1
|
Smith NL, Knappenberger KL. Influence of Aliphatic versus Aromatic Ligand Passivation on Intersystem Crossing in Au 25(SR) 18. J Phys Chem A 2024; 128:7620-7627. [PMID: 39197122 DOI: 10.1021/acs.jpca.4c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The electronic relaxation dynamics of gold monolayer protected clusters (MPCs) are influenced by the hydrocarbon structure of thiolate protecting ligands. Here, we present ligand-dependent electronic relaxation for a series of Au25(SR)18- (SR = SC8H9, SC6H13, SC12H25) MPCs using femtosecond time-resolved transient absorption spectroscopy. Relaxation pathways included a ligand-independent femtosecond internal conversion and a competing ligand-dependent picosecond intersystem crossing process. Intersystem crossing was accelerated for the aliphatic (SC6H13, SC12H25) thiolate MPCs compared to the aromatic (SC8H9) thiolate MPCs. Additionally, a 1.2 THz quadrupolar acoustic mode and a 2.4 THz breathing acoustic mode was identified in each cluster, which indicated that differences in ligand structure did not result in significant structural changes to the metal core of the MPCs. Considering that the difference in relaxation rates did not result from ligand-induced core deformation, the accelerated intersystem crossing was attributed to greater electron-vibrational coupling to Au-S vibrational modes. The results suggested that the organometallic semiring was less rigid for the aliphatic thiolate MPCs due to reduced steric effects, and in turn, increases in nonradiative decay rates were observed. Overall, these results imply that the protecting ligand structure can be used to modify carrier relaxation in MPCs.
Collapse
Affiliation(s)
- Nathanael L Smith
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
D'Antoni P, Sementa L, Bonacchi S, Reato M, Maran F, Fortunelli A, Stener M. Combined experimental and computational study of the photoabsorption of the monodoped and nondoped nanoclusters Au 24Pt(SR) 18, Ag 24Pt(SR) 18, and Ag 25(SR) 18. Phys Chem Chem Phys 2024; 26:17569-17576. [PMID: 38867581 DOI: 10.1039/d4cp00789a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Assessing the accuracy of first-principles computational approaches is instrumental to predict electronic excitations in metal nanoclusters with quantitative confidence. Here we describe a validation study on the optical response of a set of monolayer-protected clusters (MPC). The photoabsorption spectra of Ag25(DMBT)18-, Ag24Pt(DMBT)182- and Au24Pt(SC4H9)18, where DMBT is 2,4-dimethylbenzenethiolate and SC4H9 is n-butylthiolate, have been obtained at low temperature and compared with accurate TDDFT calculations. An excellent match between theory and experiment, with typical deviations of less than 0.1 eV, was obtained, thereby validating the accuracy and reliability of the proposed computational framework. Moreover, an analysis of the TDDFT simulations allowed us to ascribe all relevant spectral features to specific transitions between occupied/virtual orbital pairs. The doping effect of Pt on the optical response of these ultrasmall MPC systems was identified and discussed.
Collapse
Affiliation(s)
- Pierpaolo D'Antoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy.
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, I-56124 Pisa, Italy.
| | - Sara Bonacchi
- Department of Chemistry, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
| | - Mattia Reato
- Department of Chemistry, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
| | - Flavio Maran
- Department of Chemistry, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, USA
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, I-56124 Pisa, Italy.
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy.
| |
Collapse
|
3
|
Wijesinghe KH, Hood C, Mattern D, Angel LA, Dass A. Ion mobility-tandem mass spectrometry of bulky tert-butyl thiol ligated gold nanoparticles. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e4998. [PMID: 38263883 DOI: 10.1002/jms.4998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 01/25/2024]
Abstract
Gold nanoparticles (AuNPs) synthesized in the 1-3 nm range have a specific number of gold core atoms and outer protecting ligands. They have become one of the "hot topics" in recent decades because of their interesting physical and chemical properties. The characterization of their structures is usually achieved by crystal X-ray diffraction although the structures of some AuNPs remain unknown because they have not been successfully crystallized. An alternative method for studying the structure of AuNPs is electrospray ionization-ion mobility-tandem mass spectrometry (ESI-IM-MSMS). This research evaluated how effectively ESI-IM-MSMS using the commercially available Waters Synapt XS instrument yielded useful structural information from two AuNPs; Au23 (S-tBu)16 and Au30 (S-tBu)18 . The study used the maximum range of available collision energies along with ion mobility separation to measure the energy-dependence of the product ions and their drift times which is a measure of their spatial size. For Au23 (S-tBu)16 , the dissociation gave the masses of the outer protecting monomeric [RS-Au-SR] and trimeric [SR-Au-SR-Au-SR-Au-SR] staples where R = tBu, and complete dissociation of the outer layer Au and tBu groups to reveal the Au15 S8 core. For Au30 (S-tBu)18 , the dissociation products was primarily through the loss of the partial ligands S-tBu and tBu from the outer protecting layer and the loss of single Au4 (S-tBu)4 unit. These results showed the that ESI-IM-MSMS analysis of the smaller Au23 (S-tBu)16 gave information on all it major structural components whereas for Au30 (S-tBu)18 , the overall structural information was limited to the ligands of the outer layer.
Collapse
Affiliation(s)
- Kalpani H Wijesinghe
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Christopher Hood
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Daniell Mattern
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| | - Laurence A Angel
- Department of Chemistry, Texas A&M University-Commerce, Commerce, Texas, USA
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
4
|
Sun F, Qin L, Tang Z, Deng G, Bootharaju MS, Wei Z, Tang Q, Hyeon T. -SR removal or -R removal? A mechanistic revisit on the puzzle of ligand etching of Au 25(SR) 18 nanoclusters during electrocatalysis. Chem Sci 2023; 14:10532-10546. [PMID: 37800008 PMCID: PMC10548520 DOI: 10.1039/d3sc03018k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 10/07/2023] Open
Abstract
Accurate identification of active sites is highly desirable for elucidation of the reaction mechanism and development of efficient catalysts. Despite the promising catalytic performance of thiolated metal nanoclusters (NCs), their actual catalytic sites remain elusive. Traditional first-principles calculations and experimental observations suggested dealkylated S and dethiolated metal, respectively, to be the active centers. However, the real kinetic origin of thiolate etching during the electrocatalysis of NCs is still puzzling. Herein, we conducted advanced first-principles calculations and electrochemical/spectroscopic experiments to unravel the electrochemical etching kinetics of thiolate ligands in prototype Au25(SCH3)18 NC. The electrochemical processes are revealed to be spontaneously facilitated by dethiolation (i.e., desorption of -SCH3), forming the free HSCH3 molecule after explicitly including the solvent effect and electrode potential. Thus, exposed under-coordinated Au atoms, rather than the S atoms, serve as the real catalytic sites. The thermodynamically preferred Au-S bond cleavage arises from the selective attack of H from proton/H2O on the S atom under suitable electrochemical bias due to the spatial accessibility and the presence of S lone pair electrons. Decrease of reduction potential promotes the proton attack on S and significantly accelerates the kinetics of Au-S bond breakage irrespective of the pH of the medium. Our theoretical results are further verified by the experimental electrochemical and spectroscopic data. At more negative electrode potentials, the number of -SR ligands decreased with concomitant increase of the vibrational intensity of S-H bonds. These findings together clarify the atomic-level activation mechanism on the surface of Au25(SR)18 NCs.
