1
|
Teixeira RB, Albro JH, Sabra M, Abedin T, Tucker AN, Sidharth R, Sellke FW, Wipf P, Abid MR. Mitochondria-targeted ROS scavenger JP4-039 improves cardiac function in a post-myocardial infarction animal model and induces angiogenesis in vitro. PLoS One 2025; 20:e0320703. [PMID: 40273045 PMCID: PMC12021227 DOI: 10.1371/journal.pone.0320703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/22/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND This study aimed at evaluating the effects of JP4-039, a mitochondria-specific reactive oxygen species (mito-ROS) scavenger, on coronary angiogenesis and cardiac function in a post-myocardial infarction (MI) animal model. METHODS Mice underwent ligation of the left anterior descending (LAD) artery to induce MI and received intraperitoneal (i.p.) injections of JP4-039 or vehicle (n=8 animals/group) three times/week for four weeks. Echocardiography for cardiac function and immunohistochemistry for Infarction area and capillary density were carried out. Angiogenic potential of endothelial cells (EC) was assessed by ex vivo tube formation using mouse heart EC (MHEC) and by aortic and atrial sprouting. Western blots were conducted using mouse cardiac tissue and lysates from HCAECs that were treated with or without JP4-039. RESULTS Cardiac function including ejection fraction, fractional shortening, and fractional area change were improved significantly in JP4-039-treated animals compared to the vehicle group. JP4-039-treated hearts demonstrated significant reduction in infarction size and increased capillary density in the ischemic area. These findings were consistent with increased ex vivo endothelial sprouting of the aortae and atrial tissue from the mice treated with JP4-039. Western blots using cardiac tissue lysates from JP4-039-treated animals showed decrease in phosphorylation of AMPKα at the Threonine 172, suggesting a plausible increase in the ATP:AMP ratio. Interestingly, JP4-039 increased expression of mitochondrial complexes I and IV and increased ATP synthesis in EC. CONCLUSIONS JP4-039-mediated reduction in mito-ROS results in significantly increased coronary vascular density in ischemic myocardium, improved ATP synthesis, and recovery of post-MI cardiac function. Together, these results suggest that nitroxide nanodrug-mediated reduction in mito-ROS may help recover post-MI cardiac function.
Collapse
Affiliation(s)
- Rayane Brinck Teixeira
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Jane H. Albro
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Mohamed Sabra
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Taslova Abedin
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Aja N. Tucker
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Raj Sidharth
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Frank W. Sellke
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Ruhul Abid
- Department of Surgery, Division of Cardiothoracic Surgery, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
2
|
Tashkandi AJ, Gorman A, McGoldrick Mathers E, Carney G, Yacoub A, Setyaningsih WAW, Kuburas R, Margariti A. Metabolic and Mitochondrial Dysregulations in Diabetic Cardiac Complications. Int J Mol Sci 2025; 26:3016. [PMID: 40243689 PMCID: PMC11988959 DOI: 10.3390/ijms26073016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
The growing prevalence of diabetes highlights the urgent need to study diabetic cardiovascular complications, specifically diabetic cardiomyopathy, which is a diabetes-induced myocardial dysfunction independent of hypertension or coronary artery disease. This review examines the role of mitochondrial dysfunction in promoting diabetic cardiac dysfunction and highlights metabolic mechanisms such as hyperglycaemia-induced oxidative stress. Chronic hyperglycaemia and insulin resistance can activate harmful pathways, including advanced glycation end-products (AGEs), protein kinase C (PKC) and hexosamine signalling, uncontrolled reactive oxygen species (ROS) production and mishandling of Ca2+ transient. These processes lead to cardiomyocyte apoptosis, fibrosis and contractile dysfunction. Moreover, endoplasmic reticulum (ER) stress and dysregulated RNA-binding proteins (RBPs) and extracellular vesicles (EVs) contribute to tissue damage, which drives cardiac function towards heart failure (HF). Advanced patient-derived induced pluripotent stem cell (iPSC) cardiac organoids (iPS-COs) are transformative tools for modelling diabetic cardiomyopathy and capturing human disease's genetic, epigenetic and metabolic hallmarks. iPS-COs may facilitate the precise examination of molecular pathways and therapeutic interventions. Future research directions encourage the integration of advanced models with mechanistic techniques to promote novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Refik Kuburas
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| | - Andriana Margariti
- Wellcome Wolfson Institute of Experimental Medicine, Queens University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (A.J.T.); (A.G.); (E.M.M.); (G.C.); (A.Y.); (W.A.W.S.)
| |
Collapse
|
3
|
He J, Chen Y, Li Y, Feng Y. Molecular mechanisms and therapeutic interventions in acute kidney injury: a literature review. BMC Nephrol 2025; 26:144. [PMID: 40121405 PMCID: PMC11929251 DOI: 10.1186/s12882-025-04077-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Acute kidney injury (AKI) is a clinical challenge characterized by elevated morbidity and a substantial impact on individual health and socioeconomic factors. A comprehensive examination of the molecular pathways behind AKI is essential for its prevention and management. In recent years, vigorous research in the domain of AKI has concentrated on pathophysiological characteristics, early identification, and therapeutic approaches across many aetiologies and highlighted the principal themes of oxidative stress, inflammatory response, apoptosis, necrosis, and immunological response. This review comprehensively reviewed the molecular mechanisms underlying AKI, including oxidative stress, inflammatory pathways, immune cell-mediated injury, activation of the renin-angiotensin-aldosterone (RAAS) system, mitochondrial damage and autophagy, apoptosis, necrosis, etc. Inflammatory pathways are involved in the injuries in all four structural components of the kidney. We also summarized therapeutic techniques and pharmacological agents associated with the aforementioned molecular pathways. This work aims to clarify the molecular mechanisms of AKI thoroughly, offer novel insights for further investigations of AKI, and facilitate the formulation of efficient therapeutic methods to avert the progression of AKI.
Collapse
Affiliation(s)
- Jiajia He
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqin Chen
- Department of Nephrology, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yi Li
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China
| | - Yunlin Feng
- Department of Nephrology and Institute of Nephrology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Clinical Research Centre for Kidney Diseases, Chengdu, 610072, China.
| |
Collapse
|
4
|
Ryabova A, Romanishkin I, Markova I, Pominova D. Simultaneous Application of Methylene Blue and Chlorin e6 Photosensitizers: Investigation on a Cell Culture. Sovrem Tekhnologii Med 2025; 17:58-68. [PMID: 40071078 PMCID: PMC11892575 DOI: 10.17691/stm2025.17.1.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Indexed: 03/14/2025] Open
Abstract
The application of photosensitizers for inhibition of oxidative phosphorylation in order to temporally decrease oxygen uptake by tumor cells in the course of photodynamic therapy (PDT) evokes growing interest. The aim of the study is to overcome tumor hypoxia for further photodynamic therapy with simultaneous use of type I photosensitizer methylene blue (MB) and type II photosensitizer chlorin e6. Material and Methods A photodynamic activity of MB and its combined use with chlorin e6 has been studied on the HeLa cell culture, their effect on cell metabolism in their co-accumulation and subsequent irradiation has also been assessed. Results MB generates reactive oxygen species in the cells in contrast to chlorin e6, which produces singlet oxygen. Besides, MB is converted to a colorless leucoform at low concentrations in the process of de-oxygenation. Incubation of cells with MB concurrently with chlorin e6 results in its greater fluorescence as compared to the incubation with MB only. MB concentration in the range of 1-10 mg/kg and the laser radiation dose of 60 J/cm2 do not cause cell death, probably, due to the MB transition to the photodynamically inactive leucoform. Cell death is observed after PDT in all samples with chlorin e6 and with MB at the 0-20 mg/kg concentration ranges and at 60 J/cm2 radiation dose. The phototoxicity of MB together with chlorin e6 is higher than that of chlorin e6 alone. The analysis of metabolic NADH cofactor lifetime after the incubation of the cells with MB and chlorin e6, and after PDT with them has revealed the presence of stress seen as an extension of NADH fluorescence cloud along the metabolic axis. After PDT with low concentrations of MB, the NADH fluorescent cloud on the phasor diagram shifts to the right towards short lifetimes (closer to anaerobic glycolysis along the NADH metabolic trajectory). The PDT with MB and chlorin e6 leads to the shift of the NADH fluorescence cloud on the phasor diagram to the left towards long lifetimes (closer to oxidative phosphorylation along the NADH metabolic trajectory). In this case, the cells die due to necrosis. Conclusion The co-accumulation of MB with chlorin e6 prevents MB reduction to a colorless leucoform, decreasing the oxygen uptake by the cells and making it possible to use simultaneously type I and II photodynamic reactions.
Collapse
Affiliation(s)
- A.V. Ryabova
- Senior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia; Associate Professor, Department 87 “Laser Micro-, Nano-, and Biotechnologies, Engineering Physics Institute for Biomedicine”; National Research Nuclear University MEPhI, 31 Kashirskoye Highway, Moscow, 115409, Russia
| | - I.D. Romanishkin
- Junior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia
| | - I.V. Markova
- PhD Student; National Research Nuclear University MEPhI, 31 Kashirskoye Highway, Moscow, 115409, Russia; Engineer, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia
| | - D.V. Pominova
- PhD, Senior Researcher, Laser Biospectroscopy Laboratory, Light-Induced Surface Phenomena Department, Natural Sciences Center; Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., Moscow, 119991, Russia; Associate Professor, Department 87 “Laser Micro-, Nano-, and Biotechnologies, Engineering Physics Institute for Biomedicine”; National Research Nuclear University MEPhI, 31 Kashirskoye Highway, Moscow, 115409, Russia
| |
Collapse
|
5
|
Farì R, Besutti G, Pattacini P, Ligabue G, Piroli F, Mantovani F, Navazio A, Larocca M, Pinto C, Giorgi Rossi P, Tarantini L. The role of imaging in defining cardiovascular risk to help cancer patient management: a scoping review. Insights Imaging 2025; 16:37. [PMID: 39961941 PMCID: PMC11832977 DOI: 10.1186/s13244-025-01907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE This scoping review explores the potential role of cancer-staging chest CT scans in assessing cardiovascular (CV) risk in cancer patients. It aims to evaluate: (1) the correlation between non-gated chest CT and the conventional Agatston score from cardiac CT; (2) the association between coronary calcium scores from non-gated chest CT and CV risk in non-oncological patients; (3) the link between coronary calcium assessed by non-gated chest CT and CV events or endothelial damage in cancer patients. METHODS Three different searches were performed on PubMed, according to the three steps described above. Both original articles and systematic reviews were included. RESULTS Many studies in the literature have found a strong correlation between coronary calcium scores from non-gated chest CTs and the conventional Agatston scores from gated cardiac CTs. Various methodologies, including Agatston scoring, ordinal scoring, and the "extent" and "length" methods, have been successfully adapted for use with non-gated chest CTs. Studies show that non-gated scans, even those using iodinated contrast, can accurately assess coronary calcification and predict CV risk, with correlations as high as r = 0.94 when compared to cardiac CTs. In oncological settings, studies demonstrated a significant link between coronary calcium levels on non-gated chest CTs and higher CV risk, including MACE and overall mortality. CONCLUSIONS Radiological assessment of coronary calcium on non-gated CT scans shows potential for improving CV risk prediction. CRITICAL RELEVANCE STATEMENT Non-gated chest CT scans can detect endothelial damage in cancer patients, highlighting the need for standardized radiological practices to assess CV risks during routine oncological follow-up, thereby enhancing radiology's role in comprehensive cancer care. KEY POINTS Cancer therapies improve outcomes but increase cardiovascular risk, requiring balanced management. Coronary calcification on non-gated CT correlates with Agatston scores, predicting cardiovascular risk. Routinely performed CTs predict cardiovascular risk, optimizing the management of cancer patients.
Collapse
Affiliation(s)
- Roberto Farì
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy.
