th9WT possess a proinflammatory profile compared with Th9KO cells; conversely, ablation of DR3 signaling generates anti-inflammatory responses, as reflected by increased IL10-producing cells in DR3-/-×SAMP mice. RNA sequencing and phosphoproteomic analyses show that inflammatory pathways are robustly activated in Th9WT compared with Th9KO cells, whereas Th9 cells are detected in SAMP mice in vivo, and Th9-related genes display the same expression patterns in both experimental ileitis and IBD patients. Finally, in the T-cell adoptive transfer model, Th9KO cells are less colitogenic than Th9WT, whereas IL9 blockade diminishes the severity of intestinal inflammation, indicating a crucial role of functional DR3 receptor in the pathogenicity of Th9 cells. CONCLUSIONS We demonstrate that the functional DR3 receptor is essential for Th9 cell pathogenicity, revealing a new mechanism by which TL1A/DR3 signaling drives experimental CD-like ileitis. The TL1A/DR3/Th9 proinflammatory pathway may offer a novel therapeutic target for patients with CD.
Collapse
Affiliation(s)
- Paola Menghini
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ludovica F Buttó
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Adrian Gomez-Nguyen
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Natalia Aladyshkina
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Kristine-Ann Buela
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Abdullah Osme
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ricky Chan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Hannah L Wargo
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Stefania De Santis
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Giorgos Bamias
- Gastrointestinal Unit, Third Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, Athens, Greece
| | - Theresa Pizarro
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Fabio Cominelli
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
4
|
Hu Y, Liu H, Tan X, Wu X. Knocking Down Ferredoxin 1 Inhibits the Progression of Colorectal Cancer and Regulates Cuproptosis via Mediating the Hippo Signaling Pathway. Mol Carcinog 2025; 64:911-922. [PMID: 39987563 DOI: 10.1002/mc.23897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
Cuproptosis is a form of programmed cell death dependent on mitochondrial respiration and is crucial in cancer treatment. The study attempted to screen cuproptosis-associated genes in colorectal cancer (CRC) and reveal regulatory pathways. Weighted gene co-expression network analysis (WGCNA) was applied to screen the co-expression modules based on gene expression in CRC patients. The cuproptosis-associated genes were screened at the intersection of co-expression modules and cuproptosis gene data set. RNA sequencing was performed to assess the transcriptome changes, followed by functional enrichment analyses to reveal the potential pathways. Ferredoxin 1 (FDX1) was knocked down in in vivo and in vitro experiments to investigate the effects of FDX1 knockdown on CRC progression and cuproptosis. FDX1 was found as a cuproptosis-associated gene and was highly expressed in CRC tumor and CRC cells. Knockdown of FDX1 regulated cuproptosis in CRC cells, and inhibited CRC cell growth, migration and invasion. We screened 1956 upregulated DEGs and 2201 downregulated DEGs in si-FDX1 cells, which were mainly enriched in mitogen-activated protein kinase (MAPK) signaling pathway, tumor necrosis factor (TNF) signaling pathway and Hippo signaling pathway. Knockdown of FDX1 inhibited CRC progression by increasing the levels of dihydrolipoamide S-succinyltransferase (DLST), lipoic acid synthetase (LIAS) and phosphorylation Yes-associated protein (pYAP)/YAP, and downregulated transcriptional coactivator with a PDZ-binding domain (TAZ). The inhibitor of Hippo pathway GA-017 blocked this process. Knocking down FDX1 regulated cuproptosis and inhibited CRC progression by mediating the Hippo signaling pathway, which shed new insights into the development of biomarkers for CRC treatment.
