1
|
Hu Q, Leung WK, Acharya A, Li X, Pelekos G. Akkermansia muciniphila Alleviates Porphyromonas gingivalis-induced Periodontal Disease by Enhancing Bacterial Clearance. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10541-2. [PMID: 40299200 DOI: 10.1007/s12602-025-10541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
This study is to investigate the role of Akkermansia muciniphila (Am) in enhancing immune defense against Porphyromonas gingivalis (Pg)-induced periodontal disease. Twenty C57BL/6 J mice received 50 µL of Pg suspension (1.5 × 109 CFU/mL) with or without 50 µL of Am suspension (1.5 × 109 CFU/mL) orally every 2 days for a total of 18 administrations to assess bone resorption and inflammation. Gingival cervical fluid and periodontal plaques were collected for microbiota analysis using 16S sequencing. THP-1 (a human leukemia monocytic cell line) differentiated macrophages were used to explore the underlying beneficial mechanisms of Am by evaluating gene expression, cytokine production, and phagocytosis activity. Am administration attenuated alveolar bone loss and reduced inflammation in Pg-induced periodontitis in mice. Microbiota analysis revealed that Am reduced bacterial load and modified the composition of periodontal microbiota. In THP-1 macrophages, Am enhanced the phagocytosis of Pg by restoring MyD88 protein levels. RNA sequencing and western blotting results showed that Am upregulated TLR2 and MyD88 expression while downregulating C5aR, indicating interference with the TLR2-C5aR-MyD88 interplay. Am enhances immune defense against Pg-induced periodontal disease by modulating the TLR2-C5aR-MyD88 signaling pathway. These findings suggest that Am could be a promising therapeutic option for managing periodontal disease.
Collapse
Affiliation(s)
- Qin Hu
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Aneesha Acharya
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
- Dr D Y Patil Dental College and Hospital, Pune, India
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
| | - George Pelekos
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China.
| |
Collapse
|
2
|
Shang L, Roffel S, Slomka V, D'Agostino EM, Metris A, Buijs MJ, Brandt BW, Deng D, Gibbs S, Krom BP. An in vitro model demonstrating homeostatic interactions between reconstructed human gingiva and a saliva-derived multispecies biofilm. MICROBIOME 2025; 13:58. [PMID: 40022258 PMCID: PMC11869481 DOI: 10.1186/s40168-025-02033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/07/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND In the oral cavity, host-microbe interactions (HMI) continuously occur and greatly impact oral health. In contrast to the well-studied disease-associated HMI during, for example, periodontitis, HMI that are essential in maintaining oral health have been rarely investigated, especially in a human-relevant context. The aim of this study was to extensively characterize homeostatic HMI between saliva-derived biofilms and a reconstructed human gingiva (RHG). RHG was reconstructed following the structure of native gingiva, composed of a multilayered epithelium formed by keratinocytes and a fibroblast-populated compartment. To mimic the oral environment, RHG were inoculated with pooled human saliva resuspended in different saliva substitute media and incubated for 2 or 4 days. The co-cultured biofilms were retrieved and characterized by viable bacterial counting and compositional profiling (16S rRNA gene sequencing). RHG was investigated for metabolic activity (MTT assay), tissue histology (hematoxylin and eosin staining), epithelial proliferation (Ki67 staining), antimicrobial peptide expression, and cytokine secretion. RESULTS Viable biofilms were detected up to day 4 of co-culturing. Bacterial counts indicated biofilm growth from the inoculation to day 2 and maintained thereafter at a similar level until day 4. All biofilms shared similar composition throughout 4 days, independent of co-culture time and different saliva substitute media used during inoculation. Biofilms were diverse with Streptococcus, Haemophilus, and Neisseria being the dominating genera. While supporting biofilm development, RHG displayed no significant changes in metabolic activity, tissue histology, or epithelial proliferation. However, in the presence of biofilms, the antimicrobial peptides elafin and human β-defensin-2 were upregulated, and the secretion of cytokines IL-6, CXCL1, CXCL8, CCL5, and CCL20 increased. CONCLUSION This model mimicked homeostatic HMI where a healthy gingiva supported a viable, diverse, and stable microbial community, incorporating bacterial genera found on native gingiva. The gingiva model maintained its tissue integrity and exerted protective responses in the presence of biofilms over time. This study adds to the evidence that shows the important role of the host in maintaining homeostatic HMI that are essential for oral health. Video Abstract.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands.
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | | | - Aline Metris
- Unilever Safety and Environmental Assurance Centre (SEAC), Colworth Science Park, Sharnbrook, Bedford, UK
| | - Mark J Buijs
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre Location Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, 1081 LA, The Netherlands
| |
Collapse
|
3
|
Makkar H, Sriram G. Advances in modeling periodontal host-microbe interactions: insights from organotypic and organ-on-chip systems. LAB ON A CHIP 2025; 25:1342-1371. [PMID: 39963082 PMCID: PMC11833442 DOI: 10.1039/d4lc00871e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Periodontal disease, a chronic inflammatory condition affecting the supporting structures of teeth, is driven by an imbalanced interaction between the periodontal microbiota and the host inflammatory response. Beyond its local impact, periodontal disease is associated with systemic conditions such as diabetes mellitus, cardiovascular disease, and inflammatory bowel disease, emphasizing the importance of understanding its mechanisms. Traditional pre-clinical models, such as monolayer cultures and animal studies, have provided foundational insights but are limited by their physiological relevance and ethical concerns. Recent advancements in tissue engineering and microfluidic technologies have led to the development of three-dimensional (3D) organotypic culture models and organ-on-chip systems that more closely mimic native tissue microenvironments. This review provides an overview of the evolution of methods to study periodontal host-microbe interactions, from simple 2D monolayer cultures to complex 3D organotypic and microfluidic organ-on-chip (OoC) models. We discuss various fabrication strategies, host-microbe co-culture techniques, and methods for evaluating outcomes in these advanced models. Additionally, we highlight insights gained from gut-on-chip platforms and their potential applications in periodontal research and understanding oral-systemic links of periodontal disease. Through a comprehensive overview of current advancements and future directions, this review provides insights on the transformative potential of OoC technology in periodontal research, offering new avenues for studying disease mechanisms and developing therapeutic strategies.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, 119085, Singapore.
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, 119085, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| |
Collapse
|
4
|
Sriram G, Makkar H. Microfluidic organ-on-chip systems for periodontal research: advances and future directions. Front Bioeng Biotechnol 2025; 12:1490453. [PMID: 39840127 PMCID: PMC11747509 DOI: 10.3389/fbioe.2024.1490453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated in vitro models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease. Of interest is their application in understanding periodontal disease, a chronic inflammatory condition marked by the progressive destruction of periodontal tissues, including gingiva, periodontal ligament, and alveolar bone. The pathogenesis of periodontal disease involves a complex interplay between microbial dysbiosis and host immune responses, which can lead to a loss of dental support structures and contribute to systemic conditions such as cardiovascular disease, diabetes, and inflammatory bowel disease. This provides a comprehensive overview of the latest developments in millifluidic and microfluidic systems designed to emulate periodontal host-microbe and host-material interactions. We discuss the critical engineering and biological considerations in designing these platforms, their applications in studying oral biofilms, periodontal tissue responses, and their potential to unravel disease mechanisms and therapeutic targets in periodontal disease.
Collapse
Affiliation(s)
- Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Dai Y, Wang P, Mishra A, You K, Zong Y, Lu WF, Chow EKH, Preshaw PM, Huang D, Chew JRJ, Ho D, Sriram G. 3D Bioprinting and Artificial Intelligence-Assisted Biofabrication of Personalized Oral Soft Tissue Constructs. Adv Healthc Mater 2024:e2402727. [PMID: 39690752 DOI: 10.1002/adhm.202402727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Indexed: 12/19/2024]
Abstract
Regeneration of oral soft tissue defects, including mucogingival defects associated with the recession or loss of gingival and/or mucosal tissues around teeth and implants, is crucial for restoring oral tissue form, function, and health. This study presents a novel approach using three-dimensional (3D) bioprinting to fabricate individualized grafts with precise size, shape, and layer-by-layer cellular organization. A multicomponent polysaccharide/fibrinogen-based bioink is developed, and bioprinting parameters are optimized to create shape-controlled oral soft tissue (gingival) constructs. Rheological, printability, and shape-fidelity assays, demonstrated the influence of thickener concentration and print parameters on print resolution and shape fidelity. Artificial intelligence (AI)-derived tool enabled streamline the iterative bioprinting parameter optimization and analysis of the interaction between the bioprinting parameters. The cell-laden polysaccharide/fibrinogen-based bioinks exhibited excellent cellular viability and shape fidelity of shape-controlled, full-thickness gingival tissue constructs over the 18-day culture period. While variations in thickener concentrations within the bioink minimally impact the cellular organization and morphogenesis (gingival epithelial, connective tissue, and basement membrane markers), they influence the shape fidelity of the bioprinted constructs. This study represents a significant step toward the biofabrication of personalized soft tissue grafts, offering potential applications in the repair and regeneration of mucogingival defects associated with periodontal disease and dental implants.
