1
|
Abdullah MM, Waraich EA, Ahmad M, Hussain S, Asghar HN, Haider A, Zulfiqar U, Ahmad Z, Soufan W, Prasad PVV, Djalovic I. Improving soybean drought tolerance via silicon-induced changes in growth, physiological, biochemical, and root characteristics. PLANT SIGNALING & BEHAVIOR 2025; 20:2465232. [PMID: 39991910 PMCID: PMC11853616 DOI: 10.1080/15592324.2025.2465232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Drought-induced osmotic stress is a significant constraint to soybean growth and yield, necessitating the development of effective mitigation strategies. Silicon acts as an important strategy to mitigate the negative stress effects of drought stress. The study was aimed to evaluate the potential of soil-applied silicon in alleviating drought stress in soybean. Two field capacities were tested: control (85% FC) and drought (50% FC), with four silicon application rates (0, 100, 200, and 300 kg ha-1) applied at sowing. Drought stress significantly affected the morphological parameters in soybean as plant height, leaf area, and water potential were reduced by 25%, 20%, and 36%, respectively, while root length increased as compared to control-85% FC. However, drought stress reduced root density, surface area, and biomass as compared to control-85% FC. Additionally, drought reduced photosynthetic rates, chlorophyll a and b levels, and stomatal conductance, while increasing malondialdehyde and hydrogen peroxide. The natural plant defense system was upregulated, with increased activity of phenolics, soluble proteins, and antioxidant enzymes like catalase, superoxide dismutase, and peroxidase. However, silicon applications, especially at 200 kg ha-1, significantly alleviated the negative effects of drought stress by improving morphophysiological and biochemical traits in soybeans. Compared to the control, Si200 increased plant height, root length, photosynthetic rate, and water potential by 22%, 39%, 23%, and 17%, respectively, as compared to control. Furthermore, silicon reduced malondialdehyde and hydrogen peroxide levels by 21% and 10%, enhancing plant resilience. Silicon supplementation also boosted biochemical attributes, with total soluble proteins, phenolics, and antioxidant enzyme activities increasing by 30%, 55%, 19%, 24%, and 31%, respectively, under drought conditions. In crux, silicon at 200 kg ha-1 effectively mitigated the effects of drought stress in soybean, becoming a more sustainable approach to sustain crop yield and food security.
Collapse
Affiliation(s)
| | | | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Arslan Haider
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Zahoor Ahmad
- Department of Botany, University of Central Punjab Constituent Punjab College, Bahawalpur, Pakistan
| | - Walid Soufan
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - PV Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| |
Collapse
|
2
|
Ren C, Aini N, Kuang Y, Lin Y, Liang Z. Sensing, Adapting and Thriving: How Fruit Crops Combat Abiotic Stresses. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40205704 DOI: 10.1111/pce.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Production of high-yield and high-quality fruits is always the long-term objective of fruit crop cultivation, which, however, is challenged by various abiotic stresses such as drought, extreme temperatures and high salinity, and the adverse impacts of abiotic stresses on fruit crops are exacerbated by climate change in recent years. To cope with these environmental stressors, fruit crops have evolved adaptative strategies involving physiological changes and molecular regulation. In this review, we summarise the relevent changes in photosynthesis, osmotic and reactive oxygen species (ROS) equilibrium, metabolism and protein homeostasis in response to abiotic stresses. Moreover, perception of environmental stimuli as well as recent progress of underlying regulatory mechanisms is also discussed. Based on our current knowledge, possible strategies for stress resilience improvement in fruit crops are accordingly proposed. In addition, we also discuss the challenges in identification of key nodes in plant responses to multiple stresses and development of stress-resilient fruit crops, and addressing these issues in the future would advance our understanding of how fruit crops combat abiotic stresses and facilitate the breeding of superior fruit crops that can adapt to and thrive in the changing environments.
Collapse
Affiliation(s)
- Chong Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nuremanguli Aini
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangfu Kuang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Zhang Y, Zhang L, Chen M, Wang J, Dong S, Yuan X, Li X. Genome-wide identification and expression analysis of the DREB gene family in foxtail millet (Setaria Italica L.). BMC PLANT BIOLOGY 2025; 25:432. [PMID: 40186102 PMCID: PMC11971904 DOI: 10.1186/s12870-025-06442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Dehydration response element binding factors (DREBs) are a family of plant-specific transcription factors that regulate plant responses. RESULTS In this study, members of the SiDREB gene family were identified and analyzed in terms of their physicochemical properties, phylogeny, and structure of the encoded proteins. The expression patterns of the DREB transcription factors in foxtail millet under stress were analysed by combining the qRT-PCR data for foxtail millet after exposure to low temperature, abscisic acid (ABA), and osmotic stress (20% PEG 6000). There were 56 SiDREB genes, which were divided into six subgroups, that were located on nine chromosomes of foxtail millet. Chromosomal localization showed that the SiDREB genes were unevenly distributed across nine foxtail millet chromosomes. Furthermore, qRT‒PCR experiments revealed that 19 SiDREB genes play a role in the response to abiotic stress and ABA. CONCLUSIONS The results of this study lay a foundation for further research on the functions of the DREB genes in foxtail millet and will be beneficial foe the genetic improvement of this species.
Collapse
Affiliation(s)
- Yujia Zhang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Liguang Zhang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Mingxun Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Jiagang Wang
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Shuqi Dong
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China
| | - Xiangyang Yuan
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xiaorui Li
- State Key Laboratory of Sustainable Dryland Agriculture (in preparation), College of Agronomy, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
4
|
Mangla S, Ahlawat YK, Pathak G, Sharma N, Samani M, Bhan V, Essemine J, Sampasivam Y, Brar NS, Malik A, Ramteke V, Gupta S, Choubey S. Metabolic engineering of lipids for crop resilience and nutritional improvements towards sustainable agriculture. Funct Integr Genomics 2025; 25:78. [PMID: 40167787 DOI: 10.1007/s10142-025-01588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Metabolic engineering of lipids in crops presents a promising strategy to enhance resilience against environmental stressors while improving nutritional quality. By manipulating key enzymes in lipid metabolism, introducing novel genes, and utilizing genome editing technologies, researchers have improved crop tolerance to abiotic stresses such as drought, salinity, and extreme temperatures. Additionally, modified lipid pathways contribute to resistance against biotic stresses, including pathogen attacks and pest infestations. Engineering multiple stress-resistance traits through lipid metabolism offers a holistic approach to strengthening crop resilience amid changing environmental conditions. Beyond stress tolerance, lipid engineering enhances the nutritional profile of crops by increasing beneficial lipids such as omega-3 fatty acids, vitamins, and antioxidants. This dual approach not only improves crop yield and quality but also supports global food security by ensuring sustainable agricultural production. Integrating advanced biotechnological tools with a deeper understanding of lipid biology paves the way for developing resilient, nutrient-rich crops capable of withstanding climate change and feeding a growing population.
Collapse
Affiliation(s)
- Swati Mangla
- Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Yogesh K Ahlawat
- Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Wardha, Maharashtra, India.
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
- Department of Biotechnology, University centre for research and development, Chandigarh University, Mohali, Punjab, India.
| | - Gaurav Pathak
- Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nisha Sharma
- Department of Biotechnology, Graphic Era, Deemed to be University, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Maryam Samani
- Soil Sciences Department, University of Zanjan, Zanjan, Iran
| | - Veer Bhan
- Department of Biotechnology, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Jemaa Essemine
- Bioinformatics Section, Department of Informatics, University of Quebec at Montreal, Pavillon President-Kennedy, Montreal, QC, H2X 3Y7, Canada
| | - Yashirdisai Sampasivam
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
| | - Navjot Singh Brar
- Department of Vegetable Sciences, Punjab Agricultural University, Ludhiana, Punjab, 144004, India
| | - Anurag Malik
- Division of Research and Innovation, Uttaranchal University, Dehradun, 24800, India
| | - Vikas Ramteke
- S. G. College of Agriculture and Research Station, Indira Gandhi Krishi Vishwavidyalaya, Jagdalpur, India
| | - Shivali Gupta
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sumati Choubey
- Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| |
Collapse
|
5
|
Geng L, Zhuang Y, Sui Y, Guo R, Luo L, Pan H, Zhang Q, Yu C. Molecular mechanism of response to low-temperature during the natural overwintering period of Rosa persica. PLANT CELL REPORTS 2025; 44:88. [PMID: 40131510 DOI: 10.1007/s00299-025-03464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/04/2025] [Indexed: 03/27/2025]
Abstract
KEY MESSAGE The JA and ICE-CBF-COR signaling pathways play important roles in the low-temperature response of Rosa persica, with RpMYC2 interacting with multiple transcription factors and positively regulating tolerance to low-temperature stress. Rosa persica is highly resilient to cold and drought, making it a valuable resource for breeding in the Rosa. However, the response mechanism of R. persica during the overwintering period remains unclear. This study examined root and stem tissues of R. persica over an eight-month natural open field overwintering period, measuring physiological indices of cold tolerance and investigating changes in cold tolerance across different overwintering stages. The values of physiological indicators of cold hardiness of R. persica roots and stems increased and then decreased. Osmoregulatory substances were the primary contributors to cold hardiness of R. persica roots, while antioxidant enzyme systems played a dominant role in cold hardiness of stems. Differential gene enrichment analyses revealed that oxidative reactions, the synthesis of various secondary metabolites, and hormone signaling pathways are crucial in establishing cold tolerance of R. persica at different overwintering stages. Weighted gene co-expression network and time-ordered gene co-expression network analyses identified the gene RpMYC2 as potentially key to cold tolerance in R. persica. Yeast two-hybrid discovery revealed that RpMYC2 interacts with multiple transcription factors to regulate cold stress resistance in R. persica. Based on the transcriptome, key genes involved in response to low temperature were identified in this study, providing the physiological and molecular insights for cold tolerance breeding of Rosa.
Collapse
Affiliation(s)
- Lifang Geng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Yueying Zhuang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Yunji Sui
- Xinjiang Career Technical College, Xinjiang, 833200, China
| | - Runhua Guo
- Xinjiang Career Technical College, Xinjiang, 833200, China
| | - Le Luo
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Huitang Pan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China
| | - Chao Yu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and School of Landscape Architecture, Beijing Forestry University, 35# Qing East Road, Beijing, 100083, China.
| |
Collapse
|
6
|
Nguyen HT, Khan MAR, Nguyen TT, Pham NT, Nguyen TTB, Anik TR, Nguyen MD, Li M, Nguyen KH, Ghosh UK, Tran LSP, Ha CV. Advancing Crop Resilience Through High-Throughput Phenotyping for Crop Improvement in the Face of Climate Change. PLANTS (BASEL, SWITZERLAND) 2025; 14:907. [PMID: 40265822 PMCID: PMC11944878 DOI: 10.3390/plants14060907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
Climate change intensifies biotic and abiotic stresses, threatening global crop productivity. High-throughput phenotyping (HTP) technologies provide a non-destructive approach to monitor plant responses to environmental stresses, offering new opportunities for both crop stress resilience and breeding research. Innovations, such as hyperspectral imaging, unmanned aerial vehicles, and machine learning, enhance our ability to assess plant traits under various environmental stresses, including drought, salinity, extreme temperatures, and pest and disease infestations. These tools facilitate the identification of stress-tolerant genotypes within large segregating populations, improving selection efficiency for breeding programs. HTP can also play a vital role by accelerating genetic gain through precise trait evaluation for hybridization and genetic enhancement. However, challenges such as data standardization, phenotyping data management, high costs of HTP equipment, and the complexity of linking phenotypic observations to genetic improvements limit its broader application. Additionally, environmental variability and genotype-by-environment interactions complicate reliable trait selection. Despite these challenges, advancements in robotics, artificial intelligence, and automation are improving the precision and scalability of phenotypic data analyses. This review critically examines the dual role of HTP in assessment of plant stress tolerance and crop performance, highlighting both its transformative potential and existing limitations. By addressing key challenges and leveraging technological advancements, HTP can significantly enhance genetic research, including trait discovery, parental selection, and hybridization scheme optimization. While current methodologies still face constraints in fully translating phenotypic insights into practical breeding applications, continuous innovation in high-throughput precision phenotyping holds promise for revolutionizing crop resilience and ensuring sustainable agricultural production in a changing climate.
Collapse
Affiliation(s)
- Hoa Thi Nguyen
- National Key Lab for Plant Biotechnology, Agricultural Genetics Institute, Ha Noi 100000, Vietnam;
| | - Md Arifur Rahman Khan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (N.T.P.); (T.R.A.); (M.D.N.)