Collapse
Affiliation(s)
- Ying Hu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Haihua Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiaobin Tan
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Xiongjian Wu
- Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| |
Collapse
|
5
|
Chen S, Qin Z, Zhou S, Xu Y, Zhu Y. The emerging role of intestinal stem cells in ulcerative colitis. Front Med (Lausanne) 2025; 12:1569328. [PMID: 40201327 PMCID: PMC11975877 DOI: 10.3389/fmed.2025.1569328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the colon and rectum. Characterized by recurrent attacks, UC is often resistant to traditional anti-inflammatory therapies, imposing significant physiological, psychological, and economic burdens on patients. In light of these challenges, innovative targeted therapies have become a new expectation for patients with UC. A crucial pathological feature of UC is the impairment of the intestinal mucosal barrier, which underlies aberrant immune responses and inflammation. Intestinal stem cells (ISCs), which differentiate into intestinal epithelial cells, play a central role in maintaining this barrier. Growing studies have proved that regulating the regeneration and differentiation of ISC is a promising approach to treating UC. Despite this progress, there is a dearth of comprehensive articles describing the role of ISCs in UC. This review focuses on the importance of ISCs in maintaining the intestinal mucosal barrier in UC and discusses the latest findings on ISC functions, markers, and their regulatory mechanisms. Key pathways involved in ISC regulation, including the Wnt, Notch, Hedgehog (HH), Hippo/Yap, and autophagy pathways, are explored in detail. Additionally, this review examines recent advances in ISC-targeted therapies for UC, such as natural or synthetic compounds, microbial preparations, traditional Chinese medicine (TCM) extracts and compounds, and transplantation therapy. This review aims to offer novel therapeutic insights and strategies for patients who have long struggled with UC.
Collapse
Affiliation(s)
- Siqing Chen
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhang Qin
- The Fourth Hospital of Changsha (Changsha Hospital Affiliated with Hunan Normal University), Changsha, Hunan, China
| | - Sainan Zhou
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
7
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
9
|
Wang L, Guo W, Tian Y, Wang J, Xu S, Shu W, Liang H, Chen M. Carboxypeptidase inhibitor Latexin (LXN) regulates intestinal organogenesis and intestinal remodeling involved in intestinal injury repair in mice. Int J Biol Macromol 2024; 279:135129. [PMID: 39208900 DOI: 10.1016/j.ijbiomac.2024.135129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The self-renewal and regeneration of intestinal epithelium are mainly driven by intestinal stem cells resided in crypts, which are crucial for rapid recovery intestinal tissue following injury. Latexin (LXN) is a highly expressed stem cell proliferation and differentiation related gene in intestinal tissue. However, it is still ambiguous whether LXN participates in intestine regeneration by regulating intestinal stem cells (ISCs). Here, we report that LXN colocalizes with Leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5) in intestinal crypts, and deletion of LXN upregulates the expression of Lgr5 in intestinal crypts. LXN deficiency promotes the proliferation of ISCs, thereby enhances the development of intestinal organoids. Mechanically, we show that LXN deficiency enhances the expression of Lgr5 in ISCs by activating the Yes-associated protein (YAP) and wingless (Wnt) signal pathways, thus accelerating intestinal normal growth and regeneration post-injury. In summary, these findings uncover a novel function of LXN in intestinal regeneration post-injury and intestinal organogenesis, suggesting the potential role of LXN in the treatment of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lingzhu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Wenwen Guo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Yang Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Jingzhu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Shaohua Xu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China
| | - Wei Shu
- College of Biotechnology, Guilin Medical University, Guilin, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Laboratory Animal Center, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, China.
| |
Collapse
|
10
|
Nelson VL, Eadie AL, Perez L, Madhu M, Platt M, Mercer A, Pulinilkunnil T, Kienesberger P, Simpson JA, Brunt KR. Yap Is a Nutrient Sensor Sensitive to the Amino Acid L-Isoleucine and Regulates the Expression of Ctgf in Cardiomyocytes. Biomolecules 2024; 14:1299. [PMID: 39456232 PMCID: PMC11506509 DOI: 10.3390/biom14101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Myocardial infarction and reperfusion constitute a complex injury consisting of many distinct molecular stress patterns that influence cardiomyocyte survival and adaptation. Cell signalling, which is essential to cardiac development, also presents potential disease-modifying opportunities to recover and limit myocardial injury or maladaptive remodelling. Here, we hypothesized that Yap signalling could be sensitive to one or more molecular stress patterns associated with early acute ischemia. We found that Yap, and not Taz, expression patterns differed in a post-myocardial infarct compared to a peri-infarct region of rat hearts post-myocardial infarction, suggesting cell specificity that would be challenging to resolve for causation in vivo. Using H9c2 ventricular myotubes in vitro as a model, Yap levels were determined to be more sensitive to nutrient deprivation than other stress patterns typified by ischemia within the first hour of stress. Moreover, this is mediated by amino acid availability, predominantly L-isoleucine, and influences the expression of connective tissue growth factor (Ctgf)-a major determinant of myocardial adaptation after injury. These findings present novel opportunities for future therapeutic development and risk assessment for myocardial injury and adaptation.
