1
|
Peixoto LC, da Rosa MM. New perspectives on galectin in major depressive disorder treatment. Biochem Pharmacol 2025; 233:116786. [PMID: 39892331 DOI: 10.1016/j.bcp.2025.116786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Galectins, a family of carbohydrate-binding proteins, regulate immune responses, neuroinflammation, and neurogenesis within the central nervous system (CNS). Among the 15 known galectins, galectins-1, -3, -4, -8, and -9 play significant roles in neuroinflammation and have been investigated in the context of CNS pathologies. This review synthesizes recent advancements in understanding galectins' involvement in the neurobiology of brain disorders, focusing on their interplay with signaling pathways underlying major depressive disorder (MDD). It explores their impact on neuroinflammation, neurogenesis, and brain signaling, highlighting the therapeutic potential of targeting galectins while addressing challenges in translating these findings into clinical practice. Comprehensive studies are essential to unravel the complex mechanisms of galectin-mediated pathways and unlock their full potential for managing neuropsychiatric conditions.
Collapse
Affiliation(s)
| | - Michelle Melgarejo da Rosa
- Center for Therapeutic Innovation - Suelly Galdino (NUPIT-SG) Recife Brazil; Department of Biochemistry Federal University of Pernambuco Recife Brazil.
| |
Collapse
|
2
|
Staroňová T, Holčáková J, Voňka P, Hrstka R, Ostatná V. Impact of galectin-1's redox state on its lectin activity and monomer-dimer equilibrium. Focusing on oxidized Gal-1. Int J Biol Macromol 2025; 295:139452. [PMID: 39755294 DOI: 10.1016/j.ijbiomac.2025.139452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Galectin-1 (Gal-1) displays unique sensitivity to oxidative inactivation which appears critical in regulating its spatial and temporal activity. The two physicochemical states, i.e. monomer-dimer equilibrium and redox states, are related to Gal-1 varying functionality. In this work, we used chronopotentiometric stripping analysis, intrinsic fluorescence spectroscopy, and mobility shift assay to follow changes in the structure and lectin activity of reduced and oxidized Gal-1 forms. Our results show that monomers and dimers are similarly distributed under mild reduction and oxidation conditions. Gal-1 after its oxidation consists of at least three different monomeric forms while reduced Gal-1 only one. Lectin activity, affinity to N-acetyllactosamine, is relatively similar for low Gal-1 concentrations for both, reduced and oxidized Gal-1. However, at higher Gal-1 concentrations, we observed a ten times higher affinity for reduced than oxidized form. Further, our data indicate that the monoclonal antibodies bind preferentially to Gal-1 dimers and specifically to only some forms of its oxidized form.
Collapse
Affiliation(s)
- Tatiana Staroňová
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 61200 Brno, Czech Republic
| | - Jitka Holčáková
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Petr Voňka
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Roman Hrstka
- Masaryk Memorial Cancer Institute, Research Centre for Applied Molecular Oncology, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Veronika Ostatná
- Institute of Biophysics, The Czech Academy of Sciences, v.v.i., Královopolská 135, 61200 Brno, Czech Republic.
| |
Collapse
|
3
|
Zhong J, Li J, Wu D, Deng X, Lu Y, Yu XQ. Characterization and functional analysis of Spodoptera litura galectins. PEST MANAGEMENT SCIENCE 2025. [PMID: 39898411 DOI: 10.1002/ps.8685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Insects rely on their effective innate immune system to defend against pathogen infection, and pattern recognition receptors (PRRs) play a crucial role in insect immunity. Galectins, a family of animal β-galactoside-binding lectins, may serve as PRRs. Mammalian galectins are involved in diverse physiological processes; however, less is known about functions of insect galectins. RESULT In this study, we focused on an agricultural pest Spodoptera litura and identified a total of 13 Slgalectins, and a functional study of Slgalectin-4 and Slgalectin-7 was conducted. Both recombinant Slgalectin-4 and Slgalectin-7 proteins directly bound to Bacillus thuringiensis and an entomopathogenic fungus Metarhizium rileyi. Importantly, supplementing recombinant Slgalectin-4 to S. litura larvae significantly increased larval survival after M. rileyi infection but accelerated larvae death after B. thuringiensis infection, whereas supplementing Slgalectin-7 increased larval survival after B. thuringiensis infection but did not influence larval survival after M. rileyi infection. Supplementing both Slgalectin-4 and Slgalectin-7 altered the expression of some antimicrobial peptide genes in larval hemocytes after microbial infection, which may partly account for the roles of Slgalectin-4 and -7 in larval survival. CONCLUSION Our findings revealed that Slgalectin-4 and -7 may serve as PRRs to bind different pathogens and alter expression of immune effector genes such as antimicrobial peptide genes, eventually modulating immune responses of S. litura larvae to pathogens such as B. thuringiensis and M. rileyi. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jielai Zhong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Denghui Wu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xinyue Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Keys AM, Kastner DW, Kiessling LL, Kulik HJ. The energetic landscape of CH-π interactions in protein-carbohydrate binding. Chem Sci 2025; 16:1746-1761. [PMID: 39669175 PMCID: PMC11632809 DOI: 10.1039/d4sc06246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
CH-π interactions between carbohydrates and aromatic amino acids play an essential role in biological systems that span all domains of life. Quantifying the strength and importance of these CH-π interactions is challenging because these interactions involve several atoms and can exist in many distinct orientations. To identify an orientational landscape of CH-π interactions, we constructed a dataset of close contacts formed between β-d-galactose residues and the aromatic amino acids, tryptophan, tyrosine, and phenylalanine, across crystallographic structures deposited in the Protein Data Bank. We carried out quantum mechanical calculations to quantify their interaction strengths. The data indicate that tryptophan-containing CH-π interactions have more favorable interaction energies than those formed by tyrosine or phenylalanine. The energetic differences between these amino acids are caused by the aromatic ring system electronics and size. We use individual distance and angle features to train random forest models to successfully predict the first-principles computed energetics of CH-π interactions. Using insights from our models, we define a tradeoff in CH-π interaction strength arising from the proximity of galactose carbons 1 and 2 versus carbons 4 and 6 to the aromatic amino acid. Our work demonstrates that a feature of CH-π stacking interactions is that numerous orientations allow for highly favorable interaction strengths.
Collapse
Affiliation(s)
- Allison M Keys
- Computational and Systems Biology Program, Massachusetts Institute of Technology Cambridge MA 02139 USA
- Department of Chemical Engineering, MIT Cambridge MA 02139 USA
- Department of Chemistry, MIT Cambridge MA 02139 USA
| | - David W Kastner
- Department of Chemical Engineering, MIT Cambridge MA 02139 USA
- Department of Chemistry, MIT Cambridge MA 02139 USA
- Department of Biological Engineering, MIT Cambridge MA 02139 USA
| | - Laura L Kiessling
- Department of Chemistry, MIT Cambridge MA 02139 USA
- The Broad Institute of MIT and Harvard Cambridge MA 02142 USA
- Koch Institute for Integrative Cancer Research, MIT Cambridge MA 02142 USA
| | - Heather J Kulik
- Department of Chemical Engineering, MIT Cambridge MA 02139 USA
- Department of Chemistry, MIT Cambridge MA 02139 USA
- The Broad Institute of MIT and Harvard Cambridge MA 02142 USA
| |
Collapse
|
5
|
Rodrigues ÉF, Verza FA, Nishimura FG, Beleboni RO, Hermans C, Janssens K, De Mol ML, Hulpiau P, Marins M. Exploring the Structural Diversity and Biotechnological Potential of the Rhodophyte Phycolectome. Mar Drugs 2024; 23:8. [PMID: 39852510 PMCID: PMC11766507 DOI: 10.3390/md23010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Lectins are non-covalent glycan-binding proteins found in all living organisms, binding specifically to carbohydrates through glycan-binding domains. Lectins have various biological functions, including cell signaling, molecular recognition, and innate immune responses, which play multiple roles in the physiological and developmental processes of organisms. Moreover, their diversity enables biotechnological exploration as biomarkers, biosensors, drug-delivery platforms, and lead molecules for anticancer, antidiabetic, and antimicrobial drugs. Lectins from Rhodophytes (red seaweed) have been extensively reported and characterized for their unique molecular structures, carbohydrate-binding specificities, and important biological activities. The increasing number of sequenced Rhodophyte genomes offers the opportunity to further study this rich source of lectins, potentially uncovering new ones with properties significantly different from their terrestrial plant counterparts, thus opening new biotechnological applications. We compiled literature data and conducted an in-depth analysis of the phycolectomes from all Rhodophyta genomes available in NCBI datasets. Using Hidden Markov Models capable of identifying lectin-type domains, we found at least six different types of lectin domains present in Rhodophytes, demonstrating their potential in identifying new lectins. This review integrates a computational analysis of the Rhodophyte phycolectome with existing information on red algae lectins and their biotechnological potential.
Collapse
Affiliation(s)
- Éllen F. Rodrigues
- Postgraduate Program in Environmental Technology, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil;
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Flavia Alves Verza
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Felipe Garcia Nishimura
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Renê Oliveira Beleboni
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
| | - Cedric Hermans
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Kaat Janssens
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Maarten Lieven De Mol
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Paco Hulpiau
- Bioinformatics Knowledge Center (BiKC), Cluster Life Sciences, Campus Brugge Station, Howest University of Applied Sciences, Spoorwegstraat 4, 8200 Brugge, Belgium; (C.H.); (K.J.)
| | - Mozart Marins
- Biotechnology Unit, University of Ribeirão Preto/UNAERP, Ribeirão Preto 14096-900, SP, Brazil (F.G.N.); (R.O.B.)
- Algastech Aquiculture, Research and Development, Ubatuba 11695-722, SP, Brazil
| |
Collapse
|
6
|
Mahanti M, Gummesson S, Sundin A, Leffler H, Zetterberg F, Nilsson UJ. Sulfonamide-derivatized galactosides selectively target an unexplored binding site in the galectin-9N-terminal domain. Bioorg Med Chem 2024; 116:117989. [PMID: 39549501 DOI: 10.1016/j.bmc.2024.117989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Four directional and positional variants of sulfonamide-derivatized galactopyranosides were synthesized and evaluated against human galectin-1, -3, -4C (C-terminal), -7, -8N (N-terminal), -8C (C-terminal), -9N (N-terminal), and -9C (C-terminal), which revealed that one of the sulfonamide positions and directionalities (methyl 3-{4-[2-(phenylsulfonylamino)-phenyl]-triazolyl}-3-deoxy-α-d-galactopyranosides) bound with 6-15 fold higher affinity than the corresponding phenyltriazole (lacking the phenylsulfonamide moiety) for galectin-9N. Molecular dynamic simulations suggested that inhibitor adopted a conformation that is complementary to the galectin-9N binding site and where the sulfonamide moiety protrudes into an unexplored and non-conserved binding site perpendicular to and below the A-B subsite to interact with a His61 NH proton. This resulted in the discovery of galectin-9N inhibitors with unprecedented selectivity over other galectins, thus constituting valuable tools for studies of the biological functions of galectin-9.