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | | | - Nhi Thi Pham
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (N.T.P.); (T.R.A.); (M.D.N.)
| | | | - Touhidur Rahman Anik
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (N.T.P.); (T.R.A.); (M.D.N.)
| | - Mai Dao Nguyen
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (N.T.P.); (T.R.A.); (M.D.N.)
| | - Mao Li
- Donald Danforth Plant Science Center, Saint Louis, MO 63132, USA;
| | - Kien Huu Nguyen
- Department of Genetics Engineering, Agricultural Genetics Institute, Ha Noi 100000, Vietnam;
| | - Uttam Kumar Ghosh
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (N.T.P.); (T.R.A.); (M.D.N.)
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; (N.T.P.); (T.R.A.); (M.D.N.)
| |
Collapse
|
7
|
Taria S, Arora A, Kumar S, Krishna H, Meena S, Singh B, China Malakondaiah A, S. K, Padaria JC, Singh PK, Alam B, Kumar S, Arunachalam A. Validation of stay-green and stem reserve mobilization QTLs: physiological and gene expression approach. FRONTIERS IN PLANT SCIENCE 2025; 16:1541944. [PMID: 40034149 PMCID: PMC11873102 DOI: 10.3389/fpls.2025.1541944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Introduction Abiotic stress significantly reduces the wheat yield by hindering several physiological processes in plant. Stay-green (SG) and stem reserve mobilization (SRM) are the two key physiological traits, which can contribute significantly to grain filling during stress period. Validation of genomic regions linked to SG and SRM is needed for its subsequent use in marker-assisted selection in breeding program. Methods Using a physiological and gene expression approach, quantitative trait loci (QTLs) for stay-green (SG) and stem reserve mobilization (SRM) were validated in a pot experiment study using contrasting recombinant inbred lines including its parental lines (HD3086/HI1500) in wheat. The experiment was laid down in a completely randomized design under normal (control, drought) and late sown (heat and combined stress) conditions during the 2022-2023 rabi season. Drought stress was imposed by withholding irrigation at the anthesis stage, whereas heat stress was imposed by 1-month late sowing compared to the normal sowing condition. Combined stress was imposed by 1-month late sowing along with restricted irrigation at the flowering stage. Superior lines (HDHI113 and HDHI87) had both SG and SRM traits, whereas inferior lines (HDHI185 and HDHI80) had contrasting traits, i.e., lower SG and SRM traits. HD3086 and HI1500 had SG and SRM traits respectively. Potential candidate genes were identified based on the flanking markers of the mapped QTLs using the BioMart tool in the Ensembl Plants database to validate the identified QTLs. Real-time gene expression was conducted with SG-linked genes in the flag leaf and SRM-linked genes in the peduncle. Results and Discussion In this study, HDHI113 and HDHI87 showed higher expression of SG-related genes in the flag leaf under stress conditions. Furthermore, HDHI113 and HDHI87 maintained higher chlorophyll a content of 7.08 and 6.62 mg/gDW, respectively, and higher net photosynthetic rates (PN) of 17.18 and 16.48 µmol CO2/m2/s, respectively, under the combined stress condition. However, these lines showed higher expression of SRM-linked genes in the peduncle under drought stress, indicating that drought stress aggravates SRM in wheat. HDHI113 and HDHI87 recorded higher 1,000-grain weights and spike weight differences under combined stress, further validating the identified QTLs being linked to SG and SRM traits. Henceforth, the identified QTLs can be transferred to developed wheat varieties through efficient breeding strategies for yield improvement in harsh climate conditions.
Collapse
Affiliation(s)
- Sukumar Taria
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research (ICAR)-Central Agroforestry Research Institute, Jhansi, UP, India
| | - Ajay Arora
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sudhir Kumar
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Hari Krishna
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Shashi Meena
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Biswabiplab Singh
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Animireddy China Malakondaiah
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Kousalya S.
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Jasdeep Chatrath Padaria
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Pradeep Kumar Singh
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Badre Alam
- Indian Council of Agricultural Research (ICAR)-Central Agroforestry Research Institute, Jhansi, UP, India
| | - Sushil Kumar
- Indian Council of Agricultural Research (ICAR)-Central Agroforestry Research Institute, Jhansi, UP, India
| | - Ayyanadar Arunachalam
- Indian Council of Agricultural Research (ICAR)-Central Agroforestry Research Institute, Jhansi, UP, India
| |
Collapse
|
8
|
Duan S, Meng X, Zhang H, Wang X, Kang X, Liu Z, Ma Z, Li G, Guo X. The Effect of Heat Stress on Wheat Flag Leaves Revealed by Metabolome and Transcriptome Analyses During the Reproductive Stage. Int J Mol Sci 2025; 26:1468. [PMID: 40003947 PMCID: PMC11855456 DOI: 10.3390/ijms26041468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we were dedicated to investigating the effect caused by heat stress on wheat flag leaves. Metabolome and transcriptome analysis were introduced to identify some key biological processes. As a result, 182 and 214 metabolites were significantly changed at the anthesis and post-anthesis stages, respectively; most of them were lipids, amino acids and derivatives, phenolic acids, and alkaloids. Aminoacyl-tRNA biosynthesis was the most significantly enriched pathway by metabolites at both two stages, each of which included 13 types of amino acid, and 12 of them were shared and up-regulated. Therefore, we further measured 22 kinds of amino acid content in ten different wheat genotypes at the post-anthesis stage. Based on the average content of each amino acid, 17 kinds of them were significantly increased after heat stress, and 4 types were significantly decreased. Both the metabolism analysis and the transcriptome analysis had a higher number of significantly changed metabolites or differential expressed genes at the post-anthesis stage, which indicated that the post-anthesis stage is more sensitive to heat stress, with 21,361 and 17,130 differential expressed genes, respectively. Two pathways, protein processing in endoplasmic reticulum and ABC transporters, were significantly enriched at two stages. The differential expressed genes in processing in endoplasmic reticulum pathway mainly encoded various types of molecular chaperones; among them, the HSP20 family was the most predominant and intensively up-regulated. The ABC transporter gene family is another pathway that is deeply involved in heat-stress response, which could be classified into five subfamilies; among them, subfamilies B and G were the most active. In summary, this study revealed the heat response pattern of amino acids, HSPs, and ABC transporter which may play a vital role during the wheat reproductive stage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (S.D.); (X.M.); zhn.8888-@163.com (H.Z.); (X.W.); (X.K.); (Z.L.); (Z.M.)
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang 050051, China; (S.D.); (X.M.); zhn.8888-@163.com (H.Z.); (X.W.); (X.K.); (Z.L.); (Z.M.)
| |
Collapse
|
9
|
Day Briggs S, Anderson JT. The effect of global change on the expression and evolution of floral traits. ANNALS OF BOTANY 2025; 135:9-24. [PMID: 38606950 PMCID: PMC11805946 DOI: 10.1093/aob/mcae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/09/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Pollinators impose strong selection on floral traits, but other abiotic and biotic agents also drive the evolution of floral traits and influence plant reproduction. Global change is expected to have widespread effects on biotic and abiotic systems, resulting in novel selection on floral traits in future conditions. SCOPE Global change has depressed pollinator abundance and altered abiotic conditions, thereby exposing flowering plant species to novel suites of selective pressures. Here, we consider how biotic and abiotic factors interact to shape the expression and evolution of floral characteristics (the targets of selection), including floral size, colour, physiology, reward quantity and quality, and longevity, amongst other traits. We examine cases in which selection imposed by climatic factors conflicts with pollinator-mediated selection. Additionally, we explore how floral traits respond to environmental changes through phenotypic plasticity and how that can alter plant fecundity. Throughout this review, we evaluate how global change might shift the expression and evolution of floral phenotypes. CONCLUSIONS Floral traits evolve in response to multiple interacting agents of selection. Different agents can sometimes exert conflicting selection. For example, pollinators often prefer large flowers, but drought stress can favour the evolution of smaller flowers, and the size of floral organs can evolve as a trade-off between selection mediated by these opposing actors. Nevertheless, few studies have manipulated abiotic and biotic agents of selection factorially to disentangle their relative strengths and directions of selection. The literature has more often evaluated plastic responses of floral traits to stressors than it has considered how abiotic factors alter selection on these traits. Global change will likely alter the selective landscape through changes in the abundance and community composition of mutualists and antagonists and novel abiotic conditions. We encourage future work to consider the effects of abiotic and biotic agents of selection on floral evolution, which will enable more robust predictions about floral evolution and plant reproduction as global change progresses.
Collapse
Affiliation(s)
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Naveed M, Aslam M, Ahmed SR, Tan DKY, De Mastro F, Tariq MS, Sakhawat A, Asad MA, Liu Y. An overview of heat stress in Chickpea ( Cicer arietinum L.): effects, mechanisms and diverse molecular breeding approaches for enhancing resilience and productivity. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:18. [PMID: 39850651 PMCID: PMC11751345 DOI: 10.1007/s11032-025-01538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Chickpea (Cicer arietinum. L) holds the esteemed position of being the second most cultivated and consumed legume crop globally. Nevertheless, both biotic and abiotic constraints limit chickpea production. This legume is sensitive to heat stress at its reproductive stage leading to reduced flowering, flower abortion, and lack of pod formation, therefore emerging as a major limiting factor for yield. Chickpea, predominantly cultivated in semi-arid regions, is frequently subjected to high-temperature stress, which adversely affects its growth and yield. Given the escalating impacts of climate change, the development of heat-tolerant chickpea genotypes is imperative and can be achieved through the integration of advanced biotechnological approaches. The appropriate solution devised by some researchers is the modification of genetic architecture by targeting specific genes associated with tolerance to heat stress and harnessing them in the development of more robust chickpea varieties. Besides this, multi-omics strategies (Genomics, Transcriptomics, Proteomics, and Metabolomics) have made it easier to reveal the distinct genes / quantitative trait loci (QTLs) / markers, proteins, and metabolites correlated with heat tolerance. This review compiles noteworthy revelations and different tactics to boost chickpea tolerance under heat temperatures. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01538-4.
Collapse
Affiliation(s)
- Mahak Naveed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Mariyah Aslam
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Horticulture Research Institute (HRI), Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Daniel K. Y. Tan
- School of Life and Environmental Sciences, Plant Breeding Institute, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, NSW 2006 Australia
| | - Francesco De Mastro
- Department of Soil, Plant, and Food Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy
| | - Muhammad Sayyam Tariq
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Ammara Sakhawat
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Azeem Asad
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
- Plant Breeding and Genetics Division, Chickpea Group, Nuclear Institute for Agriculture and Biology, Faisalabad, Pakistan
| | - Yongming Liu
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024 China
| |
Collapse
|
11
|
Yang CY, Zhang YC, Hou YL. Assessing water status in rice plants in water-deficient environments using thermal imaging. BOTANICAL STUDIES 2025; 66:6. [PMID: 39864037 PMCID: PMC11769923 DOI: 10.1186/s40529-025-00452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources. RESULTS The results of this study reveal that rice-producing regions with more severe drought have higher ion leakage rates, lower Soil Plant Analysis Development (SPAD) meter values, and reduced total chlorophyll content in plants. Although no significant differences were observed in red-green-blue (RGB) images, physiological parameters and canopy temperature differed significantly from conventional farming when infrared thermography was used to capture rice plants in the early stages of drought. The Crop Water Stress Index (CWSI), calculated from canopy temperature and atmospheric temperature, indicated a high correlation between access to water for rice plants and their physiological parameters. Regression analysis using CWSI and plant water status yielded a corrected coefficient of determination of 0.86. CONCLUSION Our study demonstrate that infrared thermography can effectively detect early signs of water stress in rice, aiding farmers in irrigation planning and enabling precise management and optimal utilization of water resources.
Collapse
Affiliation(s)
- Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung, 402, Taiwan.
- Smart Sustainable New Agriculture Research Center (SMARTer), National Chung Hsing University, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 402, Taiwan.
| | - Yan-Ci Zhang
- Department of Agronomy, National Chung Hsing University, Taichung, 402, Taiwan
| | - Ya-Ling Hou
- Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan
| |
Collapse
|
12
|
Guangxin J, Zheyuan W, Jiaqi S, Hongrui Z, Kexin W, Jingjing X, Nan S, Tanhang Z, Siyue Q, Changjun D, Huihui Z. The Trx-Prx redox pathway and PGR5/PGRL1-dependent cyclic electron transfer play key regulatory roles in poplar drought stress. TREE PHYSIOLOGY 2025; 45:tpaf004. [PMID: 39776216 DOI: 10.1093/treephys/tpaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/06/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semiarid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation. Additionally, drought stress triggered oxidative damage through increased reactive oxygen species production, leading to malondialdehyde accumulation. Weighted gene co-expression network analysis revealed that differentially expressed genes closely associated with physiological responses were enriched in cell redox homeostasis pathways, specifically the thioredoxin-peroxiredoxin pathway. Key genes in this pathway and in cyclic electron flow, such as PGR5-L1A, were downregulated, suggesting compromised reactive oxygen species scavenging and photoprotection under drought stress. Notably, ZX4 poplar exhibited higher drought tolerance, maintaining stronger activity in cyclic electron flow and the thioredoxin-peroxiredoxin pathway compared with ZX3 and ZX5. Genes like PGR5-L1A, 2-Cys Prx BAS1, PrxQ and TPX are promising candidates for enhancing drought resistance in poplars through genetic improvement, with potential applications for developing resilient forestry varieties.