Collapse
Affiliation(s)
- Yichen Dai
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Peter Wang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
| | - Apurva Mishra
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Kui You
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
| | - Yuheng Zong
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117602, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore, 117602, Singapore
| | - Edward Kai-Hua Chow
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Philip M Preshaw
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
- School of Dentistry, University of Dundee, Dundee, DD1 4HN, UK
| | - Dejian Huang
- Department of Food, Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | - Jacob Ren Jie Chew
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
- National University Centre for Oral Health Singapore, National University Hospital, Singapore, 119085, Singapore
| | - Dean Ho
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore, 117456, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- The Bia-Echo Asia Centre for Reproductive Longevity and Equality (ACRLE), National University of Singapore, Singapore, 117456, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore, 117602, Singapore
| |
Collapse
|
6
|
Patel N, Seoudi N. Management of Medication-Related Osteonecrosis of the Jaw: An Overview of National and International Guidelines. Br J Oral Maxillofac Surg 2024; 62:899-908. [PMID: 39448352 DOI: 10.1016/j.bjoms.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/16/2024] [Accepted: 08/31/2024] [Indexed: 10/26/2024]
Abstract
There is variability amongst clinicians in the management of medication-related osteonecrosis of the jaw (MRONJ) though numerous guidelines are available. The aim of this critical review is to appraise current international and national guidelines on MRONJ to evaluate areas of consensus or inconsistency, identify areas lacking evidence, and discuss recommendations with agreement and variability across guidelines. A literature search was performed to identify all national and international guidelines published until May 2022 on the prevention and treatment of MRONJ. Included guidelines were compared and critically appraised with Appraisal of Guidelines for Research and Evaluation II (AGREE II). The included sixteen guidelines were published from ten different countries, two of which had international collaborations. AGREE II assessment found four guidelines of high quality. There is consensus to optimise oral health prior to and during therapy, to conservatively manage established MRONJ in earlier stages and consider surgery at advanced stages. There is disparity on strategies to reduce the risk of osteonecrosis such as the avoidance of invasive dental procedures, therapy suspension, and techniques to reduce the impact of invasive surgery. The authors recommend an international lead in the development of dental guidelines to establish a global standardised management approach aiming for better health equality.
Collapse
Affiliation(s)
- Nikul Patel
- College of Medicine and Dentistry, Ulster University, Birmingham, UK; Musgrove Park Hospital, Somerset NHS Foundation Trust, Taunton, UK; University Dental Hospital Wales, Heath Park, Cardiff, UK.
| | - Noha Seoudi
- College of Medicine and Dentistry, Ulster University, Birmingham, UK; Queen Mary University of London, London, UK; Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Kunath BJ, De Rudder C, Laczny CC, Letellier E, Wilmes P. The oral-gut microbiome axis in health and disease. Nat Rev Microbiol 2024; 22:791-805. [PMID: 39039286 DOI: 10.1038/s41579-024-01075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/24/2024]
Abstract
The human body hosts trillions of microorganisms throughout many diverse habitats with different physico-chemical characteristics. Among them, the oral cavity and the gut harbour some of the most dense and diverse microbial communities. Although these two sites are physiologically distinct, they are directly connected and can influence each other in several ways. For example, oral microorganisms can reach and colonize the gastrointestinal tract, particularly in the context of gut dysbiosis. However, the mechanisms of colonization and the role that the oral microbiome plays in causing or exacerbating diseases in other organs have not yet been fully elucidated. Here, we describe recent advances in our understanding of how the oral and intestinal microbiota interplay in relation to their impact on human health and disease.
Collapse
Affiliation(s)
- Benoit J Kunath
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Charlotte De Rudder
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Elisabeth Letellier
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
8
|
Zhang Y, Shang L, Roffel S, Spiekstra SW, Deng D, Gibbs S. Streptococcus mitis enhances metal-induced apoptosis in reconstructed human gingiva but not skin. Toxicol In Vitro 2024; 100:105913. [PMID: 39079590 DOI: 10.1016/j.tiv.2024.105913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/11/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Commensal bacteria colonizing oral mucosa and skin play an essential role in maintaining host-microbiome homeostasis. It is unknown whether cytotoxicity resulting from metal ions leaching from medical devices may be influenced by commensal microbes. OBJECTIVE Determine whether the extent of apoptosis triggered by nickel or titanium ions is influenced by Streptococcus mitis and whether apoptosis occurs via the intrinsic or extrinsic apoptosis pathway. METHODS Reconstructed Human Gingiva (RHG) and Skin (RHS) were topically exposed to titanium or nickel salts in the presence or absence of S. mitis. Cytotoxicity and apoptosis were assessed by histology, immunohistochemistry, TUNEL assay, and Western Blot. RESULTS S. mitis alone resulted in negligible cytotoxicity. After metal exposure, localized apoptosis was observed in the epithelium and fibroblasts within the lamina propria hydrogel of both RHG and RHS. S. mitis enhanced metal-mediated apoptosis in gingiva but not in skin. Apoptosis was mediated via the extrinsic pathway caspase 8. Activation of the execution phase of apoptosis occurred via caspases 3 and 7, and PARP-1. CONCLUSION Our study supports the finding that metals have irritant, cytotoxic properties resulting in apoptosis when leaching into skin or gingiva. Particularly for gingiva, commensal microbes exaggerate this detrimental effect.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Orthodontic, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Saravanan V, Gopalakrishnan V, Mahendran MIMS, Vaithianathan R, Srinivasan S, Boopathy V, Krishnamurthy S. Biofilm mediated integrin activation and directing acceleration of colorectal cancer. APMIS 2024; 132:688-705. [PMID: 39246244 DOI: 10.1111/apm.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
Bacterial biofilm plays a vital role in influencing several diseases, infections, metabolic pathways and communication channels. Biofilm influence over colorectal cancer (CRC) has been a booming area of research interest. The virulence factors of bacterial pathogen have a high tendency to induce metabolic pathway to accelerate CRC. The bacterial species biofilm may induce cancer through regulating the major signalling pathways responsible for cell proliferation, differentiation, survival and growth. Activation of cancer signals may get initiated from the chronic infections through bacterial biofilm species. Integrin mediates in the activation of major pathway promoting cancer. Integrin-mediated signals are expected to be greatly influenced by biofilm. Integrins are identified as an important dimer, whose dysfunction may alter the signalling cascade specially focusing on TGF-β, PI3K/Akt/mToR, MAPK and Wnt pathway. Along with biofilm shield, the tumour gains greater resistance from radiation, chemotherapy and also from other antibiotics. The biofilm barrier is known to cause challenges for CRC patients undergoing treatment.