Collapse
Affiliation(s)
- Mukul Mahanti
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Sofi Gummesson
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Anders Sundin
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Hakon Leffler
- Section MIG, Department of Laboratory Medicine, Lund University, BMC-C1228b, Klinikgatan 28, SE-221 84 Lund, Sweden
| | - Fredrik Zetterberg
- Galecto Biotech AB, Sahlgrenska Science Park, Medicinaregatan 8A, 413 46 Gothenburg, Sweden
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
7
|
Sethi A, Kumar J, Vemula D, Gadde D, Talla V, Qureshi IA, Alvala M. Sugar mimics and their probable binding sites: design and synthesis of thiazole linked coumarin-piperazine hybrids as galectin-1 inhibitors. RSC Adv 2024; 14:36794-36803. [PMID: 39559576 PMCID: PMC11571122 DOI: 10.1039/d4ra06715k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Sugar mimics are valuable tools in medicinal chemistry, offering the potential to overcome the limitations of carbohydrate inhibitors, such as poor pharmacokinetics and non-selectivity. In our continued efforts to develop heterocyclic galectin-1 inhibitors, we report the synthesis and characterization of thiazole-linked coumarin piperazine hybrids (10a-10i) as Gal-1 inhibitors. The compounds were characterized using 1H NMR, 13C NMR and HRMS. Among the synthesized molecules, four compounds demonstrated significant inhibitory activity, with more than 50% inhibition observed at a concentration of 20 μM in a Gal-1 enzyme assay. Fluorescence spectroscopy was further utilized to elucidate the binding constant for the synthesized compounds. 10g exhibited the highest affinity for Gal-1, with a binding constant (K a) of 9.8 × 104 M-1. To elucidate the mode of binding, we performed extensive computational analyses with 10g, including 1.2 μs all-atom molecular dynamics simulations coupled with a robust machine learning tool. Our findings indicate that 10g binds to the carbohydrate binding site of Gal-1, with the coumarin moiety playing a key role in binding interactions. Additionally, our study underscores the limitations of relying solely on docking scores for conformational selection and highlights the critical importance of performing multiple MD replicas to gain accurate insights.
Collapse
Affiliation(s)
- Aaftaab Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Uniwersytetu Poznanskiego 6 Poznan 61-614 Poland
| | - Janish Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad Hyderabad 500046 India
| | - Divya Vemula
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Divya Gadde
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Venu Talla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Insaf A Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad Hyderabad 500046 India
| | - Mallika Alvala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
- MARS Training Academy Hyderabad India
| |
Collapse
|
8
|
Huang Y, Cui LF, Shen R, Chen DY, Jin M, Jiao X, Chen YG, Pan MX, Hu YD, Zhao Z. Impact of mutations in carbohydrate binding sites of tandem-repeat type galectin from Takifugu obscurus on its antimicrobial activity. FISH & SHELLFISH IMMUNOLOGY 2024; 155:110018. [PMID: 39532191 DOI: 10.1016/j.fsi.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Galectins belong to a family of galactoside-binding proteins and exhibit diverse biological functions. In the present research, a tandem-repeat type galectin (named ToGalectin) was identified from obscure puffer Takifugu obscurus. The 296 amino acids ToGalectin contained two carbohydrate recognition domains (CRDs), one of which possessed two conserved carbohydrate binding motifs. Phylogenetic analysis showed that ToGalectin clustered tightly with other galectin-8 proteins from teleost fish. ToGalectin transcripts were ubiquitously expressed in all tissues examined and its expression was significantly upregulated in the liver, kidney, and intestine after Vibrio harveyi or Staphylococcus aureus infection. To investigate the effect of carbohydrate binding sites on biological activity, ToGalectin and its mutant (MUT-ToGalectin) were expressed and purified. The recombinant ToGalectin and MUT-ToGalectin proteins showed strong agglutinating activity against both V. harveyi and S. aureus. rToGalectin could bind to all tested carbohydrates and bacteria, whereas rMUT-ToGalectin bound to some carbohydrates and bacteria with specific and relatively strong affinity. rToGalectin significantly suppressed the growth of all six bacteria detected and promoted bacterial clearance in vivo, whereas MUT-ToGalectin inhibited the growth of only two bacterial species, which could be attributed to the differences in conserved motifs within the CRDs. Our results suggested that ToGalectin is involved in the immune response against bacterial infection and the clearance of pathogens in T. obscurus.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Rui Shen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Ding-Yi Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Min Jin
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xue Jiao
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing 210019, China
| | - Yu-Guang Chen
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing 210019, China
| | - Ming-Xuan Pan
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing 210019, China
| | - Ya-Dong Hu
- Jiangsu Innovation Center of Marine Bioresource, Jiangsu Coast Development Group Co., Ltd, Nanjing 210019, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210098, China.
| |
Collapse
|
9
|
Lozinski BM, Ta K, Dong Y. Emerging role of galectin 3 in neuroinflammation and neurodegeneration. Neural Regen Res 2024; 19:2004-2009. [PMID: 38227529 DOI: 10.4103/1673-5374.391181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
Neuroinflammation and neurodegeneration are key processes that mediate the development and progression of neurological diseases. However, the mechanisms modulating these processes in different diseases remain incompletely understood. Advances in single cell based multi-omic analyses have helped to identify distinct molecular signatures such as Lgals3 that is associated with neuroinflammation and neurodegeneration in the central nervous system (CNS). Lgals3 encodes galectin-3 (Gal3), a β-galactoside and glycan binding glycoprotein that is frequently upregulated by reactive microglia/macrophages in the CNS during various neurological diseases. While Gal3 has previously been associated with non-CNS inflammatory and fibrotic diseases, recent studies highlight Gal3 as a prominent regulator of inflammation and neuroaxonal damage in the CNS during diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In this review, we summarize the pleiotropic functions of Gal3 and discuss evidence that demonstrates its detrimental role in neuroinflammation and neurodegeneration during different neurological diseases. We also consider the challenges of translating preclinical observations into targeting Gal3 in the human CNS.
Collapse
Affiliation(s)
- Brian M Lozinski
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Khanh Ta
- Deparment of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yifei Dong
- Deparment of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Cagnoni AJ, Massaro M, Cutine AM, Gimeno A, Pérez-Sáez JM, Manselle Cocco MN, Maller SM, Di Lella S, Jiménez-Barbero J, Ardá A, Rabinovich GA, Mariño KV. Exploring galectin interactions with human milk oligosaccharides and blood group antigens identifies BGA6 as a functional galectin-4 ligand. J Biol Chem 2024; 300:107573. [PMID: 39009340 PMCID: PMC11367503 DOI: 10.1016/j.jbc.2024.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as β-galactoside binding lectins. However, certain members of this family have shown selective affinity toward specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7, and -12) toward a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I versus type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity toward poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance experiments. Particularly, we identified oligosaccharide blood group A antigen tetraose 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited interleukin-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.
Collapse
Affiliation(s)
- Alejandro J Cagnoni
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mora Massaro
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Anabela M Cutine
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Juan M Pérez-Sáez
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Montana N Manselle Cocco
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sebastián M Maller
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Santiago Di Lella
- Instituto de Química Biológica, Ciencias Exactas y Naturales (IQUIBICEN-CONICET), Ciudad de Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic & Inorganic Chemistry, Faculty of Science and Technology University of the Basque Country, EHU-UPV, Leioa, Spain; Centro de Investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain
| | - Ana Ardá
- CIC bioGUNE, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Programa de Glicoinmunología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad Argentina de la Empresa (UADE), Instituto de Tecnología (INTEC), Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
11
|
Quintana JI, Massaro M, Cagnoni AJ, Nuñez-Franco R, Delgado S, Jiménez-Osés G, Mariño KV, Rabinovich GA, Jiménez-Barbero J, Ardá A. Different roles of the heterodimer architecture of galectin-4 in selective recognition of oligosaccharides and lipopolysaccharides having ABH antigens. J Biol Chem 2024; 300:107577. [PMID: 39019214 PMCID: PMC11362799 DOI: 10.1016/j.jbc.2024.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The dimeric architecture of tandem-repeat type galectins, such as galectin-4 (Gal-4), modulates their biological activities, although the underlying molecular mechanisms have remained elusive. Emerging evidence show that tandem-repeat galectins play an important role in innate immunity by recognizing carbohydrate antigens present on the surface of certain pathogens, which very often mimic the structures of the human self-glycan antigens. Herein, we have analyzed the binding preferences of the C-domain of Gal-4 (Gal-4C) toward the ABH-carbohydrate histo-blood antigens with different core presentations and their recognition features have been rationalized by using a combined experimental approach including NMR, solid-phase and hemagglutination assays, and molecular modeling. The data show that Gal-4C prefers A over B antigens (two-fold in affinity), contrary to the N-domain (Gal-4N), although both domains share the same preference for the type-6 presentations. The behavior of the full-length Gal-4 (Gal-4FL) tandem-repeat form has been additionally scrutinized. Isothermal titration calorimetry and NMR data demonstrate that both domains within full-length Gal-4 bind to the histo-blood antigens independently of each other, with no communication between them. In this context, the heterodimeric architecture does not play any major role, apart from the complementary A and B antigen binding preferences. However, upon binding to a bacterial lipopolysaccharide containing a multivalent version of an H-antigen mimetic as O-antigen, the significance of the galectin architecture was revealed. Indeed, our data point to the linker peptide domain and the F-face of the C-domain as key elements that provide Gal-4 with the ability to cross-link multivalent ligands, beyond the glycan binding capacity of the dimer.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Mora Massaro
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain; Centro de investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain.
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
12
|
Díaz del Arco C, Estrada Muñoz L, Cerón Nieto MDLÁ, Molina Roldán E, Fernández Aceñero MJ, García Gómez de las Heras S. Prognostic Influence of Galectin-1 in Gastric Adenocarcinoma. Biomedicines 2024; 12:1508. [PMID: 39062081 PMCID: PMC11275144 DOI: 10.3390/biomedicines12071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Galectin-1 (Gal-1), a member of the human lectin family, has garnered attention for its association with aggressive behavior in human tumors, prompting research into the development of targeted drugs. This study aims to assess the staining pattern and prognostic significance of Gal-1 immunohistochemical expression in a homogeneous cohort of Western patients with gastric cancer (GC). A total of 149 cases were included and tissue microarrays were constructed. Stromal Gal-1 expression was observed to some extent in most tumors, displaying a cytoplasmic pattern. Cases with stromal Gal-1 overexpression showed significantly more necrosis, lymphovascular invasion, advanced pTNM stages, recurrences, and cancer-related deaths. Epithelial Gal-1 expression was present in 63.8% of the cases, primarily exhibiting a cytoplasmic pattern, and its overexpression was significantly associated with lymphovascular invasion, peritumoral lymphocytic infiltration, and tumor-related death. Kaplan/Meier curves for cancer-specific survival (CSS) revealed a significantly worse prognosis for patients with tumors exhibiting stromal or epithelial Gal-1 overexpression. Furthermore, stromal Gal-1 expression stratified stage III patients into distinct prognostic subgroups. In a multivariable analysis, increased stromal Gal-1 expression emerged as an independent prognostic factor for CSS. These findings underscore the prognostic relevance of Gal-1 and suggest its potential as a target for drug development in Western patients with GC.
Collapse
Affiliation(s)
- Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lourdes Estrada Muñoz
- Department of Pathology, Rey Juan Carlos Hospital, 28933 Móstoles, Spain;
- Department of Basic Medical Sciences, School of Medicine, Rey Juan Carlos University, 28933 Móstoles, Spain;
| | - María de los Ángeles Cerón Nieto
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | |
Collapse
|
13
|
Perez-Moreno E, Oyanadel C, de la Peña A, Hernández R, Pérez-Molina F, Metz C, González A, Soza A. Galectins in epithelial-mesenchymal transition: roles and mechanisms contributing to tissue repair, fibrosis and cancer metastasis. Biol Res 2024; 57:14. [PMID: 38570874 PMCID: PMC10993482 DOI: 10.1186/s40659-024-00490-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/12/2024] [Indexed: 04/05/2024] Open
Abstract
Galectins are soluble glycan-binding proteins that interact with a wide range of glycoproteins and glycolipids and modulate a broad spectrum of physiological and pathological processes. The expression and subcellular localization of different galectins vary among tissues and cell types and change during processes of tissue repair, fibrosis and cancer where epithelial cells loss differentiation while acquiring migratory mesenchymal phenotypes. The epithelial-mesenchymal transition (EMT) that occurs in the context of these processes can include modifications of glycosylation patterns of glycolipids and glycoproteins affecting their interactions with galectins. Moreover, overexpression of certain galectins has been involved in the development and different outcomes of EMT. This review focuses on the roles and mechanisms of Galectin-1 (Gal-1), Gal-3, Gal-4, Gal-7 and Gal-8, which have been involved in physiologic and pathogenic EMT contexts.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile
| | - Ronny Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.