Collapse
Affiliation(s)
- Ji Guangxin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Wang Zheyuan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Song Jiaqi
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zhang Hongrui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Wang Kexin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xu Jingjing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Sun Nan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zhang Tanhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Qi Siyue
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Ding Changjun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, No. 1, Dongxiaofu, Xiangshan Road, Haidian District, Beijing 100091, China
| | - Zhang Huihui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, No. 26 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
13
|
Marques T, Ferreira-Pinto A, Fevereiro P, Pinto T, Gomes-Laranjo J. Current Biological Insights of Castanea sativa Mill. to Improve Crop Sustainability to Climate Change. PLANTS (BASEL, SWITZERLAND) 2025; 14:335. [PMID: 39942897 PMCID: PMC11819773 DOI: 10.3390/plants14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025]
Abstract
The sustainability of agriculture is seriously threatened by climate change. In Europe, chestnut ecosystems, which are growing mainly in Mediterranean climate, are facing during summertime increasing of heat and drought stresses. These induce fragilities on trees, leading to a reduction in productivity and predisposing them to pest and disease attacks. The plasticity of chestnut species under contrasting climate is known. Understanding the specific adaptation of cultivars to different climate features is now important to anticipating climate changes. Caucasian Region is considered the origin center of chestnut (Castanea sativa), which is characterized by climatic transition from the Mediterranean to the Euro-Siberian area. Mostly, areas of chestnut are concentrated in the countries around the Mediterranean Basin, thriving in regions with humid and Pré-Atlantic bioclimates. In Portugal, more than 95% of the chestnut area is located in the Center and North side of Portugal. This is an anisohydry species, characterized by good hydroplasticity: 90% reduction in A occurs when Ψwstem drops to -1.25 MPa, and a 50% reduction in A occurs at values of -1.7 MPa. The highest fatty acid contents in chestnut chloroplasts are a-linolenic acid (18:3), ranging between 40 and 50% of the total amount and being the unsaturated/saturated 2.27 for Longal. New strategies are being investigated in order to increase tolerance against those abiotic factors in chestnut species. They include the use of innovative irrigation techniques, which can increase production 22-37%. Fertilization with silicone (Si) has been investigated to promote the tolerance of plants against heat and drought stresses. Breeding programs, mostly (in Europe) against ink disease, have been performed since the middle of the XX century to create new genotypes (such the Portuguese ColUTAD®). ClimCast, a network of orchards, was created in Portugal with the aim of responding to the new challenges facing orchards in the context of climate change.
Collapse
Affiliation(s)
- Tiago Marques
- Centre for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás os Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (T.P.); (J.G.-L.)
| | - Andrea Ferreira-Pinto
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Pedro Fevereiro
- Plant Cell Biotechnology Lab, Institute of Chemical and Biological Technology António Xavier (Green-it Unit), University Nova of Lisbon, 2780-157 Oeiras, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Teresa Pinto
- Centre for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás os Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (T.P.); (J.G.-L.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - José Gomes-Laranjo
- Centre for the Research and Technology of Agroenvironmental and Biological Sciences, CITAB, Inov4Agro, Universidade de Trás os Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (T.P.); (J.G.-L.)
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
14
|
Priya M, Farooq M, Siddique KHM. Enhancing Tolerance to Combined Heat and Drought Stress in Cool-Season Grain Legumes: Mechanisms, Genetic Insights, and Future Directions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39829217 DOI: 10.1111/pce.15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.), grasspea (Lathyrus sativus L.), pea (Pisum sativum L.), and common vetch (Vicia sativa L.). These legumes play a vital role in sustainable agricultural systems due to their nitrogen-fixing ability and high nutritional value. This review synthesizes current knowledge of the impacts and tolerance mechanisms associated with combined heat and drought stresses in these crops. We evaluate physiological and biochemical responses to combined heat and drought stress, focusing on their detrimental effects on growth, development, and yield. Key genetic and molecular mechanisms, such as the roles of osmolytes, antioxidants, and stress-responsive genes, are explored. We also discuss the intricate interplay between heat and drought stress signaling pathways, including the involvement of Ca2+ ions, reactive oxygen species, transcription factor DREB2A, and the endoplasmic reticulum in mediating stress responses. This comprehensive analysis offers new insights into developing resilient legume varieties to enhance agricultural sustainability under climate change. Future research should prioritize integrating omics technologies to unravel plant responses to combined abiotic stresses.
Collapse
Affiliation(s)
- Manu Priya
- Cranberry Research Station, University of Massachusetts, East Wareham, Massachusetts, USA
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| | - Kadambot H M Siddique
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| |
Collapse
|
15
|
Bertoncini A, Pagano P, Macovei A. Arabidopsis thaliana DNA Damage Response Mutants Challenged with Genotoxic Agents-A Different Experimental Approach to Investigate the TDP1α and TDP1β Genes. Genes (Basel) 2025; 16:103. [PMID: 39858650 PMCID: PMC11765484 DOI: 10.3390/genes16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: DNA damage response (DDR) is a highly conserved and complex signal transduction network required for preserving genome integrity. DNA repair pathways downstream of DDR include the tyrosyl-DNA phosphodiesterase1 (TDP1) enzyme that hydrolyses the phosphodiester bond between the tyrosine residue of topoisomerase I (TopI) and 3'-phosphate end of DNA. A small TDP1 subfamily, composed of TDP1α and TDP1β, is present in plants. The aim of this work was to investigate the role of the two TDP1 genes in the DDR context. Methods: A series of Arabidopsis thaliana DDR single and double mutants defective in the sog1, e2fb, pol2A, atm, and atr genes, treated with the genotoxic agents camptothecin (CPT, inhibitor of TopI) and NSC120686 (NSC, inhibitor of TDP1), were used. These compounds were specifically used due to their known impact on the TDP1 function. The effect of the treatments was assessed via phenotypic analyses that included germination percentage, speed, and seedling growth. Subsequently, the expression of the TDP1α and TDP1β genes was monitored through qRT-PCR. Results: Overall, the gathered data indicate that the atm mutant was highly sensitive to NSC120686, both phenotypically and concerning the TDP1α gene expression profiles. Alternatively, the upregulation of TDP1β in e2fb, pol2a, and atr supports its implication in the replication stress response. Conclusions: The current study demonstrates that genotoxic stress induced by CPT and NSC has a genotype-dependent effect reflected by a differential expression of TDP1 genes and early phenotypic development.
Collapse
Affiliation(s)
| | | | - Anca Macovei
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (A.B.); (P.P.)
| |
Collapse
|
16
|
Nidhi, Iqbal N, Khan NA. Polyamines Interaction with Gaseous Signaling Molecules for Resilience Against Drought and Heat Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:273. [PMID: 39861624 PMCID: PMC11768214 DOI: 10.3390/plants14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (H2S), nitric oxide (NO), methane (CH4), carbon monoxide (CO), carbon dioxide (CO2), and ethylene (ET). The functions of PAs and GSM in stress perception, signal transduction, and stress-responsive pathways have been explored. However, there is a lack of detailed, updated information on the interaction of PAs and GSM in the adaptation of drought and heat stress. This review explores the interaction between PAs and GSM for the adaptation to drought and heat stress. It explores their synergistic effects in mitigating the negative impacts of drought and heat stress on plant growth, development, and productivity. Moreover, a comprehensive analysis of physiological, biochemical, and molecular approaches demonstrates that their interaction activates key stress-responsive pathways, enhances antioxidant systems, and modulates gene expression. These combined effects contribute to improved drought and heat tolerance in plants. The information presented in the review provides valuable insights into plant stress resilience strategies and suggests potential measures for developing climate-resilient crops to address the increasing environmental challenges.
Collapse
Affiliation(s)
- Nidhi
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| | - Noushina Iqbal
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India;
| |
Collapse
|
17
|
Ali AEE, Sharp RE, Greeley L, Peck SC, Tabb DL, Ludidi N. Proteomic dataset of sorghum leaf and root responses to single and combined drought and heat stress. Sci Data 2025; 12:97. [PMID: 39824864 PMCID: PMC11742439 DOI: 10.1038/s41597-025-04369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 01/01/2025] [Indexed: 01/20/2025] Open
Abstract
Drought and heat stress significantly limit crop growth and productivity. Their simultaneous occurrence, as often observed in summer crops, leads to larger yield losses. Sorghum is well adapted to dry and hot conditions. Despite the progress that has been made in determining proteomic responses to water deficit or heat stress in crops, such information remains limited for crops subjected to combined water deficit and heat stress. This study presents quantitative proteomics analyses of leaf and root tissues of two contrasting sorghum genotypes grown under normal conditions, water deficit stress, heat stress, and water deficit combined with heat stress. We identified differentially expressed proteins between the two genotypes under these different treatments. GO and KEGG annotation revealed biological processes and molecular pathways associated with sorghum responses to these treatments. Interpretation as well as integration of these proteomics data with other 'omics' signatures may highlight key mechanisms involved in sorghum adaptations to these stresses.
Collapse
Affiliation(s)
| | - Robert E Sharp
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, USA
| | - Laura Greeley
- Division of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Scott C Peck
- Division of Biochemistry, University of Missouri, Columbia, MO, USA
| | - David L Tabb
- Department of Structural Biology and Chemistry, Institut Pasteur, Paris, France
| | - Ndiko Ludidi
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa.
- Faculty of Agriculture and Natural Sciences, University of Mpumalanga, Mbombela, South Africa.
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
18
|
Ferioun M, Zouitane I, Bouhraoua S, Elouattassi Y, Belahcen D, Errabbani A, Louahlia S, Sayyed R, El Ghachtouli N. Applying microbial biostimulants and drought-tolerant genotypes to enhance barley growth and yield under drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1494987. [PMID: 39840355 PMCID: PMC11747827 DOI: 10.3389/fpls.2024.1494987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025]
Abstract
With climate change, the frequency of regions experiencing water scarcity is increasing annually, posing a significant challenge to crop yield. Barley, a staple crop consumed and cultivated globally, is particularly susceptible to the detrimental effects of drought stress, leading to reduced yield production. Water scarcity adversely affects multiple aspects of barley growth, including seed germination, biomass production, shoot and root characteristics, water and osmotic status, photosynthesis, and induces oxidative stress, resulting in considerable losses in grain yield and its components. In this context, the present review aims to underscore the importance of selecting drought-tolerant barley genotypes and utilizing bio-inoculants constructed from beneficial microorganisms as an agroecological approach to enhance barley growth and production resilience under varying environmental conditions. Selecting barley genotypes with robust physiological and agronomic tolerance can mitigate losses under diverse environmental conditions. Plant Growth Promoting Rhizobacteria (PGPR) play a crucial role in promoting plant growth through nutrient solubilization, nitrogen fixation, phytohormone production, exopolysaccharide secretion, enzyme activity enhancement, and many other mechanisms. Applying drought-tolerant genotypes with bio-inoculants containing PGPR, improves barley's drought tolerance thereby minimizing losses caused by water scarcity.
Collapse
Affiliation(s)
- Mohamed Ferioun
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ilham Zouitane
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Said Bouhraoua
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Yasmine Elouattassi
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Douae Belahcen
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Abdellatif Errabbani
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Said Louahlia
- Natural Resources and Environmental Laboratory, Taza Polydisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riyaz Sayyed
- Department of Biological Science and Chemistry, College of Arts and Science, University of Nizwa, Nizwa, Oman
| | - Naïma El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
19
|
Aanniz T, El Baaboua A, Aboulaghras S, Bouyahya A, Benali T, Balahbib A, El Omari N, Butnariu M, Muzammil K, Yadav KK, Al Abdulmonem W, Lee LH, Zengin G, Chamkhi I. Impact of water stress to plant epigenetic mechanisms in stress and adaptation. PHYSIOLOGIA PLANTARUM 2025; 177:e70058. [PMID: 39831338 DOI: 10.1111/ppl.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/18/2024] [Indexed: 01/22/2025]
Abstract
Water is the basic molecule in living beings, and it has a major impact on vital processes. Plants are sessile organisms with a sophisticated regulatory network that regulates how resources are distributed between developmental and adaptation processes. Drought-stressed plants can change their survival strategies to adapt to this unfavorable situation. Indeed, plants modify, change, and modulate gene expression when grown in a low-water environment. This adaptation occurs through several mechanisms that affect the expression of genes, allowing these plants to resist in dry regions. Epigenetic modulation has emerged as a major factor in the transcription regulation of drought stress-related genes. Moreover, specific molecular and epigenetic modifications in the expression of certain genetic networks lead to adapted responses that aid a plant's acclimatization and survival during repeated stress. Indeed, understanding plant responses to severe environmental stresses, including drought, is critical for biotechnological applications. Here, we first focused on drought stress in plants and their general adaptation mechanisms to this stress. We also discussed plant epigenetic regulation when exposed to water stress and how this adaptation can be passed down through generations.