Collapse
Affiliation(s)
- Fang Sun
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 401331 China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
5
|
Pang Z, Ren N, Wu Y, Qi J, Hu F, Guo Y, Xie Y, Zhou D, Jiang X. Tuning Ligands Ratio Allows for Controlling Gold Nanocluster Conformation and Activating a Nonantimicrobial Thiol Fragrance for Effective Treatment of MRSA-Induced Keratitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303562. [PMID: 37515441 DOI: 10.1002/adma.202303562] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Bacterial keratitis is a serious ocular disease that affects millions of people worldwide each year, among which ≈25% are caused by Staphylococcus aureus. With the spread of bacterial resistance, refractory keratitis caused by methicillin-resistant S. aureus (MRSA) affects ≈120 000-190 000 people annually and is a significant cause of infectious blindness. Atomically precise gold nanoclusters (GNCs) recently emerged as promising antibacterial agents; although how the GNC structure and capping ligands control the antibacterial properties remains largely unexplored. In this study, by adjusting the ratio of a "bulky" thiol fragrance to a linear zwitterionic ligand, the GNC conformation is transformed from Au25 (SR)18 to Au23 (SR)16 species, simultaneously converting both inactive thiol ligands into potent antibacterial nanomaterials. Surprisingly, mixed-ligand capped Au23 (SR)16 GNCs exhibit superior antibacterial potency compared to their monoligand counterparts. The optimal GNC is highly potent against MRSA, showing >1024-fold lower minimum inhibitory concentration than the corresponding free ligands. Moreover, it displays excellent potency in treating MRSA-induced keratitis in mice with greatly accelerated corneal recovery (by approximately ninefold). Thus, this study establishes a feasible method to synthesize antibacterial GNCs by adjusting the ligand ratio to control GNC conformation and active non-antibacterial ligands, thereby greatly increasing the repertoires for combating multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Zeyang Pang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Ning Ren
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Yujie Wu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Jie Qi
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yuan Guo
- School of Food Science and Nutrition, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Yangzhouyun Xie
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Dejian Zhou
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
6
|
Maman MP, Nida Nahan E, Suresh G, Das A, Nair AS, Pathak B, Mandal S. Control over product formation and thermodynamic stability of thiolate-protected gold nanoclusters through tuning of surface protecting ligands. NANOSCALE 2023; 15:13102-13109. [PMID: 37501634 DOI: 10.1039/d3nr02617e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Surface-protecting ligands can regulate the structure of a cluster's core either through electronic or steric effects. However, the influence of the steric effect along with the electronic effect over controlling the structure during ligand exchange reactions remains elusive. To understand this, we have carried out ligand exchange on [Au23(CHT)16]- (CHT: cyclohexane thiol) using aromatic thiolates where we have tuned the bulkiness at the para position of the thiolate group on the incoming ligands. The outcome of the experiments reveals that each of the ligands in the chosen series is precisely selective towards the parent cluster transformation through specific intermediates. The ligand with more steric crowding directed the reaction pathway to have Au28 nanocluster as the major product while Au36 was the final product obtained with the gradual decrease of bulkiness over the ligand. The combined experimental and theoretical results elucidated the mechanism of the reaction pathways, product formation, and their stability. Indeed, this study with the series of ligands will add up to the ligand library, where we can decide on the ligand to obtain our desired cluster for specific applications through the ligand exchange reaction.
Collapse
Affiliation(s)
- Manju P Maman
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Eyyakkandy Nida Nahan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Greeshma Suresh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Arunendu Das
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Akhil S Nair
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
7
|
Obstarczyk P, Pniakowska A, Nonappa, Grzelczak MP, Olesiak-Bańska J. Crown Ether-Capped Gold Nanoclusters as a Multimodal Platform for Bioimaging. ACS OMEGA 2023; 8:11503-11511. [PMID: 37008092 PMCID: PMC10061685 DOI: 10.1021/acsomega.3c00426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/02/2023] [Indexed: 12/01/2023]
Abstract
The distinct polarity of biomolecule surfaces plays a pivotal role in their biochemistry and functions as it is involved in numerous processes, such as folding, aggregation, or denaturation. Therefore, there is a need to image both hydrophilic and hydrophobic bio-interfaces with markers of distinct responses to hydrophobic and hydrophilic environments. In this work, we present a synthesis, characterization, and application of ultrasmall gold nanoclusters capped with a 12-crown-4 ligand. The nanoclusters present an amphiphilic character and can be successfully transferred between aqueous and organic solvents and have their physicochemical integrity retained. They can serve as probes for multimodal bioimaging with light (as they emit near-infrared luminescence) and electron microscopy (due to the high electron density of gold). In this work, we used protein superstructures, namely, amyloid spherulites, as a hydrophobic surface model and individual amyloid fibrils with a mixed hydrophobicity profile. Our nanoclusters spontaneously stained densely packed amyloid spherulites as observed under fluorescence microscopy, which is limited for hydrophilic markers. Moreover, our clusters revealed structural features of individual amyloid fibrils at a nanoscale as observed under a transmission electron microscope. We show the potential of crown ether-capped gold nanoclusters in multimodal structural characterization of bio-interfaces where the amphiphilic character of the supramolecular ligand is required.
Collapse
Affiliation(s)
- Patryk Obstarczyk
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wrocław, Poland
| | - Anna Pniakowska
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wrocław, Poland
| | - Nonappa
- Faculty
of Engineering and Natural Sciences, Tampere
University, FI-33720 Tampere, Finland
| | - Marcin P. Grzelczak
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wrocław, Poland
| | - Joanna Olesiak-Bańska
- Institute
of Advanced Materials, Wroclaw University
of Science and Technology, 50-370 Wrocław, Poland
| |
Collapse
|
8
|
Pan Y, Han Z, Chen S, Wei K, Wei X. Metallic nanoclusters: From synthetic challenges to applications of their unique properties in food contamination detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Nqayi S, Gulumian M, Cronjé S, Harris RA. Computational study of the effect of size and surface functionalization on Au nanoparticles on their stability to study biological descriptors. J Mol Model 2022; 28:376. [DOI: 10.1007/s00894-022-05367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
10
|
Lorenzoni S, Cerra S, Angulo-Elizari E, Salamone TA, Battocchio C, Marsotto M, Scaramuzzo FA, Sanmartín C, Plano D, Fratoddi I. Organoselenium compounds as functionalizing agents for gold nanoparticles in cancer therapy. Colloids Surf B Biointerfaces 2022; 219:112828. [PMID: 36108370 DOI: 10.1016/j.colsurfb.2022.112828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/24/2022] [Accepted: 09/01/2022] [Indexed: 11/28/2022]
Abstract
Gold nanoparticles (AuNPs) modified with four organoselenium compounds, i.e., 4-selenocyanatoaniline (compound 1), 4,4'-diselanediyldianiline (compound 2), N-(4-selenocyanatophenyl)cinnamamide (compound 3), and N-(3-selenocyanatopropyl)cinnamamide (compound 4), were synthesized following two different approaches: direct conjugation and non-covalent immobilization onto hydrophilic and non-cytotoxic AuNPs functionalized with 3-mercapto-1-propanesulfonate (3MPS). Both free compounds and AuNPs-based systems were characterized via UV-Vis, FTIR NMR, mass spectrometry, and SR-XPS to assess their optical and structural properties. Size and colloidal stability were evaluated by DLS and ζ-potential measurements, whereas morphology at solid-state was evaluated by atomic force (AFM) and scanning electron (FESEM) microscopies. AuNPs synthesized through chemical reduction method in presence of Se-based compounds as functionalizing agents allowed the formation of aggregated NPs with little to no solubility in aqueous media. To improve their hydrophilicity and stability mixed AuNPs-3MPS-1 were synthesized. Besides, Se-loaded AuNPs-3MPS revealed to be the most suitable systems for biological studies in terms of size and colloidal stability. Selenium derivatives and AuNPs were tested in vitro via MTT assay against PC-3 (prostatic adenocarcinoma) and HCT-116 (colorectal carcinoma) cell lines. Compared to free compounds, direct functionalization onto AuNPs with formation of Au-Se covalent bond led to non-cytotoxic systems in the concentration range explored (0-100 μg/mL), whereas immobilization on AuNPs-3MPS improved the cytotoxicity of compounds 1, 3, and 4. Selective anticancer response against HCT-116 cells was obtained by AuNPs-3MPS-1. These results demonstrated that AuNPs can be used as a platform to tune the in vitro biological activity of organoselenium compounds.