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Giulia Besutti
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pierpaolo Pattacini
- Radiology Unit, Department of Diagnostic Imaging and Laboratory Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Guido Ligabue
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Piroli
- Cardiology Unit, Department of Specialized Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Mantovani
- Cardiology Unit, Department of Specialized Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Navazio
- Cardiology Unit, Department of Specialized Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mario Larocca
- Oncology Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carmine Pinto
- Oncology Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Paolo Giorgi Rossi
- Epidemiology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Luigi Tarantini
- Cardiology Unit, Department of Specialized Medicine, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
6
|
Singh A, Ashraf S, Irfan H, Venjhraj F, Verma A, Shaukat A, Tariq MD, Hamza HM. Heart failure and microvascular dysfunction: an in-depth review of mechanisms, diagnostic strategies, and innovative therapies. Ann Med Surg (Lond) 2025; 87:616-626. [PMID: 40110322 PMCID: PMC11918592 DOI: 10.1097/ms9.0000000000002971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/10/2025] [Indexed: 03/22/2025] Open
Abstract
Microvascular dysfunction (MVD) is increasingly recognized as a critical contributor to the pathogenesis of heart failure (HF), particularly in heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF). Coronary microvascular dysfunction (CMD) significantly impacts HFpEF by reducing coronary flow reserve and myocardial perfusion reserve, leading to adverse outcomes such as myocardial ischemia, diastolic dysfunction, and increased risk of major cardiovascular events, including atrial fibrillation. In HFrEF, microvascular impairment is linked to heightened oxidative stress, reduced nitric oxide production, and activation of the renin-angiotensin-aldosterone system, further driving disease progression and contributing to poor prognosis. Advancements in diagnostic techniques, such as positron emission tomography, cardiac magnetic resonance imaging, and biomarker analysis, improve our ability to assess CMD in heart failure patients, enabling earlier diagnosis and risk stratification. Emerging therapies, including sodium-glucose cotransporter-2 inhibitors, angiotensin receptor-neprilysin inhibitors, and endothelial-targeted interventions, enhance microvascular function and improve patient outcomes. The role of personalized medicine is becoming increasingly important, as individualized therapeutic approaches tailored to patient-specific microvascular abnormalities are essential for optimizing treatment effectiveness. This review underscores the pivotal role of MVD in HF. It highlights the urgent need for innovative therapeutic strategies and diagnostic tools to address this complex condition and improve clinical outcomes for HF patients.
Collapse
Affiliation(s)
- Ajeet Singh
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Saad Ashraf
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Hamza Irfan
- Department of Ophthalmology, Shaikh Khalifa Bin Zayed Al Nahyan Medical and Dental College, Lahore, Pakistan
| | - Fnu Venjhraj
- Shaheed Mohtarma Benazir Bhutto Medical College Lyari, Karachi, Pakistan
| | - Amogh Verma
- SR Sanjeevani Hospital, Kalyanpur, Siraha, Nepal
| | - Ayesha Shaukat
- Department of Internal Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Daoud Tariq
- Department of Internal Medicine, Foundation University Medical College, Islamabad, Pakistan
| | | |
Collapse
|
7
|
Zhang X, Wang J, Wu Y, Li X, Zheng D, Sun L. Personal exposure to polycyclic aromatic hydrocarbons-bound particulate matter during pregnancy and umbilical inflammation and oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117896. [PMID: 39955870 DOI: 10.1016/j.ecoenv.2025.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs), particularly when bound to fine particulate matter (PM2.5), is an emerging concern for adverse prenatal health outcomes. This study investigates the associations between prenatal exposure to PAHs-bound PM2.5 and markers of inflammation and oxidative stress in umbilical cord blood. We conducted a prospective study of 450 mother-infant pairs, assessing PAHs-bound PM2.5 levels during pregnancy using personal air sampling. Inflammatory and oxidative stress biomarkers, including TNF-α, IL-6, IL-8, TGF-β, and Pro-oxidant Antioxidant Balance (PAB), were measured in umbilical cord blood. Multivariable linear regression was used to examine associations between individual PAHs and these biomarkers, while mixture effects were evaluated using quantile g-computation and Bayesian Kernel Machine Regression (BKMR) to assess the combined influence of 15 PAH congeners. Our findings revealed significant associations between prenatal exposure to specific PAHs and increased levels of TNF-α, IL-6, and PAB. Mixture analysis indicated that each one-quartile increase in PAH exposure was associated with a 0.31 pg/mL (95 % CI: 0.05-0.60, p = 0.01), 1.26 pg/mL (95 % CI: 0.43-2.08, p < 0.01), and 26.02 pg/mL (95 % CI: 2.98-49.07, p = 0.02) increase in TNF-α, IL-8, and TGF-β, respectively. However, IL-6 and PAB showed no significant associations. BKMR analysis further confirmed a dose-response relationship between prenatal PAH exposure and elevated inflammatory and oxidative stress markers. These findings highlight the potential health risks associated with prenatal exposure to PAHs-bound PM2.5, emphasizing the need for further research to mitigate adverse developmental effects.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- The first department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Dongming Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Zhang JJ, Ye XR, Liu XS, Zhang HL, Qiao Q. Impact of sodium-glucose cotransporter-2 inhibitors on pulmonary vascular cell function and arterial remodeling. World J Cardiol 2025; 17:101491. [PMID: 39866213 PMCID: PMC11755123 DOI: 10.4330/wjc.v17.i1.101491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 12/17/2024] [Indexed: 01/21/2025] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors represent a cutting-edge class of oral antidiabetic therapeutics that operate through selective inhibition of glucose reabsorption in proximal renal tubules, consequently augmenting urinary glucose excretion and attenuating blood glucose levels. Extensive clinical investigations have demonstrated their profound cardiovascular efficacy. Parallel basic science research has elucidated the mechanistic pathways through which diverse SGLT-2 inhibitors beneficially modulate pulmonary vascular cells and arterial remodeling. Specifically, these inhibitors exhibit promising potential in enhancing pulmonary vascular endothelial cell function, suppressing pulmonary smooth muscle cell proliferation and migration, reversing pulmonary arterial remodeling, and maintaining hemodynamic equilibrium. This comprehensive review synthesizes current literature to delineate the mechanisms by which SGLT-2 inhibitors enhance pulmonary vascular cell function and reverse pulmonary remodeling, thereby offering novel therapeutic perspectives for pulmonary vascular diseases.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Rui Ye
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Xue-Song Liu
- Department of Biochemistry, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Ling Zhang
- Department of Biomedical Science, Advanced Medical and Dental Institute, University Sains Malaysia, Penang 13200, Malaysia
| | - Qian Qiao
- Chinese Academy Medical Sciences, Fuwai Yunnan Hospital, Kunming 650000, Yunnan Province, China
- Kunming Medical University, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China.
| |
Collapse
|
9
|
Junco M, Ventura C, Santiago Valtierra FX, Maldonado EN. Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2024; 13:1563. [PMID: 39765891 PMCID: PMC11673973 DOI: 10.3390/antiox13121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer metabolism is sustained both by enhanced aerobic glycolysis, characteristic of the Warburg phenotype, and oxidative metabolism. Cell survival and proliferation depends on a dynamic equilibrium between mitochondrial function and glycolysis, which is heterogeneous between tumors and even within the same tumor. During oxidative phosphorylation, electrons from NADH and FADH2 originated in the tricarboxylic acid cycle flow through complexes of the electron transport chain. Single electron leaks at specific complexes of the electron transport chain generate reactive oxygen species (ROS). ROS are a concentration-dependent double-edged sword that plays multifaceted roles in cancer metabolism. ROS serve either as signaling molecules favoring cellular homeostasis and proliferation or damage DNA, protein and lipids, causing cell death. Several aspects of ROS biology still remain unsolved. Among the unknowns are the actual levels at which ROS become cytotoxic and if toxicity depends on specific ROS species or if it is caused by a cumulative effect of all of them. In this review, we describe mechanisms of mitochondrial ROS production, detoxification, ROS-induced cytotoxicity, and the use of antioxidants in cancer treatment. We also provide updated information about critical questions on the biology of ROS on cancer metabolism and discuss dogmas that lack adequate experimental demonstration. Overall, this review brings a comprehensive perspective of ROS as drivers of cancer progression, inducers of cell death, and the potential use of antioxidants as anticancer therapy.
Collapse
Affiliation(s)
- Milagros Junco
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Virology Laboratory, Tandil Veterinary Research Center (CIVETAN), UNCPBA-CICPBA-CONICET, Tandil B7000, Argentina
| | - Clara Ventura
- Institute for Immunological and Physiopathological Studies (IIFP), National Scientific and Technical Research Council (CONICET), Buenos Aires, La Plata 1900, Argentina;
| | | | - Eduardo Nestor Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
10
|
Liu Z, Yao C, Xu X, Huang X, Huang S, Zheng S, Zhang T, Li Y, Liu F, Wu Y, Liu J, Chen HJ, Xie X. Wearable Systems of Reconfigurable Microneedle Electrode Array for Subcutaneous Multiplexed Recording of Myoelectric and Electrochemical Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409075. [PMID: 39679848 DOI: 10.1002/advs.202409075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/15/2024] [Indexed: 12/17/2024]
Abstract
The real-time monitoring of in vivo electrophysiological and biochemical signals provides critical insights into the activities of tissues and organs. As the activity and metabolic state of different sites in the muscle vary, multichannel detection is necessary to capture the functional state of the whole muscle, yet the access to the bio-information in subcutaneous space remained challenging. This work reports the development of a reconfigurable microneedle electrode array integrated system designed to achieve painless and minimally invasive monitoring of subcutaneous electromyogram (EMG), oxygen species, and pH through an array of thumbtack-shaped microneedle (TSMN) electrode. By assembling discrete TSMNs into an array, the system enables multi-parameter detection with single microneedle resolution. The PEDOT: PSS layer is electrochemically deposited on the TSMNs, enhancing their signal-sensing capabilities and electrochemical properties. Additionally, the design of the pogo pin interface ensures reliable signal transmission and stable device performance, while allowing flexible replacement of the TSMNs, which enhances system maintainability and longevity. Validation experiments conducted on in vivo animal models demonstrate the system's capability in real-time monitoring of muscle fatigue and indicators related to sciatic nerve injury. These results advance the development of wearable technologies for monitoring subcutaneous physiological and biochemical information for diagnosing neuromuscular disorders.
Collapse
Affiliation(s)
- Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Tao Zhang
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Yan Li
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Fanmao Liu
- Division of Hypertension and Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Jing Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
11
|
Zhang H, Zheng X, Yan Z, Guo L, Zheng Y, Zhang D, Ma X. The causal relationship between 233 metabolites and coronary atherosclerosis: a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1439699. [PMID: 39726950 PMCID: PMC11669696 DOI: 10.3389/fcvm.2024.1439699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Objective To investigate the causal relationship between 233 newly reported metabolites and coronary atherosclerosis through Mendelian randomization analysis. Methods Five different methods were used to perform Mendelian randomization analysis on the 233 metabolites and coronary atherosclerosis, with inverse variance weighting as the primary result, supplemented by other methods. Results The analysis identified that certain metabolites increase the susceptibility risk of coronary atherosclerosis, including: Total fatty acids (OR = 1.40, 95% CI: 1.28-1.53, P < 0.001), Saturated fatty acids (OR = 1.44, 95% CI: 1.30-1.60, P < 0.001), Serum total triglyceride levels (OR = 1.33, 95% CI: 1.22-1.46, P < 0.001), Conjugated linoleic acid (OR = 1.16, 95% CI: 1.04-1.30, P = 0.007). Conversely, certain metabolites were found to reduce the occurrence of coronary atherosclerosis, such as: Cholesteryl esters to total lipids ratio in medium HDL (OR = 0.73, 95% CI: 0.67-0.78, P < 0.001), Cholesteryl esters to total lipids ratio in large HDL (OR = 0.64, 95% CI: 0.58-0.71, P < 0.001), Total cholesterol to total lipids ratio in medium HDL (OR = 0.71, 95% CI: 0.65-0.77, P < 0.001). Conclusion There is a close relationship between metabolites and the occurrence of coronary atherosclerosis. This study conducted Mendelian randomization analysis on the causal relationship between 233 metabolites and coronary atherosclerosis, providing potential new insights for the treatment of this disease.