Collapse
Affiliation(s)
- Tarik Aanniz
- Laboratory of Medical Biotechnology Laboratory (Medbiotech), Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | | | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology, and Genome, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Monica Butnariu
- Chemistry & Biochemistry Discipline, University of Life Sciences "King Mihai I" from Timisoara, Timis
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA
| | - Krishna Kumar Yadav
- Department of VLSI Microelectronics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Learn-Han Lee
- Microbiome Research Group, Research Center for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel Université Mohammed V de Institut Scientifique Rabat
- Mohammed VI Polytechnic University, Agrobiosciences, Benguerir, Morocco
| |
Collapse
|
20
|
Mohi-Ud-Din M, Hossain MA, Rohman MM, Uddin MN, Haque MS, Tahery MH, Hasanuzzaman M. Multi-Trait Index-Based Selection of Drought Tolerant Wheat: Physiological and Biochemical Profiling. PLANTS (BASEL, SWITZERLAND) 2024; 14:35. [PMID: 39795295 PMCID: PMC11723105 DOI: 10.3390/plants14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Drought is a detrimental abiotic stress that severely limits wheat growth and productivity worldwide by altering several physiological processes. Thus, understanding the mechanisms of drought tolerance is essential for the selection of drought-resilient features and drought-tolerant cultivars for wheat breeding programs. This exploratory study evaluated 14 wheat genotypes (13 relatively tolerant, one susceptible) for drought endurance based on flag leaf physiological and biochemical traits during the critical grain-filling stage in the field conditions. Measurements included six physiological, seven gas exchange, six photosystem II, six stomatal, three reactive species, seven metabolomic solutes, and two biomass traits. All parameters were significantly influenced by drought, with varying genotypic responses. Hierarchical cluster analysis (HCA) categorized genotypes into three drought tolerance groups based on trait performance. Seven genotypes in Cluster 2 (BARI Gom 26, BARI Gom 33, BD-631, BD-600, BD-9910, BD-9889, BD-637) exhibited superior drought tolerance, characterized by minimal changes in physiological traits and biomass accumulation, reduced oxidative stress markers, and increased accumulation of osmoprotectants. The innovative multi-trait genotype-ideotype distance index (MGIDI) further ranked wheat genotypes in regard to drought tolerance, identifying BARI Gom 33, BARI Gom 26, BD-9889, and BD-600 as top performers. Notably, all these top-ranking genotypes belonged to Cluster 2, previously identified as the highest-performing group in the HCA. The identified genotypes with superior drought tolerance offer valuable genetic resources for enhancing wheat productivity in water-limiting environments. Traits related to photosynthetic activity, biomass gain, leaf conductance, water stress, and osmoprotection showed high selection differentials and heritability in MGIDI analysis, indicating their potential as selection targets for drought-tolerant wheat. Overall, the strategic approaches have yielded novel insights into genotype screening that can be directly applied to deepen our understanding of drought tolerance mechanisms in wheat.
Collapse
Affiliation(s)
- Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.-U.-D.)
| | - Md. Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Md. Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahmudul Hasan Tahery
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.-U.-D.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
21
|
Senizza B, Araniti F, Lewin S, Wende S, Kolb S, Lucini L. A multi-omics approach to unravel the interaction between heat and drought stress in the Arabidopsis thaliana holobiont. FRONTIERS IN PLANT SCIENCE 2024; 15:1484251. [PMID: 39748821 PMCID: PMC11693709 DOI: 10.3389/fpls.2024.1484251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025]
Abstract
The impact of combined heat and drought stress was investigated in Arabidopsis thaliana and compared to individual stresses to reveal additive effects and interactions. A combination of plant metabolomics and root and rhizosphere bacterial metabarcoding were used to unravel effects at the plant holobiont level. Hierarchical cluster analysis of metabolomics signatures pointed out two main clusters, one including heat and combined heat and drought, and the second cluster that included the control and drought treatments. Overall, phenylpropanoids and nitrogen-containing compounds, hormones and amino acids showed the highest discriminant potential. A decrease in alpha-diversity of Bacteria was observed upon stress, with stress-dependent differences in bacterial microbiota composition. The shift in beta-diversity highlighted the pivotal enrichment of Proteobacteria, including Rhizobiales, Enterobacteriales and Azospirillales. The results corroborate the concept of stress interaction, where the combined heat and drought stress is not the mere combination of the single stresses. Intriguingly, multi-omics interpretations evidenced a good correlation between root metabolomics and root bacterial microbiota, indicating an orchestrated modulation of the whole holobiont.
Collapse
Affiliation(s)
- Biancamaria Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Fabrizio Araniti
- Dipartimento di Scienze Agrarie e Ambientali, Produzione, Territorio, Agroenergia (Di.S.A.A.), Università degli Studi di Milano, Milano, Italy
| | - Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Muencheberg, Germany
| | - Sonja Wende
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Muencheberg, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research – Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Muencheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
22
|
Todorova D, Anev S, Iliev M, Petrakova M, Sergiev I. Changes of Photosynthetic Parameters in Melatonin-Treated Wheat Subjected to Drought. PLANTS (BASEL, SWITZERLAND) 2024; 13:3414. [PMID: 39683207 DOI: 10.3390/plants13233414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Drought stress affects many aspects of plant biochemistry, with photosynthesis being one the most significantly impaired physiological processes. Melatonin is a natural antioxidant with growth-regulating properties in plants. Its diverse physiological functions have been extensively studied in recent decades. Changes in leaf gas exchange and chlorophyll a fluorescence parameters were investigated in young wheat plants (Triticum aestivum L.) cv. Fermer and cv. Gines which were characterized to differ in their responses to drought, with cv. Gines being more tolerant than cv. Fermer. The plants were subjected to drought for five days by withholding their water supply. Melatonin was applied as a root supplement to the irrigation water before or after the drought period. Analyses were performed before and at the end of the stress period, as well as during the recovery phase. Changes in leaf pigment content, photosynthetic rate, stomatal conductance, and transpiration, as well as some chlorophyll a fluorescence parameters, were recorded. Melatonin alone did not cause considerable changes in the measured traits. We found a significant decrease in leaf gas exchange parameters, Fv/Fm and Fv/F0 values, and leaf pigments due to drought, especially in cv. Fermer. The data show that the application of melatonin favorably influenced the efficiency of the photosynthetic apparatus under water deprivation and during plant recovery. The pre-treatment with melatonin maintained the photosynthesis-related parameters closer to the control levels during the stress period. Both melatonin treatments supported the recovery of photosynthesis when the water supply was restored and the post-drought treatment showed a similar but weaker effect than pre-drought treatment.
Collapse
Affiliation(s)
- Dessislava Todorova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria
| | - Svetoslav Anev
- Department Dendrology, Faculty of Forestry, University of Forestry, 10 Sveti Kliment Ohridski Blvd, 1756 Sofia, Bulgaria
| | - Martin Iliev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria
| | - Margarita Petrakova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria
| | - Iskren Sergiev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bldg. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
23
|
Sabety J, Svara A, Tegtmeier R, Feulner H, Cho P, Sakina A, Hickok D, Khan A. Unlocking diversity from wild relatives of perennial fruit crops in the pan-genomics era. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102652. [PMID: 39476558 DOI: 10.1016/j.pbi.2024.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/12/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024]
Abstract
Crop wild relatives of perennial fruit crops have a wealth of untapped genetic diversity that can be utilized for cultivar development. However, barriers such as linkage drag, long juvenility, and high heterozygosity have hindered their utilization. Advancements in genome sequencing technologies and assembly methods, combined with the integration of chromosome conformation capture have made it possible to construct high-quality reference genomes. These genome assemblies can be combined into pan-genomes, capturing inter- and intraspecific variations across coding and non-coding regions. Pan-genomes of perennial fruit crops are being developed to identify the genetic basis of traits. This will help overcome breeding challenges, enabling faster and more targeted development of new cultivars with novel traits through breeding and biotechnology.
Collapse
Affiliation(s)
- Jean Sabety
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, 630 N Street, Geneva, NY, 14456, USA
| | - Anze Svara
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, 630 N Street, Geneva, NY, 14456, USA
| | - Richard Tegtmeier
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, 630 N Street, Geneva, NY, 14456, USA
| | - Hana Feulner
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, 630 N Street, Geneva, NY, 14456, USA
| | - Patrick Cho
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, 630 N Street, Geneva, NY, 14456, USA
| | - Aafreen Sakina
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, 630 N Street, Geneva, NY, 14456, USA
| | - David Hickok
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, 630 N Street, Geneva, NY, 14456, USA
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, 630 N Street, Geneva, NY, 14456, USA.
| |
Collapse
|
24
|
Liu M, Liu X, Song Y, Hu Y, Yang C, Li J, Jin S, Gu K, Yang Z, Huang W, Su J, Wang L. Tobacco production under global climate change: combined effects of heat and drought stress and coping strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1489993. [PMID: 39670262 PMCID: PMC11635999 DOI: 10.3389/fpls.2024.1489993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
With the intensification of global climate change, high-temperature and drought stress have emerged as critical environmental stressors affecting tobacco plants' growth, development, and yield. This study provides a comprehensive review of tobacco's physiological and biochemical responses to optimal temperature conditions and limited irrigation across various growth stages. It assesses the effects of these conditions on yield and quality, along with the synergistic interactions and molecular mechanisms associated with these stressors. High-temperature and drought stress induces alterations in both enzymatic and non-enzymatic antioxidant activities, lead to the accumulation of reactive oxygen species (ROS), and promote lipid peroxidation, all of which adversely impact physiological processes such as photosynthetic gas exchange, respiration, and nitrogen metabolism, ultimately resulting in reduced biomass, productivity, and quality. The interaction of these stressors activates novel plant defense mechanisms, contributing to exacerbated synergistic damage. Optimal temperature conditions enhance the activation of heat shock proteins (HSPs) and antioxidant-related genes at the molecular level. At the same time, water stress triggers the expression of genes regulated by both abscisic acid-dependent and independent signaling pathways. This review also discusses contemporary agricultural management strategies, applications of genetic engineering, and biotechnological and molecular breeding methods designed to mitigate adverse agroclimatic responses, focusing on enhancing tobacco production under heat and drought stress conditions.
Collapse
Affiliation(s)
- Ming Liu
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xianglu Liu
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yuxiao Song
- Institute of Grain Crops, Agricultural Science Extension Research Institute of Dali Bai Autonomous Prefecture, Dali, Yunnan, China
| | - Yanxia Hu
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Chengwei Yang
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Juan Li
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Shuangzhen Jin
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Kaiyuan Gu
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zexian Yang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenwu Huang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jiaen Su
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Longchang Wang
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
25
|
Romero-Muñoz M, Pérez-Jiménez M. Optimizing Brassica oleracea L. Breeding Through Somatic Hybridization Using Cytoplasmic Male Sterility (CMS) Lines: From Protoplast Isolation to Plantlet Regeneration. PLANTS (BASEL, SWITZERLAND) 2024; 13:3247. [PMID: 39599456 PMCID: PMC11598112 DOI: 10.3390/plants13223247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The Brassica oleracea L. species embrace important horticultural crops, such as broccoli, cauliflower, and cabbage, which are highly valued for their beneficial nutritional effects. However, the complexity of flower emasculation in these species has forced breeders to adopt biotechnological approaches such as somatic hybridization to ease hybrid seed production. Protoplasts entail a versatile tool in plant biotechnology, supporting breeding strategies that involve genome editing and hybridization. This review discusses the use of somatic hybridization in B. oleracea L. as a biotechnological method for developing fusion products with desirable agronomic traits, particularly cytoplasmic male sterile (CMS) condition. These CMS lines are critical for implementing a cost-effective, efficient, and reliable system for producing F1 hybrids. We present recent studies on CMS systems in B. oleracea L. crops, providing an overview of established models that explain the mechanisms of CMS and fertility restoration. Additionally, we emphasize key insights gained from protoplast fusion applied to B. oleracea L. breeding. Key steps including pre-treatments of donor plants, the main tissues used as sources of parental protoplasts, methods for obtaining somatic hybrids and cybrids, and the importance of establishing a reliable plant regeneration method are discussed. Finally, the review explores the incorporation of genome editing technologies, such as CRISPR-Cas9, to introduce multiple agronomic traits in Brassica species. This combination of advanced biotechnological tools holds significant promise for enhancing B. oleracea breeding programs in the actual climate change context.