Collapse
Affiliation(s)
- Vaijayanthi Saravanan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | - Vinoj Gopalakrishnan
- MGM Advanced Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | | | - Rajan Vaithianathan
- Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | - Sowmya Srinivasan
- Mahatma Gandhi Medical College and Research Institute, Sri Balaji Vidhyapeeth (Deemed to be University), Pondicherry, Tamil Nadu, India
| | | | | |
Collapse
|
10
|
Shang L, Deng D, Krom BP, Gibbs S. Oral host-microbe interactions investigated in 3D organotypic models. Crit Rev Microbiol 2024; 50:397-416. [PMID: 37166371 DOI: 10.1080/1040841x.2023.2211665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
The oral cavity is inhabited by abundant microbes which continuously interact with the host and influence the host's health. Such host-microbe interactions (HMI) are dynamic and complex processes involving e.g. oral tissues, microbial communities and saliva. Due to difficulties in mimicking the in vivo complexity, it is still unclear how exactly HMI influence the transition between healthy status and disease conditions in the oral cavity. As an advanced approach, three-dimensional (3D) organotypic oral tissues (epithelium and mucosa/gingiva) are being increasingly used to study underlying mechanisms. These in vitro models were designed with different complexity depending on the research questions to be answered. In this review, we summarised the existing 3D oral HMI models, comparing designs and readouts, discussing applications as well as future perspectives.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan P Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Rahimnejad M, Makkar H, Dal-Fabbro R, Malda J, Sriram G, Bottino MC. Biofabrication Strategies for Oral Soft Tissue Regeneration. Adv Healthc Mater 2024; 13:e2304537. [PMID: 38529835 PMCID: PMC11254569 DOI: 10.1002/adhm.202304537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/01/2024] [Indexed: 03/27/2024]
Abstract
Gingival recession, a prevalent condition affecting the gum tissues, is characterized by the exposure of tooth root surfaces due to the displacement of the gingival margin. This review explores conventional treatments, highlighting their limitations and the quest for innovative alternatives. Importantly, it emphasizes the critical considerations in gingival tissue engineering leveraging on cells, biomaterials, and signaling factors. Successful tissue-engineered gingival constructs hinge on strategic choices such as cell sources, scaffold design, mechanical properties, and growth factor delivery. Unveiling advancements in recent biofabrication technologies like 3D bioprinting, electrospinning, and microfluidic organ-on-chip systems, this review elucidates their precise control over cell arrangement, biomaterials, and signaling cues. These technologies empower the recapitulation of microphysiological features, enabling the development of gingival constructs that closely emulate the anatomical, physiological, and functional characteristics of native gingival tissues. The review explores diverse engineering strategies aiming at the biofabrication of realistic tissue-engineered gingival grafts. Further, the parallels between the skin and gingival tissues are highlighted, exploring the potential transfer of biofabrication approaches from skin tissue regeneration to gingival tissue engineering. To conclude, the exploration of innovative biofabrication technologies for gingival tissues and inspiration drawn from skin tissue engineering look forward to a transformative era in regenerative dentistry with improved clinical outcomes.
Collapse
Affiliation(s)
- Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
- NUS Centre for Additive Manufacturing (AM.NUS), National University of Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Marco C. Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Oh H, Makita Y, Masuno K, Imamura Y. Hangeshashinto Inhibits Porphyromonas gingivalis Pathogen-Associated Molecular Patterns-Mediated IL-6 and IL-8 Production through Toll-Like Receptors in CAL27 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2024; 2024:9866670. [PMID: 38665937 PMCID: PMC11045287 DOI: 10.1155/2024/9866670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
While previous reports have established the anti-inflammatory effects of hangeshashinto, the intracellular signal transduction pathways involved have yet to be elucidated. We aim to employ an experimental system using oral cancer cells to assess the impact of hangeshashinto on intracellular signal transduction pathways in response to stimulation by Porphyromonas gingivalis pathogen-associated molecular patterns (PAMP). Hangeshashinto demonstrated the ability to inhibit the production of interleukin (IL)-6 and IL-8 induced by P. gingivalis PAMP. Furthermore, hangeshashinto suppressed the activation of the IL-6 promoter stimulated by PAMP. Hangeshashinto, like Toll-like receptor (TLR) signaling inhibitors (resatorvid and C29) and an immunosuppressant (dexamethasone), exhibited the ability to suppress TLR-mediated activation of the transcription factor nuclear factor-κB (NF-κB) in response to PAMP stimulation. This study suggests that the anti-inflammatory effects of hangeshashinto may be attributed to the inhibition of TLR signal transduction pathways including NF-κB activation, thereby suppressing NF-κB-dependent gene expression.
Collapse
Affiliation(s)
- Hourei Oh
- Center of Innovation in Dental Education, Osaka Dental University, Osaka 573-1121, Japan
| | - Yoshimasa Makita
- Department of Chemistry, Osaka Dental University, Osaka 573-1121, Japan
| | - Kazuya Masuno
- Center of Innovation in Dental Education, Osaka Dental University, Osaka 573-1121, Japan
| | - Yasuhiro Imamura
- Department of Pharmacology, Matsumoto Dental University, Nagano 399-0781, Japan
| |
Collapse
|
13
|
Polishchuk TV, Sheshukova OV, Mosiienko AS, Trufanova VP, Bauman SS, Kazakova KS. Determination of dysbiosis by the method of multiplex real-time polymerase chain reaction in chronic catarrhal gingivitis in children. POLSKI MERKURIUSZ LEKARSKI : ORGAN POLSKIEGO TOWARZYSTWA LEKARSKIEGO 2024; 52:300-303. [PMID: 39007468 DOI: 10.36740/merkur202403106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
OBJECTIVE Aim: The aim of the study was to determine the quantitative and qualitative characteristics of the microbiota of dento-gingival plaque in children to improve the quality of treatment of chronic catarrhal gingivitis. PATIENTS AND METHODS Materials and Methods: It was examined 16 children aged 9-16 years with a diagnosis of K05.1: chronic gingivitis and 10 persons with intact gums were taken as a comparison group. A clinical dental examination was performed on the study participants and a sample was taken to determine the bacteria in the periodontal plaque. RESULTS Results: The results of statistical processing of the research data allowed us to establish that in patients with chronic gingivitis, quantitative indicators of the total bacterial mass, Lactobacillus spp., Enterobacteriaceae, Gardnerella vaginalis/Prevotella bivia/Porphyromonas spp. in the sample of periodontal plaque significantly exceeded the indicators of healthy patients. It was determined that the examined children with chronic gingivitis, the total number of Lactobacillus spp. significantly exceeds its amount in people with intact gums. CONCLUSION Conclusions: The changes in the quantitative and qualitative characteristics of the main representatives of the microf i lm of dento-gingival plaque, which characterize dysbiosis, are of signif i cant clinical signif i cance. Study of the quantitative characteristics of Lactobacterium spp., Enterobacterium spp., Streptococcacea spp., Gardnerella spp., Prevotella spp., Porphyromonas spp., Eubacteridacea spp., Mycoplasma (hominis + genitalium), Candida spp. is a diagnostic factor in determining the condition of the mucous membrane of the oral cavity.
Collapse
|
14
|
Rahnama-Hezavah M, Mertowska P, Mertowski S, Skiba J, Krawiec K, Łobacz M, Grywalska E. How Can Imbalance in Oral Microbiota and Immune Response Lead to Dental Implant Problems? Int J Mol Sci 2023; 24:17620. [PMID: 38139449 PMCID: PMC10743591 DOI: 10.3390/ijms242417620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Dental implantology is one of the most dynamically developing fields of dentistry, which, despite developing clinical knowledge and new technologies, is still associated with many complications that may lead to the loss of the implant or the development of the disease, including peri-implantitis. One of the reasons for this condition may be the fact that dental implants cannot yield a proper osseointegration process due to the development of oral microbiota dysbiosis and the accompanying inflammation caused by immunological imbalance. This study aims to present current knowledge as to the impact of oral microflora dysbiosis and deregulation of the immune system on the course of failures observed in dental implantology. Evidence points to a strong correlation between these biological disturbances and implant complications, often stemming from improper osseointegration, pathogenic biofilms on implants, as well as an exacerbated inflammatory response. Technological enhancements in implant design may mitigate pathogen colonization and inflammation, underscoring implant success rates.
Collapse
Affiliation(s)
- Mansur Rahnama-Hezavah
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Julia Skiba
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Karol Krawiec
- Student Research Group of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Łobacz
- Chair and Department of Oral Surgery, Medical University of Lublin, 20-093 Lublin, Poland; (M.R.-H.); (M.Ł.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
15
|
Bowen J, Cross C. The Role of the Innate Immune Response in Oral Mucositis Pathogenesis. Int J Mol Sci 2023; 24:16314. [PMID: 38003503 PMCID: PMC10670995 DOI: 10.3390/ijms242216314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Oral mucositis (OM) is a significant complication of cancer therapy with limited management strategies. Whilst inflammation is a central feature of destructive and ultimately ulcerative pathology, to date, attempts to mitigate damage via this mechanism have proven limited. A relatively underexamined aspect of OM development is the contribution of elements of the innate immune system. In particular, the role played by barriers, pattern recognition systems, and microbial composition in early damage signaling requires further investigation. As such, this review highlights the innate immune response as a potential focus for research to better understand OM pathogenesis and development of interventions for patients treated with radiotherapy and chemotherapy. Future areas of evaluation include manipulation of microbial-mucosal interactions to alter cytotoxic sensitivity, use of germ-free models, and translation of innate immune-targeted agents interrogated for mucosal injury in other regions of the alimentary canal into OM-based clinical trials.