Collapse
Affiliation(s)
- Hongwei Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zheng
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zian Yan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Guo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuan Zheng
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Ilyas S, Manan A, Choi Y, Lee D. Exploring the therapeutic potential of Emblica officinalis natural compounds against hepatocellular carcinoma (HCC): a computational approach. EXCLI JOURNAL 2024; 23:1440-1458. [PMID: 39790561 PMCID: PMC11713998 DOI: 10.17179/excli2024-7970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025]
Abstract
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer related deaths globally. Despite advancements in treatment, drug resistance and adverse side effects have spurred the search for novel therapeutic strategies. This study aimed to investigate how the Emblica officinalis can inhibit key targets involved in HCC progression. Screening of the reported compounds based on ADMET profile and identification of protein targets was done using the literature survey. Protein targets were divided into four major categories including inflammatory, angiogenic, anti-apoptotic as well as proliferative targets. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to reveal the functional roles of genes. The STRING database was used to analyze the protein-protein interactions (PPI) of target genes. Docking was employed to predict the binding affinity of compounds with target proteins. Subsequently, MD simulation was conducted to assess the stability and dynamics of protein-ligand complexes. A total of 22 active compounds with 25 protein targets have been identified. These targets have a major role in controlling biological processes such as apoptosis, signaling and cellular interactions. KEGG pathway analysis showed that cancer, atherosclerosis, PI3K-Akt, EGFR tyrosine kinase inhibitor resistance and MAPK signaling pathways are mainly involved. Molecular docking by Mcule platform demonstrated that emblicanin A, punigluconin, penta-o-galloylglucose and quercetin showed higher binding energy affinities with BCL2, BCL2L1, c-Met, HSP70, EGFR, FGFR1, PTGS2 and TNFα. MD simulation revealed conformational changes, flexibility, interactions and compactness of protein-ligand complex. The stable protein binding interactions suggest the potential of compounds to inhibit the functions of target proteins. These results suggest that compounds derived from E. officinalis may have the therapeutic potential for treating HCC. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Sidra Ilyas
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yeojin Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si, 13120, Korea
| |
Collapse
|
13
|
Razo IB, Shea K, Allen TJ, Boutin H, McMahon A, Lockyer N, Hart PJ. Accumulation of Bioactive Lipid Species in LPS-Induced Neuroinflammation Models Analysed with Multi-Modal Mass Spectrometry Imaging. Int J Mol Sci 2024; 25:12032. [PMID: 39596102 PMCID: PMC11594259 DOI: 10.3390/ijms252212032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Neuroinflammation is a complex biological process related to a variety of pathologies, often requiring better understanding in order to develop new, targeted therapeutic interventions. Within this context, multimodal Mass Spectrometry Imaging (MSI) has been used to characterise molecular changes in neuroinflammation for biomarker discovery not possible to other techniques. In this study, molecules including bioactive lipids were detected across inflamed regions of the brain in rats treated with lipopolysaccharide (LPS). The detected lipids may be acting as inflammatory mediators of the immune response. We identified that N-acyl-phosphatidylethanolamine (NAPE) species accumulated in the inflamed area. The presence of these lipids could be related to the endocannabinoid (eCB) signalling system, mediating an anti-inflammatory response from microglial cells at the site of injury to balance pro-inflammation and support neuronal protection. In addition, polyunsaturated fatty acids (PUFAs), specifically n-3 and n-6 species, were observed to accumulate in the area where LPS was injected. PUFAs are directly linked to anti-inflammatory mediators resolving inflammation. Finally, acylcarnitine species accumulated around the inflammation region. Accumulation of these molecules could be due to a deficient β-oxidation cycle.
Collapse
Affiliation(s)
- Irma Berrueta Razo
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield SK10 4ZF, UK; (K.S.)
- The Photon Science Institute, Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK;
| | - Kerry Shea
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield SK10 4ZF, UK; (K.S.)
| | - Tiffany-Jayne Allen
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield SK10 4ZF, UK; (K.S.)
| | - Hervé Boutin
- Division of Imaging, Informatics and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.B.); (A.M.)
- Geoffrey Jefferson Brain Research Centre, Northern Care Alliance, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- INSERM, U1253 iBrain, Université de Tours, 37020 Tours, France
| | - Adam McMahon
- Division of Imaging, Informatics and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK; (H.B.); (A.M.)
| | - Nicholas Lockyer
- The Photon Science Institute, Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK;
| | - Philippa J. Hart
- Medicines Discovery Catapult, 35 Mereside Alderley Park, Macclesfield SK10 4ZF, UK; (K.S.)
| |
Collapse
|
14
|
Wang H, Song TY, Reyes-García J, Wang YX. Hypoxia-Induced Mitochondrial ROS and Function in Pulmonary Arterial Endothelial Cells. Cells 2024; 13:1807. [PMID: 39513914 PMCID: PMC11545379 DOI: 10.3390/cells13211807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary artery endothelial cells (PAECs) are a major contributor to hypoxic pulmonary hypertension (PH) due to the possible roles of reactive oxygen species (ROS). However, the molecular mechanisms and functional roles of ROS in PAECs are not well established. In this study, we first used Amplex UltraRed reagent to assess hydrogen peroxide (H2O2) generation. The result indicated that hypoxic exposure resulted in a significant increase in Amplex UltraRed-derived fluorescence (i.e., H2O2 production) in human PAECs. To complement this result, we employed lucigenin as a probe to detect superoxide (O2-) production. Our assays showed that hypoxia largely increased O2- production. Hypoxia also enhanced H2O2 production in the mitochondria from PAECs. Using the genetically encoded H2O2 sensor HyPer, we further revealed the hypoxic ROS production in PAECs, which was fully blocked by the mitochondrial inhibitor rotenone or myxothiazol. Interestingly, hypoxia caused an increase in the migration of PAECs, determined by scratch wound assay. In contrast, nicotine, a major cigarette or e-cigarette component, had no effect. Moreover, hypoxia and nicotine co-exposure further increased migration. Transfection of lentiviral shRNAs specific for the mitochondrial Rieske iron-sulfur protein (RISP), which knocked down its expression and associated ROS generation, inhibited the hypoxic migration of PAECs. Hypoxia largely increased the proliferation of PAECs, determined using Ki67 staining and direct cell number accounting. Similarly, nicotine caused a large increase in proliferation. Moreover, hypoxia/nicotine co-exposure elicited a further increase in cell proliferation. RISP knockdown inhibited the proliferation of PAECs following hypoxia, nicotine exposure, and hypoxia/nicotine co-exposure. Taken together, our data demonstrate that hypoxia increases RISP-mediated mitochondrial ROS production, migration, and proliferation in human PAECs; nicotine has no effect on migration, increases proliferation, and promotes hypoxic proliferation; the effects of nicotine are largely mediated by RISP-dependent mitochondrial ROS signaling. Conceivably, PAECs may contribute to PH via the RISP-mediated mitochondrial ROS.
Collapse
Affiliation(s)
- Harrison Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| | - Teng-Yao Song
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| | - Jorge Reyes-García
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY 12208, USA (T.-Y.S.); (J.R.-G.)
| |
Collapse
|
15
|
Sibiya S, Mlambo ZP, Mthembu MH, Mkhwanazi NP, Naicker T. Analysis of ICAM-1 rs3093030, VCAM-1 rs3783605, and E-Selectin rs1805193 Polymorphisms in African Women Living with HIV and Preeclampsia. Int J Mol Sci 2024; 25:10860. [PMID: 39409189 PMCID: PMC11476673 DOI: 10.3390/ijms251910860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
Intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), and E-selectin are cell adhesion molecules that play a significant role in inflammation and are implicated in the pathophysiology of preeclampsia development and HIV infection. More specifically, the immune expression of ICAM-1, VCAM-1, and E-selectin within cyto- and syncytiotrophoblast cells are dysregulated in preeclampsia, indicating their role in defective placentation. This study investigates the associations of ICAM-1, VCAM-1, and E-selectin gene variants (rs3093030, rs3783605, and rs1805193, respectively) with preeclampsia comorbid with HIV infection in women of African ancestry. It also examines the susceptibility to preeclampsia development and the effect of highly active antiretroviral therapy (HAART). A total of 405 women were enrolled in this study. Out of these women, 204 were preeclamptic and 201 were normotensive. Clinical characteristics were maternal age, weight, blood pressure (systolic and diastolic), and gestational age. Whole blood was collected, DNA was extracted, and genotyping of the ICAM-1 (rs3093030 C>T), VCAM-1(rs3783605 A>G), and E-selectin (rs1805193 A>C) gene polymorphisms was performed. Comparisons were made using the Chi-squared test. Our results demonstrated that preeclamptic women exhibited a higher frequency of analyzed variants, in contrast to those with the duality of preeclampsia and HIV infection. Additionally, the C allele of the ICAM-1 (rs3093030 C>T) and G allele of the VCAM-1 (rs3783605 A>G) genes were found to have a greater role in the co-morbidity and may be considered as a risk factor for preeclampsia development in women of African ancestry. In contrast, the SNP of rs1805193 of the E-selectin gene indicated that A>C was only significantly associated with HIV infection and not with preeclampsia. These findings highlight a strong association of the rs3093030 SNP of the ICAM-1 gene and of the VCAM-1 rs3783605 gene with the development of preeclampsia, indicating their role in the defective trophoblast invasion of preeclampsia. Sub-group analysis further reveals an association of the AA genotype with late-onset preeclampsia, a less severe form of disease indicating differing genetic predispositions between early and late-onset forms.
Collapse
Affiliation(s)
- Samukelisiwe Sibiya
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (Z.P.M.); (M.H.M.)
| | - Zinhle Pretty Mlambo
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (Z.P.M.); (M.H.M.)
| | - Mbuso Herald Mthembu
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (Z.P.M.); (M.H.M.)
| | - Nompumelelo P. Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Thajasvarie Naicker
- Optics & Imaging, Doris Duke Medical Research Institute, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa; (Z.P.M.); (M.H.M.)
| |
Collapse
|
16
|
Ekpono EU, Aja PM, Ibiam UA, Agu PC, Eze ED, Afodun AM, Okoye OG, Ifie JE, Atoki AV. Cucurbita Pepo L. Seed Oil Modulates Dyslipidemia and Neuronal Dysfunction in Tramadol-Induced Toxicity in Wistar Albino Rats. Dose Response 2024; 22:15593258241290458. [PMID: 39381131 PMCID: PMC11457233 DOI: 10.1177/15593258241290458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Objective: The modulating effects of Cucurbita pepo seed oil (CPSO) on dyslipidemia and neuronal dysfunction in tramadol toxicity were studied. Methods: Fifty-six albino rats were divided into seven groups of eight rats each after a 2-week acclimatization period. All animals had unrestricted access to water and feed, and treatments were administered orally once daily for 42 days. Glutamate dehydrogenase and glutaminase activities were assessed using brain homogenate, while lipid profiles were analyzed in serum samples. Results: Tramadol toxicity was evidenced by significant (P < 0.05) increases in brain glutamate dehydrogenase along with significant (P < 0.05) decreases in the activities of glutaminase in the group administered only tramadol. Also, serum levels of total cholesterol, LDL-C and triglycerides also increased significantly (P < 0.05) following administration of tramadol with decreased level of HDL-C (P < 0.05). However, treatment with CPSO significantly restored the activities and levels of the altered biochemical parameters in a dose-dependent manner. The results of the biochemical investigation using the lipid profile and the enzymes of glutamate metabolism were corroborated by the results obtained from the histopathological examination of the brain. Conclusion: The results of this study therefore suggest that tramadol-induced dyslipidemia and neuronal dysfunction be managed and prevented by the administration of Cucurbita pepo seed oil.