Collapse
Affiliation(s)
- Miriam Romero-Muñoz
- Department of Biotechnology, Genomic and Plant Breeding, Institute for Agroenvironmental Research and Development of Murcia (IMIDA), c/Mayor s/n, E-30150 Murcia, Spain;
| | | |
Collapse
|
26
|
Ali Q, Ali M, Khan FZA, Noureldeen A, Alghamdi A, Darwish H, Fatima A, Jalali AI, Prendergast K, Saeed S. Water Deprivation and Sowing Times Alter Plant-Pollination Interactions and Seed Yield in Sunflower, Helianthus annuus L. (Asteraceae). PLANTS (BASEL, SWITZERLAND) 2024; 13:3194. [PMID: 39599403 PMCID: PMC11597863 DOI: 10.3390/plants13223194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Climate change effects, including temperature extremes and water stress, cause abiotic stress in plants. These changes directly affect flowering and the flower reward system for pollinators, influencing plant-pollinator interactions and ultimately seed production in flowering plants. Here, we tested the effects of water deprivation on the behavior of various pollinator species, plant-pollinator interactions, and the seed yield of sunflower, Helianthus annuus L. (Asteraceae). Sunflower was sown during four different months (January-April) and subjected to two different water availability levels (well-watered and water-deprived). Pollinator abundance was recorded five times a day (8:00 am, 10:00 am, 12:00 pm, 2:00 pm, and 4:00 pm) from flower heads and the florets. In addition, foraging behavior was also recorded. We found that lowest abundance, visit duration, and visitation rate occurred in April-sown sunflower. The European honey bee Apis mellifera L. (Hymenoptera: Apidae) was the most abundant visitor to sunflower, the hover fly Eristalinus aeneus (Diptera: Syrphidae) exhibited the longest visit duration, while Xylocopa sp. (Hymenoptera: Apidae) exhibited the highest visitation rate. The visitation rate of bees was significantly affected by water stress, with more bee visits occurring under well-watered conditions. Additionally, plant parameters, including flower head diameter, head weight, seed number, and seed weight, were significantly lower in the water-deprived treatments in April-sown sunflower. Open flowers without the pollination exclusion cages showed a higher yield, indicating the pollination dependence of sunflower. In conclusion, the plant modifications induced by sowing months and water-deprived conditions may alter pollinator behavior and may ultimately affect sunflower yield.
Collapse
Affiliation(s)
- Qasim Ali
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan
| | - Mudssar Ali
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan
| | - Fawad Zafar Ahmad Khan
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan
- Department of Outreach and Continuing Education, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Akram Alghamdi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Akash Fatima
- Institute of Plant Breeding & Biotechnology, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan
| | - Ahmad Ibrahim Jalali
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan
| | - Kit Prendergast
- Institute for Life & the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Shafqat Saeed
- Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture Multan, Multan 60000, Pakistan
| |
Collapse
|
27
|
Vilavan S, Das D, Ullah H, Gade SA, Ahmed SF, Cha-Um S, Praseartkul P, Datta A, Himanshu SK. Exploring the impacts of climate change and identifying potential adaptation strategies for sustainable rice production in Thailand's Lower Chao Phraya Basin through crop simulation modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1192. [PMID: 39532753 DOI: 10.1007/s10661-024-13362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The lower Chao Phraya River Basin (CPRB) in Thailand, a major rice-producing area, is grappling with increased water scarcity alongside more frequent floods and droughts, necessitating effective adaptation strategies to sustain agricultural productivity. This study assesses the impacts of climate change on rice yield and irrigation water use, using the DSSAT-CERES-Rice model. Based on these findings, potential genotype- and management-based adaptation strategies were recommended. The model was calibrated and evaluated using the data from field experiments conducted at the Asian Institute of Technology, Thailand during 2017-2018 and 2021-2022. The grain yield and irrigation water use between baseline (2010-2022) and future climate periods (early-century: 2023-2040, mid-century: 2041-2070, and late-century: 2071-2100) were compared. Future climate projections were based on five Global Climate Models (GCMs) from the NEX-GDDP-CMIP6 project under three scenarios (SSP126, SSP245, and SSP585). The model calibration and evaluation demonstrated very good performance statistics, with a d-index of 0.85 during both calibration and evaluation. The model simulations indicated that the maximum and minimum temperatures in the lower CPRB are projected to increase by ~ 2 °C and ~ 4 °C in the late century under SSP245 and SSP585, respectively. Consequently, rice yields are projected to decline by up to 33%, and irrigation water usage to increase by 53% under SSP585 by the late century. Based on the findings, the following major genotype- and management-based adaptation strategies are recommended: (1) Developing heat-tolerant rice cultivars to mitigate yield losses under future climate scenarios, (2) Developing rice cultivars with extended grain-filling duration to enhance both irrigation water use and yield, (3) Shifting the planting date 1-2 weeks earlier (from baseline planting date of 20 July), and shifting fertilizer application date 1-2 weeks earlier (from baseline fertilizer application date of 20 September) for the panicle initiation stage to improve yield, and (4) Optimizing irrigation thresholds (remaining soil water at which to irrigate) to reduce irrigation water use without compromising yield. Overall, the findings highlight the importance of genotype improvement and adaptive management practices in mitigating the adverse effects of climate change on rice production in the lower CPRB.
Collapse
Affiliation(s)
- Sakron Vilavan
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Debesh Das
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand
- Agrotechnology Discipline, Khulna University, Khulna, 9208, Bangladesh
| | - Hayat Ullah
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Shubham Anil Gade
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sheikh Faruk Ahmed
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Patchara Praseartkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Avishek Datta
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand
| | - Sushil Kumar Himanshu
- Agricultural Systems and Engineering, Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Klong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
28
|
Wei M, Wang B, Li C, Li X, He C, Li Y. Integrated PacBio SMRT and Illumina sequencing uncovers transcriptional and physiological responses to drought stress in whole-plant Nitraria tangutorum. Front Genet 2024; 15:1474259. [PMID: 39411372 PMCID: PMC11473341 DOI: 10.3389/fgene.2024.1474259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Nitraria tangutorum Bobr., a prominent xerophytic shrub, exhibits remarkable adaptability to harsh environment and plays a significant part in preventing desertification in northwest China owing to its exceptional drought and salinity tolerance. Methods To investigate the drought-resistant mechanism underlying N. tangutorum, we treated 8-week-old seedlings with polyethylene glycol (PEG)-6000 (20%, m/m) to induce drought stress. 27 samples from different tissues (leaves, roots and stems) of N. tangutorum at 0, 6 and 24 h after drought stress treatment were sequenced using PacBio single-molecule real-time (SMRT) sequencing and Illumina RNA sequencing to obtain a comprehensive transcriptome. Results The PacBio SMRT sequencing generated 44,829 non-redundant transcripts and provided valuable reference gene information. In leaves, roots and stems, we identified 1162, 2024 and 232 differentially expressed genes (DEGs), respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that plant hormone signaling and mitogen-activated protein kinase (MAPK) cascade played a pivotal role in transmitting stress signals throughout the whole N. tangutorum plant following drought stress. The interconversion of starch and sucrose, as well as the biosynthesis of amino acid and lignin, may represent adaptive strategies employed by N. tangutorum to effectively cope with drought. Transcription factor analysis showed that AP2/ERF-ERF, WRKY, bHLH, NAC and MYB families were mainly involved in the regulation of drought response genes. Furthermore, eight physiological indexes, including content of proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), total amino acid and soluble sugar, and activities of three antioxidant enzymes were all investigate after PEG treatment, elucidating the drought tolerance mechanism from physiological perspective. The weighted gene co-expression network analysis (WGCNA) identified several hub genes serve as key regulator in response to drought through hormone participation, ROS cleavage, glycolysis, TF regulation in N. tangutorum. Discussion These findings enlarge genomic resources and facilitate research in the discovery of novel genes research in N. tangutorum, thereby establishing a foundation for investigating the drought resistance mechanism of xerophyte.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi Li
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
29
|
Rai S, Mago Y, Aggarwal G, Yadav A, Tewari S. Liquid Bioformulation: A Trending Approach Towards Achieving Sustainable Agriculture. Mol Biotechnol 2024; 66:2725-2750. [PMID: 37923941 DOI: 10.1007/s12033-023-00901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023]
Abstract
The human population is expanding at an exponential rate, and has created a great surge in the demand for food production. To intensify the rate of crop production, there is a tremendous usage of chemical pesticides and fertilizers. The practice of using these chemicals to enhance crop productivity has resulted in the degradation of soil fertility, leading to the depletion of native soil microflora. The constant application of these hazardous chemicals in the soil possesses major threat to humans and animals thereby impacting the agroecosystem severely. Hence, it is very important to hunt for certain new alternatives for enhancing crop productivity in an eco-friendly manner by using the microbial bioformulations. Microbial bioformulations can be mainly divided into two types: solid and liquid. There is a lot of information available on the subject of solid bioformulation, but the concept of liquid bioformulation is largely ignored. This article focuses on the diverse spectrum of liquid bioformulation pertaining to the market capture, its different types, potency of the product, mode of usage, and the limitations encountered. Also the authors have tried to include all the strategies required for sensitizing and making liquid bioformulation approach cost effective and as a greener strategy to succeed in developing countries.
Collapse
Affiliation(s)
- Samaksh Rai
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashika Mago
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Geetika Aggarwal
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Anjali Yadav
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Sakshi Tewari
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| |
Collapse
|
30
|
Mateus P, Sousa F, Martins M, Sousa B, Afonso A, Oliveira F, Moutinho-Pereira J, Fidalgo F, Soares C. The ectomycorrhizal fungus Paxillus involutus positively modulates Castanea sativa Miller (var. Marsol) responses to heat and drought co-exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108999. [PMID: 39098185 DOI: 10.1016/j.plaphy.2024.108999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Castanea sativa Miller, a high-valuable crop for Mediterranean countries, is facing frequent and prolonged periods of heat and drought, severely affecting chestnut production. Aiming to tackle this problem, this study unraveled the influence of mycorrhizal association with the fungi Paxillus involutus (Batsch) on young chestnut plants' responses to combined heat (42 °C; 4 h/day) and drought (no irrigation until soil moisture reached 25%) over 21 days of stress exposure. Heat stress had no harmful effects on growth, photosynthesis, nor induced oxidative stress in either mycorrhizal (MR) or non-mycorrhizal (NMR) chestnut plants. However, drought (alone or combined) reduced the growth of NMR plants, affecting water content, leaf production, and foliar area, while also hampering net CO2 assimilation and carbon relations. The mycorrhizal association, however, mitigated the detrimental effects of both stresses, resulting in less susceptibility and fewer growth limitations in MR chestnut plants, which were capable of ensuring a proper carbon flow. Evaluation of the oxidative metabolism revealed increased lipid peroxidation and hydrogen peroxide levels in NMR plants under water scarcity, supporting their higher susceptibility to stress. Conversely, MR plants activated defense mechanisms by accumulating antioxidant metabolites (ascorbate, proline and glutathione), preventing oxidative damage, especially under the combined stress. Overall, drought was the most detrimental condition for chestnut growth, with heat exacerbating stress susceptibility. Moreover, mycorrhizal association with P. involutus substantially alleviated these effects by improving growth, water relations, photosynthesis, and activating defense mechanisms. Thus, this research highlights mycorrhization's potential to enhance C. sativa resilience against climate change, especially at early developmental stages.