Collapse
Affiliation(s)
- Sara Lorenzoni
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Eduardo Angulo-Elizari
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Tommaso A Salamone
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Martina Marsotto
- Department of Sciences, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy
| | - Francesca A Scaramuzzo
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via Antonio Scarpa 14, 00161 Rome, Italy
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain.
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
Shao P, Zhang H, Ding LP, He QL, Zhao YR, Kuang FG, Kang SY. Effect of Ligand Structures on Ligand-Protected Gold Clusters: [Au-( p-/ m-/ o-MBT)] 1-8 Clusters. J Phys Chem A 2022; 126:7193-7201. [PMID: 36194534 DOI: 10.1021/acs.jpca.2c05267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The controllable preparation of ligand-protected clusters is still an unresolved problem, which may be due to that their formation mechanism is unclear. We propose that the ligand is the key to solve the above problems. Here, by using p-, m-, and o-methylbenzenethiol ligand protected gold clusters as examples, we try to explore the effect of ligand structures on ligand-protected gold clusters. The geometrical structures, relative stabilities and surface properties of small-sized ligand-protected gold clusters [Au-SR]1-8 (SR = p-/m-/o-MBT) have been systematically studied based on the density functional theory. The results show that the ground state structures of [Au-SR]1-8 clusters tend to form closed rings except for [Au-SR]1,2. The different structures of ligand have significant effect on the structures and stabilities of ligand-protected clusters. By analyzing their surface properties and possible growth patterns, it is found that [Au-SR]1,2 clusters serve as the basic building blocks, and the larger clusters can be regarded as the combinations of them. This study provides some insights into the effect of ligands on ligand-protected clusters, which is useful for understanding the formation mechanism of ligand-protected clusters.
Collapse
Affiliation(s)
- Peng Shao
- Department of Physics, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Hui Zhang
- Department of Physics, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Li-Ping Ding
- Department of Optoelectronic Science & Technology, School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Qi-Long He
- Department of Physics, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Ya-Ru Zhao
- School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji721016, China
| | - Fang-Guang Kuang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou341000, China
| | - Shu-Ying Kang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou341000, China
| |
Collapse
|
12
|
Wijesinghe KH, Oliver AG, Dass A. Crystal structure of bulky-ligand-protected Au 24(S-C 4H 9) 16. ACTA CRYSTALLOGRAPHICA SECTION C STRUCTURAL CHEMISTRY 2022; 78:430-436. [DOI: 10.1107/s2053229622006738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022]
Abstract
Atomically precise thiolate-protected gold nanomolecules have attracted interest due to their distinct electronic and chemical properties. The structure of these nanomolecules is important for understanding their peculiar properties. Here, we report the X-ray crystal structure of a 24-atom gold nanomolecule protected by 16 tert-butylthiolate ligands. The composition of Au24(S-C4H9)16 {poly[hexadecakis(μ-tert-butylthiolato)tetracosagold]} was confirmed by X-ray crystallography and electrospray ionization mass spectrometry (ESI–MS). The nanomolecule was synthesized in a one-phase synthesis and crystallized from a hexane–ethanol layered solution. The X-ray structure confirms the 16-atom core protected by two monomeric and two trimeric staples with four bridging ligands. The Au24(S-C4H9)16 cluster follows the shell-closing magic number of 8.
Collapse
|
13
|
Modification of 1-Hexene Vinylidene Dimer into Primary and Tertiary Alkanethiols. MOLBANK 2022. [DOI: 10.3390/m1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aliphatic thiols are in high demand in materials chemistry. Herein, a synthesis of thio-derivatives of 1-hexene vinylidene dimer is described. The approach, based on a hydroalumination reaction with further replacement of the organoaluminum function with sulfur using thiourea or dimethyl disulfide, provides anti-Markovnikov products, 2-butyloctane-1-thiol or 5-(methylsulfanylmethyl)undecane, in moderate yields. The reaction of a vinylidene dimer with phosphorus pentasulfide in the presence of catalytic amounts of (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) selectively gives the Markovnikov product, 5-methylundecane-5-thiol, with a yield of up to 77%.
Collapse
|
14
|
Wu D, Han D, Zhou W, Streiff S, Khodakov AY, Ordomsky VV. Surface modification of metallic catalysts for the design of selective processes. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2079809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Dan Wu
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan, China
| | - Dandan Han
- College of Science, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
| | - Stephane Streiff
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, Shanghai, Jiangsu, People’s Republic of China
| | - Andrei Y. Khodakov
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
| | - Vitaly V. Ordomsky
- UCCS–Unité de Catalyse et Chimie du Solide, Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ, Artois, France
| |
Collapse
|
15
|
Omoda T, Takano S, Masuda S, Tsukuda T. Decorating an anisotropic Au 13 core with dendron thiolates: enhancement of optical absorption and photoluminescence. Chem Commun (Camb) 2021; 57:12159-12162. [PMID: 34726215 DOI: 10.1039/d1cc05235g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We successfully introduced up to 12 poly(benzyl ether)dendron-thiols of the second generation (D2SH) into the Au13 core of [Au23(ScC6H11)16]- while retaining the geometric structure. The decoration with D2SH enhanced the optical absorbance in the >2.5 eV region and the quantum yield of photoluminescence at ∼1.6 eV by ∼15 times.
Collapse
Affiliation(s)
- Tsubasa Omoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. .,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
16
|
Medves M, Sementa L, Toffoli D, Fronzoni G, Krishnadas KR, Bürgi T, Bonacchi S, Dainese T, Maran F, Fortunelli A, Stener M. Predictive optical photoabsorption of Ag 24Au(DMBT) 18 - via efficient TDDFT simulations. J Chem Phys 2021; 155:084103. [PMID: 34470368 DOI: 10.1063/5.0056869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We report a computational study via time-dependent density-functional theory (TDDFT) methods of the photo-absorption spectrum of an atomically precise monolayer-protected cluster (MPC), the Ag24Au(DMBT)18 single negative anion, where DMBT is the 2,4-dimethylbenzenethiolate ligand. The use of efficient simulation algorithms, i.e., the complex polarizability polTDDFT approach and the hybrid-diagonal approximation, allows us to employ a variety of exchange-correlation (xc-) functionals at an affordable computational cost. We are thus able to show, first, how the optical response of this prototypical compound, especially but not exclusively in the absorption threshold (low-energy) region, is sensitive to (1) the choice of the xc-functionals employed in the Kohn-Sham equations and the TDDFT kernel and (2) the choice of the MPC geometry. By comparing simulated spectra with precise experimental photoabsorption data obtained from room temperature down to low temperatures, we then demonstrate how a hybrid xc-functional in both the Kohn-Sham equations and the diagonal TDDFT kernel at the crystallographically determined experimental geometry is able to provide a consistent agreement between simulated and measured spectra across the entire optical region. Single-particle decomposition analysis tools finally allow us to understand the physical reason for the failure of non-hybrid approaches.