Collapse
Affiliation(s)
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| | - Udu Ama Ibiam
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Peter Chinedu Agu
- Department of Biochemistry, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Ejike Daniel Eze
- Department of Physiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Adam Moyosore Afodun
- Department of Anatomy and Cell Biology, Faculty of Health Sciences, Busitema University, Uganda
| | - Osita Gabriel Okoye
- Department of Science Laboratory Technology, Federal Polytechnic, Oko, Nigeria
| | - Josiah Eseoghene Ifie
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| | - Ayomide Victor Atoki
- Department of Biochemistry, Faculty of Biomedical Sciences, Kampala International University, Kampala, Uganda
| |
Collapse
|
17
|
Wang Y, Yuan Y, Wang R, Wang T, Guo F, Bian Y, Wang T, Ma Q, Yuan H, Du Y, Jin J, Jiang H, Han F, Jiang J, Pan Y, Wang L, Wu F. Injectable Thermosensitive Gel CH-BPNs-NBP for Effective Periodontitis Treatment through ROS-Scavenging and Jaw Vascular Unit Protection. Adv Healthc Mater 2024; 13:e2400533. [PMID: 38722018 DOI: 10.1002/adhm.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Periodontitis, a prevalent inflammatory condition in the oral cavity, is closely associated with oxidative stress-induced tissue damage mediated by excessive reactive oxygen species (ROS) production. The jaw vascular unit (JVU), encompassing both vascular and lymphatic vessels, plays a crucial role in maintaining tissue fluid homeostasis and contributes to the pathological process in inflammatory diseases of the jaw. This study presents a novel approach for treating periodontitis through the development of an injectable thermosensitive gel (CH-BPNs-NBP). The gel formulation incorporates black phosphorus nanosheets (BPNs), which are notable for their ROS-scavenging properties, and dl-3-n-butylphthalide (NBP), a vasodilator that promotes lymphatic vessel function within the JVU. These results demonstrate that the designed thermosensitive gel serve as a controlled release system, delivering BPNs and NBP to the site of inflammation. CH-BPNs-NBP not only protects macrophages and human lymphatic endothelial cells from ROS attack but also promotes M2 polarization and lymphatic function. In in vivo studies, this work observes a significant reduction in inflammation and tissue damage, accompanied by a notable promotion of alveolar bone regeneration. This research introduces a promising therapeutic strategy for periodontitis, leveraging the unique properties of BPNs and NBP within an injectable thermosensitive gel.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuqing Yuan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ruyu Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tianxiao Wang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Fanyi Guo
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yifeng Bian
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Tianyao Wang
- Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Qian Ma
- Department of General Dentistry, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hua Yuan
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jianliang Jin
- Department of Human Anatomy, Research Centre for Bone and Stem Cells, School of Basic Medical Sciences, Key Laboratory for Aging & Disease, School of Biomedical Engineering and informatics, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Huijun Jiang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yongchu Pan
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Province Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Fan Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
18
|
Hu SY, Xue CD, Li YJ, Li S, Gao ZN, Qin KR. Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage. MECHANOBIOLOGY IN MEDICINE 2024; 2:100069. [DOI: 10.1016/j.mbm.2024.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Criado-Gonzalez M, Marzuoli C, Bondi L, Gutierrez-Fernandez E, Tullii G, Lagonegro P, Sanz O, Cramer T, Antognazza MR, Mecerreyes D. Porous Semiconducting Polymer Nanoparticles as Intracellular Biophotonic Mediators to Modulate the Reactive Oxygen Species Balance. NANO LETTERS 2024; 24:7244-7251. [PMID: 38842262 PMCID: PMC11194851 DOI: 10.1021/acs.nanolett.4c01195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The integration of nanotechnology with photoredox medicine has led to the emergence of biocompatible semiconducting polymer nanoparticles (SPNs) for the optical modulation of intracellular reactive oxygen species (ROS). However, the need for efficient photoactive materials capable of finely controlling the intracellular redox status with high spatial resolution at a nontoxic light density is still largely unmet. Herein, highly photoelectrochemically efficient photoactive polymer beads are developed. The photoactive material/electrolyte interfacial area is maximized by designing porous semiconducting polymer nanoparticles (PSPNs). PSPNs are synthesized by selective hydrolysis of the polyester segments of nanoparticles made of poly(3-hexylthiophene)-graft-poly(lactic acid) (P3HT-g-PLA). The photocurrent of PSPNs is 4.5-fold higher than that of nonporous P3HT-g-PLA-SPNs, and PSPNs efficiently reduce oxygen in an aqueous environment. PSPNs are internalized within endothelial cells and optically trigger ROS generation with a >1.3-fold concentration increase with regard to nonporous P3HT-SPNs, at a light density as low as a few milliwatts per square centimeter, fully compatible with in vivo, chronic applications.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Camilla Marzuoli
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
- Politecnico
di Milano, Dipartimento di Fisica, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Bondi
- Department
of Physics and Astronomy, University of
Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy
| | - Edgar Gutierrez-Fernandez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- XMaS/BM28-ESRF, 71 Avenue Des Martyrs, F-38043 Grenoble Cedex, France
- Department
of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Gabriele Tullii
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Paola Lagonegro
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - Oihane Sanz
- Department
of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
| | - Tobias Cramer
- Department
of Physics and Astronomy, University of
Bologna, Viale Carlo Berti Pichat 6/2, 40127 Bologna, Italy
| | - Maria Rosa Antognazza
- Center
for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milano, Italy
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation
for Science, 48013 Bilbao, Spain
| |
Collapse
|
20
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
21
|
Owens CD, Bonin Pinto C, Detwiler S, Olay L, Pinaffi-Langley ACDC, Mukli P, Peterfi A, Szarvas Z, James JA, Galvan V, Tarantini S, Csiszar A, Ungvari Z, Kirkpatrick AC, Prodan CI, Yabluchanskiy A. Neurovascular coupling impairment as a mechanism for cognitive deficits in COVID-19. Brain Commun 2024; 6:fcae080. [PMID: 38495306 PMCID: PMC10943572 DOI: 10.1093/braincomms/fcae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
Components that comprise our brain parenchymal and cerebrovascular structures provide a homeostatic environment for proper neuronal function to ensure normal cognition. Cerebral insults (e.g. ischaemia, microbleeds and infection) alter cellular structures and physiologic processes within the neurovascular unit and contribute to cognitive dysfunction. COVID-19 has posed significant complications during acute and convalescent stages in multiple organ systems, including the brain. Cognitive impairment is a prevalent complication in COVID-19 patients, irrespective of severity of acute SARS-CoV-2 infection. Moreover, overwhelming evidence from in vitro, preclinical and clinical studies has reported SARS-CoV-2-induced pathologies in components of the neurovascular unit that are associated with cognitive impairment. Neurovascular unit disruption alters the neurovascular coupling response, a critical mechanism that regulates cerebromicrovascular blood flow to meet the energetic demands of locally active neurons. Normal cognitive processing is achieved through the neurovascular coupling response and involves the coordinated action of brain parenchymal cells (i.e. neurons and glia) and cerebrovascular cell types (i.e. endothelia, smooth muscle cells and pericytes). However, current work on COVID-19-induced cognitive impairment has yet to investigate disruption of neurovascular coupling as a causal factor. Hence, in this review, we aim to describe SARS-CoV-2's effects on the neurovascular unit and how they can impact neurovascular coupling and contribute to cognitive decline in acute and convalescent stages of the disease. Additionally, we explore potential therapeutic interventions to mitigate COVID-19-induced cognitive impairment. Given the great impact of cognitive impairment associated with COVID-19 on both individuals and public health, the necessity for a coordinated effort from fundamental scientific research to clinical application becomes imperative. This integrated endeavour is crucial for mitigating the cognitive deficits induced by COVID-19 and its subsequent burden in this especially vulnerable population.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Lauren Olay
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Judith A James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Veronica Galvan
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Angelia C Kirkpatrick
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, 1089, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
22
|
Vezzoli A, Mrakic-Sposta S, Brizzolari A, Balestra C, Camporesi EM, Bosco G. Oxy-Inflammation in Humans during Underwater Activities. Int J Mol Sci 2024; 25:3060. [PMID: 38474303 DOI: 10.3390/ijms25053060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Underwater activities are characterized by an imbalance between reactive oxygen/nitrogen species (RONS) and antioxidant mechanisms, which can be associated with an inflammatory response, depending on O2 availability. This review explores the oxidative stress mechanisms and related inflammation status (Oxy-Inflammation) in underwater activities such as breath-hold (BH) diving, Self-Contained Underwater Breathing Apparatus (SCUBA) and Closed-Circuit Rebreather (CCR) diving, and saturation diving. Divers are exposed to hypoxic and hyperoxic conditions, amplified by environmental conditions, hyperbaric pressure, cold water, different types of breathing gases, and air/non-air mixtures. The "diving response", including physiological adaptation, cardiovascular stress, increased arterial blood pressure, peripheral vasoconstriction, altered blood gas values, and risk of bubble formation during decompression, are reported.
Collapse
Affiliation(s)
- Alessandra Vezzoli
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology-National Research Council (CNR-IFC), 20142 Milano, Italy
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | | | - Gerardo Bosco
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
23
|
Jameel M, Sheikh IS, Kakar N, Yousuf MR, Riaz A, Shehzad W, Khan D, Iqbal M, Tareen AM. Effect of asiatic acid supplementation in tris-extender on post-thaw functional competence, antioxidant enzyme activity and in vivo fertility of bull sperm. J S Afr Vet Assoc 2024; 95:28-34. [PMID: 38533817 DOI: 10.36303/jsava.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
Reactive oxygen species at supra-physiological levels trigger oxidative stress during cryopreservation, which can be neutralised by incorporating suitable antioxidants into the semen extender medium. This study was intended to explore the effect of asiatic acid (AA) as an antioxidant in semen extender on frozen-thawed sperm quality and in vivo fertility of bull sperm. Semen was collected from Holstein Friesian bulls for 10 consecutive weeks (total ejaculates = 60). Semen was cryopreserved with a Tris citric acid egg yolk-based extender supplemented with 0 (control), 20, 40, 60, and 100 μM AA. The supplementation of the extender with 40 and 60 μM AA improved (p < 0.05) post-thaw motility kinematics, plasma membrane integrity, acrosome integrity, sperm viability, and DNA integrity of bull sperm. Mitochondrial membrane potential was high (p < 0.05) with 60 μM of AA concentration in extender media. The catalase activity in seminal plasma was maintained (p < 0.05) when semen was added with 20, 40, and 60 μM of AA. The in vivo fertility was found to be significantly high with the semen extended with 60 μM AA. Conclusively, this study showed that AA supplementation in semen extender significantly improved sperm motility kinematics and cell integrity, conserved antioxidant enzyme activity, and improved in vivo fertility.
Collapse
Affiliation(s)
- M Jameel
- Department of Theriogenology, University of Veterinary and Animal Sciences, Pakistan
| | - I S Sheikh
- Center for Advanced Studies in Vaccinology and Biotechnology, University of Balochistan, Pakistan
| | - N Kakar
- Department of Natural and Basic Sciences, University of Turbat, Pakistan
| | - M R Yousuf
- Department of Theriogenology, University of Veterinary and Animal Sciences, Pakistan
| | - A Riaz
- Department of Theriogenology, University of Veterinary and Animal Sciences, Pakistan
| | - W Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Pakistan
| | - D Khan
- Livestock and Dairy Development Department, Government of Balochistan, Pakistan
| | - M Iqbal
- Semen Production Unit, Livestock and Dairy Development Department, Government of Balochistan, Pakistan
| | - A M Tareen
- Department of Microbiology, University of Baluchistan, Quetta Pakistan
| |
Collapse
|
24
|
Saleem M, Masenga SK, Ishimwe JA, Demirci M, Ahmad T, Jamison S, Albritton CF, Mwesigwa N, Porcia Haynes A, White J, Neikirk K, Vue Z, Hinton A, Arshad S, Desta S, Kirabo A. Recent Advances in Understanding Peripheral and Gut Immune Cell-Mediated Salt-Sensitive Hypertension and Nephropathy. Hypertension 2024; 81:436-446. [PMID: 38164753 PMCID: PMC10922672 DOI: 10.1161/hypertensionaha.123.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Hypertension is the primary modifiable risk factor for cardiovascular, renal, and cerebrovascular diseases and is considered the main contributing factor to morbidity and mortality worldwide. Approximately 50% of hypertensive and 25% of normotensive people exhibit salt sensitivity of blood pressure, which is an independent risk factor for cardiovascular disease. Human and animal studies demonstrate that the immune system plays an important role in the etiology and pathogenesis of salt sensitivity of blood pressure, kidney damage, and vascular diseases. Antigen-presenting and adaptive immune cells are implicated in salt-sensitive hypertension and salt-induced renal and vascular injury. Elevated sodium activates antigen-presenting cells to release proinflammatory cytokines including IL (interleukin) 6, tumor necrosis factor-α, IL-1β, and accumulate isolevuglandin-protein adducts. In turn, these activate T cells release prohypertensive cytokines including IL-17A. Moreover, high-salt intake is associated with gut dysbiosis, leading to inflammation, oxidative stress, and blood pressure elevation but the mechanistic contribution to salt-sensitivity of blood pressure is not clearly understood. Here, we discuss recent advances in research investigating the cause, potential biomarkers, and therapeutic targets for salt-sensitive hypertension as they pertain to the gut microbiome, immunity, and inflammation.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sepiso K Masenga
- Mulungushi University, School of Medicine and Health Sciences, HAND Research Group, Livingstone, Zambia
| | - Jeanne A Ishimwe
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mert Demirci
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sydney Jamison
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Claude F. Albritton
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- School of Graduate Studies, Meharry Medical College, Nashville, TN, USA
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jalyn White
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Spelman College Department of Chemistry and Biochemistry, Atlanta, GA, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Suha Arshad
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology
- Vanderbilt Institute for Infection, Immunology and Inflammation
- Vanderbilt Institute for Global Health
| |
Collapse
|
25
|
Sung B, Hwang D, Baek A, Yang B, Lee S, Park J, Kim E, Kim M, Lee E, Chang Y. Gadolinium-Based Magnetic Resonance Theranostic Agent with Gallic Acid as an Anti-Neuroinflammatory and Antioxidant Agent. Antioxidants (Basel) 2024; 13:204. [PMID: 38397802 PMCID: PMC10885874 DOI: 10.3390/antiox13020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Studies in the field have actively pursued the incorporation of diverse biological functionalities into gadolinium-based contrast agents, aiming at the amalgamation of MRI imaging and therapeutic capabilities. In this research, we present the development of Gd-Ga, an anti-neuroinflammatory MR contrast agent strategically designed to target inflammatory mediators for comprehensive imaging diagnosis and targeted lesion treatment. Gd-Ga is a gadolinium complex composed of 1,4,7-tris(carboxymethylaza)cyclododecane-10-azaacetylamide (DO3A) conjugated with gallic acid (3,4,5-trihydroxybenzoic acid). Upon intravenous administration in LPS-induced mouse models, Gd-Ga demonstrated a remarkable three-fold increase in signal-to-noise (SNR) variation compared to Gd-DOTA, particularly evident in both the cortex and hippocampus 30 min post-MR monitoring. In-depth investigations, both in vitro and in vivo, into the anti-neuroinflammatory properties of Gd-Ga revealed significantly reduced protein expression levels of pro-inflammatory mediators compared to the LPS group. The alignment between in silico predictions and phantom studies indicates that Gd-Ga acts as an anti-neuroinflammatory agent by directly binding to MD2. Additionally, the robust antioxidant activity of Gd-Ga was confirmed by its effective scavenging of NO and ROS. Our collective findings emphasize the immense potential of this theranostic complex, where a polyphenol serves as an anti-inflammatory drug, presenting an exceptionally efficient platform for the diagnosis and treatment of neuroinflammation.