Collapse
Affiliation(s)
- Victoria L. Nelson
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Dalhousie Medicine New Brunswick, Faculty of Medicine, Dalhousie University, Saint John, NB E2L 4L5, Canada
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
| | - Ashley L. Eadie
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Dalhousie Medicine New Brunswick, Faculty of Medicine, Dalhousie University, Saint John, NB E2L 4L5, Canada
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
| | - Lester Perez
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Dalhousie Medicine New Brunswick, Faculty of Medicine, Dalhousie University, Saint John, NB E2L 4L5, Canada
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
| | - Malav Madhu
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Dalhousie Medicine New Brunswick, Faculty of Medicine, Dalhousie University, Saint John, NB E2L 4L5, Canada
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
| | - Mathew Platt
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Angella Mercer
- Dalhousie Medicine New Brunswick, Faculty of Medicine, Dalhousie University, Saint John, NB E2L 4L5, Canada
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Thomas Pulinilkunnil
- Dalhousie Medicine New Brunswick, Faculty of Medicine, Dalhousie University, Saint John, NB E2L 4L5, Canada
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Petra Kienesberger
- Dalhousie Medicine New Brunswick, Faculty of Medicine, Dalhousie University, Saint John, NB E2L 4L5, Canada
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jeremy A. Simpson
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Keith R. Brunt
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Dalhousie Medicine New Brunswick, Faculty of Medicine, Dalhousie University, Saint John, NB E2L 4L5, Canada
- IMPART Investigator Team Canada, Saint John, NB E2L 4L5, Canada
| |
Collapse
|
11
|
Jiang H, Xie W, Chen Q, Li Y, Yu Z, Liu N. Construction and validation of a rat model of acute necrotizing pancreatitis-associated intestinal injury. Am J Physiol Gastrointest Liver Physiol 2024; 327:G80-G92. [PMID: 38742280 PMCID: PMC11376975 DOI: 10.1152/ajpgi.00262.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/22/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Acute pancreatitis (AP) is an acute inflammatory reaction of the pancreatic tissue, which involves auto-digestion, edema, hemorrhage, and necrosis. AP can be categorized into mild, moderately severe, and severe AP, with severe pancreatitis also referred to as acute necrotizing pancreatitis (ANP). ANP is characterized by the accumulation of necrotic material in the peritoneal cavity. This can result in intestinal injury. However, the mechanism of ANP-associated intestinal injury remains unclear. We established an ANP-associated intestinal injury rat model (ANP-IR model) by injecting pancreatitis-associated ascites fluid (PAAF) and necrotic pancreatic tissue at various proportions into the triangular area formed by the left renal artery and ureter. The feasibility of the ANP-IR model was verified by comparing the similar changes in indicators of intestinal inflammation and barrier function between the two rat models. In addition, we detected changes in apoptosis levels and YAP protein expression in the ileal tissues of rats in each group and validated them in vitro in rat epithelial crypt cells (IEC-6) to further explore the potential injury mechanisms of ANP-associated intestinal injury. We also collected clinical data from patients with ANP to validate the effects of PAAF and pancreatic necrosis on intestinal injury. Our findings offer a theoretical basis for restricting the buildup of peritoneal necrosis in individuals with ANP, thus promoting the restoration of intestinal function and enhancing treatment efficacy. The use of the ANP-IR model in further studies can help us better understand the mechanism and treatment of ANP-associated intestinal injury.NEW & NOTEWORTHY We constructed a rat model of acute necrotizing pancreatitis-associated intestinal injury and verified its feasibility. In addition, we identified the mechanism by which necrotic pancreatic tissue and pancreatitis-associated ascites fluid (PAAF) cause intestinal injury through the HIPPO signaling pathway.