Collapse
Affiliation(s)
- Pedro Mateus
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Filipa Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; CITAB- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Andreia Afonso
- Deifil Green-Biotechnology Lda, Rua do Talho nº 80 - Serzedelo, 4830-704, Póvoa de Lanhoso, Portugal
| | - Fátima Oliveira
- Deifil Green-Biotechnology Lda, Rua do Talho nº 80 - Serzedelo, 4830-704, Póvoa de Lanhoso, Portugal
| | - José Moutinho-Pereira
- CITAB- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Campus Campo Alegre, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| |
Collapse
|
31
|
Poudyal D, Krishna Joshi B, Chandra Dahal K. Insights into the responses of Akabare chili landraces to drought, heat, and their combined stress during pre-flowering and fruiting stages. Heliyon 2024; 10:e36239. [PMID: 39253214 PMCID: PMC11382091 DOI: 10.1016/j.heliyon.2024.e36239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Drought, heat, and their combined stress have increasingly become common phenomena in horticulture, significantly reducing chili production worldwide. The current study aimed to phenotype Akabare chili landraces (Capsicum spp.) in climate chambers subjected to drought and heat treatments during their early generative stage, focusing on PSII efficacy (Fv/Fm), net photosynthetic rate (P N), stomatal conductance (g s), leaf cooling, and biomass production. Six landraces were examined under heat and control conditions at 40/32 °C for 4 days and at 30/22 °C under drought and control conditions followed by a 5-day recovery under control conditions (30/22 °C, irrigated). Two landraces with higher (>0.77) and two with lower (<0.763) Fv/Fm during the stress treatments were later evaluated in the field under 55-day-long drought stress at the fruiting stage. In both treatments, stress-tolerant landraces maintained high Fv/Fm, P N, and better leaf cooling leading to improved biomass compared to the sensitive landraces. Agro-morpho-physiological responses of the tolerant and sensitive landraces during the early generative stage echoed those during the fruiting stage in the field. A climate chamber experiment revealed a 13.9 % decrease in total biomass under heat stress, a further 21.5 % reduction under drought stress, and a substantial 38.7 % decline under combine stress. In field conditions, drought stress reduced total biomass by 28.1 % and total fruit dry weight by 26.2 %. Tolerant landraces showed higher Fv/Fm, demonstrated better wilting scores, displayed a higher chlorophyll content index (CCI), and accumulated more biomass. This study validated lab-based results through field trials and identified two landraces, C44 and DKT77, as potential stress-tolerant genotypes. It recommends Fv/Fm, P N, and CCI as physiological markers for the early detection of stress tolerance.
Collapse
Affiliation(s)
- Damodar Poudyal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618, Kathmandu, Nepal
| | - Bal Krishna Joshi
- National Agriculture Genetic Resources Center, Nepal Agricultural Research Council, 44700, Khumaltar, Lalitpur, Nepal
| | - Kishor Chandra Dahal
- Postgraduate Program, Institute of Agriculture and Animal Science, Tribhuvan University, Kirtipur-10, 44618, Kathmandu, Nepal
| |
Collapse
|
32
|
Choudry MW, Riaz R, Nawaz P, Ashraf M, Ijaz B, Bakhsh A. CRISPR-Cas9 mediated understanding of plants' abiotic stress-responsive genes to combat changing climatic patterns. Funct Integr Genomics 2024; 24:132. [PMID: 39078500 DOI: 10.1007/s10142-024-01405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/31/2024]
Abstract
Multiple abiotic stresses like extreme temperatures, water shortage, flooding, salinity, and exposure to heavy metals are confronted by crop plants with changing climatic patterns. Prolonged exposure to these adverse environmental conditions leads to stunted plant growth and development with significant yield loss in crops. CRISPR-Cas9 genome editing tool is being frequently employed to understand abiotic stress-responsive genes. Noteworthy improvements in CRISPR-Cas technology have been made over the years, including upgradation of Cas proteins fidelity and efficiency, optimization of transformation protocols for different crop species, base and prime editing, multiplex gene-targeting, transgene-free editing, and graft-based heritable CRISPR-Cas9 approaches. These developments helped to improve the knowledge of abiotic stress tolerance in crops that could potentially be utilized to develop knock-out varieties and over-expressed lines to tackle the adverse effects of altered climatic patterns. This review summarizes the mechanistic understanding of heat, drought, salinity, and metal stress-responsive genes characterized so far using CRISPR-Cas9 and provides data on potential candidate genes that can be exploited by modern-day biotechnological tools to develop transgene-free genome-edited crops with better climate adaptability. Furthermore, the importance of early-maturing crop varieties to withstand abiotic stresses is also discussed in this review.
Collapse
Affiliation(s)
| | - Rabia Riaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Pashma Nawaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Ashraf
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| | - Allah Bakhsh
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
33
|
Liu Y, Mao J, Xu Y, Ren J, Wang M, Wang S, Liu S, Wang R, Wang L, Wang L, Qiao Z, Cao X. Effects of Rehydration on Bacterial Diversity in the Rhizosphere of Broomcorn Millet ( Panicum miliaceum L.) after Drought Stress at the Flowering Stage. Microorganisms 2024; 12:1534. [PMID: 39203376 PMCID: PMC11356517 DOI: 10.3390/microorganisms12081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to elucidate responses of the bacterial structure and diversity of the rhizosphere in flowering broomcorn millet after rehydration following drought stress. In this study, the broomcorn millet varieties 'Hequ red millet' (A1) and 'Yanshu No.10' (A2), known for their different drought tolerance levels, were selected as experimental materials. The plants were subjected to rehydration after drought stress at the flowering stage, while normal watering (A1CK and A2CK) served as the control. Soil samples were collected at 10 days (A11, A21, A1CK1, and A2CK1) and 20 days (A12, A22, A1CK2, and A2CK2) after rehydration. High-throughput sequencing technology was employed to investigate the variations in bacterial community structure, diversity, and metabolic functions in the rhizosphere of the broomcorn millet at different time points following rehydration. The findings indicated that the operational taxonomic units (OTUs) of bacteria in the rhizosphere of broomcorn millet were notably influenced by the duration of treatment, with a significant decrease in OTUs observed after 20 days of rehydration. However, bacterial Alpha diversity was not significantly impacted by rehydration following drought stress. The bacterial community in the rhizosphere of broomcorn millet was mainly composed of Actinobacteria and Proteobacteria. After rewatering for 10 to 20 days after drought stress, the abundance of Sphingomonas and Aeromicrobium in the rhizosphere soil of the two varieties of broomcorn millet decreased gradually. Compared with Yanshu No.10, the abundance of Pseudarthrobacter in the rhizosphere of Hequ red millet gradually increased. A Beta diversity analysis revealed variations in the dissimilarities of the bacterial community which corresponded to different rehydration durations. The relative abundance of bacterial metabolic functions in the rhizosphere of broomcorn millet was lower after 20 days of rehydration, compared to measurements after 10 days of rehydration. This observation might be attributed to the exchange of materials between broomcorn millet and microorganisms during the initial rehydration stage to repair the effects of drought, as well as to the enrichment of numerous microorganisms to sustain the stability of the community structure. This study helps to comprehend the alterations to the bacterial structure and diversity in the rhizosphere of broomcorn millet following drought stress and rehydration. It sheds light on the growth status of broomcorn millet and its rhizosphere microorganisms under real environmental influences, thereby enhancing research on the drought tolerance mechanisms of broomcorn millet.
Collapse
Affiliation(s)
- Yuhan Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Jiao Mao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Yuanmeng Xu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Jiangling Ren
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Mengyao Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Shu Wang
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Sichen Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Ruiyun Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Lun Wang
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Liwei Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; (Y.L.); (J.M.); (Y.X.); (J.R.); (M.W.); (S.W.); (S.L.)
- College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, China; (R.W.); (L.W.)
- Key Laboratory of Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Taiyuan 030031, China
| |
Collapse
|
34
|
Jamil S, Ahmad S, Shahzad R, Umer N, Kanwal S, Rehman HM, Rana IA, Atif RM. Leveraging Multiomics Insights and Exploiting Wild Relatives' Potential for Drought and Heat Tolerance in Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16048-16075. [PMID: 38980762 DOI: 10.1021/acs.jafc.4c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Climate change, particularly drought and heat stress, may slash agricultural productivity by 25.7% by 2080, with maize being the hardest hit. Therefore, unraveling the molecular nature of plant responses to these stressors is vital for the development of climate-smart maize. This manuscript's primary objective was to examine how maize plants respond to these stresses, both individually and in combination. Additionally, the paper delved into harnessing the potential of maize wild relatives as a valuable genetic resource and leveraging AI-based technologies to boost maize resilience. The role of multiomics approaches particularly genomics and transcriptomics in dissecting the genetic basis of stress tolerance was also highlighted. The way forward was proposed to utilize a bunch of information obtained through omics technologies by an interdisciplinary state-of-the-art forward-looking big-data, cyberagriculture system, and AI-based approach to orchestrate the development of climate resilient maize genotypes.
Collapse
Affiliation(s)
- Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- Seed Centre and Plant Genetic Resources Bank Ministry of Environment, Water and Agriculture, Riyadh 14712, Saudi Arabia
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Noroza Umer
- Dr. Ikram ul Haq - Institute of Industrial Biotechnology, Government College University, Lahore 54590, Pakistan
| | - Shamsa Kanwal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Hafiz Mamoon Rehman
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Iqrar Ahmad Rana
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Sciences, University of California Davis, California 95616, United States
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- Precision Agriculture and Analytics Lab, Centre for Advanced Studies in Agriculture and Food Security, National Centre in Big Data and Cloud Computing, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
35
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
36
|
Marques I, Fernandes I, Paulo OS, Batista D, Lidon FC, Rodrigues AP, Partelli FL, DaMatta FM, Ribeiro-Barros AI, Ramalho JC. Transcriptomic Analyses Reveal That Coffea arabica and Coffea canephora Have More Complex Responses under Combined Heat and Drought than under Individual Stressors. Int J Mol Sci 2024; 25:7995. [PMID: 39063237 PMCID: PMC11277005 DOI: 10.3390/ijms25147995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Increasing exposure to unfavorable temperatures and water deficit imposes major constraints on most crops worldwide. Despite several studies regarding coffee responses to abiotic stresses, transcriptome modulation due to simultaneous stresses remains poorly understood. This study unravels transcriptomic responses under the combined action of drought and temperature in leaves from the two most traded species: Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu. Substantial transcriptomic changes were found, especially in response to the combination of stresses that cannot be explained by an additive effect. A large number of genes were involved in stress responses, with photosynthesis and other physiologically related genes usually being negatively affected. In both genotypes, genes encoding for protective proteins, such as dehydrins and heat shock proteins, were positively regulated. Transcription factors (TFs), including MADS-box genes, were down-regulated, although responses were genotype-dependent. In contrast to Icatu, only a few drought- and heat-responsive DEGs were recorded in CL153, which also reacted more significantly in terms of the number of DEGs and enriched GO terms, suggesting a high ability to cope with stresses. This research provides novel insights into the molecular mechanisms underlying leaf Coffea responses to drought and heat, revealing their influence on gene expression.
Collapse
Affiliation(s)
- Isabel Marques
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Isabel Fernandes
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Octávio S. Paulo
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
| | - Dora Batista
- cE3c—Center for Ecology, Evolution and Environmental Changes and CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (I.F.); (O.S.P.); (D.B.)
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - Ana P. Rodrigues
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
| | - Fábio L. Partelli
- Centro Universitário do Norte do Espírito Santo (CEUNES), Departmento Ciências Agrárias e Biológicas (DCAB), Universidade Federal Espírito Santo (UFES), São Mateus 29932-540, ES, Brazil;
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| | - José C. Ramalho
- Plant-Environment Interactions and Biodiversity Lab, Forest Research Centre (CEF), Associate Laboratory TERRA, School of Agriculture (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (A.P.R.); (J.C.R.)
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), 2829-516 Caparica, Portugal;
| |
Collapse
|
37
|
Faisal M, Faizan M, Alatar AA. Metallic allies in drought resilience: Unveiling the influence of silver and zinc oxide nanoparticles on enhancing tomato (Solanum lycopersicum) resistance through oxidative stress regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108722. [PMID: 38761543 DOI: 10.1016/j.plaphy.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
The escalating influence of environmental changes has heightened the physiological challenges faced by plants, with drought stress increasingly recognized as a critical global issue significantly impeding affecting the crop productivity. This study investigates the effectiveness of metal nano particles such as zinc oxide nanoparticles (ZnO NPs) and silver nanoparticles (Ag NPs) in mitigating drought stress in Solanum lycopersicum. The foliar application of ZnO NPs (500 ppm) and/or Ag NPs (500 ppm), individually or in combination, significantly alleviated drought stress-induced. This mitigation was evidenced by enhanced antioxidant enzymes activity viz., catalase (64%), peroxidase (76%), superoxide dismutase (78%), chlorophyll content (31%) & photosynthesis (37%), and protein levels (15%). Furthermore, ZnO NPs and Ag NPs effectively mitigated oxidative stress and lipid peroxidation, as evidence by reduced accumulation of malondialdehyde (11%). Remarkably, the combined application of ZnO NPs and Ag NPs expedited the water-splitting capacity and facilitated electron exchange through redox reactions under drought stress. Consequently, these enhancements positively influenced the morpho-physiological characteristics such as height (28%), fresh weight (31%), dry weight (29%) and net photosynthetic rate (37%) of S. lycopersicum. These findings underscore the promising potential of metal NPs, such as ZnO NPs and Ag NPs, in mitigating drought stress, offering valuable insights for sustainable crop production amidst evolving environmental challenges.