Collapse
Affiliation(s)
- Bokyung Sung
- ICT Convergence Research Center, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea;
| | - Dongwook Hwang
- Department of Biomedical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- Theranocure Co., Ltd., 90 Chilgokjungang-daero 136-gil, Buk-gu, Daegu 41405, Republic of Korea; (B.Y.); (S.L.)
| | - Ahrum Baek
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (A.B.); (E.L.)
| | - Byeongwoo Yang
- Theranocure Co., Ltd., 90 Chilgokjungang-daero 136-gil, Buk-gu, Daegu 41405, Republic of Korea; (B.Y.); (S.L.)
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sangyun Lee
- Theranocure Co., Ltd., 90 Chilgokjungang-daero 136-gil, Buk-gu, Daegu 41405, Republic of Korea; (B.Y.); (S.L.)
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jangwoo Park
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; (J.P.); (E.K.)
| | - Eunji Kim
- Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Republic of Korea; (J.P.); (E.K.)
- Center for Data Analytics Innovation, Office of National R&D Evaluation and Analysis, Korea Institute of S&T Evaluation and Planning, 1339, Wonjung-ro, Maengdong-myeon, Eumseong-gun 27740, Republic of Korea
| | - Minsup Kim
- TARS Scientific, Nowon-gu, Seoul 01662, Republic of Korea;
| | - Eunshil Lee
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (A.B.); (E.L.)
| | - Yongmin Chang
- Department of Biomedical Science, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea;
- Institute of Biomedical Engineering Research, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea; (A.B.); (E.L.)
- Department of Medical & Biological Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Guchaebosang-ro, Jung-gu, Daegu 41944, Republic of Korea
- Department of Radiology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu 41944, Republic of Korea
| |
Collapse
|
26
|
Sadeghsoltani F, Hassanpour P, Safari MM, Haiaty S, Rahbarghazi R, Rahmati M, Mota A. Angiogenic activity of mitochondria; beyond the sole bioenergetic organelle. J Cell Physiol 2024; 239:e31185. [PMID: 38219050 DOI: 10.1002/jcp.31185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Angiogenesis is a complex process that involves the expansion of the pre-existing vascular plexus to enhance oxygen and nutrient delivery and is stimulated by various factors, including hypoxia. Since the process of angiogenesis requires a lot of energy, mitochondria play an important role in regulating and promoting this phenomenon. Besides their roles as an oxidative metabolism base, mitochondria are potential bioenergetics organelles to maintain cellular homeostasis via sensing alteration in oxygen levels. Under hypoxic conditions, mitochondria can regulate angiogenesis through different factors. It has been indicated that unidirectional and bidirectional exchange of mitochondria or their related byproducts between the cells is orchestrated via different intercellular mechanisms such as tunneling nanotubes, extracellular vesicles, and gap junctions to maintain the cell homeostasis. Even though, the transfer of mitochondria is one possible mechanism by which cells can promote and regulate the process of angiogenesis under reperfusion/ischemia injury. Despite the existence of a close relationship between mitochondrial donation and angiogenic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible role of mitochondria concerning angiogenesis, especially the role of mitochondrial transport and the possible relation of this transfer with autophagy, the housekeeping phenomenon of cells, and angiogenesis.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir-Meghdad Safari
- Open Heart ICU of Shahid Madani Cardiovascular Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
ZHU L, SUN Z, GUAN Y, LIU M, ZHENG Y, YU R, WANG Q, LI L. Differences in vascular endothelial function and serum proteome between obese people with phlegm-dampness constitution and balanced constitution. J TRADIT CHIN MED 2024; 44:188-196. [PMID: 38213254 PMCID: PMC10774723 DOI: 10.19852/j.cnki.jtcm.20231110.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/15/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To evaluate the extent of vascular endothelial dysfunction and preliminary identify serum protein biomarkers associated with obese individuals at risk for cardiovascular disease (CVD). METHODS Fifteen obese volunteers with the phlegm-dampness constitution or balanced constitution were recruited for this study respectively. The clinical baseline data was collected, and the vascular endothelial function was evaluated using the EndoPATTM. Blood samples were collected for the serum proteome analysis. The differences in the serum protein expression levels between the two groups were detected and the protein interaction network analysis, correlation analysis, receiver operating characteristic (ROC) curve analysis, and random forest model investigation were conducted. RESULTS There were no statistical differences found in the baseline data. For vascular endothelial function, the reactive hyperemia index (RHI) of the phlegm-dampness constitution obese group was significantly lower than that of the balanced constitution obese group (1.46 ± 0.30 vs 2.82 ± 0.78, P < 0.0001), indicating vascular endothelial dysfunction. There are 66 differentially expressed serum proteins between the two groups. apolipoprotein A2 (ApoA2), angiotensin-converting enzyme 2 (ACE-2), interleukin-33 (IL-33), and forkhead box P3 (FoxP3) showed significant differences and area under curve values of their ROC curves were greater than 0.7 and correlated significantly with RHI. CONCLUSION Vascular endothelial dysfunction was present in the phlegm-dampness constitution obese group. Thus, alterations in the expression levels of key serum proteins, including ApoA2, ACE-2, IL-33, and FoxP3 could serve as potential biomarkers in the obese population at risk of CVD.
Collapse
Affiliation(s)
- Linghui ZHU
- 1 School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ziwei SUN
- 2 National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyuan GUAN
- 1 School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Meiyi LIU
- 1 School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi ZHENG
- 1 School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruoxi YU
- 2 National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi WANG
- 2 National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingru LI
- 2 National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
28
|
Süli A, Magyar P, Vezér M, Bányai B, Szekeres M, Sipos M, Mátrai M, Hetthéssy JR, Dörnyei G, Ács N, Horváth EM, Nádasy GL, Várbíró S, Török M. Effects of Gender and Vitamin D on Vascular Reactivity of the Carotid Artery on a Testosterone-Induced PCOS Model. Int J Mol Sci 2023; 24:16577. [PMID: 38068901 PMCID: PMC10706740 DOI: 10.3390/ijms242316577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The negative cardiovascular effects of polycystic ovary syndrome (PCOS) and vitamin D deficiency (VDD) have been discussed previously; however, the sex differences between PCOS females and males are not yet known. Our aim was to investigate the effect of PCOS and VDD in the carotid artery of male and female Wistar rats. Females were treated with transdermal testosterone (Androgel) for 8 weeks, which caused PCOS. VDD and vitamin D supplementation were accomplished via diet. The carotid arteries' contraction and relaxation were examined using myography. Receptor density was investigated using immunohistochemistry. In PCOS females, angiotensin receptor density, angiotensin II-induced contraction, androgen receptor optical density, and testosterone-induced relaxation increased. The increased contractile response may increase cardiovascular vulnerability in women with PCOS. As an effect of VDD, estrogen receptor density increased in all our groups, which probably compensated for the reduced relaxation caused by VDD. Testosterone-induced relaxation was decreased as a result of VDD in males and non-PCOS females, whereas this reduction was absent in PCOS females. Male sex is associated with increased contraction ability compared with non-PCOS and PCOS females. VDD and Androgel treatment show significant gender differences in their effects on carotid artery reactivity. Both VDD and PCOS result in a dysfunctional vascular response, which can contribute to cardiovascular diseases.
Collapse
Affiliation(s)
- Anita Süli
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Péter Magyar
- Medical Imaging Centre, Faculty of Medicine, Semmelweis University, 1082 Budapest, Hungary;
| | - Márton Vezér
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Bálint Bányai
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
| | - Mária Szekeres
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary;
| | - Miklós Sipos
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Máté Mátrai
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
| | - Judit Réka Hetthéssy
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, 1088 Budapest, Hungary;
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
| | - Eszter Mária Horváth
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
| | - György L. Nádasy
- Department of Physiology, Faculty of Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.B.); (M.S.); (E.M.H.); (G.L.N.)
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
- Department of Obstetrics and Gynecology, University of Szeged, 6725 Szeged, Hungary
| | - Marianna Török
- Department of Obstetrics and Gynecology, Semmelweis University, 1082 Budapest, Hungary; (A.S.); (M.S.); (N.Á.); (S.V.)
- Workgroup of Research Management, Doctoral School, Semmelweis University, 1085 Budapest, Hungary;
| |
Collapse
|
29
|
Wang Y, Wang M, Wang Y. Irisin: A Potentially Fresh Insight into the Molecular Mechanisms Underlying Vascular Aging. Aging Dis 2023; 15:2491-2506. [PMID: 38029393 PMCID: PMC11567262 DOI: 10.14336/ad.2023.1112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023] Open
Abstract
Aging is a natural process that affects all living organisms, including humans. Aging is a complex process that involves the gradual deterioration of various biological processes and systems, including the cardiovascular system. Vascular aging refers to age-related changes in blood vessels. These changes can increase the risk of developing cardiovascular diseases, such as hypertension, atherosclerosis, and stroke. Recently, an exercise-induced muscle factor, irisin, was found to directly improve metabolism and regulate the balance of glucolipid metabolism, thereby counteracting obesity and insulin resistance. Based on a growing body of evidence, irisin modulates vascular aging. Adenosine monophosphate-activated protein kinase (AMPK) serves as a pivotal cellular energy sensor and metabolic modulator, acting as a central signaling cascade to coordinate various cellular processes necessary for maintaining vascular homeostasis. The vascular regulatory effects of irisin are closely intertwined with its interaction with the AMPK pathway. In conclusion, understanding the molecular processes used by irisin to regulate changes in vascular diseases caused by aging may inspire the development of techniques that promote healthy vascular aging. This review sought to describe the impact of irisin on the molecular mechanisms of vascular aging, including inflammation, oxidative stress, and epigenetics, from the perspective of endothelial cell function and vascular macroregulation, and summarize the multiple signaling pathways used by irisin to regulate vascular aging.
Collapse
Affiliation(s)
- Yinghui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | - Manying Wang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China.
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
30
|
Akhtar MS, Alavudeen SS, Raza A, Imam MT, Almalki ZS, Tabassum F, Iqbal MJ. Current understanding of structural and molecular changes in diabetic cardiomyopathy. Life Sci 2023; 332:122087. [PMID: 37714373 DOI: 10.1016/j.lfs.2023.122087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Diabetic Mellitus has been characterized as the most prevalent disease throughout the globe associated with the serious morbidity and mortality of vital organs. Cardiomyopathy is the major leading complication of diabetes and within this, myocardial dysfunction or failure is the leading cause of the emergency hospital admission. The review is aimed to comprehend the perspectives associated with diabetes-induced cardiovascular complications. The data was collected from several electronic databases such as Google Scholar, Science Direct, ACS publication, PubMed, Springer, etc. using the keywords such as diabetes and its associated complication, the prevalence of diabetes, the anatomical and physiological mechanism of diabetes-induced cardiomyopathy, the molecular mechanism of diabetes-induced cardiomyopathy, oxidative stress, and inflammatory stress, etc. The collected scientific data was screened by different experts based on the inclusion and exclusion criteria of the study. This review findings revealed that diabetes is associated with inefficient substrate utilization, inability to increase glucose metabolism and advanced glycation end products within the diabetic heart resulting in mitochondrial uncoupling, glucotoxicity, lipotoxicity, and initially subclinical cardiac dysfunction and finally in overt heart failure. Furthermore, several factors such as hypertension, overexpression of renin angiotensin system, hypertrophic obesity, etc. have been seen as majorly associated with cardiomyopathy. The molecular examination showed biochemical disability and generation of the varieties of free radicals and inflammatory cytokines and becomes are the substantial causes of cardiomyopathy. This review provides a better understanding of the involved pathophysiology and offers an open platform for discussing and targeting therapy in alleviating diabetes-induced early heart failure or cardiomyopathy.