- Centro Científico y Tecnológico de Excelencia (CCTE) Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
14
|
De León González FV, Boddington ME, Kofsky JM, Prindl MI, Capicciotti CJ. Glyco-Engineering Cell Surfaces by Exo-Enzymatic Installation of GlcNAz and LacNAz Motifs. ACS Chem Biol 2024; 19:629-640. [PMID: 38394345 DOI: 10.1021/acschembio.3c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Exo-enzymatic glyco-engineering of cell-surface glycoconjugates enables the selective display of well-defined glyco-motifs bearing bioorthogonal functional groups, which can be used to study glycans and their interactions with glycan-binding proteins. In recent years, strategies to edit cellular glycans by installing monosaccharides and their derivatives using glycosyltransferase enzymes have rapidly expanded. However, analogous methods to introduce chemical reporter-functionalized type 2 LacNAc motifs have not been reported. Herein, we report the chemo-enzymatic synthesis of unnatural UDP-GlcNAc and UDP-GalNAc nucleotide-sugars bearing azide, alkyne, and diazirine functionalities on the C2-acetamido group using the mutant uridylyltransferase AGX1F383A. The unnatural UDP-GlcNAc derivatives were examined as substrates for the human GlcNAc-transferase B3GNT2, where it was found that modified donors were tolerated for transfer, albeit to a lesser extent than the natural UDP-GlcNAc substrate. When the GlcNAc derivatives were examined as acceptor substrates for the human Gal-transferase B4GalT1, all derivatives were well tolerated and the enzyme could successfully form derivatized LacNAcs. B3GNT2 was also used to exo-enzymatically install GlcNAc and unnatural GlcNAc derivatives on cell-surface glycans. GlcNAc- or GlcNAz-engineered cells were further extended by B4GalT1 and UDP-Gal, producing LacNAc- or LacNAz-engineered cells. Our proof-of-concept glyco-engineering labeling strategy is amenable to different cell types and our work expands the exo-enzymatic glycan editing toolbox to selectively introduce unnatural type 2 LacNAc motifs.
Collapse
Affiliation(s)
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
| | - Joshua M Kofsky
- Department of Chemistry, Queen's University, Kingston K7L 2S8, Canada
| | - Martha I Prindl
- Department of Chemistry, Queen's University, Kingston K7L 2S8, Canada
| | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, Kingston K7L 2S8, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston K7L 3N6, Canada
- Department of Surgery, Queen's University, Kingston K7L 2V7, Canada
| |
Collapse
|
15
|
Pirone L, Lenza MP, Di Gaetano S, Capasso D, Filocaso M, Russo R, Di Carluccio C, Saviano M, Silipo A, Pedone E. Biophysical and Structural Characterization of the Interaction between Human Galectin-3 and the Lipopolysaccharide from Pseudomonas aeruginosa. Int J Mol Sci 2024; 25:2895. [PMID: 38474141 PMCID: PMC10932368 DOI: 10.3390/ijms25052895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Given the significant involvement of galectins in the development of numerous diseases, the aim of the following work is to further study the interaction between galectin-3 (Gal3) and the LPS from Pseudomonas aeruginosa. This manuscript focused on the study of the interaction of the carbohydrate recognition domain of Gal3 with the LPS from Pseudomonas aeruginosa by means of different complementary methodologies, such as circular dichroism; spectrofluorimetry; dynamic and static light scattering and evaluation of the impact of Gal3 on the redox potential membranes of Escherichia coli and P. aeruginosa cells, as well as ITC and NMR studies. This thorough investigation reinforces the hypothesis of an interaction between Gal3 and LPS, unraveling the structural details and providing valuable insights into the formation of these intricate molecular complexes. Taken together, these achievements could potentially prompt the design of therapeutic drugs useful for the development of agonists and/or antagonists for LPS receptors such as galectins as adjunctive therapy for P. aeruginosa.
Collapse
Affiliation(s)
- Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
| | - Maria Pia Lenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.P.L.); (C.D.C.)
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
| | - Domenica Capasso
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Martina Filocaso
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Institute of Crystallography, National Research Council (CNR), 81100 Caserta, Italy
| | - Rita Russo
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.P.L.); (C.D.C.)
| | - Michele Saviano
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
- Institute of Crystallography, National Research Council (CNR), 81100 Caserta, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.P.L.); (C.D.C.)
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
| |
Collapse
|
16
|
Vukotić M, Kapor S, Simon F, Cokic V, Santibanez JF. Mesenchymal stromal cells in myeloid malignancies: Immunotherapeutic opportunities. Heliyon 2024; 10:e25081. [PMID: 38314300 PMCID: PMC10837636 DOI: 10.1016/j.heliyon.2024.e25081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Myeloid malignancies are clonal disorders of the progenitor cells or hematopoietic stem cells, including acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic myelomonocytic leukemia. Myeloid neoplastic cells affect the proliferation and differentiation of other hematopoietic lineages in the bone marrow and peripheral blood, leading to severe and life-threatening complications. Mesenchymal stromal cells (MSCs) residing in the bone marrow exert immunosuppressive functions by suppressing innate and adaptive immune systems, thus creating a supportive and tolerant microenvironment for myeloid malignancy progression. This review summarizes the significant features of MSCs in myeloid malignancies, including their role in regulating cell growth, cell death, and antineoplastic resistance, in addition to their immunosuppressive contributions. Understanding the implications of MSCs in myeloid malignancies could pave the path for potential use in immunotherapy.
Collapse
Affiliation(s)
- Milica Vukotić
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Suncica Kapor
- Department of Hematology, Clinical Hospital Center “Dr. Dragisa Misovic-Dedinje,” University of Belgrade, Serbia
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile
| | - Vladan Cokic
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Juan F. Santibanez
- Molecular Oncology Group, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| |
Collapse
|
17
|
Hu W, Song X, Yu H, Fan S, Shi A, Sun J, Wang H, Zhao L, Zhao Y. Suppression of B-Cell Activation by Human Cord Blood-Derived Stem Cells (CB-SCs) through the Galectin-9-Dependent Mechanism. Int J Mol Sci 2024; 25:1830. [PMID: 38339108 PMCID: PMC10855911 DOI: 10.3390/ijms25031830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
We developed the Stem Cell Educator therapy among multiple clinical trials based on the immune modulations of multipotent cord blood-derived stem cells (CB-SCs) on different compartments of immune cells, such as T cells and monocytes/macrophages, in type 1 diabetes and other autoimmune diseases. However, the effects of CB-SCs on the B cells remained unclear. To better understand the molecular mechanisms underlying the immune education of CB-SCs, we explored the modulations of CB-SCs on human B cells. CB-SCs were isolated from human cord blood units and confirmed by flow cytometry with different markers for their purity. B cells were purified by using anti-CD19 immunomagnetic beads from human peripheral blood mononuclear cells (PBMCs). Next, the activated B cells were treated in the presence or absence of coculture with CB-SCs for 7 days before undergoing flow cytometry analysis of phenotypic changes with different markers. Reverse transcription-polymerase chain reaction (RT-PCR) was utilized to evaluate the levels of galectin expressions on CB-SCs with or without treatment of activated B cells in order to find the key galectin that was contributing to the B-cell modulation. Flow cytometry demonstrated that the proliferation of activated B cells was markedly suppressed in the presence of CB-SCs, leading to the downregulation of immunoglobulin production from the activated B cells. Phenotypic analysis revealed that treatment with CB-SCs increased the percentage of IgD+CD27- naïve B cells, but decreased the percentage of IgD-CD27+ switched B cells. The transwell assay showed that the immune suppression of CB-SCs on B cells was dependent on the galectin-9 molecule, as confirmed by the blocking experiment with the anti-galectin-9 monoclonal antibody. Mechanistic studies demonstrated that both calcium levels of cytoplasm and mitochondria were downregulated after the treatment with CB-SCs, causing the decline in mitochondrial membrane potential in the activated B cells. Western blot exhibited that the levels of phosphorylated Akt and Erk1/2 signaling proteins in the activated B cells were also markedly reduced in the presence of CB-SCs. CB-SCs displayed multiple immune modulations on B cells through the galectin-9-mediated mechanism and calcium flux/Akt/Erk1/2 signaling pathways. The data advance our current understanding of the molecular mechanisms underlying the Stem Cell Educator therapy to treat autoimmune diseases in clinics.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
| | - Sophia Fan
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Andrew Shi
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (J.S.); (H.W.)
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (J.S.); (H.W.)
| | - Laura Zhao
- Throne Biotechnologies, Paramus, NJ 07652, USA
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.)
- Throne Biotechnologies, Paramus, NJ 07652, USA
| |
Collapse
|
18
|
Sokolova E, Jouanneau D, Chevenier A, Jam M, Desban N, Colas P, Ficko-Blean E, Michel G. Enzymatically-derived oligo-carrageenans interact with α-Gal antibodies and Galectin-3. Carbohydr Polym 2024; 324:121563. [PMID: 37985065 DOI: 10.1016/j.carbpol.2023.121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Carrageenans are linear sulfated galactans synthesized in the Gigartinales, Rhodophyceae species with a varied range of biological properties that are of value to the pharmaceutical and cosmetic sectors. It is unknown how the fine structure of carrageenans dictates their capacity to affect molecular and cellular responses important to wound healing, or the ability to mitigate oxidative, hemostatic and inflammatory processes. Here we use specific endo-carrageenases, from the marine bacterium Zobellia galactanivorans, to produce enzymatically defined neo-series oligosaccharides from carrageenans with 3,6-anhydro-D-galactose on the non-reducing end. Further enzymatic modification of the oligosaccharides was done by treating with the 3,6-anhydro-D-galactosidases from the same bacterium which hydrolyze non-reducing end 3,6-anhydro-D-galactose moieties from neo-carrageenan oligosaccharides. Using the enzymatically produced oligosaccharides, we demonstrate binding to natural human serum antibodies and a monoclonal anti-αGal Ab (m86). The significant interactions with the Galα(1,3)Gal reactive antibodies produced by humans makes them potential potent inducers of complement-dependent reactions and attractive for therapeutic applications. We also demonstrate modulation of the galectin selectivity for the Gal-3 Carbohydrate Recognition Domain (CRD) relative to Gal-1 which has implications to targeting specific biological pathways regulated by the galectins.