Collapse
Affiliation(s)
- Joanne Bowen
- School of Biomedicine, University of Adelaide, Adelaide 5005, Australia;
| | | |
Collapse
|
16
|
Zuber P, Kreth J. Aspects of oral streptococcal metabolic diversity: Imagining the landscape beneath the fog. Mol Microbiol 2023; 120:508-524. [PMID: 37329112 DOI: 10.1111/mmi.15106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
It is widely acknowledged that the human-associated microbial community influences host physiology, systemic health, disease progression, and even behavior. There is currently an increased interest in the oral microbiome, which occupies the entryway to much of what the human initially encounters from the environment. In addition to the dental pathology that results from a dysbiotic microbiome, microbial activity within the oral cavity exerts significant systemic effects. The composition and activity of the oral microbiome is influenced by (1) host-microbial interactions, (2) the emergence of niche-specific microbial "ecotypes," and (3) numerous microbe-microbe interactions, shaping the underlying microbial metabolic landscape. The oral streptococci are central players in the microbial activity ongoing in the oral cavity, due to their abundance and prevalence in the oral environment and the many interspecies interactions in which they participate. Streptococci are major determinants of a healthy homeostatic oral environment. The metabolic activities of oral Streptococci, particularly the metabolism involved in energy generation and regeneration of oxidative resources vary among the species and are important factors in niche-specific adaptations and intra-microbiome interactions. Here we summarize key differences among streptococcal central metabolic networks and species-specific differences in how the key glycolytic intermediates are utilized.
Collapse
Affiliation(s)
- Peter Zuber
- Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Jens Kreth
- School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
17
|
Makkar H, Lim CT, Tan KS, Sriram G. Modeling periodontal host-microbe interactions using vascularized gingival connective tissue equivalents. Biofabrication 2023; 15:045008. [PMID: 37473752 DOI: 10.1088/1758-5090/ace935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Gingival connective tissue and its vasculature play a crucial role in the host's immune response against the periodontal microbiome and serve as a bridge between the oral and systemic environments. However, there is a lack of representative models that mimic the complex features of vascularized gingival connective tissue and its interaction with the periodontal microbiome, hindering our understanding of periodontal health and disease. Towards this pursuit, we present the characterization of vascularized gingival connective tissue equivalents (CTEs) as a model to study the interactions between oral biofilm colonizers and gingival tissues in healthy and diseased states. Whole-mount immunolabeling and label-free confocal reflectance microscopy of human fibrin-based matrix embedded with gingival fibroblasts and microvascular endothelial cells demonstrated the generation of bi-cellular vascularized gingival CTEs. Next, we investigated the response of the vascularized gingival CTEs to early, intermediate, and late oral biofilm colonizers. Despite colonization, the early colonizers did not elicit any significant change in the production of the cytokines and chemokines by the CTEs representative of the commensal and homeostatic state. In contrast, intermediate and late colonizers representing a transition to a diseased state exhibited connective tissue and vascular invasion, and elicited a differential immune response accompanied by increased monocyte migration. The culture supernatants produced by the vascularized gingival CTEs in response to early and intermediate colonizers polarized macrophages towards an immunomodulatory M2-like phenotype which activates and protects the host, while the late colonizers polarized towards a pro-inflammatory M1-like phenotype. Lastly,in silicoanalysis showed a high strength of associations between the proteins and transcripts investigated with periodontitis and vascular diseases. In conclusion, the vascularized gingival CTEs provide a biomimeticin vitroplatform to study host-microbiome interactions and innate immune response in periodontal health and diseased states, which potentially paves the way toward the development and assessment of novel periodontal therapeutics.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore 119085, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119085, Singapore
| |
Collapse
|
18
|
Lamont RJ, Miller DP, Bagaitkar J. Illuminating the oral microbiome: cellular microbiology. FEMS Microbiol Rev 2023; 47:fuad045. [PMID: 37533213 PMCID: PMC10657920 DOI: 10.1093/femsre/fuad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Epithelial cells line mucosal surfaces such as in the gingival crevice and provide a barrier to the ingress of colonizing microorganisms. However, epithelial cells are more than a passive barrier to microbial intrusion, and rather constitute an interactive interface with colonizing organisms which senses the composition of the microbiome and communicates this information to the underlying cells of the innate immune system. Microorganisms, for their part, have devised means to manipulate host cell signal transduction pathways to favor their colonization and survival. Study of this field, which has become known as cellular microbiology, has revealed much about epithelial cell physiology, bacterial colonization and pathogenic strategies, and innate host responses.
Collapse
Affiliation(s)
- Richard J Lamont
- Department of Oral Immunology and Infectious Diseases, University of Louisville, Louisville, KY, KY40202, United States
| | - Daniel P Miller
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, VA23298, United States
| | - Juhi Bagaitkar
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, OH43205, United States
- Department of Pediatrics, The Ohio State College of Medicine, Columbus, OH, OH43210, United States
| |
Collapse
|
19
|
Doub JB, De Palma BJ, Nandi S. Bacterial Burden, Not Local Immune Response, Differs Between Acute and Chronic Peri-Prosthetic Joint Infections. Surg Infect (Larchmt) 2023. [PMID: 37262179 DOI: 10.1089/sur.2023.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Background: Conducting gram stains in peri-prosthetic joint infections (PJI) is known to have poor sensitivity. However, the aims of this study were to use gram stain results of acute and chronic PJI to determine differences with respect to bacterial burden and levels of local innate immunologic response. Patients and Methods: Patients with acute and chronic PJI from January 1, 2016 and December 31, 2020 were identified by use of Current Procedural Terminology codes. Manual review of medical records for infecting organisms and gram stain results for stained bacteria and for local tissue inflammation (amount of polymorphonuclear leukocytes seen on high powered microscopic fields) were recorded. Statistical comparisons between acute (n = 70) and chronic (n = 134) PJI were analyzed with respect to gram stain sensitivity and amount of local tissue inflammation. Results: The ability to identify stained bacteria was statistically significantly higher in the acute cohort (61.4%) than the chronic cohort (9.7%; p < 0.0001). Interestingly, the amount of local inflammation was similar for acute and chronic PJI except in the subgroup analysis with chronic polymicrobial (p = 0.0229) and chronic culture negative (p = 0.0001) PJI. Conclusions: This study shows that both acute and chronic PJI had similar levels of local inflammation seen on gram stains, despite higher bacterial burdens in acute infections. This suggests that innate immune responses, and thus likelihood of infection eradication, is not solely dependent on bacterial burden. These findings should spearhead further research evaluating the different immunologic responses that occur in acute and chronic PJI to improve diagnostics, therapeutics, and infection-free implant survival.
Collapse
Affiliation(s)
- James B Doub
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brian J De Palma
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sumon Nandi
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Çevik-Aras H, Dafar A. Soluble LPS receptor CD14 is increased in saliva of patients with geographic tongue. Acta Odontol Scand 2023; 81:137-142. [PMID: 35802734 DOI: 10.1080/00016357.2022.2097305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
OBJECTIVES The soluble bacterial pattern recognition receptor, sCD14 augments inflammatory responses in oral cavity. The aim of the study was to investigate whether patients with geographic tongue (GT) with and without fissured tongue (FT) have impaired inflammatory regulation, manifesting as increased levels of sCD14 in the saliva. MATERIAL AND METHODS An enzyme-linked immunosorbent assay was used to measure the amount of sCD14 in whole and parotid saliva of patients diagnosed with GT (GT whole, n = 21; GT parotid, n = 23) and control subjects (GT whole, n = 25; GT parotid, n = 18). The levels of sCD14 were also evaluated according to our previous clinical assessment of GT based on the number of lesions detected on the tongue, as 'mild' (a single lesion), 'moderate' (2-5 lesions), or 'severe' (≥6 lesions). Diagnosis of FT was established when multiple grooves or fissures were observed on the dorsal and lateral surfaces of the tongue. RESULTS GT patients had significantly higher sCD14 levels in whole (p<.05) and parotid saliva (p<.001), compared with controls. GT patients with FT had significantly increased sCD14 levels only in parotid saliva. A gradual increase in sCD14 levels in parotid and unstimulated saliva was seen in GT patients with multiple tongue lesions compared with single lesions. CONCLUSIONS GT patients had increased sCD14 in both parotid and unstimulated saliva. sCD14 seems to increase local inflammatory responses, which suggests its involvement in the pathophysiology of GT.