Collapse
Affiliation(s)
- Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Fara, Abha 62223, Saudi Arabia.
| | - Sirajudeen S Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Fara, Abha 62223, Saudi Arabia
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Penn State Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Ziad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Private College, Al Qassim 51418, Saudi Arabia; Department of Pharmacology, Vision College, Ishbilia, Riyadh 13226-3830, Saudi Arabia
| | - Mir Javid Iqbal
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
31
|
Scrimieri R, Locatelli L, Cazzaniga A, Cazzola R, Malucelli E, Sorrentino A, Iotti S, Maier JA. Ultrastructural features mirror metabolic derangement in human endothelial cells exposed to high glucose. Sci Rep 2023; 13:15133. [PMID: 37704683 PMCID: PMC10499809 DOI: 10.1038/s41598-023-42333-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
High glucose-induced endothelial dysfunction is the early event that initiates diabetes-induced vascular disease. Here we employed Cryo Soft X-ray Tomography to obtain three-dimensional maps of high D-glucose-treated endothelial cells and their controls at nanometric spatial resolution. We then correlated ultrastructural differences with metabolic rewiring. While the total mitochondrial mass does not change, high D-glucose promotes mitochondrial fragmentation, as confirmed by the modulation of fission-fusion markers, and dysfunction, as demonstrated by the drop of membrane potential, the decreased oxygen consumption and the increased production of reactive oxygen species. The 3D ultrastructural analysis also indicates the accumulation of lipid droplets in cells cultured in high D-glucose. Indeed, because of the decrease of fatty acid β-oxidation induced by high D-glucose concentration, triglycerides are esterified into fatty acids and then stored into lipid droplets. We propose that the increase of lipid droplets represents an adaptive mechanism to cope with the overload of glucose and associated oxidative stress and metabolic dysregulation.
Collapse
Affiliation(s)
- Roberta Scrimieri
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| | - Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Roberta Cazzola
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
| | - Andrea Sorrentino
- Mistral Beamline, ALBA Synchrotron Light Source, Cerdanyola del Valles, 08290, Barcelona, Spain
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Università di Bologna, 40127, Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale Delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - Jeanette A Maier
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157, Milan, Italy.
| |
Collapse
|
32
|
Goycheva P, Petkova-Parlapanska K, Georgieva E, Karamalakova Y, Nikolova G. Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications. Int J Mol Sci 2023; 24:13541. [PMID: 37686346 PMCID: PMC10488183 DOI: 10.3390/ijms241713541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The present study aimed to investigate and compare biomarkers of oxidative stress and the activity of antioxidant enzymes in the plasma of patients with different stages of diabetic nephropathy. For this purpose, we studied (1) the levels of reactive oxygen species and reactive nitrogen species as oxidative stress parameters, (2) lipid and protein oxidation, (3) the activity of antioxidant enzymes, and (4) cytokine production. Patients with type 2 diabetes mellitus were divided into three groups according to the loss of renal function: patients with compensated diabetes mellitus with normal renal function DMT2N0 measured as an estimated glomerular filtration rate (eGFR) ≥ 90 mL/min/1.73 m2, a group with decompensated diabetes mellitus with complication diabetic nephropathy and mild-to-moderate loss of renal function DMT2N1 (eGFR < 60 mL/min/1.73 m2: 59-45 mL/min/1.73 m2), and a decompensated diabetes mellitus with diabetic nephropathy group with moderate-to-severe loss of renal function DMT2N2 (eGFR > 30 mL/min/1.73 m2: 30-44 mL/min/1.73 m2). All results were compared with healthy volunteers. The results showed that patients with diabetic nephropathy had significantly higher levels of ROS, cytokine production, and end products of lipid and protein oxidation compared to healthy volunteers. Furthermore, patients with diabetic nephropathy had depleted levels of nitric oxide (NO), an impaired NO synthase (NOS) system, and reduced antioxidant enzyme activity (p < 0.05). These findings suggest that patients with impaired renal function are unable to compensate for oxidative stress. The decreased levels of NO radicals in patients with advanced renal complications may be attributed to damage NO availability in plasma. The study highlights the compromised oxidative status as a contributing factor to impaired renal function in patients with decompensated type 2 diabetes mellitus. The findings of this study have implications for understanding the pathogenesis of diabetic nephropathy and the role of oxidative stress and chronic inflammation in its development. The assessment of oxidative stress levels and inflammatory biomarkers may aid in the early detection and prediction of diabetic complications.
Collapse
Affiliation(s)
- Petya Goycheva
- Propaedeutic of Internal Diseases Department, Medical Faculty, Trakia University Hospital, 6000 Stara Zagora, Bulgaria;
| | - Kamelia Petkova-Parlapanska
- Medical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (E.G.)
| | - Ekaterina Georgieva
- Medical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (E.G.)
- Department of “General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Medical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (E.G.)
| | - Galina Nikolova
- Medical Chemistry and Biochemistry Department, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (K.P.-P.); (E.G.)
| |
Collapse
|
33
|
Jacobs PJ, Hart DW, Merchant HN, Voigt C, Bennett NC. The Evolution and Ecology of Oxidative and Antioxidant Status: A Comparative Approach in African Mole-Rats. Antioxidants (Basel) 2023; 12:1486. [PMID: 37627481 PMCID: PMC10451868 DOI: 10.3390/antiox12081486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The naked mole-rat of the family Bathyergidae has been the showpiece for ageing research as they contradict the traditional understanding of the oxidative stress theory of ageing. Some other bathyergids also possess increased lifespans, but there has been a remarkable lack of comparison between species within the family Bathyergidae. This study set out to investigate how plasma oxidative markers (total oxidant status (TOS), total antioxidant capacity (TAC), and the oxidative stress index (OSI)) differ between five species and three subspecies of bathyergids, differing in their maximum lifespan potential (MLSP), resting metabolic rate, aridity index (AI), and sociality. We also investigated how oxidative markers may differ between captive and wild-caught mole-rats. Our results reveal that increased TOS, TAC, and OSI are associated with increased MLSP. This pattern is more prevalent in the social-living species than the solitary-living species. We also found that oxidative variables decreased with an increasing AI and that wild-caught individuals typically have higher antioxidants. We speculate that the correlation between higher oxidative markers and MLSP is due to the hypoxia-tolerance of the mole-rats investigated. Hormesis (the biphasic response to oxidative stress promoting protection) is a likely mechanism behind the increased oxidative markers observed and promotes longevity in some members of the Bathyergidae family.
Collapse
Affiliation(s)
- Paul. J. Jacobs
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa;
| | - Hana N. Merchant
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK;
| | - Cornelia Voigt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| | - Nigel C. Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0002, South Africa; (C.V.); (N.C.B.)
| |
Collapse
|
34
|
Minjares M, Wu W, Wang JM. Oxidative Stress and MicroRNAs in Endothelial Cells under Metabolic Disorders. Cells 2023; 12:1341. [PMID: 37174741 PMCID: PMC10177439 DOI: 10.3390/cells12091341] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Wendy Wu
- Vera P Shiffman Medical Library, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA;
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R St., Detroit, MI 48201, USA
| |
Collapse
|
35
|
Casanova A, Wevers A, Navarro-Ledesma S, Pruimboom L. Mitochondria: It is all about energy. Front Physiol 2023; 14:1114231. [PMID: 37179826 PMCID: PMC10167337 DOI: 10.3389/fphys.2023.1114231] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mitochondria play a key role in both health and disease. Their function is not limited to energy production but serves multiple mechanisms varying from iron and calcium homeostasis to the production of hormones and neurotransmitters, such as melatonin. They enable and influence communication at all physical levels through interaction with other organelles, the nucleus, and the outside environment. The literature suggests crosstalk mechanisms between mitochondria and circadian clocks, the gut microbiota, and the immune system. They might even be the hub supporting and integrating activity across all these domains. Hence, they might be the (missing) link in both health and disease. Mitochondrial dysfunction is related to metabolic syndrome, neuronal diseases, cancer, cardiovascular and infectious diseases, and inflammatory disorders. In this regard, diseases such as cancer, Alzheimer's, Parkinson's, amyotrophic lateral sclerosis (ALS), chronic fatigue syndrome (CFS), and chronic pain are discussed. This review focuses on understanding the mitochondrial mechanisms of action that allow for the maintenance of mitochondrial health and the pathways toward dysregulated mechanisms. Although mitochondria have allowed us to adapt to changes over the course of evolution, in turn, evolution has shaped mitochondria. Each evolution-based intervention influences mitochondria in its own way. The use of physiological stress triggers tolerance to the stressor, achieving adaptability and resistance. This review describes strategies that could recover mitochondrial functioning in multiple diseases, providing a comprehensive, root-cause-focused, integrative approach to recovering health and treating people suffering from chronic diseases.
Collapse
Affiliation(s)
- Amaloha Casanova
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Anne Wevers
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Santiago Navarro-Ledesma
- Department of Physiotherapy, University of Granada, Granada, Spain
- Faculty of Health Sciences, Melilla, Spain
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| | - Leo Pruimboom
- PNI Europe, The Hague, Netherlands
- Chair of Clinical Psychoneuroimmunology, University of Granada and PNI Europe, Granada, Spain
| |
Collapse
|
36
|
Sousa-Pimenta M, Estevinho MM, Sousa Dias M, Martins Â, Estevinho LM. Oxidative Stress and Inflammation in B-Cell Lymphomas. Antioxidants (Basel) 2023; 12:antiox12040936. [PMID: 37107311 PMCID: PMC10135850 DOI: 10.3390/antiox12040936] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Mature lymphoid neoplasms arise de novo or by the transformation of more indolent lymphomas in a process that relies on the stepwise accumulation of genomic and transcriptomic alterations. The microenvironment and neoplastic precursor cells are heavily influenced by pro-inflammatory signaling, regulated in part by oxidative stress and inflammation. Reactive oxygen species (ROSs) are by-products of cellular metabolism able to modulate cell signaling and fate. Moreover, they play a crucial role in the phagocyte system, which is responsible for antigen presentation and the selection of mature B and T cells under normal conditions. Imbalances in pro-oxidant and antioxidant signaling can lead to physiological dysfunction and disease development by disrupting metabolic processes and cell signaling. This narrative review aims to analyze the impact of reactive oxygen species on lymphomagenesis, specifically examining the regulation of microenvironmental players, as well as the response to therapy for B-cell-derived non-Hodgkin lymphomas. Further research is needed to investigate the involvement of ROS and inflammation in the development of lymphomas, which may unravel disease mechanisms and identify innovative therapeutic targets.