Collapse
Affiliation(s)
- Ekaterina Sokolova
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France
| | - Diane Jouanneau
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France
| | - Antonin Chevenier
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France
| | - Murielle Jam
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France
| | - Nathalie Desban
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France
| | - Pierre Colas
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France
| | - Elizabeth Ficko-Blean
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France.
| | - Gurvan Michel
- Sorbonne Université, CNRS, Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, Bretagne, France.
| |
Collapse
|
19
|
Donnelly J, Kamber RA, Wisnovsky S, Roberts DS, Peltan EL, Bassik MC, Bertozzi CR. A Genome-Wide CRISPR Screen Identifies Sortilin as the Receptor Responsible for Galectin-1 Lysosomal Trafficking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.03.574113. [PMID: 38260508 PMCID: PMC10802331 DOI: 10.1101/2024.01.03.574113] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Galectins are a family of mammalian glycan-binding proteins that have been implicated as regulators of myriad cellular processes including cell migration, apoptosis, and immune modulation. Several members of this family, such as galectin-1, exhibit both cell-surface and intracellular functions. Interestingly, galectin-1 can be found in the endomembrane system, nucleus, or cytosol, as well as on the cell surface. The mechanisms by which galectin-1 traffics between cellular compartments, including its unconventional secretion and internalization processes, are poorly understood. Here, we determined the pathways by which exogenous galectin-1 enters cells and explored its capacity as a delivery vehicle for protein and siRNA therapeutics. We used a galectin-1-toxin conjugate, modelled on antibody-drug conjugates, as a selection tool in a genome-wide CRISPR screen. We discovered that galectin-1 interacts with the endosome-lysosome trafficking receptor sortilin in a glycan-dependent manner, which regulates galectin-1 trafficking to the lysosome. Further, we show that this pathway can be exploited for delivery of a functional siRNA. This study sheds light on the mechanisms by which galectin-1 is internalized by cells and suggests a new strategy for intracellular drug delivery via galectin-1 conjugation.
Collapse
|
20
|
Choutka J, Parkan K, Pohl R, Kaminský J. On the origin of the electronic and magnetic circular dichroism of naphthyl C-glycosides: Anomeric configuration. Carbohydr Res 2024; 535:109021. [PMID: 38171193 DOI: 10.1016/j.carres.2023.109021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Aryl C-glycosides, in which the glycosidic bond is changed to a carbon-carbon bond, are an important family of biologically-active compounds. They often serve as secondary metabolites or exhibit antibiotic and cytostatic activities. Their stability to hydrolysis has made them attractive targets for new drugs. Their conformational behavior often strongly influences the resulting function. Their detailed structural and conformational description is thus highly desirable. This work studies the structure of three different naphthyl C-glycosides using UV-vis absorption as well as electronic and magnetic circular dichroism. It also describes their conformational preferences using a combination of molecular dynamics and DFT calculations. The reliability of these preferences has been verified by simulations of spectral properties and a comparison with their measured spectra. In particular, ECD spectroscopy has been shown to distinguish easily between α- and β-pseudoanomers of aryl C-glycosides. Computer simulations and spectral decomposition have revealed how the resulting ECD patterns of the naphthyl glycosides studied are influenced by different conformer populations. In conclusion, reliable ECD patterns cannot be calculated by separating the naphthyl rotation from other conformational motions. MCD patterns have been similar for all the naphthyl C-glycosides studied. No clear diagnostic features have been found for either the pseudoanomeric configuration or the preferred hydroxymethyl rotamer. Nevertheless, the work has demonstrated the potential of MCD for the study of aryl glycosides interacting with proteins.
Collapse
Affiliation(s)
- Jan Choutka
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Kamil Parkan
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, 160 00, Prague, Czech Republic; Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry AS CR, Flemingovo nám. 2, 160 00, Prague, Czech Republic.
| |
Collapse
|
21
|
Rodrigues CF, Santos FA, Amorim LAA, da Silva ALC, Marques LGA, Rocha BAM. Galectin-9 is a target for the treatment of cancer: A patent review. Int J Biol Macromol 2024; 254:127768. [PMID: 38287577 DOI: 10.1016/j.ijbiomac.2023.127768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Galectins, which correspond to a group of proteins capable of recognizing and reversibly binding to β-galactoside carbohydrates, have been the subject of innovation and development of technological products. Galectins play biological roles, such as cell proliferation and apoptosis, and some studies showed differences in the concentrations of galectins dispersed in serum of patients with cancer. For this reason, different studies have evaluated the biotechnological potential of these proteins as biomarkers for the prognosis and/or diagnosis of physiological disorders. Thus, this review discusses recent technological advancements in targeting galectins for the treatment of cancer and using galectins for cancer prognosis and diagnosis. Data mining was performed using the search descriptors "Galectin 9* and cancer*" and the ESPACENET and Cortellis Drug Discovery Intelligence (CDDI) databases. PRISMA guidelines were followed as a basis for literature review which aimed to conduct a systematic study of galectin-9 patents related to cancer prognosis, diagnosis and treatment. Results showed the importance of galectin-9 protein patents in furthering biomedical advancements in the global fight against cancer.
Collapse
Affiliation(s)
| | - Francisco Alves Santos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | | | - André Luis Coelho da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil; Post Graduate Program in Biotechnology of Natural Resources, Federal University of Ceara, Fortaleza, Brazil
| | | | - Bruno Anderson Matias Rocha
- RENORBIO, Federal University of Ceara, Fortaleza, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil; Post Graduate Program in Biotechnology of Natural Resources, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
22
|
Ghosh P, Patari N, Manisha C, Basavan D, Petchiappan V, Justin A. Reversal mechanism of multidrug-resistant cancer cells by lectin as chemo-adjuvant and targeted therapy- a systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155205. [PMID: 37980807 DOI: 10.1016/j.phymed.2023.155205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Cancer is characterized as the leading cause of death, and the susceptibility of cancer cells to develop resistance due to long-term exposure to complementary chemotherapeutic treatment is referred to as multidrug resistance cancer cells (MDRC), which is a significant obstacle in the treatment of malignancies. Since complementary medicine lost its effectiveness, the development of potential alternative and novel therapeutic approaches has been elevated to a top priority in recent years. In this context, a bioactive protein lectin from plant and animal sources exhibits an invaluable source of anticancer agents with vast therapeutic potential. PURPOSE This manuscript's primary purpose is to enlighten the evidence-based (from 1986 to 2022) possible molecular mechanism of alternative treatment approaches using lectins over the complementary medicines used for cancer treatment. METHODS The PRISMA rules have been followed properly and qualitative and quantitative data are synthesized systematically. Articles were identified based on Clinical and preclinical reports published on lectin that investigated the in-depth cellular mechanisms, of reverse drug integrative oncology, as a nano-carried targeted delivery. Articles were systematically screened from 1986 to 2022 and selected based on electronic database searches, Medline (PubMed), Google Scholar, Web of Science, Encyclopaedias, Scopus, and ClinicalTrials.gov database. RESULTS The search turned up 4,212 publications from 38 different nations, of which 170 reference articles were used in our analysis, in 16 combination therapy and their mode of action, and 27 clinical trial studies including dosage and mechanism of action were included. Reports from the 30 lectins belonging to 28 different families have been included. The reversal mechanism of lectin and alternative therapy against MDRC is critically screened and according to a few clinical and preclinical reports, lectin can suppress the overexpressing genes like P-53, EGFR, and P-gp, MRP, and ABC transporter proteins associated with intracellular transportation of drugs. Since, the drug efflux mechanism leads to MDRC, in this phenomenon, lectin plays a key role in reversing the efflux mechanism. Few preclinical reports have mentioned that lectin shows synergism in combination with complementary medicine and as a nano drug carrier helps to deliver to the targeted site. CONCLUSION We have discussed the alternative therapy using lectin and an in-depth insight into the reversal drug resistance mechanisms to combat MDRC cancer, enhance the efficacy, reduce toxicity and adverse events, and ensure targeted delivery, and their application in the field of cancer diagnosis and prognosis has been discussed. However, further investigation is necessary in drug development and clinical trials which could be helpful to elaborate the reversal mechanism and unlock newer treatment modalities in MDRC cancer.
Collapse
Affiliation(s)
- Puja Ghosh
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India
| | - Niloy Patari
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, USA
| | - Chennu Manisha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India
| | - Duraiswamy Basavan
- Department of Pharmacognosy, JSS College of Pharmacy, Najwal, Vijaypur, Jammu 184 120, India
| | - Velammal Petchiappan
- Department of General Medicine, PSG Institute of Medical Sciences & Research, Coimbatore, Tamil Nadu 641 004, India
| | - Antony Justin
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643 001, India.
| |
Collapse
|
23
|
Pei X, Zhu J, Wang Y, Zhang F, He Y, Li Y, Si Y. Placental galectins: a subfamily of galectins lose the ability to bind β-galactosides with new structural features†. Biol Reprod 2023; 109:799-811. [PMID: 37672213 DOI: 10.1093/biolre/ioad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023] Open
Abstract
Galectins are a phylogenetically conserved family of soluble β-galactoside binding proteins. There are 16 different of galectins, each with a specific function determined by its distinct distribution and spatial structure. Galectin-13, galectin-14, and galectin-16 are distinct from other galectin members in that they are primarily found in placental tissue. These galectins, also referred to as placental galectins, play critical roles in regulating pregnancy-associated processes, such as placenta formation and maternal immune tolerance to the embedded embryo. The unique structural characteristics and the inability to bind lactose of placental galectins have recently received significant attention. This review primarily examines the novel structural features of placental galectins, which distinguish them from the classic galectins. Furthermore, it explores the correlation between these structural features and the loss of β-galactoside binding ability. In addition, the newly discovered functions of placental galectins in recent years are also summarized in our review. A detailed understanding of the roles of placental galectins may contribute to the discovery of new mechanisms causing numerous pregnancy diseases and enable the development of new diagnostic and therapeutic strategies for the treatment of these diseases, ultimately benefiting the health of mothers and offspring.
Collapse
Affiliation(s)
- Xuejing Pei
- Jilin Province Key Laboratory on Chemistry and Biology of Natural Drugs in Changbai Mountain, School of Life Sciences, Northeast Normal University, Changchun 130024, China
- Xuzhou Tongshan Maocun High School, Xuzhou 221135, China
| | - Jiahui Zhu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yuchen Wang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Fali Zhang
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yufeng He
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yuchun Li
- Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, China
| | - Yunlong Si
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
24
|
Massaro M, Cagnoni AJ, Medrano FJ, Pérez-Sáez JM, Abdullayev S, Belkhadem K, Mariño KV, Romero A, Roy R, Rabinovich GA. Selective modifications of lactose and N-acetyllactosamine with sulfate and aromatic bulky groups unveil unique structural insights in galectin-1-ligand recognition. Bioorg Med Chem 2023; 94:117480. [PMID: 37774448 DOI: 10.1016/j.bmc.2023.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Galectins, a family of endogenous glycan-binding proteins, play crucial roles in a broad range of physiological and pathological processes. Galectin-1 (Gal-1), a proto-type member of this family, is overexpressed in several cancers and plays critical roles in tumor-immune escape, angiogenesis and metastasis. Thus, generation of high-affinity Gal-1 inhibitors emerges as an attractive therapeutic approach for a wide range of neoplastic conditions. Small-molecule carbohydrate inhibitors based on lactose (Lac) and N-acetyllactosamine (LacNAc) structures have been tested showing different results. In this study, we evaluated Lac- and LacNAc-based compounds with specific chemical modifications at key positions as Gal-1 ligands by competitive solid-phase assays (SPA) and isothermal titration calorimetry (ITC). Both assays showed excellent correlation, highlighting that lactosides bearing bulky aromatic groups at the anomeric carbon and sulfate groups at the O3' position exhibited the highest binding affinities. To dissect the atomistic determinants for preferential affinity of the different tested Gal-1 ligands, molecular docking simulations were conducted and PRODIGY-LIG structure-based method was employed to predict binding affinity in protein-ligand complexes. Notably, calculated binding free energies derived from the molecular docking were in accordance with experimental values determined by SPA and ITC, showing excellent correlation between theoretical and experimental approaches. Moreover, this analysis showed that 3'-O-sulfate groups interact with residues of the Gal-1 subsite B, mainly with Asn33, while the ester groups of the aromatic anomeric group interact with Gly69 and Thr70 at Gal-1 subsite E, extending deeper into the pocket, which could account for the enhanced binding affinity. This study contributes to the rational design of highly optimized Gal-1 inhibitors to be further studied in cancer models and other pathologic conditions.