Collapse
Affiliation(s)
- Hülya Çevik-Aras
- Department of Oral Medicine and Pathology, Institute of Odontology, University of Gothenburg, Goteborg, Sweden
| | - Amal Dafar
- Department of Oral Medicine and Pathology, Institute of Odontology, University of Gothenburg, Goteborg, Sweden.,Department of Oral and Maxillofacial Surgery, King Fahad General Hospital, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
de Jongh CA, de Vries TJ, Bikker FJ, Gibbs S, Krom BP. Mechanisms of Porphyromonas gingivalis to translocate over the oral mucosa and other tissue barriers. J Oral Microbiol 2023; 15:2205291. [PMID: 37124549 PMCID: PMC10134951 DOI: 10.1080/20002297.2023.2205291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Introduction The oral pathogen Porphyromonas gingivalis is not only associated with periodontitis but also with systemic diseases elsewhere in the body. The mechanisms by which P. gingivalis travels from the oral cavity to other organs in the body are largely unknown. This review describes the four putative mechanisms supported by experimental evidence, which enable translocation of P. gingivalis over the oral mucosa, endothelial barriers and subsequent dissemination into the bloodstream. Mechanisms The first mechanism: proteolytic enzymes secreted by P. gingivalis degrade adhesion molecules between tissue cells, and the extracellular matrix. This weakens the structural integrity of the mucosa and allows P. gingivalis to penetrate the tissue. The second is transcytosis: bacteria actively enter tissue cells and transfer to the next layer or the extracellular space. By travelling from cell to cell, P. gingivalis reaches deeper structures. Thirdly, professional phagocytes take up P. gingivalis and travel to the bloodstream where P. gingivalis is released. Lastly, P. gingivalis can adhere to the hyphae forming Candida albicans. These hyphae can penetrate the mucosal tissue, which may allow P. gingivalis to reach deeper structures. Conclusion More research could elucidate targets to inhibit P. gingivalis dissemination and prevent the onset of various systemic diseases.
Collapse
Affiliation(s)
- Caroline A. de Jongh
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- CONTACT Bastiaan P. Krom Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Imamura Y, Makita Y, Masuno K, Oh H. Inhibitory Mechanism of IL-6 Production by Orento in Oral Squamous Cell Carcinoma Cell Line CAL27 Stimulated by Pathogen-Associated Molecular Patterns from Periodontopathogenic Porphyromonas gingivalis. Int J Mol Sci 2022; 24:ijms24010697. [PMID: 36614140 PMCID: PMC9821341 DOI: 10.3390/ijms24010697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Orento is a traditional Japanese medicinal kampo preparation that is also prescribed in oral care. In oral squamous cell carcinoma cell line CAL27, orento significantly inhibited periodontopathogenic bacterium Porphyromonas gingivalis lipopolysaccharide (LPS) and lipoproteins (PAMP)-stimulated production of interleukin (IL)-6. This suggests that orento negatively regulates PAMP-mediated toll-like receptor (TLR) signaling. Orento significantly suppressed PAMP-stimulated activation of the IL-6 promoter, indicating that orento may suppress the production of IL-6 by PAMP at the transcriptional level. Orento also suppressed TLR-mediated activation of transcription factor nuclear factor-kappa B (NF-kB) that was stimulated by PAMP. This finding indicates that orento may suppress the function and activation of factors involved in TLR signaling, thereby suppressing NF-kB-dependent expression of various genes. Orento suppressed IL-1 receptor-associated kinase (IRAK4), IRAK1, and c-Jun N-terminal kinase (JNK) phosphorylation in PAMP-stimulated CAL27 cells. This result indicates that orento is involved in the initiation of TLR signaling by PAMP and suppresses the downstream signaling pathways of myeloid differentiation primary response gene 88 (MyD88) such as mitogen-activated protein kinase (MAPK) and NF-kB cascades. These findings suggest that orento has an inhibitory effect on the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Yasuhiro Imamura
- Department of Pharmacology, Matsumoto Dental University, Nagano 399-0781, Japan
| | - Yoshimasa Makita
- Department of Chemistry, Osaka Dental University, Osaka 573-1121, Japan
| | - Kazuya Masuno
- Center of Innovation in Dental Education, Osaka Dental University, Osaka 573-1121, Japan
| | - Hourei Oh
- Center of Innovation in Dental Education, Osaka Dental University, Osaka 573-1121, Japan
- Correspondence: ; Tel.: +81-72-864-3171
| |
Collapse
|
23
|
Zhang Y, Shang L, Roffel S, Krom BP, Gibbs S, Deng D. Stable reconstructed human gingiva–microbe interaction model: Differential response to commensals and pathogens. Front Cell Infect Microbiol 2022; 12:991128. [PMID: 36339338 PMCID: PMC9631029 DOI: 10.3389/fcimb.2022.991128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background To investigate human oral health and disease, models are required which represent the interactions between the oral mucosa and microbiome. Our aim was to develop an organotypic model which maintains viability of both host and microbes for an extended period of time. Methods Reconstructed Human Gingiva (RHG) were cultured air-lifted with or without penicillin-streptomycin (PS) and topically exposed to Streptococcus gordonii (commensal) or Aggregatibacter actinomycetemcomitans (pathogen) for 72 hours in agar. RHG histology, viability and cytokines (ELISA), and bacterial viability (colony forming units) and location (FISH) were assessed. Results The low concentration of topically applied agar did not influence RHG viability. Topically applied bacteria in agar remained localized and viable for 72 hours and did not spill over to infect RHG culture medium. PS in RHG culture medium killed topically applied bacteria. Co-culture with living bacteria did not influence RHG viability (Ki67 expression, MTT assay) or histology (epithelium differentiation, Keratin10 expression). RHG exposed to S. gordonii (with or without PS) did not influence low level of IL-6, IL-8, CCL2, CCL5, CCL20 or CXCL1 secretion. However, all cytokines increased (except CCL2) when RHG were co-cultured with A. actinomycetemcomitans. The effect was significantly more in the presence of living, rather than dead, A. actinomycetemcomitans. Both bacteria resulted in increased expression of RHG antimicrobial peptides (AMPs) Elafin and HBD-2, with S. gordonii exposure resulting in the most Elafin secretion. Conclusion This technical advance enables living human oral host–microbe interactions to be investigated during a 72-hour period and shows differences in innate immunology triggered by S. gordonii and A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Orthodontic, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Dongmei Deng,
| |
Collapse
|
24
|
Long H, Yan L, Pu J, Liu Y, Zhong X, Wang H, Yang L, Lou F, Luo S, Zhang Y, Liu Y, Xie P, Ji P, Jin X. Multi-omics analysis reveals the effects of microbiota on oral homeostasis. Front Immunol 2022; 13:1005992. [PMID: 36211346 PMCID: PMC9533175 DOI: 10.3389/fimmu.2022.1005992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The oral epithelium’s normal morphological structure and function play an important role in maintaining oral homeostasis, among which microbiota and chronic stress are key contributing factors. However, the effects of microbiota and chronic stress on the morphological structures and molecular function of oral homeostasis remain unclear. In this study, morphological staining was used to compare the tongue structure of specific pathogen-free and germ-free mice, and an integrated multi-omics analysis based on transcriptomics, proteomics, and metabolomics was performed to investigate the regulatory mechanisms of microbiota and chronic stress on oral homeostasis. We found that the morphological structure of the tongue in germ-free mice was disordered compared with in specific pathogen-free mice, especially in the epithelium. Multi-omics analysis indicated that differentially expressed molecules of the tongue between germ-free and specific pathogen-free mice were significantly enriched in the mitochondrial metabolic process and immune response. Interestingly, microbiota also significantly influenced the permeability of the oral epithelial barrier, represented by the differential expression of keratinization, and cell adhesion molecules. It was worth noting that the above changes in the tongue between specific pathogen-free and germ-free mice were more significant after chronic stress. Collectively, this is the first study to reveal that the microbiota might maintain oral homeostasis by reshaping the structure of the oral epithelial barrier and changing the function of molecular biology, a process that may be driven by the immune response and mitochondrial metabolic process of oral tissue. Furthermore, chronic stress can enhance the regulatory effects of microbiota on oral homeostasis.