Collapse
Affiliation(s)
- Mohammad Faisal
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Abdulrahman A Alatar
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
38
|
van Hooren M, van Wijk R, Vaseva II, Van Der Straeten D, Haring M, Munnik T. Ectopic Expression of Distinct PLC Genes Identifies 'Compactness' as a Possible Architectural Shoot Strategy to Cope with Drought Stress. PLANT & CELL PHYSIOLOGY 2024; 65:885-903. [PMID: 37846160 PMCID: PMC11209554 DOI: 10.1093/pcp/pcad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 10/18/2023]
Abstract
Phospholipase C (PLC) has been implicated in several stress responses, including drought. Overexpression (OE) of PLC has been shown to improve drought tolerance in various plant species. Arabidopsis contains nine PLC genes, which are subdivided into four clades. Earlier, OE of PLC3, PLC5 or PLC7 was found to increase Arabidopsis' drought tolerance. Here, we confirm this for three other PLCs: PLC2, the only constitutively expressed AtPLC; PLC4, reported to have reduced salt tolerance and PLC9, of which the encoded enzyme was presumed to be catalytically inactive. To compare each PLC and to discover any other potential phenotype, two independent OE lines of six AtPLC genes, representing all four clades, were simultaneously monitored with the GROWSCREEN-FLUORO phenotyping platform, under both control- and mild-drought conditions. To investigate which tissues were most relevant to achieving drought survival, we additionally expressed AtPLC5 using 13 different cell- or tissue-specific promoters. While no significant differences in plant size, biomass or photosynthesis were found between PLC lines and wild-type (WT) plants, all PLC-OE lines, as well as those tissue-specific lines that promoted drought survival, exhibited a stronger decrease in 'convex hull perimeter' (= increase in 'compactness') under water deprivation compared to WT. Increased compactness has not been associated with drought or decreased water loss before although a hyponastic decrease in compactness in response to increased temperatures has been associated with water loss. We propose that the increased compactness could lead to decreased water loss and potentially provide a new breeding trait to select for drought tolerance.
Collapse
Affiliation(s)
- Max van Hooren
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, Amsterdam 1000BE, The Netherlands
| | - Ringo van Wijk
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, Amsterdam 1000BE, The Netherlands
| | - Irina I Vaseva
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent B-9000, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, Ghent B-9000, Belgium
| | - Michel Haring
- Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, Amsterdam 1000BE, The Netherlands
| | - Teun Munnik
- Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, PO Box 1210, Amsterdam 1000BE, The Netherlands
| |
Collapse
|
39
|
Rakhmankulova Z, Shuyskaya E, Prokofieva M, Toderich K, Saidova L, Lunkova N, Voronin P. Drought Has a Greater Negative Effect on the Growth of the C 3Chenopodium quinoa Crop Halophyte than Elevated CO 2 and/or High Temperature. PLANTS (BASEL, SWITZERLAND) 2024; 13:1666. [PMID: 38931098 PMCID: PMC11207731 DOI: 10.3390/plants13121666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Plant growth and productivity are predicted to be affected by rising CO2 concentrations, drought and temperature stress. The C3 crop model in a changing climate is Chenopodium quinoa Willd-a protein-rich pseudohalphyte (Amaranthaceae). Morphophysiological, biochemical and molecular genetic studies were performed on quinoa grown at ambient (400 ppm, aCO2) and elevated (800 ppm, eCO2) CO2 concentrations, drought (D) and/or high temperature (eT) treatments. Among the single factors, drought caused the greatest stress response, inducing disturbances in the light and dark photosynthesis reactions (PSII, apparent photosynthesis) and increasing oxidative stress (MDA). Futhermore, compensation mechanisms played an important protective role against eT or eCO2. The disruption of the PSII function was accompanied by the activation of the expression of PGR5, a gene of PSI cyclic electron transport (CET). Wherein under these conditions, the constant Rubisco content was maintained due to an increase in its biosynthesis, which was confirmed by the activation of rbcL gene expression. In addition, the combined stress treatments D+eT and eCO2+D+eT caused the greatest negative effect, as measured by increased oxidative stress, decreased water use efficiency, and the functioning of protective mechanisms, such as photorespiration and the activity of antioxidant enzymes. Furthermore, decreased PSII efficiency and increased non-photochemical quenching (NPQ) were not accompanied by the activation of protective mechanisms involving PSI CET. In summary, results show that the greatest stress experienced by C. quinoa plants was caused by drought and the combined stresses D+eT and eCO2+D+eT. Thus, drought consistently played a decisive role, leading to increased oxidative stress and a decrease in defense mechanism effectiveness.
Collapse
Affiliation(s)
- Zulfira Rakhmankulova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; (Z.R.); (E.S.); (M.P.); (L.S.); (N.L.)
| | - Elena Shuyskaya
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; (Z.R.); (E.S.); (M.P.); (L.S.); (N.L.)
| | - Maria Prokofieva
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; (Z.R.); (E.S.); (M.P.); (L.S.); (N.L.)
| | - Kristina Toderich
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu 514-8507, Japan
| | - Luizat Saidova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; (Z.R.); (E.S.); (M.P.); (L.S.); (N.L.)
| | - Nina Lunkova
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; (Z.R.); (E.S.); (M.P.); (L.S.); (N.L.)
| | - Pavel Voronin
- K.A. Timiryazev Institute of Plant Physiology of Russian Academy of Science, 127276 Moscow, Russia; (Z.R.); (E.S.); (M.P.); (L.S.); (N.L.)
| |
Collapse
|
40
|
Mishra SK, Chaudhary C, Baliyan S, Poonia AK, Sirohi P, Kanwar M, Gazal S, Kumari A, Sircar D, Germain H, Chauhan H. Heat-stress-responsive HvHSFA2e gene regulates the heat and drought tolerance in barley through modulation of phytohormone and secondary metabolic pathways. PLANT CELL REPORTS 2024; 43:172. [PMID: 38874775 DOI: 10.1007/s00299-024-03251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
KEY MESSAGE The heat stress transcription factor HSFA2e regulates both temperature and drought response via hormonal and secondary metabolism alterations. High temperature and drought are the primary yield-limiting environmental constraints for staple food crops. Heat shock transcription factors (HSF) terminally regulate the plant abiotic stress responses to maintain growth and development under extreme environmental conditions. HSF genes of subclass A2 predominantly express under heat stress (HS) and activate the transcriptional cascade of defense-related genes. In this study, a highly heat-inducible HSF, HvHSFA2e was constitutively expressed in barley (Hordeum vulgare L.) to investigate its role in abiotic stress response and plant development. Transgenic barley plants displayed enhanced heat and drought tolerance in terms of increased chlorophyll content, improved membrane stability, reduced lipid peroxidation, and less accumulation of ROS in comparison to wild-type (WT) plants. Transcriptome analysis revealed that HvHSFA2e positively regulates the expression of abiotic stress-related genes encoding HSFs, HSPs, and enzymatic antioxidants, contributing to improved stress tolerance in transgenic plants. The major genes of ABA biosynthesis pathway, flavonoid, and terpene metabolism were also upregulated in transgenics. Our findings show that HvHSFA2e-mediated upregulation of heat-responsive genes, modulation in ABA and flavonoid biosynthesis pathways enhance drought and heat stress tolerance.
Collapse
Affiliation(s)
- Sumit Kumar Mishra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Magadh University, BodhGaya, 824234, Bihar, India
| | - Chanderkant Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Suchi Baliyan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Anuj Kumar Poonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Parul Sirohi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Meenakshi Kanwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Snehi Gazal
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Annu Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 Bd des Forges, Trois-Rivières, QC, G9A 5H9, Canada
| | - Harsh Chauhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247 667, Uttarakhand, India.
| |
Collapse
|
41
|
Yan W, Sharif R, Sohail H, Zhu Y, Chen X, Xu X. Surviving a Double-Edged Sword: Response of Horticultural Crops to Multiple Abiotic Stressors. Int J Mol Sci 2024; 25:5199. [PMID: 38791235 PMCID: PMC11121501 DOI: 10.3390/ijms25105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Climate change-induced weather events, such as extreme temperatures, prolonged drought spells, or flooding, pose an enormous risk to crop productivity. Studies on the implications of multiple stresses may vary from those on a single stress. Usually, these stresses coincide, amplifying the extent of collateral damage and contributing to significant financial losses. The breadth of investigations focusing on the response of horticultural crops to a single abiotic stress is immense. However, the tolerance mechanisms of horticultural crops to multiple abiotic stresses remain poorly understood. In this review, we described the most prevalent types of abiotic stresses that occur simultaneously and discussed them in in-depth detail regarding the physiological and molecular responses of horticultural crops. In particular, we discussed the transcriptional, posttranscriptional, and metabolic responses of horticultural crops to multiple abiotic stresses. Strategies to breed multi-stress-resilient lines have been presented. Our manuscript presents an interesting amount of proposed knowledge that could be valuable in generating resilient genotypes for multiple stressors.
Collapse
Affiliation(s)
- Wenjing Yan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Yu Zhu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (W.Y.); (R.S.); (H.S.); (Y.Z.); (X.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
42
|
Ahmed HGMD, Naeem M, Zeng Y, Ullah A, Hussain GS, Akram MI, Saeed A, Fatima N, Moeez I, Ali HM, Radwan NS, Ercisli S, Ilhan G, Shah AN. Trapping the genetic variation for yield and yield related attributes in bread wheat under water deficit stress. EUPHYTICA 2024; 220:77. [DOI: 10.1007/s10681-024-03332-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/14/2024] [Indexed: 11/07/2024]
|
43
|
Ang MCY, Saju JM, Porter TK, Mohaideen S, Sarangapani S, Khong DT, Wang S, Cui J, Loh SI, Singh GP, Chua NH, Strano MS, Sarojam R. Decoding early stress signaling waves in living plants using nanosensor multiplexing. Nat Commun 2024; 15:2943. [PMID: 38580637 PMCID: PMC10997764 DOI: 10.1038/s41467-024-47082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/14/2024] [Indexed: 04/07/2024] Open
Abstract
Increased exposure to environmental stresses due to climate change have adversely affected plant growth and productivity. Upon stress, plants activate a signaling cascade, involving multiple molecules like H2O2, and plant hormones such as salicylic acid (SA) leading to resistance or stress adaptation. However, the temporal ordering and composition of the resulting cascade remains largely unknown. In this study we developed a nanosensor for SA and multiplexed it with H2O2 nanosensor for simultaneous monitoring of stress-induced H2O2 and SA signals when Brassica rapa subsp. Chinensis (Pak choi) plants were subjected to distinct stress treatments, namely light, heat, pathogen stress and mechanical wounding. Nanosensors reported distinct dynamics and temporal wave characteristics of H2O2 and SA generation for each stress. Based on these temporal insights, we have formulated a biochemical kinetic model that suggests the early H2O2 waveform encodes information specific to each stress type. These results demonstrate that sensor multiplexing can reveal stress signaling mechanisms in plants, aiding in developing climate-resilient crops and pre-symptomatic stress diagnoses.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jolly Madathiparambil Saju
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Thomas K Porter
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Sayyid Mohaideen
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Sreelatha Sarangapani
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Duc Thinh Khong
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Song Wang
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Jianqiao Cui
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Suh In Loh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Gajendra Pratap Singh
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
| | - Nam-Hai Chua
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Michael S Strano
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| | - Rajani Sarojam
- Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #03-06/07/08 Research Wing, Singapore, 138602, Singapore.
- Temasek Life Sciences Laboratory Limited, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
44
|
Pan X, Deng Z, Wu R, Yang Y, Akher SA, Li W, Zhang Z, Guo Y. Identification of CEP peptides encoded by the tobacco (Nicotiana tabacum) genome and characterization of their roles in osmotic and salt stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108525. [PMID: 38518396 DOI: 10.1016/j.plaphy.2024.108525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
Members of the CEP (C-terminally Encoded Peptide) gene family have been shown to be involved in various developmental processes and stress responses in plants. In order to understand the roles of CEP peptides in stress response, a comprehensive bioinformatics approach was employed to identify NtCEP genes in tobacco (Nicotiana tabacum L.) and to analyze their potential roles in stress responses. Totally 21 NtCEP proteins were identified and categorized into two subgroups based on their CEP domains. Expression changes of the NtCEP genes in response to various abiotic stresses were analyzed via qRT-PCR and the results showed that a number of NtCEPs were significant up-regulated under drought, salinity, or temperature stress conditions. Furthermore, application of synthesized peptides derived from NtCEP5, NtCEP13, NtCEP14, and NtCEP17 enhanced plant tolerance to different salt stress treatments. NtCEP5, NtCEP9 and NtCEP14, and NtCEP17 peptides were able to promote osmotic tolerance of tobacco plants. The results from this study suggest that NtCEP peptides may serve as important signaling molecules in tobacco's response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaolu Pan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Zhichao Deng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Rongrong Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China; Qingdao Agricultural University, Qingdao, China
| | - Yalun Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China; Qingdao Agricultural University, Qingdao, China
| | - Sayed Abdul Akher
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China
| | - Zenglin Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China.