Collapse
Affiliation(s)
- Mora Massaro
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Francisco J Medrano
- Centro de Investigaciones Biológicas "Margarita Salas" (CIB), CSIC, E-28040 Madrid, Spain
| | - Juan M Pérez-Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Shuay Abdullayev
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada
| | - Karima Belkhadem
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina
| | - Antonio Romero
- Centro de Investigaciones Biológicas "Margarita Salas" (CIB), CSIC, E-28040 Madrid, Spain.
| | - René Roy
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada.
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1428 Ciudad de Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428 Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
25
|
Bogut A, Stojanovic B, Jovanovic M, Dimitrijevic Stojanovic M, Gajovic N, Stojanovic BS, Balovic G, Jovanovic M, Lazovic A, Mirovic M, Jurisevic M, Jovanovic I, Mladenovic V. Galectin-1 in Pancreatic Ductal Adenocarcinoma: Bridging Tumor Biology, Immune Evasion, and Therapeutic Opportunities. Int J Mol Sci 2023; 24:15500. [PMID: 37958483 PMCID: PMC10650903 DOI: 10.3390/ijms242115500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most challenging malignancies to treat, with a complex interplay of molecular pathways contributing to its aggressive nature. Galectin-1 (Gal-1), a member of the galectin family, has emerged as a pivotal player in the PDAC microenvironment, influencing various aspects from tumor growth and angiogenesis to immune modulation. This review provides a comprehensive overview of the multifaceted role of Galectin-1 in PDAC. We delve into its contributions to tumor stroma remodeling, angiogenesis, metabolic reprogramming, and potential implications for therapeutic interventions. The challenges associated with targeting Gal-1 are discussed, given its pleiotropic functions and complexities in different cellular conditions. Additionally, the promising prospects of Gal-1 inhibition, including the utilization of nanotechnology and theranostics, are highlighted. By integrating recent findings and shedding light on the intricacies of Gal-1's involvement in PDAC, this review aims to provide insights that could guide future research and therapeutic strategies.
Collapse
Affiliation(s)
- Ana Bogut
- City Medical Emergency Department, 11000 Belgrade, Serbia;
| | - Bojan Stojanovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Marina Jovanovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| | | | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Bojana S. Stojanovic
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Goran Balovic
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (B.S.); (G.B.)
| | - Milan Jovanovic
- Department of Abdominal Surgery, Military Medical Academy, 11000 Belgrade, Serbia;
| | - Aleksandar Lazovic
- Department of General Surgery, University Clinical Center Kragujevac, 34000 Kragujevac, Serbia;
| | - Milos Mirovic
- Department of Surgery, General Hospital of Kotor, 85330 Kotor, Montenegro;
| | - Milena Jurisevic
- Department of Clinical Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Ivan Jovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Violeta Mladenovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.J.); (V.M.)
| |
Collapse
|
26
|
Ortega-Ferreira C, Soret P, Robin G, Speca S, Hubert S, Le Gall M, Desvaux E, Jendoubi M, Saint-Paul J, Chadli L, Chomel A, Berger S, Nony E, Neau B, Fould B, Licznar A, Levasseur F, Guerrier T, Elouej S, Courtade-Gaïani S, Provost N, Nguyen TQ, Verdier J, Launay D, De Ceuninck F. Antibody-mediated neutralization of galectin-3 as a strategy for the treatment of systemic sclerosis. Nat Commun 2023; 14:5291. [PMID: 37652913 PMCID: PMC10471779 DOI: 10.1038/s41467-023-41117-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/22/2023] [Indexed: 09/02/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune, inflammatory and fibrotic disease with limited treatment options. Developing new therapies is therefore crucial to address patient needs. To this end, we focused on galectin-3 (Gal-3), a lectin known to be associated with several pathological processes seen in SSc. Using RNA sequencing of whole-blood samples in a cross-sectional cohort of 249 patients with SSc, Gal-3 and its interactants defined a strong transcriptomic fingerprint associated with disease severity, pulmonary and cardiac malfunctions, neutrophilia and lymphopenia. We developed new Gal-3 neutralizing monoclonal antibodies (mAb), which were then evaluated in a mouse model of hypochlorous acid (HOCl)-induced SSc. We show that two of these antibodies, D11 and E07, reduced pathological skin thickening, lung and skin collagen deposition, pulmonary macrophage content, and plasma interleukin-5 and -6 levels. Moreover, E07 changed the transcriptional profiles of HOCl-treated mice, resulting in a gene expression pattern that resembled that of control mice. Similarly, pathological pathways engaged in patients with SSc were counteracted by E07 in mice. Collectively, these findings demonstrate the translational potential of Gal-3 blockade as a therapeutic option for SSc.
Collapse
Affiliation(s)
- Céline Ortega-Ferreira
- Servier R&D Center, Biomarker Assay Development, Translational Medicine, Gif-sur-Yvette, France
| | - Perrine Soret
- Servier R&D Center, Biomarker Biostatistics, Gif-sur-Yvette, France
| | | | - Silvia Speca
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | - Sandra Hubert
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | | | - Emiko Desvaux
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | - Manel Jendoubi
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | | | - Loubna Chadli
- Servier R&D Center, Clinical Biomarker Development, Translational Medicine, Gif-sur-Yvette, France
| | - Agnès Chomel
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Sylvie Berger
- Servier R&D Center, Structural Sciences, Gif-sur-Yvette, France
| | - Emmanuel Nony
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Béatrice Neau
- Servier R&D Center, Preclinical Biostatistics, Quantitative Pharmacology, Gif-sur-Yvette, France
| | - Benjamin Fould
- Servier R&D Center, Protein Sciences, Gif-sur-Yvette, France
| | - Anne Licznar
- Servier R&D Center, DMPK Department, Translational Medicine, Gif-sur-Yvette, France
| | - Franck Levasseur
- Servier R&D Center, DMPK Department, Translational Medicine, Gif-sur-Yvette, France
| | - Thomas Guerrier
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
| | - Sahar Elouej
- Servier R&D Center, Computational Medicine, Gif-sur-Yvette, France
| | | | - Nicolas Provost
- Servier R&D Center, Molecular Genomics, Gif-sur-Yvette, France
| | | | - Julien Verdier
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France
| | - David Launay
- U1286 INFINITE, Institute for Translational Research in Inflammation, Lille University, Gif-sur-Yvette, France
- Inserm, Lille, France
- Lille University Hospital, Department of Internal Medicine and Clinical Immunology, Reference Center for Rare Systemic Autoimmune Diseases, North and North-West France (CeRAINO), Lille, France
| | - Frédéric De Ceuninck
- Servier R&D Center, Neurosciences and Immuno-inflammation Therapeutic Area, Gif-sur-Yvette, France.
| |
Collapse
|
27
|
Ashraf GM, Rehan M, Alsayed AO, Somvanshi P, Haque S. Drug repurposing against galectin-3 using simulation-based studies. J Biomol Struct Dyn 2023; 41:6909-6916. [PMID: 36184598 DOI: 10.1080/07391102.2022.2120538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 10/07/2022]
Abstract
The protein galectin, which binds to carbohydrates and is involved in a number of therapeutic processes including cell proliferation, inflammatory responses, apoptosis, etc., has been discovered as a potential therapeutic target. Galectin-3 is a stable biomarker that exhibits both increased and decreased expression in a variety of illnesses and infections, regardless of sex, age, or body mass index. The goal of the current study is to apply bioinformatics techniques to examine the possibility of cardiovascular medications to inhibit Galectin-3-related biological activities. Unsupervised clustering techniques, molecular docking, and guided molecular dynamics (MD) simulation were used to create a computational pipeline that was used to screen potential chemical compounds from a library of chemical compounds with related molecular fingerprints. Utilizing input factors such as gene expression, mode of action, and chemical descriptors, clustering enables prioritization of medicinal molecules. Twenty-four compounds were screened and repurposed against Galectin-3 utilizing molecular docking as part of the cluster-facilitated virtual screening technique. The polar interactions that Arg144, Glu184, Arg162, His158, and Asn174 have with Bufalin, Cymarin, and Ouabalin have the highest binding affinities, according to docking studies. Studies using MD simulations confirm the tested compounds' ability to inhibit Galectin-3. Galactin-3 targeted experimental and in vivo animal model-based validation studies using Bufalin, Cymarin, and Ouabalin are also necessary.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alhuseen O Alsayed
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pallavi Somvanshi
- School of Computational & Integrative Sciences (SC&IS), Jawaharlal Nehru University, New Delhi, India
- Special Centre of Systems Medicine (SCSM), Jawaharlal Nehru University, New Delhi, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
28
|
Hatakeyama T, Unno H. Functional Diversity of Novel Lectins with Unique Structural Features in Marine Animals. Cells 2023; 12:1814. [PMID: 37508479 PMCID: PMC10377782 DOI: 10.3390/cells12141814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Due to their remarkable structural diversity, glycans play important roles as recognition molecules on cell surfaces of living organisms. Carbohydrates exist in numerous isomeric forms and can adopt diverse structures through various branching patterns. Despite their relatively small molecular weights, they exhibit extensive structural diversity. On the other hand, lectins, also known as carbohydrate-binding proteins, not only recognize and bind to the diverse structures of glycans but also induce various biological reactions based on structural differences. Initially discovered as hemagglutinins in plant seeds, lectins have been found to play significant roles in cell recognition processes in higher vertebrates. However, our understanding of lectins in marine animals, particularly marine invertebrates, remains limited. Recent studies have revealed that marine animals possess novel lectins with unique structures and glycan recognition mechanisms not observed in known lectins. Of particular interest is their role as pattern recognition molecules in the innate immune system, where they recognize the glycan structures of pathogens. Furthermore, lectins serve as toxins for self-defense against foreign enemies. Recent discoveries have identified various pore-forming proteins containing lectin domains in fish venoms and skins. These proteins utilize lectin domains to bind target cells, triggering oligomerization and pore formation in the cell membrane. These findings have spurred research into the new functions of lectins and lectin domains. In this review, we present recent findings on the diverse structures and functions of lectins in marine animals.
Collapse
Affiliation(s)
- Tomomitsu Hatakeyama
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| | - Hideaki Unno
- Biomolecular Chemistry Laboratory, Graduate School of Engineering, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852-8521, Japan
| |
Collapse
|
29
|
Matsumoto Y, Ju T. Aberrant Glycosylation as Immune Therapeutic Targets for Solid Tumors. Cancers (Basel) 2023; 15:3536. [PMID: 37509200 PMCID: PMC10377354 DOI: 10.3390/cancers15143536] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation occurs at all major types of biomolecules, including proteins, lipids, and RNAs to form glycoproteins, glycolipids, and glycoRNAs in mammalian cells, respectively. The carbohydrate moiety, known as glycans on glycoproteins and glycolipids, is diverse in their compositions and structures. Normal cells have their unique array of glycans or glycome which play pivotal roles in many biological processes. The glycan structures in cancer cells, however, are often altered, some having unique structures which are termed as tumor-associated carbohydrate antigens (TACAs). TACAs as tumor biomarkers are glycan epitopes themselves, or glycoconjugates. Some of those TACAs serve as tumor glyco-biomarkers in clinical practice, while others are the immune therapeutic targets for treatment of cancers. A monoclonal antibody (mAb) to GD2, an intermediate of sialic-acid containing glycosphingolipids, is an example of FDA-approved immune therapy for neuroblastoma indication in young adults and many others. Strategies for targeting the aberrant glycans are currently under development, and some have proceeded to clinical trials. In this review, we summarize the currently established and most promising aberrant glycosylation as therapeutic targets for solid tumors.