Collapse
Affiliation(s)
- Mário Sousa-Pimenta
- Department of Onco-Hematology, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Miguel Sousa Dias
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, 5300-252 Bragança, Portugal
- Department of Biology and Biotechnology, Agricultural College of Bragança, Polytechnic Institute of Bragança, 5300-252 Bragança, Portugal
| | - Ângelo Martins
- Department of Onco-Hematology, Portuguese Institute of Oncology of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Letícia M Estevinho
- Mountain Research Center (CIMO), Polytechnic Institute of Bragança, 5300-252 Bragança, Portugal
- Department of Biology and Biotechnology, Agricultural College of Bragança, Polytechnic Institute of Bragança, 5300-252 Bragança, Portugal
| |
Collapse
|
37
|
Tsai YL, Chen Y, Chen YC, Tsai WC. KDELC2 Upregulates Glioblastoma Angiogenesis via Reactive Oxygen Species Activation and Tumor-Associated Macrophage Proliferation. Antioxidants (Basel) 2023; 12:antiox12040923. [PMID: 37107298 PMCID: PMC10136350 DOI: 10.3390/antiox12040923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Glioblastoma is notorious for its rapid progression and neovascularization. In this study, it was found that KDEL (Lys-Asp-Glu-Leu) containing 2 (KDELC2) stimulated vasculogenic factor expression and induced human umbilical vein endothelial cell (HUVEC) proliferation. The NLRP3 inflammasome and autophagy activation via hypoxic inducible factor 1 alpha (HIF-1α) and mitochondrial reactive oxygen species (ROS) production was also confirmed. The application of the NLRP3 inflammasome inhibitor MCC950 and autophagy inhibitor 3-methyladenine (3-MA) indicated that the above phenomenon activation correlated with an endothelial overgrowth. Furthermore, KDELC2 suppression decreased the endoplasmic reticulum (ER) stress factors' expression. The ER stress inhibitors, such as salubrinal and GSK2606414, significantly suppressed HUVEC proliferation, indicating that ER stress promotes glioblastoma vascularization. Finally, shKDELC2 glioblastoma-conditioned medium (CM) stimulated TAM polarization and induced THP-1 cells to transform into M1 macrophages. In contrast, THP-1 cells co-cultured with compensatory overexpressed (OE)-KDELC2 glioblastoma cells increased IL-10 secretion, a biomarker of M2 macrophages. HUVECs co-cultured with shKDELC2 glioblastoma-polarized THP-1 cells were less proliferative, demonstrating that KDELC2 promotes angiogenesis. Mito-TEMPO and MCC950 increased caspase-1p20 and IL-1β expression in THP-1 macrophages, indicating that mitochondrial ROS and autophagy could also interrupt THP-1-M1 macrophage polarization. In conclusion, mitochondrial ROS, ER stress, and the TAMs resulting from OE-KDELC2 glioblastoma cells play important roles in upregulating glioblastoma angiogenesis.
Collapse
Affiliation(s)
- Yu-Ling Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Ying Chen
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan
| | - Ying-Chuan Chen
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei 114, Taiwan
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
38
|
Salemkour Y, Lenoir O. Endothelial Autophagy Dysregulation in Diabetes. Cells 2023; 12:947. [PMID: 36980288 PMCID: PMC10047205 DOI: 10.3390/cells12060947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Diabetes mellitus is a major public health issue that affected 537 million people worldwide in 2021, a number that is only expected to increase in the upcoming decade. Diabetes is a systemic metabolic disease with devastating macro- and microvascular complications. Endothelial dysfunction is a key determinant in the pathogenesis of diabetes. Dysfunctional endothelium leads to vasoconstriction by decreased nitric oxide bioavailability and increased expression of vasoconstrictor factors, vascular inflammation through the production of pro-inflammatory cytokines, a loss of microvascular density leading to low organ perfusion, procoagulopathy, and/or arterial stiffening. Autophagy, a lysosomal recycling process, appears to play an important role in endothelial cells, ensuring endothelial homeostasis and functions. Previous reports have provided evidence of autophagic flux impairment in patients with type I or type II diabetes. In this review, we report evidence of endothelial autophagy dysfunction during diabetes. We discuss the mechanisms driving endothelial autophagic flux impairment and summarize therapeutic strategies targeting autophagy in diabetes.
Collapse
Affiliation(s)
| | - Olivia Lenoir
- PARCC, Inserm, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
39
|
Hayden MR. Overview and New Insights into the Metabolic Syndrome: Risk Factors and Emerging Variables in the Development of Type 2 Diabetes and Cerebrocardiovascular Disease. Medicina (B Aires) 2023; 59:medicina59030561. [PMID: 36984562 PMCID: PMC10059871 DOI: 10.3390/medicina59030561] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Metabolic syndrome (MetS) is considered a metabolic disorder that has been steadily increasing globally and seems to parallel the increasing prevalence of obesity. It consists of a cluster of risk factors which traditionally includes obesity and hyperlipidemia, hyperinsulinemia, hypertension, and hyperglycemia. These four core risk factors are associated with insulin resistance (IR) and, importantly, the MetS is known to increase the risk for developing cerebrocardiovascular disease and type 2 diabetes mellitus. The MetS had its early origins in IR and syndrome X. It has undergone numerous name changes, with additional risk factors and variables being added over the years; however, it has remained as the MetS worldwide for the past three decades. This overview continues to add novel insights to the MetS and suggests that leptin resistance with hyperleptinemia, aberrant mitochondrial stress and reactive oxygen species (ROS), impaired folate-mediated one-carbon metabolism with hyperhomocysteinemia, vascular stiffening, microalbuminuria, and visceral adipose tissues extracellular vesicle exosomes be added to the list of associated variables. Notably, the role of a dysfunctional and activated endothelium and deficient nitric oxide bioavailability along with a dysfunctional and attenuated endothelial glycocalyx, vascular inflammation, systemic metainflammation, and the important role of ROS and reactive species interactome are discussed. With new insights and knowledge regarding the MetS comes the possibility of new findings through further research.
Collapse
Affiliation(s)
- Melvin R Hayden
- Department of Internal Medicine, Endocrinology Diabetes and Metabolism, Diabetes and Cardiovascular Disease Center, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65211, USA
| |
Collapse
|
40
|
Kotozaki Y, Satoh M, Nasu T, Tanno K, Tanaka F, Sasaki M. Human Plasma Xanthine Oxidoreductase Activity in Cardiovascular Disease: Evidence from a Population-Based Study. Biomedicines 2023; 11:biomedicines11030754. [PMID: 36979733 PMCID: PMC10045414 DOI: 10.3390/biomedicines11030754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Xanthine oxidoreductase (XOR) and its products contribute to the development of chronic inflammation and oxidative stress. Excessive XOR activity is believed to promote inflammatory responses and atherosclerotic plaque formation, which are major cardiovascular risk factors. The mechanisms of XOR activity in the development and progression of cardiovascular disease (CVD), coupled with the complexity of the relationship between XOR activity and the biological effects of uric acid; reactive oxygen species; and nitric oxide, which are the major products of XOR activity, have long been debated, but have not yet been clearly elucidated. Recently, a system for measuring highly sensitive XOR activity in human plasma was established, and there has been progress in the research on the mechanisms of XOR activity. In addition, there are accumulating findings about the relationship between XOR activity and CVD. In this narrative review, we summarize existing knowledge regarding plasma XOR activity and its relationship with CVD and discuss future perspectives.
Collapse
Affiliation(s)
- Yuka Kotozaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Correspondence: (Y.K.); (M.S.)
| | - Mamoru Satoh
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Department of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Correspondence: (Y.K.); (M.S.)
| | - Takahito Nasu
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Department of Biomedical Information Analysis, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Division of Cardiology, Department of Internal Medicine, Iwate Medical University, 2-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Kozo Tanno
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Department of Hygiene and Preventive Medicine, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Fumitaka Tanaka
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Iwate Medical University, 2-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
- Division of Ultrahigh field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1, Idaidori, Yahaba 028-3694, Iwate, Japan
| |
Collapse
|
41
|
Banerjee P, Kumaravel S, Roy S, Gaddam N, Odeh J, Bayless KJ, Glaser S, Chakraborty S. Conjugated Bile Acids Promote Lymphangiogenesis by Modulation of the Reactive Oxygen Species-p90RSK-Vascular Endothelial Growth Factor Receptor 3 Pathway. Cells 2023; 12:526. [PMID: 36831193 PMCID: PMC9953922 DOI: 10.3390/cells12040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Conjugated bile acids (BA) are significantly elevated in several liver pathologies and in the metastatic lymph node (LN). However, the effects of BAs on pathological lymphangiogenesis remains unknown. The current study explores the effects of BAs on lymphangiogenesis. BA levels were elevated in the LN and serum of Mdr2-/- mice (model of sclerosing cholangitis) compared to control mice. Liver and LN tissue sections showed a clear expansion of the lymphatic network in Mdr2-/- mice, indicating activated lymphangiogenic pathways. Human lymphatic endothelial cells (LECs) expressed BA receptors and a direct treatment with conjugated BAs enhanced invasion, migration, and tube formation. BAs also altered the LEC metabolism and upregulated key metabolic genes. Further, BAs induced the production of reactive oxygen species (ROS), that in turn phosphorylated the redox-sensitive kinase p90RSK, an essential regulator of endothelial cell dysfunction and oxidative stress. Activated p90RSK increased the SUMOylation of the Prox1 transcription factor and enhanced VEGFR3 expression and 3-D LEC invasion. BA-induced ROS in the LECs, which led to increased levels of Yes-associated protein (YAP), a lymphangiogenesis regulator. The suppression of cellular YAP inhibited BA-induced VEGFR3 upregulation and lymphangiogenic mechanism. Overall, our data shows the expansion of the lymphatic network in presclerotic liver disease and establishes a novel mechanism whereby BAs promote lymphangiogenesis.
Collapse
Affiliation(s)
- Priyanka Banerjee
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sukanya Roy
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Niyanshi Gaddam
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Johnny Odeh
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, Bryan, TX 77807, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| |
Collapse
|
42
|
Lapi D, Federighi G, Lonardo MS, Chiurazzi M, Muscariello E, Tenore G, Colantuoni A, Novellino E, Scuri R. Effects of physical exercise associated with a diet enriched with natural antioxidants on cerebral hypoperfusion and reperfusion injury in spontaneously hypertensive rats. Front Physiol 2023; 14:1091889. [PMID: 36755790 PMCID: PMC9900024 DOI: 10.3389/fphys.2023.1091889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress is implicated in the pathogenesis of arterial hypertension. The reduction in the bioavailability of nitric oxide (NO) causes endothelial dysfunction, altering the functions of cerebral blood vessels. Physical exercise and intake of antioxidants improve the redox state, increasing the vascular NO production and/or the decrease in NO scavenging by reactive oxygen species (ROS). The present study was aimed at assessing the effects of physical exercise associated with a diet enriched with antioxidants from the Annurca apple in preventing the microvascular damage due to cerebral hypoperfusion and reperfusion injury in spontaneously hypertensive rats (SHRs). The rat pial microcirculation was investigated by intravital fluorescence microscopy through a parietal closed cranial window. As expected, SHRs subjected to physical exercise or an antioxidants-enriched diet showed a reduction of microvascular permeability, ROS formation, and leukocyte adhesion to venular walls, with a major effect of the antioxidants-enriched diet, when compared to untreated SHRs. Moreover, capillary perfusion was preserved by both treatments in comparison with untreated SHRs. Unexpectedly, the combined treatments did not induce higher effects than the single treatment. In conclusion, our results support the efficacy of physical activity or antioxidant supplement in reducing the microvascular alterations due to hypertension and ascribe to an antioxidants-enriched diet effective microvascular protection in SHRs.
Collapse
Affiliation(s)
- Dominga Lapi
- Department of Biology, University of Pisa, Pisa, Italy,*Correspondence: Dominga Lapi,
| | - Giuseppe Federighi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Serena Lonardo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Espedita Muscariello
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | - Giancarlo Tenore
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Naples, Italy
| | | | - Rossana Scuri
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Pecchillo Cimmino T, Ammendola R, Cattaneo F, Esposito G. NOX Dependent ROS Generation and Cell Metabolism. Int J Mol Sci 2023; 24:ijms24032086. [PMID: 36768405 PMCID: PMC9916913 DOI: 10.3390/ijms24032086] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen species (ROS) represent a group of high reactive molecules with dualistic natures since they can induce cytotoxicity or regulate cellular physiology. Among the ROS, the superoxide anion radical (O2·-) is a key redox signaling molecule prominently generated by the NADPH oxidase (NOX) enzyme family and by the mitochondrial electron transport chain. Notably, altered redox balance and deregulated redox signaling are recognized hallmarks of cancer and are involved in malignant progression and resistance to drugs treatment. Since oxidative stress and metabolism of cancer cells are strictly intertwined, in this review, we focus on the emerging roles of NOX enzymes as important modulators of metabolic reprogramming in cancer. The NOX family includes seven isoforms with different activation mechanisms, widely expressed in several tissues. In particular, we dissect the contribute of NOX1, NOX2, and NOX4 enzymes in the modulation of cellular metabolism and highlight their potential role as a new therapeutic target for tumor metabolism rewiring.