Collapse
Affiliation(s)
- Marco Medves
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - Giovanna Fronzoni
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | | | - Thomas Bürgi
- Département de Chimie Physique, Université de Gene've, 1211 Geneva 4, Switzerland
| | - Sara Bonacchi
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy
| | - Tiziano Dainese
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy
| | - Flavio Maran
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, via Giuseppe Moruzzi 1, I-56124 Pisa, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| |
Collapse
|
17
|
Nematulloev S, Huang RW, Yin J, Shkurenko A, Dong C, Ghosh A, Alamer B, Naphade R, Hedhili MN, Maity P, Eddaoudi M, Mohammed OF, Bakr OM. [Cu 15 (PPh 3 ) 6 (PET) 13 ] 2+ : a Copper Nanocluster with Crystallization Enhanced Photoluminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006839. [PMID: 33739606 DOI: 10.1002/smll.202006839] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/01/2021] [Indexed: 05/24/2023]
Abstract
Due to their atomically precise structure, photoluminescent copper nanoclusters (Cu NCs) have emerged as promising materials in both fundamental studies and technological applications, such as bio-imaging, cell labeling, phototherapy, and photo-activated catalysis. In this work, a facile strategy is reported for the synthesis of a novel Cu NCs coprotected by thiolate and phosphine ligands, formulated as [Cu15 (PPh3 )6 (PET)13 ]2+ , which exhibits bright emission in the near-infrared (NIR) region (≈720 nm) and crystallization-induced emission enhancement (CIEE) phenomenon. Single crystal X-ray crystallography shows that the NC possesses an extraordinary distorted trigonal antiprismatic Cu6 core and a, unique among metal clusters, "tri-blade fan"-like structure. An in-depth structural investigation of the ligand shell combined with density functional theory calculations reveal that the extended CH···π and π-π intermolecular ligand interactions significantly restrict the intramolecular rotations and vibrations and, thus, are a major reason for the CIEE phenomena. This study provides a strategy for the controllable synthesis of structurally defined Cu NCs with NIR luminescence, which enables essential insights into the origins of their optical properties.
Collapse
Affiliation(s)
- Saidkhodzha Nematulloev
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ren-Wu Huang
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Yin
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aleksander Shkurenko
- Functional Materials Design Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chunwei Dong
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Badriah Alamer
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rounak Naphade
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Partha Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
18
|
Campi G, Suber L, Righi G, Primitivo L, De Angelis M, Caschera D, Pilloni L, Del Giudice A, Palma A, Satta M, Fortunelli A, Sementa L. Design of a fluorescent and clickable Ag 38(SRN 3) 24 nanocluster platform: synthesis, modeling and self-assembling. NANOSCALE ADVANCES 2021; 3:2948-2960. [PMID: 36134198 PMCID: PMC9418538 DOI: 10.1039/d1na00090j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/07/2021] [Indexed: 06/16/2023]
Abstract
Fluorescent atomically precise Ag38(11-azido-2-ol-undecane-thiolate)24 nanoclusters are easily prepared using sodium ascorbate as a "green" reducer and are extensively characterized by way of elemental analyses, ATR-FTIR, XRD, SAXS, UV-vis, fluorescence spectroscopies, and theoretical modeling. The fluorescence and the atomically determined stoichiometry and structure, the facile and environmentally green synthesis, together with the novel presence of terminal azido groups in the ligands which opens the way to "click"-binding a wide set of molecular species, make Ag38(11-azido-2-ol-undecane-thiolate)24 nanoclusters uniquely appealing systems for biosensing, recognition and functionalization in biomedicine applications and in catalysis.
Collapse
Affiliation(s)
- Gaetano Campi
- CNR-Istituto di Cristallografia Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Lorenza Suber
- CNR-Istituto di Struttura della Materia Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Giuliana Righi
- CNR-IBPM-c/o Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
| | - Ludovica Primitivo
- CNR-IBPM-c/o Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
- Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
| | - Martina De Angelis
- CNR-IBPM-c/o Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
- Dip. Chimica, Sapienza Università di Roma p.le A. Moro 5 00185 Rome Italy
| | - Daniela Caschera
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Luciano Pilloni
- ENEA SSPT-PROMAS-MATPRO, Materials Technology Division, Casaccia Research Centre 00123 Rome Italy
| | | | - Amedeo Palma
- CNR-Istituto di Struttura della Materia Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Mauro Satta
- CNR-Istituto per lo Studio dei Materiali Nanostrutturati Via Salaria km 29,300-00015 Monterotondo Scalo Rome Italy
| | - Alessandro Fortunelli
- CNR-Istituto di Chimica dei Composti Organometallici Via G. Moruzzi 1 56127 Pisa Italy
| | - Luca Sementa
- CNR-Istituto per i Processi Chimico Fisici Via G. Moruzzi 1 56127 Pisa Italy
| |
Collapse
|
19
|
Maman MP, Nath A, Anjusree S, Das BC, Mandal S. Reversible polymorphic structural transition of crown-like nickel nanoclusters and its effect on conductivity. Chem Commun (Camb) 2021; 57:2935-2938. [PMID: 33621307 DOI: 10.1039/d1cc00402f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the reversible polymorphic phase transition of [Ni6(PET)12] (PET = phenylethanethiol) and its effect on the conductivity. This cluster's self-assembly leads to two polymorphic structures with distinct conductivity, caused by variation of the non-covalent SS interactions. These results enlighten the effect of non-covalent interactions on conductivity.
Collapse
Affiliation(s)
- Manju P Maman
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
| | - Akashdeep Nath
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
| | - Anjusree S
- School of Physics Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Bikas C Das
- School of Physics Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Sukhendu Mandal
- School of Chemistry Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
20
|
Maity I, Dev D, Basu K, Wagner N, Ashkenasy G. Signaling in Systems Chemistry: Programing Gold Nanoparticles Formation and Assembly Using a Dynamic Bistable Network. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Indrajit Maity
- Department of Chemistry Ben Gurion University of the Negev Beer Sheva 84105 Israel
- Institute for Macromolecular Chemistry Freiburg Institute for Advanced Studies Albert Ludwigs University of Freiburg 79104 Freiburg Germany
| | - Dharm Dev
- Department of Chemistry Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Kingshuk Basu
- Department of Chemistry Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Nathaniel Wagner
- Department of Chemistry Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Gonen Ashkenasy
- Department of Chemistry Ben Gurion University of the Negev Beer Sheva 84105 Israel
| |
Collapse
|
21
|
Maity I, Dev D, Basu K, Wagner N, Ashkenasy G. Signaling in Systems Chemistry: Programing Gold Nanoparticles Formation and Assembly Using a Dynamic Bistable Network. Angew Chem Int Ed Engl 2021; 60:4512-4517. [PMID: 33006406 PMCID: PMC7984337 DOI: 10.1002/anie.202012837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Living cells exploit bistable and oscillatory behaviors as memory mechanisms, facilitating the integration of transient stimuli into sustained molecular responses that control downstream functions. Synthetic bistable networks have also been studied as memory entities, but have rarely been utilized to control orthogonal functions in coupled dynamic systems. We herein present a new cascade pathway, for which we have exploited a well-characterized switchable peptide-based replicating network, operating far from equilibrium, that yields two alternative steady-state outputs, which in turn serve as the input signals for consecutive processes that regulate various features of Au nanoparticle shape and assembly. This study further sheds light on how bridging together the fields of systems chemistry and nanotechnology may open up new opportunities for the dynamically controlled design of functional materials.