Collapse
Affiliation(s)
- Yasuyuki Matsumoto
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, The U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
30
|
Günther J, Galuska SP. A brief history of galectin evolution. Front Immunol 2023; 14:1147356. [PMID: 37457740 PMCID: PMC10343441 DOI: 10.3389/fimmu.2023.1147356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Galectins are a family of carbohydrate-binding proteins found in vertebrates in great abundance and diversity in terms of both structure and ligand-binding properties as well as physiological function. Proteins with clear relationships to vertebrate galectins are already found in primitive Bilateria. The increasing amount of accessible well-annotated bilaterian genomes has allowed us to reveal, through synteny analyses, a new hypothesis about the phylogenetic history of the galectin family in this animal group. Thus, we can trace the genomic localization of the putative ancestral Bilateria galectin back to the scallops as a still very primitive slow-evolving bilaterian lineage. Intriguingly, our analyses show that the primordial galectin of the Deuterostomata most likely exhibited galectin-8-like characteristics. This basal standing galectin is characterized by a tandem-repeat type with two carbohydrate recognition domains as well as by a sialic acid binding property of the N-terminal domain, which is typical for galectin-8. With the help of synteny, the amplification of this potential primordial galectin to the broad galectin cosmos of modern jawed vertebrates can be reconstructed. Therefore, it is possible to distinguish between the paralogs resulting from small-scale duplication and the ohnologues generated by whole-genome duplication. Our findings support a substantially new hypothesis about the origin of the various members of the galectin family in vertebrates. This allows us to reveal new theories on the kinship relationships of the galectins of Gnatostomata. In addition, we focus for the first time on the galectines of the Cyclostomata, which as a sister group of jawed vertebrates providing important insights into the evolutionary history of the entire subphylum. Our studies also highlight a previously neglected member of the galectin family, galectin-related protein 2. This protein appears to be a widespread ohnologue of the original tandem-repeat ancestor within Gnathostomata that has not been the focus of galectin research due to its nonclassical galactose binding sequence motif and the fact that it was lost during mammalian evolution.
Collapse
|
31
|
Jangid AK, Kim S, Kim K. Polymeric biomaterial-inspired cell surface modulation for the development of novel anticancer therapeutics. Biomater Res 2023; 27:59. [PMID: 37344853 DOI: 10.1186/s40824-023-00404-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Immune cell-based therapies are a rapidly emerging class of new medicines that directly treat and prevent targeted cancer. However multiple biological barriers impede the activity of live immune cells, and therefore necessitate the use of surface-modified immune cells for cancer prevention. Synthetic and/or natural biomaterials represent the leading approach for immune cell surface modulation. Different types of biomaterials can be applied to cell surface membranes through hydrophobic insertion, layer-by-layer attachment, and covalent conjugations to acquire surface modification in mammalian cells. These biomaterials generate reciprocity to enable cell-cell interactions. In this review, we highlight the different biomaterials (lipidic and polymeric)-based advanced applications for cell-surface modulation, a few cell recognition moieties, and how their interplay in cell-cell interaction. We discuss the cancer-killing efficacy of NK cells, followed by their surface engineering for cancer treatment. Ultimately, this review connects biomaterials and biologically active NK cells that play key roles in cancer immunotherapy applications.
Collapse
Affiliation(s)
- Ashok Kumar Jangid
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Sungjun Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, College of Engineering, Dongguk University, Seoul, South Korea.
| |
Collapse
|
32
|
Leusmann S, Ménová P, Shanin E, Titz A, Rademacher C. Glycomimetics for the inhibition and modulation of lectins. Chem Soc Rev 2023; 52:3663-3740. [PMID: 37232696 PMCID: PMC10243309 DOI: 10.1039/d2cs00954d] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 05/27/2023]
Abstract
Carbohydrates are essential mediators of many processes in health and disease. They regulate self-/non-self- discrimination, are key elements of cellular communication, cancer, infection and inflammation, and determine protein folding, function and life-times. Moreover, they are integral to the cellular envelope for microorganisms and participate in biofilm formation. These diverse functions of carbohydrates are mediated by carbohydrate-binding proteins, lectins, and the more the knowledge about the biology of these proteins is advancing, the more interfering with carbohydrate recognition becomes a viable option for the development of novel therapeutics. In this respect, small molecules mimicking this recognition process become more and more available either as tools for fostering our basic understanding of glycobiology or as therapeutics. In this review, we outline the general design principles of glycomimetic inhibitors (Section 2). This section is then followed by highlighting three approaches to interfere with lectin function, i.e. with carbohydrate-derived glycomimetics (Section 3.1), novel glycomimetic scaffolds (Section 3.2) and allosteric modulators (Section 3.3). We summarize recent advances in design and application of glycomimetics for various classes of lectins of mammalian, viral and bacterial origin. Besides highlighting design principles in general, we showcase defined cases in which glycomimetics have been advanced to clinical trials or marketed. Additionally, emerging applications of glycomimetics for targeted protein degradation and targeted delivery purposes are reviewed in Section 4.
Collapse
Affiliation(s)
- Steffen Leusmann
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Petra Ménová
- University of Chemistry and Technology, Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Elena Shanin
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, 66123 Saarbrücken, Germany.
- Department of Chemistry, Saarland University, 66123 Saarbrücken, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Biocenter 5, 1030 Vienna, Austria
| |
Collapse
|
33
|
Vander Zanden CM, Majewski J, Weissbarth Y, Browne DF, Watkins EB, Gabius HJ. Structure of Galectin-3 bound to a model membrane containing ganglioside GM1. Biophys J 2023; 122:1926-1937. [PMID: 35986516 PMCID: PMC10257012 DOI: 10.1016/j.bpj.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022] Open
Abstract
Galectin-3 (Gal-3) is a β-galactosidase-binding protein involved in various biological processes, including neuronal growth and adhesion. The pairing of Gal-3 with ganglioside GM1's pentasaccharide chain at the outer leaflet of the plasma membrane, which triggers downstream cell-signaling cascades, seems to be involved in these processes. A crucial feature of Gal-3 is its ability to form oligomers and supramolecular assemblies that connect various carbohydrate-decorated molecules. Although we know the atomistic structure of Gal-3 bound to small carbohydrate ligands, it remains unclear how Gal-3 binds GM1 in a membrane. Furthermore, the influence of this interaction on Gal-3's structure and oligomeric assembly has to be elucidated. In this study, we used X-ray reflectivity (XR) from a model membrane to determine the structure and surface coverage of Gal-3 bound to a membrane containing GM1. We observed that the carbohydrate recognition domain interacts with GM1's pentasaccharide, while the N-terminal domain is pointed away from the membrane, likely to facilitate protein-protein interactions. In a membrane containing 20 mol % GM1, Gal-3 covered ∼50% of the membrane surface with one Gal-3 molecule bound per 2130 Å2. We used molecular dynamics simulations and Voronoi tessellation algorithms to build an atomistic model of membrane-bound Gal-3, which is supported by the XR results. Overall, this work provides structural information describing how Gal-3 can bind GM1's pentasaccharide chain, a prerequisite for triggering regulatory processes in neuronal growth and adhesion.
Collapse
Affiliation(s)
- Crystal M Vander Zanden
- Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado.
| | - Jaroslaw Majewski
- Division of Molecular and Cellular Biology, National Science Foundation, Alexandria, Virginia; Department of Chemical and Biological Engineering and Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico; Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Yvonne Weissbarth
- Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado
| | - Danielle F Browne
- Department of Chemistry and Biochemistry, University of Colorado at Colorado Springs, Colorado Springs, Colorado
| | - Erik B Watkins
- MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Planegg, Germany
| |
Collapse
|
34
|
Zukowska D, Gedaj A, Porebska N, Pozniak M, Krzyscik M, Czyrek A, Krowarsch D, Zakrzewska M, Otlewski J, Opalinski L. Receptor clustering by a precise set of extracellular galectins initiates FGFR signaling. Cell Mol Life Sci 2023; 80:113. [PMID: 37012400 PMCID: PMC10070233 DOI: 10.1007/s00018-023-04768-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
FGF/FGFR signaling is critical for the development and homeostasis of the human body and imbalanced FGF/FGFR contributes to the progression of severe diseases, including cancers. FGFRs are N-glycosylated, but the role of these modifications is largely unknown. Galectins are extracellular carbohydrate-binding proteins implicated in a plethora of processes in heathy and malignant cells. Here, we identified a precise set of galectins (galectin-1, -3, -7, and -8) that directly interact with N-glycans of FGFRs. We demonstrated that galectins bind N-glycan chains of the membrane-proximal D3 domain of FGFR1 and trigger differential clustering of FGFR1, resulting in activation of the receptor and initiation of downstream signaling cascades. Using engineered galectins with controlled valency, we provide evidence that N-glycosylation-dependent clustering of FGFR1 constitutes a mechanism for FGFR1 stimulation by galectins. We revealed that the consequences of galectin/FGFR signaling for cell physiology are markedly different from the effects induced by canonical FGF/FGFR units, with galectin/FGFR signaling affecting cell viability and metabolic activity. Furthermore, we showed that galectins are capable of activating an FGFR pool inaccessible for FGF1, enhancing the amplitude of transduced signals. Summarizing, our data identify a novel mechanism of FGFR activation, in which the information stored in the N-glycans of FGFRs provides previously unanticipated information about FGFRs' spatial distribution, which is differentially deciphered by distinct multivalent galectins, affecting signal transmission and cell fate.
Collapse
Affiliation(s)
- Dominika Zukowska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Aleksandra Gedaj
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Natalia Porebska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Marta Pozniak
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Mateusz Krzyscik
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Aleksandra Czyrek
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Daniel Krowarsch
- Department of Protein Biotechnology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Lukasz Opalinski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
35
|
Moreno-Cabezuelo JÁ, Del Carmen Muñoz-Marín M, López-Lozano A, Athayde D, Simón-García A, Díez J, Archer M, Issoglio FM, García-Fernández JM. Production, homology modeling and mutagenesis studies on GlcH glucose transporter from Prochlorococcus sp. strain SS120. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148954. [PMID: 36563737 DOI: 10.1016/j.bbabio.2022.148954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The marine cyanobacterium Prochlorococcus is one of the main primary producers on Earth, which can take up glucose by using the high affinity, multiphasic transporter GlcH. We report here the overexpression of glcH from Prochlorococcus marinus strain SS120 in Escherichia coli. Modeling studies of GlcH using the homologous MelB melibiose transporter from Salmonella enterica serovar Typhimurium showed high conservation at the overall fold. We observed that an important structural interaction, mediated by a strong hydrogen bond between D8 and R141, is conserved in Prochlorococcus, although the corresponding amino acids in MelB from Salmonella are different. Biased docking studies suggested that when glucose reaches the pocket of the transporter and interacts with D8 and R141, the hydrogen bond network in which these residues are involved could be disrupted, favoring a conformational change with the subsequent translocation of the glucose molecule towards the cytoplasmic region of the pmGlcH structure. Based on these theoretical predictions and on the conservation of N117 and W348 in other MelB structures, D8, N117, R141 and W348 were mutated to glycine residues. Their key role in glucose transport was evaluated by glucose uptake assays. N117G and W348G mutations led to 17 % decrease in glucose uptake, while D8G and R141G decreased the glucose transport by 66 % and 92 % respectively. Overall, our studies provide insights into the Prochlorococcus 3D-structure of GlcH, paving the way for further analysis to understand the features which are involved in the high affinity and multiphasic kinetics of this transporter.