Collapse
Affiliation(s)
- Huiqing Long
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Li Yan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaogang Zhong
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Fangzhi Lou
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Shihong Luo
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Yingying Zhang
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Yang Liu
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
| | - Peng Xie
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- *Correspondence: Xin Jin, ; Ping Ji,
| | - Xin Jin
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- *Correspondence: Xin Jin, ; Ping Ji,
| |
Collapse
|
25
|
Takenaka S, Sotozono M, Ohkura N, Noiri Y. Evidence on the Use of Mouthwash for the Control of Supragingival Biofilm and Its Potential Adverse Effects. Antibiotics (Basel) 2022; 11:727. [PMID: 35740134 PMCID: PMC9219991 DOI: 10.3390/antibiotics11060727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial mouthwash improves supragingival biofilm control when used in conjunction with mechanical removal as part of an oral hygiene routine. Mouthwash is intended to suppress bacterial adhesion during biofilm formation processes and is not aimed at mature biofilms. The most common evidence-based effects of mouthwash on the subgingival biofilm include the inhibition of biofilm accumulation and its anti-gingivitis property, followed by its cariostatic activities. There has been no significant change in the strength of the evidence over the last decade. A strategy for biofilm control that relies on the elimination of bacteria may cause a variety of side effects. The exposure of mature oral biofilms to mouthwash is associated with several possible adverse reactions, such as the emergence of resistant strains, the effects of the residual structure, enhanced pathogenicity following retarded penetration, and ecological changes to the microbiota. These concerns require further elucidation. This review aims to reconfirm the intended effects of mouthwash on oral biofilm control by summarizing systematic reviews from the last decade and to discuss the limitations of mouthwash and potential adverse reactions to its use. In the future, the strategy for oral biofilm control may shift to reducing the biofilm by detaching it or modulating its quality, rather than eliminating it, to preserve the benefits of the normal resident oral microflora.
Collapse
Affiliation(s)
- Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (M.S.); (N.O.); (Y.N.)
| | | | | | | |
Collapse
|
26
|
Iliopoulos JM, Layrolle P, Apatzidou DA. Microbial-stem cell interactions in periodontal disease. J Med Microbiol 2022; 71. [PMID: 35451943 DOI: 10.1099/jmm.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is initiated by hyper-inflammatory responses in the periodontal tissues that generate dysbiotic ecological changes within the microbial communities. As a result, supportive tissues of the tooth are damaged and periodontal attachment is lost. Gingival recession, formation of periodontal pockets with the presence of bleeding, and often suppuration and/or tooth mobility are evident upon clinical examination. These changes may ultimately lead to tooth loss. Mesenchymal stem cells (MSCs) are implicated in controlling periodontal disease progression and have been shown to play a key role in periodontal tissue homeostasis and regeneration. Evidence shows that MSCs interact with subgingival microorganisms and their by-products and modulate the activity of immune cells by either paracrine mechanisms or direct cell-to-cell contact. The aim of this review is to reveal the interactions that take place between microbes and in particular periodontal pathogens and MSCs in order to understand the factors and mechanisms that modulate the regenerative capacity of periodontal tissues and the ability of the host to defend against putative pathogens. The clinical implications of these interactions in terms of anti-inflammatory and paracrine responses of MSCs, anti-microbial properties and alterations in function including their regenerative potential are critically discussed based on literature findings. In addition, future directions to design periodontal research models and study ex vivo the microbial-stem cell interactions are introduced.
Collapse
Affiliation(s)
- Jordan M Iliopoulos
- School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
| | - Pierre Layrolle
- INSERM, ToNIC, Pavillon Baudot, CHU Purpan, University of Toulouse, Toulouse, UMR 1214, France
| | - Danae A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
27
|
Bartosova M, Borilova Linhartova P, Musilova K, Broukal Z, Kukletova M, Kukla L, Izakovicova Holla L. Association of the CD14 -260C/T polymorphism with plaque-induced gingivitis depends on the presence of Porphyromonas gingivalis. Int J Paediatr Dent 2022; 32:223-231. [PMID: 34097794 DOI: 10.1111/ipd.12847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Plaque-induced gingivitis is the most prevalent periodontal disease associated with pathogenic biofilms. The host immune system responds to pathogens through pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and their co-receptor cluster of differentiation 14 (CD14). AIM This study investigated the association between the functional polymorphism in the CD14 gene and the dental plaque microbiota in children with gingivitis. DESIGN A total of 590 unrelated children (307 with plaque-induced gingivitis and 283 controls, aged 13-15 years) were enrolled in this case-control study. Dental plaque was processed using a ParoCheck® 20 detection kit. The CD14 -260C/T (rs2569190) polymorphism was determined with the PCR-RFLP method. RESULTS Gingivitis was detected in 64.2% of boys and 35.8% of girls (P < .001). Children with gingivitis had a significantly higher occurrence of dental caries (P < .001). No significant differences in the CD14 -260C/T allele and genotype distribution among individuals with or without gingivitis in the whole cohort were found. Children with gingivitis and P gingivalis, however, were significantly more frequent carriers of the CT and TT genotypes than children with gingivitis without P gingivalis or healthy controls (P < .05). CONCLUSIONS The CD14 -260C/T polymorphism acts in cooperation with P gingivalis to trigger plaque-induced gingivitis in Czech children.
Collapse
Affiliation(s)
- Michaela Bartosova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Petra Borilova Linhartova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kristina Musilova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Zdenek Broukal
- Institute of Dental Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Martina Kukletova
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic
| | - Lubomir Kukla
- Research Centre for Toxic Compounds in the Environment (RECETOX), Chemistry Section, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Department of Stomatology, Faculty of Medicine, Institution Shared with St. Anne's Faculty Hospital, Masaryk University, Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Research Centre for Toxic Compounds in the Environment (RECETOX), Chemistry Section, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
28
|
Makkar H, Atkuru S, Tang YL, Sethi T, Lim CT, Tan KS, Sriram G. Differential immune responses of 3D gingival and periodontal connective tissue equivalents to microbial colonization. J Tissue Eng 2022; 13:20417314221111650. [PMID: 35923175 PMCID: PMC9340411 DOI: 10.1177/20417314221111650] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Gingival and periodontal ligament fibroblasts are functionally distinct cell
types within the dento-gingival unit that participate in host immune response.
Their microenvironment influences the behavior and immune response to microbial
challenge. We developed three-dimensional gingival and periodontal connective
tissue equivalents (CTEs) using human fibrin-based matrix. The CTEs were
characterized, and the heterogeneity in their innate immune response was
investigated. The CTEs demonstrated no to minimal response to planktonic
Streptococcus mitis and Streptococcus
oralis, while their biofilms elicited a moderate increase in IL-6
and IL-8 production. In contrast, Fusobacterium nucleatum
provoked a substantial increase in IL-6 and IL-8 production. Interestingly, the
gingival CTEs secreted significantly higher IL-6, while periodontal counterparts
produced higher IL-8. In conclusion, the gingival and periodontal CTEs exhibited
differential responses to various bacterial challenges. This gives insights into
the contribution of tissue topography and fibroblast heterogeneity in rendering
protective and specific immune responses toward early biofilm colonizers.
Collapse
Affiliation(s)
- Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Srividya Atkuru
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Yi Ling Tang
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Tanya Sethi
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore
| |
Collapse
|
29
|
Probiotics as Therapeutic Tools against Pathogenic Biofilms: Have We Found the Perfect Weapon? MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Bacterial populations inhabiting a variety of natural and human-associated niches have the ability to grow in the form of biofilms. A large part of pathological chronic conditions, and essentially all the bacterial infections associated with implanted medical devices or prosthetics, are caused by microorganisms embedded in a matrix made of polysaccharides, proteins, and nucleic acids. Biofilm infections are generally characterized by a slow onset, mild symptoms, tendency to chronicity, and refractory response to antibiotic therapy. Even though the molecular mechanisms responsible for resistance to antimicrobial agents and host defenses have been deeply clarified, effective means to fight biofilms are still required. Lactic acid bacteria (LAB), used as probiotics, are emerging as powerful weapons to prevent adhesion, biofilm formation, and control overgrowth of pathogens. Hence, using probiotics or their metabolites to quench and interrupt bacterial communication and aggregation, and to interfere with biofilm formation and stability, might represent a new frontier in clinical microbiology and a valid alternative to antibiotic therapies. This review summarizes the current knowledge on the experimental and therapeutic applications of LAB to interfere with biofilm formation or disrupt the stability of pathogenic biofilms.