Collapse
Affiliation(s)
- Indrajit Maity
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
- Institute for Macromolecular ChemistryFreiburg Institute for Advanced StudiesAlbert Ludwigs University of Freiburg79104FreiburgGermany
| | - Dharm Dev
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
| | - Kingshuk Basu
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
| | - Nathaniel Wagner
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
| | - Gonen Ashkenasy
- Department of ChemistryBen Gurion University of the NegevBeer Sheva84105Israel
| |
Collapse
|
22
|
Jayawardena HSN, Liyanage SH, Rathnayake K, Patel U, Yan M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal Chem 2021; 93:1889-1911. [PMID: 33434434 PMCID: PMC7941215 DOI: 10.1021/acs.analchem.0c05208] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- H Surangi N Jayawardena
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
23
|
McKay J, Cowan MJ, Morales-Rivera CA, Mpourmpakis G. Predicting ligand removal energetics in thiolate-protected nanoclusters from molecular complexes. NANOSCALE 2021; 13:2034-2043. [PMID: 33449990 DOI: 10.1039/d0nr07839e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thiolate-protected metal nanoclusters (TPNCs) have attracted great interest in the last few decades due to their high stability, atomically precise structure, and compelling physicochemical properties. Among their various applications, TPNCs exhibit excellent catalytic activity for numerous reactions; however, recent work revealed that these systems must undergo partial ligand removal in order to generate active sites. Despite the importance of ligand removal in both catalysis and stability of TPNCs, the role of ligands and metal type in the process is not well understood. Herein, we utilize Density Functional Theory to understand the energetic interplay between metal-sulfur and sulfur-ligand bond dissociation in metal-thiolate systems. We first probe 66 metal-thiolate molecular complexes across combinations of M = Ag, Au, and Cu with twenty-two different ligands (R). Our results reveal that the energetics to break the metal-sulfur and sulfur-ligand bonds are strongly correlated and can be connected across all complexes through metal atomic ionization potentials. We then extend our work to the experimentally relevant [M25(SR)18]- TPNC, revealing the same correlations at the nanocluster level. Importantly, we unify our work by introducing a simple methodology to predict TPNC ligand removal energetics solely from calculations performed on metal-ligand molecular complexes. Finally, a computational mechanistic study was performed to investigate the hydrogenation pathways for SCH3-based complexes. The energy barriers for these systems revealed, in addition to thermodynamics, that kinetics favor the break of S-R over the M-S bond in the case of the Au complex. Our computational results rationalize several experimental observations pertinent to ligand effects on TPNCs. Overall, our introduced model provides an accelerated path to predict TPNC ligand removal energies, thus aiding towards targeted design of TPNC catalysts.
Collapse
Affiliation(s)
- Julia McKay
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | |
Collapse
|
24
|
Eswaramoorthy SK, Dass A. Digestive ripening yields atomically precise Au nanomolecules. NEW J CHEM 2021. [DOI: 10.1039/d1nj04042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomically precise Au nanomolecules yielded through digestive ripening establishes that regardless of the pathway, both DR and Brust methods lead to the formation of atomic precise Au NMs.
Collapse
Affiliation(s)
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS 38677, USA
| |
Collapse
|
25
|
Chen S, Higaki T, Ma H, Zhu M, Jin R, Wang G. Inhomogeneous Quantized Single-Electron Charging and Electrochemical-Optical Insights on Transition-Sized Atomically Precise Gold Nanoclusters. ACS NANO 2020; 14:16781-16790. [PMID: 33196176 DOI: 10.1021/acsnano.0c04914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Small differences in electronic structures, such as an emerging energy band gaps or the splitting of degenerated orbitals, are very challenging to resolve but important for nanomaterials properties. A signature electrochemical property called quantized double layer charging, i.e., "continuous" one-electron transfers (1e, ETs), in atomically precise Au133(TBBT)52, Au144(BM)60, and Au279(TBBT)84 is analyzed to reveal the nonmetallic to metallic transitions (whereas TBBT is 4-tert-butylbenzenethiol and BM is benzyl mercaptan; abbreviated as Au133, Au144, and Au279). Subhundred milli-eV energy differences are resolved among the "often-approximated uniform" peak spacings from multipairs of reversible redox peaks in voltammetric analysis, with single ETs as internal standards for calibration and under temperature variations. Cyclic and differential pulse voltammetry experiments reveal a 0.15 eV energy gap for Au133 and a 0.17 eV gap for Au144 at 298 K. Au279 is confirmed metallic, displaying a "bulk-continuum" charging response without an energy gap. The energy gaps and double layer capacitances of Au133 and Au144 increase as the temperature decreases. The temperature dependences of charging energies and HOMO-LUMO gaps of Au133 and Au144 are attributed to the counterion permeation and the steric hindrance of ligand, as well as their molecular compositions. With the subtle energy differences resolved, spectroelectrochemistry features of Au133 and Au144 are compared with ultrafast spectroscopy to demonstrate a generalizable analysis approach to correlate steady-state and transient energy diagram for the energy-in processes. Electrochemiluminescence (ECL), one of the energy-out processes after the charge transfer reactions, is reported for the three samples. The ECL intensity of Au279 is negligible, whereas the ECLs of Au133 and Au144 are relatively stronger and observable (but orders of magnitudes weaker than our recently reported bimetallic Au12Ag13). Results from these atomically precise nanoclusters also demonstrate that the combined voltammetric and spectroscopic analyses, together with temperature variations, are powerful tools to reveal subtle differences and gain insights otherwise inaccessible in other nanomaterials.
Collapse
Affiliation(s)
- Shuang Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| | - Tatsuya Higaki
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Hedi Ma
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, People's Republic of China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, People's Republic of China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
26
|
Maman MP, Nair AS, Abdul Hakkim Nazeeja AM, Pathak B, Mandal S. Synergistic Effect of Bridging Thiolate and Hub Atoms for the Aromaticity Driven Symmetry Breaking in Atomically Precise Gold Nanocluster. J Phys Chem Lett 2020; 11:10052-10059. [PMID: 33179940 DOI: 10.1021/acs.jpclett.0c02996] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The symmetry of atomically precise nanoclusters is influenced by the specific geometry of the kernel and the arrangement of staple motifs. To understanding the role of ligand and its effect on the breaking of symmetry during ligand exchange transformation, it is necessary to have a mechanism of transformation in an atomically precise manner. Herein, we report the structural transformation from bipyramidal kernel to icosahedral kernel via ligand exchange. The transformation of [Au23(CHT)16]- to [Au25(2-NPT)18]- through ligand (aromatic) exchange revealed two important principles. First, the combined effort of experimental and theoretical study on structural analysis elucidated the mechanism of this structural transformation where "bridging thiolate" and "hub" gold atoms play a crucial role. Second, we have found that the higher crystal symmetry of the Au23 cluster is broken to lower crystal symmetry during the ligand exchange process. This showed that during ligand exchange, the hub atoms and μ3-S atoms get distorted and contributed to the ligand-staple motif formation. These phenomena specified that the ligand effects might be the pivotal factor to impose lower symmetry of the crystal system in the product clusters.
Collapse
Affiliation(s)
- Manju P Maman
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O, Trivandrum 695551, India
| | - Akhil S Nair
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India
| | | | - Biswarup Pathak
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O, Trivandrum 695551, India
| |
Collapse
|
27
|
Cativa NM, dell'Erba IE, Waiman CV, Arenas GF, Ceolín M, Giovanetti LJ, Ramallo-López JM, Eliçabe G, Hoppe CE. Tuning the Photothermal Effect of Carboxylated-Coated Silver Nanoparticles through pH-Induced Reversible Aggregation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13998-14008. [PMID: 33170718 DOI: 10.1021/acs.langmuir.0c02528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photothermal response of mercaptoundecanoic acid (MUA)-coated Ag nanoparticles (Ag@MUA NPs) in both aqueous dispersions and paper substrates was determined as a function of pH when irradiated with a green laser or a blue LED source. Aqueous dispersions of Ag@MUA NPs showed an aggregation behavior by acidification that was used for the formation of NPs clusters of variable sizes. Aggregation was induced by changing the pH across the apparent pKa of the acid, higher than the pKa of the free acid. Formation of these aggregates was completely reversible allowing the return to the well-dispersed initial state by simply increasing the pH by the addition of a base. Aggregation produced a shift of the plasmon band that changed the spectra of the dispersions and their ability to be remotely heated when irradiated with visible light. These aggregates could be transferred to paper by simple impregnation of the substrates with the dispersion. On the solid substrate, a higher photothermal response than in the liquid medium was observed. A high local increase of up to 75 °C could be recorded on paper after only 30 s of irradiation with a green laser, whereas a blue LED array was enough for inducing the melting of a solid paraffin (Tm = 36-38 °C) deposited on it. This work demonstrates that photothermal heating can be controlled by the reversible aggregation of NPs to induce different thermal responses in liquid and solid media.