Collapse
Affiliation(s)
- Haojie Jiang
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Weidong Xie
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qinbo Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yiling Li
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zhen Yu
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
- Shanghai Tenth People's Hospital, Shanghai, People's Republic of China
| | - Naxin Liu
- Wenzhou Medical University, Wenzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
12
|
Jia L, Tian H, Sun S, Hao X, Wen Y. EID3 inhibits the osteogenic differentiation of periodontal ligament stem cells and mediates the signal transduction of TAZ-EID3-AKT/MTOR/ERK. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119662. [PMID: 38216090 DOI: 10.1016/j.bbamcr.2024.119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/16/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024]
Abstract
Exploring the molecular mechanisms of cell behaviors is beneficial for promoting periodontal ligament stem cell (PDLSC)-mediated tissue regeneration. This study intends to explore the regulatory effects of EID3 on cell proliferation, apoptosis, and osteogenic differentiation and to preliminarily explore the regulatory mechanism of EID3. Here, EID3 was overexpressed or knocked down in PDLSCs by recombinant lentivirus. Then, cell proliferation activity was analyzed by colony-forming assay, EdU assay, and cell cycle assay. Cell apoptosis was detected by flow cytometry. The osteo-differentiation potential was analyzed using ALP activity assay, ALP staining, alizarin red staining, and mRNA and protein assay of osteo-differentiation related genes. The results showed that when EID3 was knocked down, the proliferation activity and osteogenic differentiation potential of PDLSCs decreased, while they increased when EID3 was overexpressed. The cell apoptosis rate decreased in PDLSCs with EID3 knockdown but increased in PDLSCs with EID3 overexpression. Moreover, EID3 inhibited the transduction of the AKT/MTOR and ERK signaling pathway. In addition, TAZ negatively regulated the expression of EID3, and the overexpression of EID3 partially reversed the promotive effects of TAZ on the osteogenic differentiation of PDLSCs. Taken together, EID3 inhibits the proliferation and osteogenic differentiation while promoting the apoptosis of PDLSCs. EID3 inhibits the transduction of the AKT/MTOR and ERK signaling pathways and mediates the regulatory effect of TAZ on PDLSC osteogenic differentiation.
Collapse
Affiliation(s)
- Linglu Jia
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Hui Tian
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Department of Stomatology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Shaoqing Sun
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Xingyao Hao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China
| | - Yong Wen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong, China; Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong, China; Shandong Provincial Clinical Research Center for Oral Diseases, Shandong, China.
| |
Collapse
|
13
|
Mulero-Russe A, García AJ. Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307678. [PMID: 37987171 PMCID: PMC10922691 DOI: 10.1002/adma.202307678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
14
|
Zhang Y, Yan M, Yu Y, Wang J, Jiao Y, Zheng M, Zhang S. 14-3-3ε: a protein with complex physiology function but promising therapeutic potential in cancer. Cell Commun Signal 2024; 22:72. [PMID: 38279176 PMCID: PMC10811864 DOI: 10.1186/s12964-023-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/02/2023] [Indexed: 01/28/2024] Open
Abstract
Over the past decade, the role of the 14-3-3 protein has received increasing interest. Seven subtypes of 14-3-3 proteins exhibit high homology; however, each subtype maintains its specificity. The 14-3-3ε protein is involved in various physiological processes, including signal transduction, cell proliferation, apoptosis, autophagy, cell cycle regulation, repolarization of cardiac action, cardiac development, intracellular electrolyte homeostasis, neurodevelopment, and innate immunity. It also plays a significant role in the development and progression of various diseases, such as cardiovascular diseases, inflammatory diseases, neurodegenerative disorders, and cancer. These immense and various involvements of 14-3-3ε in diverse processes makes it a promising target for drug development. Although extensive research has been conducted on 14-3-3 dimers, studies on 14-3-3 monomers are limited. This review aimed to provide an overview of recent reports on the molecular mechanisms involved in the regulation of binding partners by 14-3-3ε, focusing on issues that could help advance the frontiers of this field. Video Abstract.