Collapse
Affiliation(s)
- José Ángel Moreno-Cabezuelo
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - María Del Carmen Muñoz-Marín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Antonio López-Lozano
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Diogo Athayde
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Ana Simón-García
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Jesús Díez
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Federico M Issoglio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| | - José Manuel García-Fernández
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
36
|
Aggarwal A, Jennings CL, Manning E, Cameron SJ. Platelets at the Vessel Wall in Non-Thrombotic Disease. Circ Res 2023; 132:775-790. [PMID: 36927182 PMCID: PMC10027394 DOI: 10.1161/circresaha.122.321566] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Platelets are small, anucleate entities that bud from megakaryocytes in the bone marrow. Among circulating cells, platelets are the most abundant cell, traditionally involved in regulating the balance between thrombosis (the terminal event of platelet activation) and hemostasis (a protective response to tissue injury). Although platelets lack the precise cellular control offered by nucleate cells, they are in fact very dynamic cells, enriched in preformed RNA that allows them the capability of de novo protein synthesis which alters the platelet phenotype and responses in physiological and pathological events. Antiplatelet medications have significantly reduced the morbidity and mortality for patients afflicted with thrombotic diseases, including stroke and myocardial infarction. However, it has become apparent in the last few years that platelets play a critical role beyond thrombosis and hemostasis. For example, platelet-derived proteins by constitutive and regulated exocytosis can be found in the plasma and may educate distant tissue including blood vessels. First, platelets are enriched in inflammatory and anti-inflammatory molecules that may regulate vascular remodeling. Second, platelet-derived microparticles released into the circulation can be acquired by vascular endothelial cells through the process of endocytosis. Third, platelets are highly enriched in mitochondria that may contribute to the local reactive oxygen species pool and remodel phospholipids in the plasma membrane of blood vessels. Lastly, platelets are enriched in proteins and phosphoproteins which can be secreted independent of stimulation by surface receptor agonists in conditions of disturbed blood flow. This so-called biomechanical platelet activation occurs in regions of pathologically narrowed (atherosclerotic) or dilated (aneurysmal) vessels. Emerging evidence suggests platelets may regulate the process of angiogenesis and blood flow to tumors as well as education of distant organs for the purposes of allograft health following transplantation. This review will illustrate the potential of platelets to remodel blood vessels in various diseases with a focus on the aforementioned mechanisms.
Collapse
Affiliation(s)
- Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Courtney L. Jennings
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Emily Manning
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Scott J. Cameron
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Hematology, Taussig Cancer Center, Cleveland, Ohio
| |
Collapse
|
37
|
Behnoush AH, Khalaji A, Alemohammad SY, Kalantari A, Cannavo A, Dimitroff CJ. Galectins can serve as biomarkers in COVID-19: A comprehensive systematic review and meta-analysis. Front Immunol 2023; 14:1127247. [PMID: 36923399 PMCID: PMC10009778 DOI: 10.3389/fimmu.2023.1127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. METHODS International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). RESULTS A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. CONCLUSION Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Non–Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Yasaman Alemohammad
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Charles J. Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at Florida International University, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
38
|
Targeting galectin-driven regulatory circuits in cancer and fibrosis. Nat Rev Drug Discov 2023; 22:295-316. [PMID: 36759557 DOI: 10.1038/s41573-023-00636-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 02/11/2023]
Abstract
Galectins are a family of endogenous glycan-binding proteins that have crucial roles in a broad range of physiological and pathological processes. As a group, these proteins use both extracellular and intracellular mechanisms as well as glycan-dependent and independent pathways to reprogramme the fate and function of numerous cell types. Given their multifunctional roles in both tissue fibrosis and cancer, galectins have been identified as potential therapeutic targets for these disorders. Here, we focus on the therapeutic relevance of galectins, particularly galectin 1 (GAL1), GAL3 and GAL9 to tumour progression and fibrotic diseases. We consider an array of galectin-targeted strategies, including small-molecule carbohydrate inhibitors, natural polysaccharides and their derivatives, peptides, peptidomimetics and biological agents (notably, neutralizing monoclonal antibodies and truncated galectins) and discuss their mechanisms of action, selectivity and therapeutic potential in preclinical models of fibrosis and cancer. We also review the results of clinical trials that aim to evaluate the efficacy of galectin inhibitors in patients with idiopathic pulmonary fibrosis, nonalcoholic steatohepatitis and cancer. The rapid pace of glycobiology research, combined with the acute need for drugs to alleviate fibrotic inflammation and overcome resistance to anticancer therapies, will accelerate the translation of anti-galectin therapeutics into clinical practice.
Collapse
|
39
|
Ezhilarasan D. Unraveling the pathophysiologic role of galectin-3 in chronically injured liver. J Cell Physiol 2023; 238:673-686. [PMID: 36745560 DOI: 10.1002/jcp.30956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Galectin-3 (Gal-3) previously referred to as S-type lectins, is a soluble protein that specifically binds to β-galactoside carbohydrates with high specificity. Gal-3 plays a pivotal role in a variety of pathophysiological processes such as cell proliferation, inflammation, differentiation, angiogenesis, transformation and apoptosis, pre-mRNA splicing, metabolic syndromes, fibrosis, and host defense. The role of Gal-3 has also been implicated in liver diseases. Gal-3 is activated upon a hepatotoxic insult to the liver and its level has been shown to be upregulated in fatty liver diseases, inflammation, nonalcoholic steatohepatitis, fibrosis, cholangitis, cirrhosis, and hepatocellular carcinoma (HCC). Gal-3 directly interacts with the NOD-like receptor family, pyrin domain containing 3, and activates the inflammasome in macrophages of the liver. In the chronically injured liver, Gal-3 secreted by injured hepatocytes and immune cells, activates hepatic stellate cells (HSCs) in a paracrine fashion to acquire a myofibroblast like collagen-producing phenotype. Activated HSCs in the fibrotic liver secrete Gal-3 which acts via autocrine signaling to exacerbate extracellular matrix synthesis and fibrogenesis. In the stromal microenvironment, Gal-3 activates cancer cell proliferation, migration, invasiveness, and metastasis. Clinically, increased serum levels and Gal-3 expression were observed in the liver tissue of nonalcoholic steatohepatitis, fibrotic/cirrhotic, and HCC patients. The pathological role of Gal-3 has been experimentally and clinically reported in the progression of chronic liver disease. Therefore, this review discusses the pathological role of Gal-3 in the progression of chronic liver diseases.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Molecular Medicine and Toxicology Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
40
|
Kapetanakis NI, Busson P. Galectins as pivotal components in oncogenesis and immune exclusion in human malignancies. Front Immunol 2023; 14:1145268. [PMID: 36817445 PMCID: PMC9935586 DOI: 10.3389/fimmu.2023.1145268] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Galectins are galactoside-binding proteins, exerting numerous functions inside and outside the cell, particularly conferring adaptation to stress factors. For most of them, aberrant expression profiles have been reported in the context of cancer. Albeit not being oncogenic drivers, galectins can be harnessed to exacerbate the malignant phenotype. Their impact on disease establishment and progression is not limited to making cancer cells resistant to apoptosis, but is prominent in the context of the tumor microenvironment, where it fosters angiogenesis, immune escape and exclusion. This review focuses mainly on Gal-1, Gal-3 and Gal-9 for which the involvement in cancer biology is best known. It presents the types of galectin dysregulations, attempts to explain the mechanisms behind them and analyzes the different ways in which they favor tumour growth. In an era where tumour resistance to immunotherapy appears as a major challenge, we highlight the crucial immunosuppressive roles of galectins and the potential therapeutic benefits of combinatorial approaches including galectin inhibition.
Collapse
Affiliation(s)
| | - Pierre Busson
- Host-Tumor Interactions in Head and Neck Carcinoma: Exploration and Therapeutic Modulations, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche(UMR) 9018 - METabolic and SYstemic aspects of oncogenesis for new therapeutic approaches (METSY), Gustave Roussy and Université Paris-Saclay, Villejuif, France
| |
Collapse
|
41
|
Tsai MT, Yang RB, Ou SM, Tseng WC, Lee KH, Yang CY, Chang FP, Tarng DC. Plasma Galectin-9 Is a Useful Biomarker for Predicting Renal Function in Patients Undergoing Native Kidney Biopsy. Arch Pathol Lab Med 2023; 147:167-176. [PMID: 35687787 DOI: 10.5858/arpa.2021-0466-oa] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/05/2023]
Abstract
CONTEXT.— Galectin-9 reduces tissue damage in certain immune-mediated glomerular diseases. However, its role in structural and functional renal changes in patients with varying types of chronic kidney disease (CKD) is less clear. OBJECTIVE.— To investigate the association between plasma galectin-9 levels, proteinuria, tubulointerstitial lesions, and renal function in different CKD stages. DESIGN.— We measured plasma galectin-9 levels in 243 patients undergoing renal biopsy for determining the CKD etiology. mRNA and protein expression levels of intrarenal galectin-9 were assessed by quantitative real-time polymerase chain reaction and immunostaining. Relationships between plasma galectin-9, clinical characteristics, and tubulointerstitial damage were analyzed with logistic regression. We investigated galectin-9 expression patterns in vitro in murine J774 macrophages treated with differing stimuli. RESULTS.— To analyze the relationship between galectin-9 and clinical features, we divided the patients into 2 groups according to median plasma galectin-9 levels. The high galectin-9 group tended to be older and to have decreased renal function, higher proteinuria, and greater interstitial fibrosis. After multivariable adjustment, elevated plasma galectin-9 levels were independently associated with stage 3b or higher CKD. An analysis of gene expression in the tubulointerstitial compartment in the biopsy samples showed a significant positive correlation between intrarenal galectin-9 mRNA expression and plasma galectin-9 levels. Immunohistochemistry confirmed increased galectin-9 expression in the renal interstitium of patients with advanced CKD, and most galectin-9-positive cells were macrophages, as determined by double-immunofluorescence staining. In vitro experiments showed that galectin-9 expression in macrophages was significantly increased after interferon-γ stimulation. CONCLUSIONS.— Our findings suggest that plasma galectin-9 is a good biomarker for diagnosing advanced CKD.
Collapse
Affiliation(s)
- Ming-Tsun Tsai
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan.,Tsai and R-B Yang contributed equally to this manuscript
| | - Ruey-Bing Yang
- From the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (R-B Yang).,Tsai and R-B Yang contributed equally to this manuscript
| | - Shuo-Ming Ou
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Cheng Tseng
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kuo-Hua Lee
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Yu Yang
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Pang Chang
- From the Department of Pathology and Laboratory Medicine (Chang), Taipei Veterans General Hospital, Taipei, Taiwan
| | - Der-Cherng Tarng
- From the Division of Nephrology, Department of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), Taipei Veterans General Hospital, Taipei, Taiwan.,From the Institute of Clinical Medicine, School of Medicine (Tsai, Ou, Tseng, Lee, C-Y Yang, Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan.,From the Department and Institute of Physiology (Tarng), National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
42
|
Cinkir U, Bir LS, Tekin S, Karagulmez AM, Avci Cicek E, Senol H. Investigation of anti-galectin-8 levels in patients with multiple sclerosis: A consort-clinical study. Medicine (Baltimore) 2023; 102:e32621. [PMID: 36607856 PMCID: PMC9829274 DOI: 10.1097/md.0000000000032621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Galectins are a family of endogenous mammalian lectins involved in pathogen recognition, killing, and facilitating the entry of microbial pathogens and parasites into the host. They are the intermediators that decipher glycan-containing information about the host immune cells and microbial structures to modulate signaling events that cause cellular proliferation, chemotaxis, cytokine secretion, and cell-to-cell communication. They have subgroups that take place in different roles in the immune system. The effect of galectin-8 on multiple sclerosis disease (MS) has been studied in the literature, but the results seemed unclear. In this study, we aimed to determine anti-galectin-8 (anti-Gal-8) levels in MS and their potential use as biomarkers. METHODS In this experimental study, 45 MS patients diagnosed according to McDonald criteria were included in the patient group. The healthy control group contained 45 people without MS diagnosis and any risk factors. Demographic data, height, weight, body mass index, blood glucose, thyroid-stimulating hormone, alanine transaminase, aspartate transaminase, creatinine, low-density lipoprotein, anti-Gal-8 levels, the prevalence of hypertension, diabetes mellitus and coronary artery disease were recorded. In addition, the expanded disability status scale and disease duration were evaluated in the patient group. Data were presented as mean ± standard deviations. RESULTS The mean blood anti-galectin-8 value of the patient group was 4.84 ± 4.53 ng/mL, while it was 4.67 ± 3.40 ng/mL in the control group, and the difference in these values was found statistically insignificant (P > .05). Moreover, body mass index, glucose, alanine transaminase, aspartate transaminase, thyroid-stimulating hormone, and low-density lipoprotein levels were also statistically insignificant (P > .05). CONCLUSION This study examined anti-Gal-8 levels in MS patients. The relationship between MS and galectin-8 and anti-Gal-8 levels in patients needs further clarification. As a result, the study's results could help elucidate the pathogenesis of MS and give more evidence for diagnosis.