Collapse
Affiliation(s)
- Nancy M Cativa
- Nanostructured Polymer Division, INTEMA, UNMDP-CONICET, Avenida Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Ignacio E dell'Erba
- Nanostructured Polymer Division, INTEMA, UNMDP-CONICET, Avenida Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Carolina V Waiman
- Instituto de Química del Sur (INQUISUR), CONICET-Departamento de Química, Universidad Nacional del Sur (UNS), Avenida Alem 1253, Bahía Blanca, 8000, Argentina
| | - Gustavo F Arenas
- LASER Laboratory-ICYTE-UNMDP-CONICET, Avenida J. B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Marcelo Ceolín
- INIFTA, UNLP-CONICET, Diagonal 113 y 64, CP 1900 La Plata, Argentina
| | | | | | - Guillermo Eliçabe
- Nanostructured Polymer Division, INTEMA, UNMDP-CONICET, Avenida Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Cristina E Hoppe
- Nanostructured Polymer Division, INTEMA, UNMDP-CONICET, Avenida Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| |
Collapse
|
28
|
Spataro G, Champouret Y, Coppel Y, Kahn ML. Prominence of the Instability of a Stabilizing Agent in the Changes in Physical State of a Hybrid Nanomaterial. Chemphyschem 2020; 21:2454-2459. [PMID: 32893945 DOI: 10.1002/cphc.202000584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Shaping ability of hybrid nanomaterials is a key point for their further use in devices. It is therefore crucial to control it. To this end, it is necessary that the macroscopic properties of the material remain constant over time. Here, we evidence by multinuclear Magic-Angle Spinning Nuclear Magnetic Resonance spectroscopic study including 17 O isotope exchange that for a ZnO-alkylamine hybrid material, the partial carbonation of amine into ammonium carbamate molecules is behind the conversion from highly viscous liquid to a powdery solid when exposed to air. This carbonation induces modification and reorganization of the organic shell around the nanocrystals and affects significantly the macroscopic properties of the material such as it physical state, its solubility and colloidal stability. This study, straightforwardly extendable, highlights that the nature of the functional chemical group allowing connecting the stabilizing agent (SA) to the surface of the nanoparticles is of tremendous importance especially if the SA is reactive with molecules present in the environment.
Collapse
Affiliation(s)
- Grégory Spataro
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| | - Yohan Champouret
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| | - Myrtil L Kahn
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| |
Collapse
|
29
|
Kawawaki T, Imai Y, Suzuki D, Kato S, Kobayashi I, Suzuki T, Kaneko R, Hossain S, Negishi Y. Atomically Precise Alloy Nanoclusters. Chemistry 2020; 26:16150-16193. [DOI: 10.1002/chem.202001877] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
- Research Institute for Science & Technology Tokyo University of Science Shinjuku-ku, Tokyo 162-8601 Japan
- Photocatalysis International Research Center Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yukari Imai
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Daiki Suzuki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Shun Kato
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Ibuki Kobayashi
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Taiyo Suzuki
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Ryo Kaneko
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Sakiat Hossain
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
| | - Yuichi Negishi
- Department of Applied Chemistry Faculty of Science Tokyo University of Science Kagurazaka Shinjuku-ku, Tokyo 162-8601 Japan
- Research Institute for Science & Technology Tokyo University of Science Shinjuku-ku, Tokyo 162-8601 Japan
- Photocatalysis International Research Center Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
30
|
|
31
|
Petel BE, Matson EM. Physicochemical Factors That Influence the Deoxygenation of Oxyanions in Atomically Precise, Oxygen-Deficient Vanadium Oxide Assemblies. Inorg Chem 2020; 60:6855-6864. [DOI: 10.1021/acs.inorgchem.0c02052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Brittney E. Petel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
32
|
Sakthivel NA, Shabaninezhad M, Sementa L, Yoon B, Stener M, Whetten RL, Ramakrishna G, Fortunelli A, Landman U, Dass A. The Missing Link: Au191(SPh-tBu)66 Janus Nanoparticle with Molecular and Bulk-Metal-like Properties. J Am Chem Soc 2020; 142:15799-15814. [DOI: 10.1021/jacs.0c05685] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Naga Arjun Sakthivel
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Masoud Shabaninezhad
- Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Pisa I-56124, Italy
| | - Bokwon Yoon
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Trieste I-34127, Italy
| | - Robert L. Whetten
- Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, Arizona 86011, United States
| | - Guda Ramakrishna
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | | | - Uzi Landman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
33
|
Krishnadas KR, Sementa L, Medves M, Fortunelli A, Stener M, Fürstenberg A, Longhi G, Bürgi T. Chiral Functionalization of an Atomically Precise Noble Metal Cluster: Insights into the Origin of Chirality and Photoluminescence. ACS NANO 2020; 14:9687-9700. [PMID: 32672935 DOI: 10.1021/acsnano.0c01183] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We probe the origin of photoluminescence of an atomically precise noble metal cluster, Ag24Au1(DMBT)18 (DMBT = 2,4-dimethylbenzenethiolate), and the origin of chirality in its chirally functionalized derivatives, Ag24Au1(R/S-BINAS)x(DMBT)18-2x, with x = 1-7 (R/S-BINAS = R/S-1,1'-[binaphthalene]-2,2'-dithiol), using chiroptical spectroscopic measurements and density functional theory (DFT) calculations. Combination of chiroptical and luminescence spectroscopies to understand the nature of electronic transitions has not been applied to such molecule-like metal clusters. In order to impart chirality to the achiral Ag24Au1(DMBT)18 cluster, the chiral ligand, R/S-BINAS, was incorporated into it. A series of clusters, Ag24Au1(R/S-BINAS)x(DMBT)18-2x, with x = 1-7, were synthesized. We demonstrate that the low-energy electronic transitions undergo an unexpected achiral to chiral and back to achiral transition from pure Ag24Au1(DMBT)18 to Ag24Au1(R/S-BINAS)x(DMBT)18-2x, by increasing the number of BINAS ligands. The UV/vis, luminescence, circular dichroism, and circularly polarized luminescence spectroscopic measurements, in conjunction with DFT calculations, suggest that the photoluminescence in Ag24Au1(DMBT)18 and its chirally functionalized derivatives originates from the transitions involving the whole Ag24Au1S18 framework and not merely from the icosahedral Ag12Au1 core. These results suggest that the chiroptical signatures and photoluminescence in these cluster systems cannot be solely attributed to any one of the structural components, that is, the metal core or the protecting metal-ligand oligomeric units, but rather to their interaction and that the ligand shell plays a crucial role. Our work demonstrates that chiroptical spectroscopic techniques such as circular dichroism and circularly polarized luminescence represent useful tools to understand the nature of electronic transitions in ligand-protected metal clusters and that this approach can be utilized for gaining deeper insights into the structure-property relationships of the electronic transitions of such molecule-like clusters.