Collapse
Affiliation(s)
- Yue Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Man Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yongjun Yu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiangping Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuqi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
15
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
16
|
Xiao F, Zhu C, Wei X, Chen G, Xu X. Shenhuang plaster enhances intestinal anastomotic healing in rabbits through activation of the TGF-β and Hippo/YAP signaling pathways. J Appl Biomed 2023; 21:208-217. [PMID: 38112460 DOI: 10.32725/jab.2023.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/30/2023] [Indexed: 12/21/2023] Open
Abstract
Although many efforts have been made to improve management strategies and diagnostic methods in the past several decades, the prevention of anastomotic complications, such as anastomotic leaks and strictures, remain a major clinical challenge. Therefore, new molecular pathways need to be identified that regulate anastomotic healing, and to design new treatments for patients after anastomosis to reduce the occurrence of complications. Rabbits were treated with a MST1/2 inhibitor XMU-XP-1, a Chinese medicine formula Shenhuang plaster (SHP) or a control vehicle immediately after surgery. The anastomotic burst pressure, collagen deposition, and hydroxyproline concentration were evaluated at 3 and 7 days after the surgery, and qRT-PCR and western-blot analyses were used to characterize mRNA and protein expression levels. Both XMU-XP-1 and SHP significantly increased anastomotic burst pressure, collagen deposition, and the concentration of hydroxyproline in intestinal anastomotic tissue at postoperative day 7 (POD 7). Importantly, SHP could induce TGF-β1 expression, which activated its downstream target Smad-2 to activate the TGF-β1 signaling pathway. Moreover, SHP reduced the phosphorylation level of YAP and increased its active form, and treatment with verteporfin, a YAP-TEAD complex inhibitor, significantly suppressed the effects induced by SHP during anastomotic tissue healing. This study demonstrated that activation of the Hippo-YAP pathway enhances anastomotic healing, and that SHP enhances both the TGF-β1/Smad and YAP signaling pathways to promote rabbit anastomotic healing after surgery. These results suggest that SHP could be used to treat patients who underwent anastomosis to prevent the occurrence of anastomotic complications.
Collapse
Affiliation(s)
| | | | - Xing Wei
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, Zhejiang, China
| | | | | |
Collapse
|
17
|
Donath S, Seidler AE, Mundin K, Wenzel J, Scholz J, Gentemann L, Kalies J, Faix J, Ngezahayo A, Bleich A, Heisterkamp A, Buettner M, Kalies S. Epithelial restitution in 3D - Revealing biomechanical and physiochemical dynamics in intestinal organoids via fs laser nanosurgery. iScience 2023; 26:108139. [PMID: 37867948 PMCID: PMC10585398 DOI: 10.1016/j.isci.2023.108139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023] Open
Abstract
Intestinal organoids represent a three-dimensional cell culture system mimicking the mammalian intestine. The application of single-cell ablation for defined wounding via a femtosecond laser system within the crypt base allowed us to study cell dynamics during epithelial restitution. Neighboring cells formed a contractile actin ring encircling the damaged cell, changed the cellular aspect ratio, and immediately closed the barrier. Using traction force microscopy, we observed major forces at the ablation site and additional forces on the crypt sides. Inhibitors of the actomyosin-based mobility of the cells led to the failure of restoring the barrier. Close to the ablation site, high-frequency calcium flickering and propagation of calcium waves occured that synchronized with the contraction of the epithelial layer. We observed an increased signal and nuclear translocation of YAP-1. In conclusion, our approach enabled, for the first time, to unveil the intricacies of epithelial restitution beyond in vivo models by employing precise laser-induced damage in colonoids.
Collapse
Affiliation(s)
- Sören Donath
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Anna Elisabeth Seidler
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Karlina Mundin
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Johannes Wenzel
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Lara Gentemann
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| | - Julia Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Anaclet Ngezahayo
- Institute of Biophysics, Leibniz University Hannover, 30167 Hannover, Germany
| | - André Bleich
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Alexander Heisterkamp
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Manuela Buettner
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Kalies
- Institute of Quantum Optics, Leibniz University Hannover, 30167 Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- REBIRTH Research Center for Translational Regenerative Medicine, 30625 Hannover, Germany
| |
Collapse
|
18
|
Fan H, Wu J, Yang K, Xiong C, Xiong S, Wu X, Fang Z, Zhu J, Huang J. Dietary regulation of intestinal stem cells in health and disease. Int J Food Sci Nutr 2023; 74:730-745. [PMID: 37758199 DOI: 10.1080/09637486.2023.2262780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.