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China; (Q)ingdao Municipal Key Laboratory of Plant Molecular Pharming, Qingdao, China.
| |
Collapse
|
45
|
Balmaki B, Rostami MA, Allen JM, Dyer LA. Effects of climate change on Lepidoptera pollen loads and their pollination services in space and time. Oecologia 2024; 204:751-759. [PMID: 38523192 DOI: 10.1007/s00442-024-05533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/18/2024] [Indexed: 03/26/2024]
Abstract
Shifts in flowering time among plant communities as a result of climate change, including extreme weather events, are a growing concern. These plant phenological changes may affect the quantity and quality of food sources for specialized insect pollinators. Plant-pollinator interactions are threatened by habitat alterations and biodiversity loss, and changes in these interactions may lead to declines in flower visitors and pollination services. Most prior research has focused on short-term plant-pollinator interactions, which do not accurately capture changes in pollination services. Here, we characterized long-term plant-pollinator interactions and identified potential risks to specialized butterfly species due to habitat loss, fragmented landscapes, and changes in plant assemblages. We used 21 years of historical data from museum specimens to track the potential effects of direct and indirect changes in precipitation, temperature, monsoons, and wildfires on plant-pollinator mutualism in the Great Basin and Sierra Nevada. We found decreased pollen richness associated with butterflies within sites, as well as an increase in pollen grain abundance of drought-tolerant plants, particularly in the past 10 years. Moreover, increased global temperatures and the intensity and frequency of precipitation and wildfires were negatively correlated with pollen diversity. Our findings have important implications for understanding plant-pollinator interactions and the pollination services affected by global warming.
Collapse
Affiliation(s)
- Behnaz Balmaki
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA.
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Masoud A Rostami
- Division of Data Science, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Julie M Allen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Lee A Dyer
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
46
|
Nor A'azizam NM, Chopra S, Guleria P, Kumar V, Abd Rahim MH, Yaacob JS. Harnessing the potential of mutation breeding, CRISPR genome editing, and beyond for sustainable agriculture. Funct Integr Genomics 2024; 24:44. [PMID: 38421529 DOI: 10.1007/s10142-024-01325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
By 2050, the global population is projected to exceed 9.5 billion, posing a formidable challenge to ensure food security worldwide. To address this pressing issue, mutation breeding in horticultural crops, utilizing physical or chemical methods, has emerged as a promising biotechnological strategy. However, the efficacy of these mutagens can be influenced by various factors, including biological and environmental variables, as well as targeted plant materials. This review highlights the global challenges related to food security and explores the potential of mutation breeding as an indispensable biotechnological tool in overcoming food insecurity. This review also covers the emergence of CRISPR-Cas9, a breakthrough technology offering precise genome editing for the development of high-yield, stress-tolerant crops. Together, mutation breeding and CRISPR can potentially address future food demands. This review focuses into these biotechnological advancements, emphasizing their combined potential to fortify global food security in the face of a booming population.
Collapse
Affiliation(s)
| | - Sakshi Chopra
- Plant Biotechnology and Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India
| | - Praveen Guleria
- Plant Biotechnology and Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144111, India
| | - Muhamad Hafiz Abd Rahim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
47
|
Ayyappan V, Sripathi VR, Xie S, Saha MC, Hayford R, Serba DD, Subramani M, Thimmapuram J, Todd A, Kalavacharla VK. Genome-wide profiling of histone (H3) lysine 4 (K4) tri-methylation (me3) under drought, heat, and combined stresses in switchgrass. BMC Genomics 2024; 25:223. [PMID: 38424499 PMCID: PMC10903042 DOI: 10.1186/s12864-024-10068-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is a warm-season perennial (C4) grass identified as an important biofuel crop in the United States. It is well adapted to the marginal environment where heat and moisture stresses predominantly affect crop growth. However, the underlying molecular mechanisms associated with heat and drought stress tolerance still need to be fully understood in switchgrass. The methylation of H3K4 is often associated with transcriptional activation of genes, including stress-responsive. Therefore, this study aimed to analyze genome-wide histone H3K4-tri-methylation in switchgrass under heat, drought, and combined stress. RESULTS In total, ~ 1.3 million H3K4me3 peaks were identified in this study using SICER. Among them, 7,342; 6,510; and 8,536 peaks responded under drought (DT), drought and heat (DTHT), and heat (HT) stresses, respectively. Most DT and DTHT peaks spanned 0 to + 2000 bases from the transcription start site [TSS]. By comparing differentially marked peaks with RNA-Seq data, we identified peaks associated with genes: 155 DT-responsive peaks with 118 DT-responsive genes, 121 DTHT-responsive peaks with 110 DTHT-responsive genes, and 175 HT-responsive peaks with 136 HT-responsive genes. We have identified various transcription factors involved in DT, DTHT, and HT stresses. Gene Ontology analysis using the AgriGO revealed that most genes belonged to biological processes. Most annotated peaks belonged to metabolite interconversion, RNA metabolism, transporter, protein modifying, defense/immunity, membrane traffic protein, transmembrane signal receptor, and transcriptional regulator protein families. Further, we identified significant peaks associated with TFs, hormones, signaling, fatty acid and carbohydrate metabolism, and secondary metabolites. qRT-PCR analysis revealed the relative expressions of six abiotic stress-responsive genes (transketolase, chromatin remodeling factor-CDH3, fatty-acid desaturase A, transmembrane protein 14C, beta-amylase 1, and integrase-type DNA binding protein genes) that were significantly (P < 0.05) marked during drought, heat, and combined stresses by comparing stress-induced against un-stressed and input controls. CONCLUSION Our study provides a comprehensive and reproducible epigenomic analysis of drought, heat, and combined stress responses in switchgrass. Significant enrichment of H3K4me3 peaks downstream of the TSS of protein-coding genes was observed. In addition, the cost-effective experimental design, modified ChIP-Seq approach, and analyses presented here can serve as a prototype for other non-model plant species for conducting stress studies.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA.
| | | | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, 47907, USA
| | - Malay C Saha
- Noble Research Institute, LLC, Ardmore, OK, 73401, USA
| | - Rita Hayford
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, 19716, USA
| | - Desalegn D Serba
- USDA-ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, 85138, USA.
| | - Mayavan Subramani
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | | | - Antonette Todd
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, Delaware State University, Dover, DE, 19901, USA
- Center for Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE, 19901, USA
| |
Collapse
|
48
|
Hameed A, Maqsood W, Hameed A, Qayyum MA, Ahmed T, Farooq T. Chitosan nanoparticles encapsulating curcumin counteract salt-mediated ionic toxicity in wheat seedlings: an ecofriendly and sustainable approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8917-8929. [PMID: 38182953 DOI: 10.1007/s11356-023-31768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
Over-accumulating salts in soil are hazardous materials that interfere with the biochemical pathways in growing plants drastically affecting their physiological attributes, growth, and productivity. Soil salinization poses severe threats to highly-demanded and important crops directly challenging food security and sustainable productivity. Recently, there has been a great demand to exploit natural sources for the development of nontoxic nanoformulations of growth enhancers and stress emulators. The chitosan (CS) has growth-stimulating properties and widespread use as nanocarriers, while curcumin (CUR) has a well-established high ROS scavenging potential. Herein, we use CS and CUR for the preparation of CSNPs encapsulating CUR as an ecofriendly nanopriming agent. The hydroprimed, nanoprimed (0.02 and 0.04%), and unprimed (control) wheat seeds were germinated under salt stress (150 mM NaCl) and normal conditions. The seedlings established from the aforementioned seeds were employed for germination studies and biochemical analyses. Priming imprints mitigated the ionic toxicity by upregulating the machinery of antioxidants (CAT, POD, APX, and SOD), photosynthetic pigments (Chl a, Chl b, total Chl, and lycopene), tannins, flavonoids, and protein contents in wheat seedlings under salt stress. It controlled ROS production and avoided structural injuries, thus reducing MDA contents and regulating osmoregulation. The nanopriming-induced readjustments in biochemical attributes counteracted the ionic toxicity and positively influenced the growth parameters including final germination, vigor, and germination index. It also reduced the mean germination time, significantly validating the growth-stimulating and stress-emulating role of the prepared nanosystem. Hence, the nanopriming conferred tolerance against salt stress during germination and seedling development, ensuring sustainable growth.
Collapse
Affiliation(s)
- Arruje Hameed
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waqas Maqsood
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amjad Hameed
- Plant Breeding & Genetics Division, Nuclear Institute for Agriculture and Biology (NIAB), Jhang Road, Faisalabad, Pakistan
| | - Muhammad Abdul Qayyum
- Department of Chemistry, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - Toheed Ahmed
- Department of Chemistry, Riphah International University, Faisalabad, 38000, Pakistan
| | - Tahir Farooq
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan.
| |
Collapse
|
49
|
Saini S, Sharma P, Sharma J, Pooja P, Sharma A. Drought stress in Lens culinaris: effects, tolerance mechanism, and its smart reprogramming by using modern biotechnological approaches. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:227-247. [PMID: 38623164 PMCID: PMC11016033 DOI: 10.1007/s12298-024-01417-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Accepted: 02/12/2024] [Indexed: 04/17/2024]
Abstract
Among legumes, lentil serves as an imperative source of dietary proteins and are considered an important pillar of global food and nutritional security. The crop is majorly cultivated in arid and semi-arid regions and exposed to different abiotic stresses. Drought stress is a polygenic stress that poses a major threat to the crop productivity of lentils. It negatively influenced the seed emergence, water relations traits, photosynthetic machinery, metabolites, seed development, quality, and yield in lentil. Plants develop several complex physiological and molecular protective mechanisms for tolerance against drought stress. These complicated networks are enabled to enhance the cellular potential to survive under extreme water-scarce conditions. As a result, proper drought stress-mitigating novel and modern approaches are required to improve lentil productivity. The currently existing biotechnological techniques such as transcriptomics, genomics, proteomics, metabolomics, CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/cas9), and detection of QTLs (quantitative trait loci), proteins, and genes responsible for drought tolerance have gained appreciation among plant breeders for developing climate-resilient lentil varieties. In this review, we critically elaborate the impact of drought on lentil, mechanisms employed by plants to tolerate drought, and the contribution of omics approaches in lentils for dealing with drought, providing deep insights to enhance lentil productivity and improve resistance against abiotic stresses. We hope this updated review will directly help the lentil breeders to develop resistance against drought stress. Graphical Abstract
Collapse
Affiliation(s)
- Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Jyoti Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| | - Pooja Pooja
- Department of Botany and Physiology, Haryana Agricultural University, Hisar, Haryana 125004 India
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana 124001 India
| |
Collapse
|
50
|
Horvat B, Shikakura Y, Ohtani M, Demura T, Kikuchi A, Watanabe KN, Oguchi T. Heterogeneous Expression of Arabidopsis Subclass II of SNF1-Related Kinase 2 Improves Drought Tolerance via Stomatal Regulation in Poplar. Life (Basel) 2024; 14:161. [PMID: 38276290 PMCID: PMC10817443 DOI: 10.3390/life14010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/28/2023] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Abscisic acid (ABA) is the most important phytohormone involved in the response to drought stress. Subclass II of SNF1-related kinase 2 (SnRK2) is an important signaling kinase related to ABA signal transduction. It regulates the phosphorylation of the target transcription factors controlling the transcription of a wide range of ABA-responsive genes in Arabidopsis thaliana. The transgenic poplars (Populus tremula × P. tremuloides, clone T89) ectopically overexpressing AtSnRK2.8, encoding a subclass II SnRK2 kinase of A. thaliana, have been engineered but almost no change in its transcriptome was observed. In this study, we evaluated osmotic stress tolerance and stomatal behavior of the transgenic poplars maintained in the netted greenhouse. The transgenic poplars, line S22, showed a significantly higher tolerance to 20% PEG treatment than non-transgenic controls. The stomatal conductance of the transgenic poplars tended to be lower than the non-transgenic control. Microscopic observations of leaf imprints revealed that the transgenic poplars had significantly higher stomatal closures under the stress treatment than the non-transgenic control. In addition, the stomatal index was lower in the transgenic poplars than in the non-transgenic controls regardless of the stress treatment. These results suggested that AtSnRK2.8 is involved in the regulation of stomatal behavior. Furthermore, the transgenic poplars overexpressing AtSnRK2.8 might have improved abiotic stress tolerance through this stomatal regulation.
Collapse
Affiliation(s)
- Borislav Horvat
- Degree Program in Life and Earth Science, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Yuhei Shikakura
- Degree Program in Life and Earth Science, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Misato Ohtani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8562, Chiba, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan
| | - Akira Kikuchi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Kazuo N. Watanabe
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| | - Taichi Oguchi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|