Collapse
|
30
|
Li H, Wang Y, Zhang D, Chen T, Hu A, Han X. Glycemic fluctuation exacerbates inflammation and bone loss and alters microbiota profile around implants in diabetic mice with experimental peri-implantitis. Int J Implant Dent 2021; 7:79. [PMID: 34401982 PMCID: PMC8368769 DOI: 10.1186/s40729-021-00360-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The impact of glycemic fluctuation under diabetic condition on peri-implantitis in diabetic patients remains unclear. We hypothesized that glycemic fluctuation has greater adverse effect on experimental peri-implantitis, compared with sustained high blood glucose in diabetes. RESULTS Maxillary left first and second molars of diabetic db/db mice were extracted and were replaced with one dental implant in the healed edentulous space. Glycemic control or fluctuation were managed by constant or interrupted oral administration of rosiglitazone to these mice. Meanwhile, experimental peri-implantitis was induced by ligation around implants. After 14 weeks, inflammatory responses, and peri-implant bone loss, together with oral microbiota profile were analyzed. Diabetic mice with glycemic fluctuation showed greater peri-implant bone loss, inflammatory cell infiltration, and osteoclastogenesis, compared with mice with sustained hyperglycemia. Compared to sustained hyperglycemia, glycemic fluctuation led to further increase in IL-1β, TNFα, RANKL, TLR2/4, IRAK1, and TRAF6 mRNA expression in peri-implant gingival tissues. Both rosiglitazone-induced glycemic control and glycemic fluctuation caused microbiota profile change in diabetic mice compared to that in uncontrolled hyperglycemic mice. CONCLUSIONS This study suggests that glycemic fluctuation may aggravate peri-implantitis inflammation and bone loss, which may be associated with a shift in peri-implant microbial profile towards dysbiotic changes and the activation of TLR2/4-IRAK1-TRAF6 signaling.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, the Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
| | - Yufeng Wang
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
- Department of Oral Mucosal Diseases, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Dong Zhang
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
- Department of Oral Surgery, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Tsute Chen
- Department of Microbiology, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
- Department of Oral Medicine, Infection and Immunity, Harvard University School of Dental Medicine, 188 Longwood Avenue, Boston, 02115, USA
| | - Arthur Hu
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, 245 First Street, Cambridge, 02142, USA.
- Department of Oral Medicine, Infection and Immunity, Harvard University School of Dental Medicine, 188 Longwood Avenue, Boston, 02115, USA.
| |
Collapse
|
31
|
Zhang Y, de Graaf NPJ, Roffel S, Spiekstra SW, Rustemeyer T, Kleverlaan CJ, Feilzer AJ, Bontkes H, Deng D, Gibbs S. Patch test-relevant concentrations of metal salts cause localized cytotoxicity, including apoptosis, in skin ex vivo. Contact Dermatitis 2021; 85:531-542. [PMID: 34268774 PMCID: PMC9291529 DOI: 10.1111/cod.13940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Background Metal alloys containing contact sensitizers (nickel, palladium, titanium) are extensively used in medical devices, in particular dentistry and orthopaedic surgery. The skin patch test is used to test for metal allergy. Objective To determine whether metal salts, when applied to freshly excised skin at patch test–relevant concentrations and using a method which mimics skin patch testing, cause in changes in the epidermis and dermis. Methods Tissue histology, apoptosis, metabolic activity, and inflammatory cytokine release were determined for two nickel salts, two palladium salts, and four titanium salts. Results Patch test–relevant concentrations of all metal salts caused localized cytotoxicity. This was observed as epidermis separation at the basement membrane zone, formation of vacuoles, apoptotic nuclei, decreased metabolic activity, and (pro)inflammatory cytokine release. Nickel(II) sulfate hexahydrate, nickel(II) chloride hexahydrate, titanium(IV) bis(ammonium lactato)dihydroxide, and calcium titanate were highly cytotoxic. Palladium(II) chloride, sodium tetrachloropalladate(II), titanium(IV) isopropoxide, and titanium(IV) dioxide showed mild cytotoxicity. Conclusion The patch test in itself may be damaging to the skin of the patient being tested. These results need further verification with biopsies obtained during clinical patch testing. The future challenge is to remain above the elicitation threshold at noncytotoxic metal concentrations.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Niels P J de Graaf
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Thomas Rustemeyer
- Department of Dermatology, Amsterdam University Medical Centre location AMC, Amsterdam, The Netherlands
| | - Cees J Kleverlaan
- Department of Dental Materials Science, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert J Feilzer
- Department of Dental Materials Science, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hetty Bontkes
- Unit Medical Immunology, Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, The Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Zubeidat K, Hovav AH. Shaped by the epithelium - postnatal immune mechanisms of oral homeostasis. Trends Immunol 2021; 42:622-634. [PMID: 34083119 DOI: 10.1016/j.it.2021.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023]
Abstract
The first encounter of mucosal barriers with the microbiota initiates host-microbiota feedback loops instructing the tailored development of both the immune system and microbiota at each mucosal site. Once established, balanced immunological interactions enable symbiotic relationships with the microbiota in adult life. This process has been extensively investigated in the mammalian monolayer epithelium-covered intestine and lung mucosae; however, the postnatal mechanisms engaged by the oral mucosa to establish homeostasis are currently being discovered. Here, we discuss the early life dialogue between the oral mucosa and the microbiota, with particular emphasis on the central role the multilayer epithelium plays to protect the oral mucosa. These intricate and unique postnatal immunological processes shape oral homeostasis, which can potentially affect buccal and systemic health in adult life.
Collapse
Affiliation(s)
- Khaled Zubeidat
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Avi-Hai Hovav
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
33
|
Lagosz-Cwik KB, Wielento A, Lipska W, Kantorowicz M, Darczuk D, Kaczmarzyk T, Gibbs S, Potempa J, Grabiec AM. hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Sci Rep 2021; 11:10770. [PMID: 34031466 PMCID: PMC8144196 DOI: 10.1038/s41598-021-90037-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/05/2021] [Indexed: 01/30/2023] Open
Abstract
In periodontitis, gingival fibroblasts (GFs) interact with and respond to oral pathogens, significantly contributing to perpetuation of chronic inflammation and tissue destruction. The aim of this study was to determine the usefulness of the recently released hTERT-immortalized GF (TIGF) cell line for studies of host–pathogen interactions. We show that TIGFs are unable to upregulate expression and production of interleukin (IL)-6, IL-8 and prostaglandin E2 upon infection with Porphyromonas gingivalis despite being susceptible to adhesion and invasion by this oral pathogen. In contrast, induction of inflammatory mediators in TNFα- or IL-1β-stimulated TIGFs is comparable to that observed in primary GFs. The inability of TIGFs to respond directly to P. gingivalis is caused by a specific defect in Toll-like receptor-2 (TLR2) expression, which is likely driven by TLR2 promoter hypermethylation. Consistently, TIGFs fail to upregulate inflammatory genes in response to the TLR2 agonists Pam2CSK4 and Pam3CSK4. These results identify important limitations of using TIGFs to study GF interaction with oral pathogens, though these cells may be useful for studies of TLR2-independent processes. Our observations also emphasize the importance of direct comparisons between immortalized and primary cells prior to using cell lines as models in studies of any biological processes.
Collapse
Affiliation(s)
- Katarzyna B Lagosz-Cwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Aleksandra Wielento
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Weronika Lipska
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Malgorzata Kantorowicz
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Dagmara Darczuk
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Kaczmarzyk
- Department of Periodontology and Clinical Oral Pathology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.,Department of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland. .,Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA.