Collapse
Affiliation(s)
| | - Luca Sementa
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Marco Medves
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Alessandro Fortunelli
- CNR-ICCOM & IPCF, Consiglio Nazionale delle Ricerche, Via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Alexandre Fürstenberg
- Département de Chimie Analytique et Minérale, Université de Genève 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Thomas Bürgi
- Département de Chimie Physique, Université de Genève, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
34
|
Wijesinghe KH, Sakthivel NA, Jones T, Dass A. Crystal Structure of Au 30-xAg x(S- tBu) 18 and Effect of the Ligand on Ag Alloying in Gold Nanomolecules. J Phys Chem Lett 2020; 11:6312-6319. [PMID: 32700914 DOI: 10.1021/acs.jpclett.0c01330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the X-ray crystal structure of the Au30-xAgx(S-tBu)18 alloy and the effect of the ligand on alloying site preferences. Gold-silver nanoalloys prepared by co-reduction of metal salts are known to have only partial Ag occupancies. Interestingly, Au30-xAgx(S-tBu)18 has 100% Ag occupancy at two sites on the core surface as well as partial Ag occupancies on the surface, capping, and staples sites. The Au30-xAgx(S-tBu)18 (x = 1-5) composition was confirmed by X-ray diffraction and electrospray ionization mass spectrometry studies. Thiolate ligands can be categorized into three classes on the basis of the groups at the α-position as aliphatic, aromatic, and bulky thiols. The effect of the ligand on Ag doping can be clearly seen in the crystal structures of Au36-xAgx(SPh-tBu)24 and Au38-xAgx(SCH2CH2Ph)24 when compared with that of Au30-xAgx(S-tBu)18. Ag is preferentially doped onto the core surface when the ligand is aliphatic, and Ag is doped in both core surface and staple metal sites when the ligand is aromatic or bulky.
Collapse
Affiliation(s)
- Kalpani Hirunika Wijesinghe
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Naga Arjun Sakthivel
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Tanya Jones
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Amala Dass
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| |
Collapse
|
35
|
Vanzan M, Rosa M, Corni S. Atomistic insight into the aggregation of [Au 25(SR) 18] q nanoclusters. NANOSCALE ADVANCES 2020; 2:2842-2852. [PMID: 36132411 PMCID: PMC9417423 DOI: 10.1039/d0na00213e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/16/2020] [Indexed: 05/31/2023]
Abstract
Atomically precise nanoclusters have been proven to give solid state aggregates with intriguing optical properties. However, the mechanism that regulates this aggregation remains unclear. Here, the aggregation of two Au25 nanoclusters in solution is investigated through enhanced sampling molecular dynamics simulations. To understand how the free energy of the systems depends on the nanocluster features, calculations were performed on three nanocluster pairs which differ in charge states and substituent nature and dimension. Our results show that the choice of the ligands heavily affects the free energy profile of the systems when the structures are nearby and, in some cases, the formation of a dimeric phase is observed. This phase is particularly stable in long-chain substituted nanoclusters, where the long alkane chains can generate bundles and the gold cores are closer compared to the short-chain ligands. We found a remarkable agreement between our calculations and the literature-available solid-state structures, especially for the orientation of the interacting nanoclusters. Moreover, some of the dimeric structures are prodromal to the formation of the aurophilic intercluster bond observed in the crystal structures, meaning that the dimer can act as a precursor and can drive the whole crystallization mechanism toward the formation of stable crystal species.
Collapse
Affiliation(s)
- Mirko Vanzan
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Marta Rosa
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
| | - Stefano Corni
- Department of Chemical Sciences, University of Padova Via Marzolo 1 35131 Padova Italy
- CNR Institute of Nanoscience Center S3, via G. Campi 213/A Modena 41125 Italy
| |
Collapse
|
36
|
Sushnitha M, Evangelopoulos M, Tasciotti E, Taraballi F. Cell Membrane-Based Biomimetic Nanoparticles and the Immune System: Immunomodulatory Interactions to Therapeutic Applications. Front Bioeng Biotechnol 2020; 8:627. [PMID: 32626700 PMCID: PMC7311577 DOI: 10.3389/fbioe.2020.00627] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Nanoparticle-based drug delivery systems have been synthesized from a wide array of materials. The therapeutic success of these platforms hinges upon their ability to favorably interact with the biological environment (both systemically and locally) and recognize the diseased target tissue. The immune system, composed of a highly coordinated organization of cells trained to recognize foreign bodies, represents a key mediator of these interactions. Although components of this system may act as a barrier to nanoparticle (NP) delivery, the immune system can also be exploited to target and trigger signaling cues that facilitate the therapeutic response stemming from systemic administration of NPs. The nano-bio interface represents the key facilitator of this communication exchange, where the surface properties of NPs govern their in vivo fate. Cell membrane-based biomimetic nanoparticles have emerged as one approach to achieve targeted drug delivery by actively engaging and communicating with the biological milieu. In this review, we will highlight the relationship between these biomimetic nanoparticles and the immune system, emphasizing the role of tuning the nano-bio interface in the immunomodulation of diseases. We will also discuss the therapeutic applications of this approach with biomimetic nanoparticles, focusing on specific diseases ranging from cancer to infectious diseases. Lastly, we will provide a critical evaluation on the current state of this field of cell membrane-based biomimetic nanoparticles and its future directions in immune-based therapy.
Collapse
Affiliation(s)
- Manuela Sushnitha
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Michael Evangelopoulos
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, United States
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, United States
| |
Collapse
|
37
|
Huang RW, Yin J, Dong C, Ghosh A, Alhilaly MJ, Dong X, Hedhili MN, Abou-Hamad E, Alamer B, Nematulloev S, Han Y, Mohammed OF, Bakr OM. [Cu81(PhS)46(tBuNH2)10(H)32]3+ Reveals the Coexistence of Large Planar Cores and Hemispherical Shells in High-Nuclearity Copper Nanoclusters. J Am Chem Soc 2020; 142:8696-8705. [DOI: 10.1021/jacs.0c00541] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ren-Wu Huang
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jun Yin
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Chunwei Dong
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Atanu Ghosh
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohammad J. Alhilaly
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMISU), Riyadh 11623, Saudi Arabia
| | - Xinglong Dong
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Edy Abou-Hamad
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Badriah Alamer
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Chemistry, College of Sciences, Taif University, Taif 11099, Saudi Arabia
| | - Saidkhodzha Nematulloev
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yu Han
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Omar F. Mohammed
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M. Bakr
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
38
|
Cowan MJ, Mpourmpakis G. Towards elucidating structure of ligand-protected nanoclusters. Dalton Trans 2020; 49:9191-9202. [DOI: 10.1039/d0dt01418d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Developing a centralized database for ligand-protected nanoclusters can fuel machine learning and data-science-based approaches towards theoretical structure prediction.
Collapse
Affiliation(s)
- Michael J. Cowan
- Department of Chemical and Petroleum Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| |
Collapse
|
39
|
Sugi KS, Bhat S, Nag A, Ganesan P, Mahendranath A, Pradeep T. Ligand structure and charge state-dependent separation of monolayer protected Au25 clusters using non-aqueous reversed-phase HPLC. Analyst 2020; 145:1337-1345. [DOI: 10.1039/c9an02043h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We demonstrate a systematic flow rate dependent study of three different aliphatic ligand protected Au25 clusters, with three commercially available reversed-phase HPLC columns.
Collapse
Affiliation(s)
- Korath Shivan Sugi
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Shridevi Bhat
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Abhijit Nag
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Paramasivam Ganesan
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Ananthu Mahendranath
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE)
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai 600 036
- India
| |
Collapse
|
40
|
Hossain S, Imai Y, Suzuki D, Choi W, Chen Z, Suzuki T, Yoshioka M, Kawawaki T, Lee D, Negishi Y. Elucidating ligand effects in thiolate-protected metal clusters using Au 24Pt(TBBT) 18 as a model cluster. NANOSCALE 2019; 11:22089-22098. [PMID: 31720662 DOI: 10.1039/c9nr07117b] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
2-Phenylethanethiolate (PET) and 4-tert-butylbenzenethiolate (TBBT) are the most frequently used ligands in the study of thiolate (SR)-protected metal clusters. However, the effect of difference in the functional group between these ligands on the fundamental properties of the clusters has not been clarified. We synthesized [Au24Pt(TBBT)18]0, which has the same number of metal atoms, number of ligands, and framework structure as [Au24Pt(PET)18]0, by replacing ligands of [Au24Pt(PET)18]0 with TBBT. It was found that this ligand exchange is reversible unlike the case of other metal-core clusters. A comparison of the geometrical/electronic structure and stability of the clusters between [Au24Pt(PET)18]0 and [Au24Pt(TBBT)18]0 revealed three things with regard to the effect of ligand change from PET to TBBT on [Au24Pt(SR)18]0: (1) the induction of metal-core contraction and Au-S bond elongation, (2) no substantial effect on the HOMO-LUMO gap but a clear difference in optical absorption in the visible region, and (3) the decrease of stabilities against degradation in solution and under laser irradiation. By using these two clusters as model clusters, it is expected that the effects of the structural difference of ligand functional-groups on the physical properties and functions of clusters, such as catalytic ability and photoluminescence, would be clarified.