Collapse
Affiliation(s)
- Hancheng Fan
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| |
Collapse
|
19
|
Wang Z, Qu YJ, Cui M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J Stem Cells 2023; 15:354-368. [PMID: 37342221 PMCID: PMC10277971 DOI: 10.4252/wjsc.v15.i5.354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Ji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
20
|
Zheng L, Duan SL. Molecular regulation mechanism of intestinal stem cells in mucosal injury and repair in ulcerative colitis. World J Gastroenterol 2023; 29:2380-2396. [PMID: 37179583 PMCID: PMC10167905 DOI: 10.3748/wjg.v29.i16.2380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with complex causes. The main pathological changes were intestinal mucosal injury. Leucine-rich repeat-containing G protein coupled receptor 5 (LGR5)-labeled small intestine stem cells (ISCs) were located at the bottom of the small intestine recess and inlaid among Paneth cells. LGR5+ small ISCs are active proliferative adult stem cells, and their self-renewal, proliferation and differentiation disorders are closely related to the occurrence of intestinal inflammatory diseases. The Notch signaling pathway and Wnt/β-catenin signaling pathway are important regulators of LGR5-positive ISCs and together maintain the function of LGR5-positive ISCs. More importantly, the surviving stem cells after intestinal mucosal injury accelerate division, restore the number of stem cells, multiply and differentiate into mature intestinal epithelial cells, and repair the damaged intestinal mucosa. Therefore, in-depth study of multiple pathways and transplantation of LGR5-positive ISCs may become a new target for the treatment of UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| |
Collapse
|
21
|
Wang Z, Tan C, Duan C, Wu J, Zhou D, Hou L, Qian W, Han C, Hou X. FUT2-dependent fucosylation of HYOU1 protects intestinal stem cells against inflammatory injury by regulating unfolded protein response. Redox Biol 2023; 60:102618. [PMID: 36724577 PMCID: PMC9923227 DOI: 10.1016/j.redox.2023.102618] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
The intestinal epithelial repair after injury is coordinated by intestinal stem cells (ISCs). Fucosylation catalyzed by fucosyltransferase 2 (FUT2) of the intestinal epithelium is beneficial to mucosal healing but poorly defined is the influence on ISCs. The dextran sulfate sodium (DSS) and lipopolysaccharide (LPS) model were used to assess the role of FUT2 on ISCs after injury. The apoptosis, function, and stemness of ISCs were analyzed using intestinal organoids from WT and Fut2ΔISC (ISC-specific Fut2 knockout) mice incubated with LPS and fucose. N-glycoproteomics, UEA-1 chromatography, and site-directed mutagenesis were monitored to dissect the regulatory mechanism, identify the target fucosylated protein and the corresponding modification site. Fucose could alleviate intestinal epithelial damage via upregulating FUT2 and α-1,2-fucosylation of ISCs. Oxidative stress, mitochondrial dysfunction, and cell apoptosis were impeded by fucose. Meanwhile, fucose sustained the growth and proliferation capacity of intestinal organoids treated with LPS. Contrarily, FUT2 depletion in ISCs aggravated the epithelial damage and disrupted the growth and proliferation capacity of ISCs via escalating LPS-induced endoplasmic reticulum (ER) stress and initiating the IRE1/TRAF2/ASK1/JNK branch of unfolded protein response (UPR). Fucosylation of the chaperone protein HYOU1 at the N-glycosylation site of asparagine (Asn) 862 mediated by FUT2 was identified to facilitate ISCs survival and self-renewal, and improve ISCs resistance to ER stress and inflammatory injury. Our study highlights a fucosylation-dependent protective mechanism of ISCs against inflammation, which may provide a fascinating strategy for treating intestinal injury disorders.
Collapse
Affiliation(s)
- Zhe Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Zhou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingzhi Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
Menendez A, Guttman JA. From anatomy to immunity in the gastrointestinal system. Anat Rec (Hoboken) 2023; 306:941-946. [PMID: 36866415 DOI: 10.1002/ar.25188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/04/2023]
Abstract
The gastrointestinal system is classically known for its function in digesting food for nutrient uptake, but it plays a much larger role in the general health of organisms. Understanding the relationships between the gastrointestinal tract and inflammation, the nervous system, diseases caused through disregulation of molecular components as well as its association with beneficial and pathogenic microbes have been the focus of intense research over the many decades. In this Special Issue we delve into histological, molecular, and evolutionary aspects of gastrointestinal system components in healthy and diseased tissues, to give a broad perspective on the different organs that make-up this system.
Collapse
Affiliation(s)
- Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Julian Andrew Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|