Collapse
Affiliation(s)
- Ufuk Cinkir
- T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Istanbul, Turkey
- * Correspondence: Ufuk Cinkir, T.C. Saglik Bakanligi Başakşehir Cam ve Sakura Sehir Hastanesi, Communication, T.C. Saglik Bakanligi Başakşehir Cam Ve Sakura Sehir Hastanesi, Istanbul 34480, Turkey (e-mail: )
| | - Levent Sinan Bir
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Selma Tekin
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Ahmet Magrur Karagulmez
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Esin Avci Cicek
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| | - Hande Senol
- Pamukkale Universitesi Tip Fakultesi Hastanesi, Communication, Pamukkale Universitesi Tip Fakultesi Hastanesi, Denizli, Turkey
| |
Collapse
|
43
|
Capasso D, Pirone L, Di Gaetano S, Russo R, Saviano M, Frisulli V, Antonacci A, Pedone E, Scognamiglio V. Galectins detection for the diagnosis of chronic diseases: An emerging biosensor approach. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
A roadmap for translational cancer glycoimmunology at single cell resolution. J Exp Clin Cancer Res 2022; 41:143. [PMID: 35428302 PMCID: PMC9013178 DOI: 10.1186/s13046-022-02335-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer cells can evade immune responses by exploiting inhibitory immune checkpoints. Immune checkpoint inhibitor (ICI) therapies based on anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have been extensively explored over the recent years to unleash otherwise compromised anti-cancer immune responses. However, it is also well established that immune suppression is a multifactorial process involving an intricate crosstalk between cancer cells and the immune systems. The cancer glycome is emerging as a relevant source of immune checkpoints governing immunosuppressive behaviour in immune cells, paving an avenue for novel immunotherapeutic options. This review addresses the current state-of-the-art concerning the role played by glycans controlling innate and adaptive immune responses, while shedding light on available experimental models for glycoimmunology. We also emphasize the tremendous progress observed in the development of humanized models for immunology, the paramount contribution of advances in high-throughput single-cell analysis in this context, and the importance of including predictive machine learning algorithms in translational research. This may constitute an important roadmap for glycoimmunology, supporting careful adoption of models foreseeing clinical translation of fundamental glycobiology knowledge towards next generation immunotherapies.
Collapse
|
45
|
Mansour AA, Krautter F, Zhi Z, Iqbal AJ, Recio C. The interplay of galectins-1, -3, and -9 in the immune-inflammatory response underlying cardiovascular and metabolic disease. Cardiovasc Diabetol 2022; 21:253. [PMID: 36403025 PMCID: PMC9675972 DOI: 10.1186/s12933-022-01690-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Galectins are β-galactoside-binding proteins that bind and crosslink molecules via their sugar moieties, forming signaling and adhesion networks involved in cellular communication, differentiation, migration, and survival. Galectins are expressed ubiquitously across immune cells, and their function varies with their tissue-specific and subcellular location. Particularly galectin-1, -3, and -9 are highly expressed by inflammatory cells and are involved in the modulation of several innate and adaptive immune responses. Modulation in the expression of these proteins accompany major processes in cardiovascular diseases and metabolic disorders, such as atherosclerosis, thrombosis, obesity, and diabetes, making them attractive therapeutic targets. In this review we consider the broad cellular activities ascribed to galectin-1, -3, and -9, highlighting those linked to the progression of different inflammatory driven pathologies in the context of cardiovascular and metabolic disease, to better understand their mechanism of action and provide new insights into the design of novel therapeutic strategies.
Collapse
Affiliation(s)
- Adel Abo Mansour
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Franziska Krautter
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhaogong Zhi
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Asif Jilani Iqbal
- Institute of Cardiovascular Sciences (ICVS), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Carlota Recio
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Farmacología Molecular y Traslacional -BIOPharm, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
46
|
Chen Y, Fu W, Zheng Y, Yang J, Liu Y, Qi Z, Wu M, Fan Z, Yin K, Chen Y, Gao W, Ding Z, Dong J, Li Q, Zhang S, Hu L. Galectin 3 enhances platelet aggregation and thrombosis via Dectin-1 activation: a translational study. Eur Heart J 2022; 43:3556-3574. [PMID: 35165707 PMCID: PMC9989600 DOI: 10.1093/eurheartj/ehac034] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/25/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS Galectin-3, a β-galactoside-binding lectin, is abnormally increased in cardiovascular disease. Plasma Galectin-3 receives a Class II recommendation for heart failure management and has been extensively studied for multiple cellular functions. The direct effects of Galectin-3 on platelet activation remain unclear. This study explores the direct effects of Galectin-3 on platelet activation and thrombosis. METHODS AND RESULTS A strong positive correlation between plasma Galectin-3 concentration and platelet aggregation or whole blood thrombus formation was observed in patients with coronary artery disease (CAD). Multiple platelet function studies demonstrated that Galectin-3 directly potentiated platelet activation and in vivo thrombosis. Mechanistic studies using the Dectin-1 inhibitor, laminarin, and Dectin-1-/- mice revealed that Galectin-3 bound to and activated Dectin-1, a receptor not previously reported in platelets, to phosphorylate spleen tyrosine kinase and thus increased Ca2+ influx, protein kinase C activation, and reactive oxygen species production to regulate platelet hyperreactivity. TD139, a Galectin-3 inhibitor in a Phase II clinical trial, concentration dependently suppressed Galectin-3-potentiated platelet activation and inhibited occlusive thrombosis without exacerbating haemorrhage in ApoE-/- mice, which spontaneously developed increased plasma Galectin-3 levels. TD139 also suppressed microvascular thrombosis to protect the heart from myocardial ischaemia-reperfusion injury in ApoE-/- mice. CONCLUSION Galectin-3 is a novel positive regulator of platelet hyperreactivity and thrombus formation in CAD. As TD139 has potent antithrombotic effects without bleeding risk, Galectin-3 inhibitors may have therapeutic advantages as potential antiplatelet drugs for patients with high plasma Galectin-3 levels.
Collapse
Affiliation(s)
- Yufei Chen
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanrong Fu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunbo Zheng
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yangyang Liu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiyong Qi
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meiling Wu
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, USA
| | - Kanhua Yin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunfeng Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhongren Ding
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzeng Dong
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Liang Hu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
47
|
Exploring the Molecular Interactions of Symmetrical and Unsymmetrical Selenoglycosides with Human Galectin-1 and Galectin-3. Int J Mol Sci 2022; 23:ijms23158273. [PMID: 35955408 PMCID: PMC9368490 DOI: 10.3390/ijms23158273] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Galectins (Gals) are small cytosolic proteins that bind β-galactoside residues via their evolutionarily conserved carbohydrate recognition domain. Their dysregulation has been shown to be associated with many diseases. Consequently, targeting galectins for clinical applications has become increasingly relevant to develop tailored inhibitors selectively for one galectin. Accordingly, binding studies providing the molecular details of the interaction between galectin and inhibitor may be useful for the rational design of potent and selective antagonists. Gal-1 and Gal-3 are among the best-studied galectins, mainly for their roles in cancer progression; therefore, the molecular details of their interaction with inhibitors are demanded. This work gains more value by focusing on the interaction between Gal-1 and Gal-3 with the selenylated analogue of the Gal inhibitor thiodigalactose, characterized by a selenoglycoside bond (SeDG), and with unsymmetrical diglycosyl selenides (unsym(Se). Gal-1 and Gal-3 were produced heterologously and biophysically characterized. Interaction studies were performed by ITC, NMR spectroscopy, and MD simulation, and thermodynamic values were discussed and integrated with spectroscopic and computational results. The 3D complexes involving SeDG when interacting with Gal-1 and Gal-3 were depicted. Overall, the collected results will help identify hot spots for the design of new, better performing, and more specific Gal inhibitors.
Collapse
|
48
|
Tobola F, Wiltschi B. One, two, many: Strategies to alter the number of carbohydrate binding sites of lectins. Biotechnol Adv 2022; 60:108020. [PMID: 35868512 DOI: 10.1016/j.biotechadv.2022.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
Abstract
Carbohydrates are more than an energy-storage. They are ubiquitously found on cells and most proteins, where they encode biological information. Lectins bind these carbohydrates and are essential for translating the encoded information into biological functions and processes. Hundreds of lectins are known, and they are found in all domains of life. For half a century, researchers have been preparing variants of lectins in which the binding sites are varied. In this way, the traits of the lectins such as the affinity, avidity and specificity towards their ligands as well as their biological efficacy were changed. These efforts helped to unravel the biological importance of lectins and resulted in improved variants for biotechnological exploitation and potential medical applications. This review gives an overview on the methods for the preparation of artificial lectins and complexes thereof and how reducing or increasing the number of binding sites affects their function.
Collapse
Affiliation(s)
- Felix Tobola
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | - Birgit Wiltschi
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
49
|
Galectin-9 and Interferon-Gamma Are Released by Natural Killer Cells upon Activation with Interferon-Alpha and Orchestrate the Suppression of Hepatitis C Virus Infection. Viruses 2022; 14:v14071538. [PMID: 35891518 PMCID: PMC9317111 DOI: 10.3390/v14071538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Natural killer (NK) cells mount an immune response against hepatitis C virus (HCV) infection and can be activated by several cytokines, including interleukin-2 (IL-2), IL-15, and interferon-alpha (IFN-α). By exploiting the Huh7.5 hepatoma cell line infected with the HCV JFH1 genome, we provide novel insights into the antiviral effector functions of human primary NK cells after cytokine stimulation. NK cells activated with IFN-α (IFNα-NKs) had enhanced contact-dependent and -independent responses as compared with NK cells activated with IL-2/IL-15 (IL2/IL15-NKs) and could inhibit HCV replication both in vitro and in vivo. Importantly, IFN-α, but not IL-2/IL-15, protected NK cells from the functional inhibition exerted by HCV. By performing flow cytometry, multiplex cytokine profiling, and mass-spectrometry-based proteomics, we discovered that IFNα-NKs secreted high levels of galectin-9 and interferon-gamma (IFN-γ), and by conducting neutralization assays, we confirmed the major role of these molecules in HCV suppression. We speculated that galectin-9 might act extracellularly to inhibit HCV binding to host cells and downstream infection. In silico approaches predicted the binding of HCV envelope protein E2 to galectin-9 carbohydrate-recognition domains, and co-immunoprecipitation assays confirmed physical interaction. IFN-γ, on the other hand, triggered the intracellular expressions of two antiviral gate-keepers in target cells, namely, myxovirus-1 (MX1) and interferon-induced protein with tetratricopeptide repeats 1 (IFIT1). Collectively, our data add more complexity to the antiviral innate response mediated by NK cells and highlight galectin-9 as a key molecule that might be exploited to neutralize productive viral infection.
Collapse
|
50
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|