Collapse
Affiliation(s)
- Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Black DM, Hoque MM, Placencia-Villa G, Whetten RL. New Evidence of the Bidentate Binding Mode in 3-MBA Protected Gold Clusters: Analysis of Aqueous 13-18 kDa Gold-Thiolate Clusters by HPLC-ESI-MS Reveals Special Compositions Au n(3-MBA) p, ( n = 48-67, p = 26-30). NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1303. [PMID: 31514483 PMCID: PMC6781097 DOI: 10.3390/nano9091303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
Abstract
Gold clusters protected by 3-MBA ligands (MBA = mercaptobenzoic acid, -SPhCO2H) have attracted recent interest due to their unusual structures and their advantageous ligand-exchange and bioconjugation properties. Azubel et al. first determined the core structure of an Au68-complex, which was estimated to have 32 ligands (3-MBA groups). To explain the exceptional structure-composition and reaction properties of this complex, and its larger homologs, Tero et al. proposed a "dynamic stabilization" via carboxyl O-H--Au interactions. Herein, we report the first results of an integrated liquid chromatography/mass spectrometer (LC/MS) analysis of unfractionated samples of gold/3-MBA clusters, spanning a narrow size range 13.4 to 18.1 kDa. Using high-throughput procedures adapted from bio-macromolecule analyses, we show that integrated capillary high performance liquid chromatography electrospray ionization mass spectrometer (HPLC-ESI-MS), based on aqueous-methanol mobile phases and ion-pairing reverse-phase chromatography, can separate several major components from the nanoclusters mixture that may be difficult to resolve by standard native gel electrophoresis due to their similar size and charge. For each component, one obtains a well-resolved mass spectrum, nearly free of adducts or signs of fragmentation. A consistent set of molecular mass determinations is calculated from detected charge-states tunable from 3- (or lower), to 2+ (or higher). One thus arrives at a series of new compositions (n, p) specific to the Au/3-MBA system. The smallest major component is assigned to the previously unknown (48, 26); the largest one is evidently (67, 30), vs. the anticipated (68, 32). Various explanations for this discrepancy are considered. A prospective is given for the various members of this novel series, along with a summary of the advantages and present limitations of the micro-scale integrated LC/MS approach in characterizing such metallic-core macro-molecules, and their derivatives.
Collapse
Affiliation(s)
- David M Black
- Department of Physics & Astronomy, University of Texas, San Antonio, TX 78249, USA.
| | - M Mozammel Hoque
- Department of Physics & Astronomy, University of Texas, San Antonio, TX 78249, USA.
| | - Germán Placencia-Villa
- Department of Physics & Astronomy, University of Texas, San Antonio, TX 78249, USA.
- Department of Biology, University of Texas, San Antonio, TX 78249, USA.
| | - Robert L Whetten
- Department of Physics & Astronomy, University of Texas, San Antonio, TX 78249, USA.
| |
Collapse
|
42
|
Krishnadas KR, Natarajan G, Baksi A, Ghosh A, Khatun E, Pradeep T. Metal-Ligand Interface in the Chemical Reactions of Ligand-Protected Noble Metal Clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11243-11254. [PMID: 30521344 DOI: 10.1021/acs.langmuir.8b03493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We discuss the role of the metal-ligand (M-L) interfaces in the chemistry of ligand-protected, atomically precise noble metal clusters, a new and expanding family of nanosystems, in solution as well as in the gas phase. A few possible mechanisms by which the structure and dynamics of M-L interfaces could trigger intercluster exchange reactions are presented first. How interparticle chemistry can be a potential mechanism of Ostwald ripening, a well-known particle coarsening process, is also discussed. The reaction of Ag59(2,5-DCBT)32 (DCBT = dichlorobenzenethiol) with 2,4-DCBT leading to the formation of Ag44(2,4-DCBT)30 is presented, demonstrating the influence of the ligand structure in ligand-induced chemical transformations of clusters. We also discuss the structural isomerism of clusters such as Ag44(SR)30 (-SR = alkyl/aryl thiolate) in the gas phase wherein the occurrence of isomerism is attributed to the structural rearrangements in the M-L bonding network. Interfacial bonding between Au25(SR)18 clusters leading to the formation of cluster dimers and trimers is also discussed. Finally, we show that the desorption of phosphine and hydride ligands on a silver cluster, [Ag18(TPP)10H16]2+ (TPP = triphenylphosphine) in the gas phase, leads to the formation of a naked silver cluster of precise nuclearity, such as Ag17+. We demonstrate that the nature of the M-L interfaces, i.e., the oxidation state of metal atoms, structure of the ligand, M-L bonding network, and so forth, plays a key role in the chemical reactivity of clusters. The structure, dynamics, and chemical reactivity of nanosystems in general are to be explored together to obtain new insights into their emerging science.
Collapse
Affiliation(s)
- Kumaranchira Ramankutty Krishnadas
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Ganapati Natarajan
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Ananya Baksi
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Atanu Ghosh
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Esma Khatun
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE) , Indian Institute of Technology Madras , Chennai 600 036 , India
| |
Collapse
|
43
|
Olesiak-Banska J, Waszkielewicz M, Obstarczyk P, Samoc M. Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters. Chem Soc Rev 2019; 48:4087-4117. [PMID: 31292567 DOI: 10.1039/c8cs00849c] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review provides a comprehensive description of nonlinear optical (NLO) properties of gold nanoparticles, which can be used in biological applications. The main focus is placed on two-photon absorption (2PA) and two-photon excited photoluminescence (2PEL) - the processes crucial for multiphoton microscopy, which allows deeper imaging of the material and causes less damage to the biological samples in comparison to conventional (one-photon) microscopy. We present the basics of 2PA measurement techniques and a summary of recent achievements in the understanding of multiphoton excitation and the resulting photoluminescence in gold nanoparticles, both plasmonic ones and small nanoclusters with molecule-like properties. The examples of 2PA applications in bioimaging are also presented, with a comment on future challenges and applications.
Collapse
Affiliation(s)
- Joanna Olesiak-Banska
- Advanced Materials Engineering and Modelling Group, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | | | | | | |
Collapse
|
44
|
Wang Y, Nieto-Ortega B, Bürgi T. Transformation from [Au25(SCH2CH2CH2CH3)18]0 to Au28(SCH2CH(CH3)Ph)21 gold nanoclusters: gentle conditions is enough. Chem Commun (Camb) 2019; 55:14914-14917. [DOI: 10.1039/c9cc08872e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the transformation of [Au25(SR)18]0 into Au28(SR)21 induced by ligand exchange reaction under mild conditions.
Collapse
Affiliation(s)
- Yanan Wang
- Département de Chimie Physique
- Université de Genève
- 1211 Genève 4
- Switzerland
| | - Belén Nieto-Ortega
- Département de Chimie Physique
- Université de Genève
- 1211 Genève 4
- Switzerland
| | - Thomas Bürgi
- Département de Chimie Physique
- Université de Genève
- 1211 Genève 4
- Switzerland
| |
Collapse
|