Collapse
Affiliation(s)
- Tiziana Pecchillo Cimmino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- Correspondence: (F.C.); (G.E.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- CEINGE Advanced Biotechnologies Franco Salvatore S.c.a.r.l., 80131 Naples, Italy
- Correspondence: (F.C.); (G.E.)
| |
Collapse
|
44
|
Teixeira RB, Pfeiffer M, Zhang P, Shafique E, Rayta B, Karbasiafshar C, Ahsan N, Sellke FW, Abid MR. Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction. Basic Res Cardiol 2023; 118:3. [PMID: 36639609 PMCID: PMC9839395 DOI: 10.1007/s00395-022-00976-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
Recent studies demonstrated that mitochondrial antioxidant MnSOD that reduces mitochondrial (mito) reactive oxygen species (ROS) helps maintain an optimal balance between sub-cellular ROS levels in coronary vascular endothelial cells (ECs). However, it is not known whether EC-specific mito-ROS modulation provides resilience to coronary ECs after a non-reperfused acute myocardial infarction (MI). This study examined whether a reduction in endothelium-specific mito-ROS improves the survival and proliferation of coronary ECs in vivo. We generated a novel conditional binary transgenic animal model that overexpresses (OE) mitochondrial antioxidant MnSOD in an EC-specific manner (MnSOD-OE). EC-specific MnSOD-OE was validated in heart sections and mouse heart ECs (MHECs). Mitosox and mito-roGFP assays demonstrated that MnSOD-OE resulted in a 50% reduction in mito-ROS in MHEC. Control and MnSOD-OE mice were subject to non-reperfusion MI surgery, echocardiography, and heart harvest. In post-MI hearts, MnSOD-OE promoted EC proliferation (by 2.4 ± 0.9 fold) and coronary angiogenesis (by 3.4 ± 0.9 fold), reduced myocardial infarct size (by 27%), and improved left ventricle ejection fraction (by 16%) and fractional shortening (by 20%). Interestingly, proteomic and Western blot analyses demonstrated upregulation in mitochondrial complex I and oxidative phosphorylation (OXPHOS) proteins in MnSOD-OE MHECs. These MHECs also showed increased mitochondrial oxygen consumption rate (OCR) and membrane potential. These findings suggest that mito-ROS reduction in EC improves coronary angiogenesis and cardiac function in non-reperfused MI, which are associated with increased activation of OXPHOS in EC-mitochondria. Activation of an energy-efficient mechanism in EC may be a novel mechanism to confer resilience to coronary EC during MI.
Collapse
Affiliation(s)
- Rayane Brinck Teixeira
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Melissa Pfeiffer
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Peng Zhang
- Vascular Research Laboratory/Providence VA Medical Center and Department of Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - Ehtesham Shafique
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Bonnie Rayta
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - Nagib Ahsan
- Division of Biology and Medicine, Alpert Medical School, Brown University, Providence, RI, 02903, USA
- Proteomics Core Facility, Center for Cancer Research and Development, Rhode Island Hospital, Providence, RI, 02903, USA
- Department of Chemistry and Biochemistry, Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK, USA
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital, Brown University Warren Alpert Medical School, 1 Hoppin Street, Providence, RI, 02903, USA.
| |
Collapse
|
45
|
Muacevic A, Adler JR, Bratoeva K. Effects of Melatonin Supplementation on the Aortic Wall in a Diet-Induced Obesity Rat Model. Cureus 2023; 15:e33333. [PMID: 36751236 PMCID: PMC9897689 DOI: 10.7759/cureus.33333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Background Cardiovascular disease (CVD) is still the leading cause of death globally. Alterations in the arterial wall architecture predict CVD morbidity and mortality and are associated with other CVD risk factors. Aortic wall thickness is closely linked to short- and long-term CVD morbidity and mortality, even without pronounced atherosclerotic changes. Obesity increases the risk of a broad spectrum of pathologies with vascular manifestation, which are often pathogenically associated with chronic oxidative stress and inflammatory response. Hence, as an antioxidant and anti-inflammatory agent, the pineal gland hormone melatonin is expected to have vasoprotective effects. This study evaluated the effects of melatonin supplementation on aortic wall thickness by assessing the cross-sectional associations of abdominal obesity with aortic intima-media thickness in a diet-induced obesity rat model. Methodology The model comprised of male Wistar rats that were on a high-fructose diet (HFD) (20% glucose-fructose corn syrup) for 12 weeks; the rats were divided into four groups (n = 8): control, HFD, HFD and melatonin supplementation (per os - 4 mg/kg/24h), and control and melatonin supplementation. All rats received a standard rodent diet and tap water. Zoometric measurements and the Lee index were calculated. Morphometric analysis of the abdominal aorta was performed by staining with hematoxylin-eosin and measuring the thickness of the abdominal aortic wall. For this, we used the Aperio Image Scope software. To evaluate the functional properties of the abdominal aorta, the modified Kernogan's index (KI) was employed. Results The results showed significantly elevated body weight (Lee index), KI, and wall thickness of the aorta abdominalis with morphometric changes in the vessel wall in HFD rats compared to the control group. Melatonin supplementation prevented these changes. Conclusions The administration of HFD to Wistar rats led to pathomorphological and morphometric changes in their abdominal aorta, which constitute the main diagnostic criteria of endothelial dysfunction. Melatonin supplementation regressed vascular wall remodeling and restored its functional capacity.
Collapse
|
46
|
Cantu A, Gutierrez MC, Dong X, Leek C, Sajti E, Lingappan K. Remarkable sex-specific differences at single-cell resolution in neonatal hyperoxic lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 324:L5-L31. [PMID: 36283964 PMCID: PMC9799156 DOI: 10.1152/ajplung.00269.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Exposure to supraphysiological concentrations of oxygen (hyperoxia) predisposes to bronchopulmonary dysplasia (BPD), which is characterized by abnormal alveolarization and pulmonary vascular development, in preterm neonates. Neonatal hyperoxia exposure is used to recapitulate the phenotype of human BPD in murine models. Male sex is considered an independent predictor for the development of BPD, but the main mechanisms underlying sexually dimorphic outcomes are unknown. Our objective was to investigate sex-specific and cell-type specific transcriptional changes that drive injury in the neonatal lung exposed to hyperoxia at single-cell resolution and delineate the changes in cell-cell communication networks in the developing lung. We used single-cell RNA sequencing (scRNAseq) to generate transcriptional profiles of >35,000 cells isolated from the lungs of neonatal male and female C57BL/6 mice exposed to 95% [Formula: see text] between PND1-5 (saccular stage of lung development) or normoxia and euthanized at PND7 (alveolar stage of lung development). ScRNAseq identified 22 cell clusters with distinct populations of endothelial, epithelial, mesenchymal, and immune cells. Our data identified that the distal lung vascular endothelium (composed of aerocytes and general capillary endothelial cells) is exquisitely sensitive to hyperoxia exposure with the emergence of an intermediate capillary endothelial population with both general capillaries (gCap) and aerocytes or alveolar capillaries (aCap) markers. We also identified a myeloid-derived suppressor cell population from the lung neutrophils. Sex-specific differences were evident in all lung cell subpopulations but were striking among the lung immune cells. Finally, we identified that the specific intercellular communication networks and the ligand-receptor pairs that are impacted by neonatal hyperoxia exposure.
Collapse
Affiliation(s)
- Abiud Cantu
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Manuel C Gutierrez
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Xiaoyu Dong
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Connor Leek
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Eniko Sajti
- Department of Pediatrics, University of California, La Jolla, California
| | - Krithika Lingappan
- Department of Neonatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Barabutis N, Akhter MS, Kubra KT, Jackson K. Growth Hormone-Releasing Hormone in Endothelial Inflammation. Endocrinology 2022; 164:6887354. [PMID: 36503995 PMCID: PMC9923806 DOI: 10.1210/endocr/bqac209] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The discovery of hypothalamic hormones propelled exciting advances in pharmacotherapy and improved life quality worldwide. Growth hormone-releasing hormone (GHRH) is a crucial element in homeostasis maintenance, and regulates the release of growth hormone from the anterior pituitary gland. Accumulating evidence suggests that this neuropeptide can also promote malignancies, as well as inflammation. Our review is focused on the role of that 44 - amino acid peptide (GHRH) and its antagonists in inflammation and vascular function, summarizing recent findings in the corresponding field. Preclinical studies demonstrate the protective role of GHRH antagonists against endothelial barrier dysfunction, suggesting that the development of those peptides may lead to new therapies against pathologies related to vascular remodeling (eg, sepsis, acute respiratory distress syndrome). Targeted therapies for those diseases do not exist.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Correspondence: Nektarios Barabutis, MSc, PhD, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, 1800 Bienville Dr, Monroe, LA 71201, USA.
| | | | - Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Keith Jackson
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| |
Collapse
|
48
|
Sousa T, Gouveia M, Travasso RD, Salvador A. How abundant are superoxide and hydrogen peroxide in the vasculature lumen, how far can they reach? Redox Biol 2022; 58:102527. [PMID: 36335761 PMCID: PMC9640316 DOI: 10.1016/j.redox.2022.102527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Paracrine superoxide (O2•−) and hydrogen peroxide (H2O2) signaling critically depends on these substances' concentrations, half-lives and transport ranges in extracellular media. Here we estimated these parameters for the lumen of human capillaries, arterioles and arteries using reaction-diffusion-advection models. These models considered O2•− and H2O2 production by endothelial cells and uptake by erythrocytes and endothelial cells, O2•− dismutation, O2•− and H2O2 diffusion and advection by the blood flow. Results show that in this environment O2•− and H2O2 have half-lives <60. ms and <40. ms, respectively, the former determined by the plasma SOD3 activity, the latter by clearance by endothelial cells and erythrocytes. H2O2 concentrations do not exceed the 10 nM scale. Maximal O2•− concentrations near vessel walls exceed H2O2's several-fold when the latter results solely from O2•− dismutation. Cytosolic dismutation of inflowing O2•− may thus significantly contribute to H2O2 delivery to cells. O2•− concentrations near vessel walls decay to 50% of maximum 12 μm downstream from O2•− production sites. H2O2 concentrations in capillaries decay to 50% of maximum 22 μm (6.0 μm) downstream from O2•− (H2O2) production sites. Near arterioles' (arteries') walls, they decay by 50% within 6.0 μm (4. μm) of H2O2 production sites. However, they reach maximal values 50 μm (24 μm) downstream from O2•− production sites and decrease by 50% over 650 μm (500 μm). Arterial/olar endothelial cells might thus signal over a mm downstream through O2•−-derived H2O2, though this requires nM-sensitive H2O2 transduction mechanisms. Physiological local H2O2 concentrations in vasculature lumen are up to 10's of μM. H2O2 transport range in capillaries is just ≈20 μm. Faster blood flow in arteri(ol)es transports O2•−-derived H2O2 over 100's of μm Similar H2O2 abundances and distribution near arterioles' and arteries' walls, likewise for O2•−. Inflowing O2•− may significantly feed H2O2 to the cytosol of endothelial cells
Collapse
|
49
|
Rummun N, Payne B, Blom van Staden A, Twilley D, Houghton B, Horrocks P, Li WW, Lall N, Bahorun T, Neergheen VS. Pluripharmacological potential of Mascarene endemic plant leaf extracts. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
50
|
Effects of Thymoquinone Alone or in Combination with Losartan on the Cardiotoxicity Caused by Oxidative Stress and Inflammation in Hypercholesterolemia. J Cardiovasc Dev Dis 2022; 9:jcdd9120428. [PMID: 36547425 PMCID: PMC9782872 DOI: 10.3390/jcdd9120428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dietary cholesterol accelerates oxidative and pro-inflammatory processes, causing hypercholesterolemia and cardiovascular diseases. Thus, the purpose of the current study is to compare the protective effects of thymoquinone (TQ) alone or in combination with losartan (LT) against the heart damage caused by a high-cholesterol diet (HCD). HCD-fed rat groups revealed an elevated activity of indicators of cardiac enzymes in the serum. Serum and cardiac lipids were also found to be significantly higher in HCD-fed rat groups. Cardiac pro-inflammatory and oxidative markers were also increased in HCD-fed rat groups, whereas antioxidant indicators were decreased. However, all of these biochemical, inflammatory, antioxidant, and oxidative change indicators returned to levels similar to those of normal rats after treatment with TQ alone or in combination with LT administered to HCD-fed rat groups. Hypercholesterolemia considerably induced the lipid peroxidation product, thiobarbituric acid reaction substances (TBARs), and oxidative radicals in cardiac cells, which were attenuated by QT and LT treatments, particularly when combined. Finally, QT, LT, and their combination were able to reduce the histological changes changes brought on by cholesterol excess in cardiac tissues. In conclusion, administration of TQ in a combination with LT which has a better protective effect, significantly reduced the hypercholesterolemic-induced oxidative and inflammatory changes that occurred in cardiac tissue.
Collapse
|