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
34
|
Bugueno IM, Benkirane-Jessel N, Huck O. Implication of Toll/IL-1 receptor domain containing adapters in Porphyromonas gingivalis-induced inflammation. Innate Immun 2021; 27:324-342. [PMID: 34018827 PMCID: PMC8186158 DOI: 10.1177/17534259211013087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is induced by periodontal dysbiosis characterized by the predominance of anaerobic species. TLRs constitute the classical pathway for cell activation by infection. Interestingly, the Toll/IL-1 receptor homology domain adapters initiate signaling events, leading to the activation of the expression of the genes involved in the host immune response. The aim of this study was to evaluate the effects of Porphyromonas gingivalis on the expression and protein-protein interactions among five TIR adapters (MAL, MyD88, TRIF, TRAM and SARM) in gingival epithelial cells and endothelial cells. It was observed that P. gingivalis is able to modulate the signaling cascades activated through its recognition by TLR4/2 in gingival epithelial cells and endothelial cells. Indeed, MAL-MyD88 protein-protein interactions associated with TLR4 was the main pathway activated by P. gingivalis infection. When transient siRNA inhibition was performed, cell viability, inflammation, and cell death induced by infection decreased and such deleterious effects were almost absent when MAL or TRAM were targeted. This study emphasizes the role of such TIR adapter proteins in P. gingivalis elicited inflammation and the precise evaluation of TIR adapter protein interactions may pave the way for future therapeutics in both periodontitis and systemic disease with a P. gingivalis involvement, such as atherothrombosis.
Collapse
Affiliation(s)
- Isaac M Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, France.,Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, France
| |
Collapse
|
35
|
Guzmán-Soto I, McTiernan C, Gonzalez-Gomez M, Ross A, Gupta K, Suuronen EJ, Mah TF, Griffith M, Alarcon EI. Mimicking biofilm formation and development: Recent progress in in vitro and in vivo biofilm models. iScience 2021; 24:102443. [PMID: 34013169 PMCID: PMC8113887 DOI: 10.1016/j.isci.2021.102443] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing in vitro and in vivo biofilm models. However, no such thing as an "all fit" in vitro or in vivo biofilm models is currently available. In this review, in addition to presenting an updated overview of biofilm formation, we critically revise recent approaches for the improvement of in vitro and in vivo biofilm models.
Collapse
Affiliation(s)
- Irene Guzmán-Soto
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Christopher McTiernan
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Mayte Gonzalez-Gomez
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Alex Ross
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Keshav Gupta
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Erik J. Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - May Griffith
- Centre de Recherche Hôpital Maisonneuve-Rosemont, Montréal, QC, H1T 2M4, Canada
- Département d'ophtalmologie, Université de Montréal, Montréal, QC, H3T1J4, Canada
| | - Emilio I. Alarcon
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| |
Collapse
|
36
|
Ebersole JL, Kirakodu SS, Gonzalez OA. Oral microbiome interactions with gingival gene expression patterns for apoptosis, autophagy and hypoxia pathways in progressing periodontitis. Immunology 2021; 162:405-417. [PMID: 33314069 DOI: 10.1111/imm.13292] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022] Open
Abstract
Oral mucosal tissues must react with and respond to microbes comprising the oral microbiome ecology. This study examined the interaction of the microbiome with transcriptomic footprints of apoptosis, autophagy and hypoxia pathways during periodontitis. Adult Macaca mulatta (n = 18; 12-23 years of age) exhibiting a healthy periodontium at baseline were used to induce progressing periodontitis through ligature placement around premolar/molar teeth. Gingival tissue samples collected at baseline, 0·5, 1 and 3 months of disease and at 5 months for disease resolution were analysed via microarray. Bacterial samples were collected at identical sites to the host tissues and analysed using MiSeq. Significant changes in apoptosis and hypoxia gene expression occurred with initiation of disease, while autophagy gene changes generally emerged later in disease progression samples. These interlinked pathways contributing to cellular homeostasis showed significant correlations between altered gene expression profiles in apoptosis, autophagy and hypoxia with groups of genes correlated in different directions across health and disease samples. Bacterial complexes were identified that correlated significantly with profiles of host genes in health, disease and resolution for each pathway. These relationships were more robust in health and resolution samples, with less bacterial complex diversity during disease. Using these pathways as cellular responses to stress in the local periodontal environment, the data are consistent with the concept of dysbiosis at the functional genomics level. It appears that the same bacteria in a healthy microbiome may be interfacing with host cells differently than in a disease lesion site and contributing to the tissue destructive processes.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada, USA.,Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
37
|
Shang L, Deng D, Roffel S, Gibbs S. Differential influence of Streptococcus mitis on host response to metals in reconstructed human skin and oral mucosa. Contact Dermatitis 2020; 83:347-360. [PMID: 32677222 PMCID: PMC7693211 DOI: 10.1111/cod.13668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Skin and oral mucosa are continuously exposed to potential metal sensitizers while hosting abundant microbes, which may influence the host response to sensitizers. This host response may also be influenced by the route of exposure that is skin or oral mucosa, due to their different immune properties. OBJECTIVE Determine how commensal Streptococcus mitis influences the host response to nickel sulfate (sensitizer) and titanium(IV) bis(ammonium lactato)dihydroxide (questionable sensitizer) in reconstructed human skin (RHS) and gingiva (RHG). METHODS RHS/RHG was exposed to nickel or titanium, in the presence or absence of S. mitis for 24 hours. Histology, cytokine secretion, and Toll-like receptors (TLRs) expression were assessed. RESULTS S. mitis increased interleukin (IL)-6, CXCL8, CCL2, CCL5, and CCL20 secretion in RHS but not in RHG; co-application with nickel further increased cytokine secretion. In contrast, titanium suppressed S. mitis-induced cytokine secretion in RHS and had no influence on RHG. S. mitis and metals differentially regulated TLR1 and TLR4 in RHS, and predominantly TLR4 in RHG. CONCLUSION Co-exposure of S. mitis and nickel resulted in a more potent innate immune response in RHS than in RHG, whereas titanium remained inert. These results indicate the important influence of commensal microbes and the route of exposure on the host's response to metals.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA)University of Amsterdam and Vrije Universiteit AmsterdamAmsterdamThe Netherlands
- Department of Molecular Cell Biology and ImmunologyAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
38
|
Jurczak A, Jamka-Kasprzyk M, Bębenek Z, Staszczyk M, Jagielski P, Kościelniak D, Gregorczyk-Maga I, Kołodziej I, Kępisty M, Kukurba-Setkowicz M, Bryll A, Krzyściak W. Differences in Sweet Taste Perception and Its Association with the Streptococcus mutans Cariogenic Profile in Preschool Children with Caries. Nutrients 2020; 12:nu12092592. [PMID: 32858903 PMCID: PMC7551438 DOI: 10.3390/nu12092592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
The aim of the study was to verify the hypothesis about differences in sweet taste perception in the group of preschool children with and without caries, and to determine its relationship with cariogenic microbiota and the frequency of sweets consumption in children. The study group included of 63 children aged 2–6 years: 32 with caries and 31 without caries. The study consisted of collecting questionnaire data and assessment of dental status using the decayed, missing, filled in primary teeth index (dmft) and the International Caries Detection and Assessment System (ICDAS II). The evaluation of sweet taste perception was carried out using a specific method that simultaneously assessed the level of taste preferences and the sensitivity threshold for a given taste. The microbiological analysis consisted of the assessment of the quantitative and qualitative compositions of the oral microbiota of the examined children. The sweet taste perception of children with caries was characterized by a lower susceptibility to sucrose (the preferred sucrose solution concentration was >4 g/L) compared to children without caries (in the range ≤ 4 g/L, p = 0.0015, chi-square test). A similar relationship was also observed for frequent snacking between meals (p = 0.0038, chi-square test). The analysis of studied variables showed the existence of a strong positive correlation between the perception of sweet taste and the occurrence and intensity of the cariogenic process (p = 0.007 for dmft; and p = 0.012 for ICDAS II), as well as the frequency of consuming sweets (p ≤ 0.001 for frequent and repeated consumption of sweets during the day, Spearman test) in children with caries. Additionally, children with an elevated sucrose taste threshold were more than 10-times more likely to develop S. mutans presence (OR = 10.21; 95% CI 3.11–33.44). The results of this study suggest the future use of taste preferences in children as a diagnostic tool for the early detection of increased susceptibility to caries through microbial dysbiosis towards specific species of microorganisms.
Collapse
Affiliation(s)
- Anna Jurczak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Cracow, Poland; (A.J.); (M.J.-K.); (M.S.); (D.K.); (I.G.-M.); (I.K.); (M.K.); (M.K.-S.)
| | - Małgorzata Jamka-Kasprzyk
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Cracow, Poland; (A.J.); (M.J.-K.); (M.S.); (D.K.); (I.G.-M.); (I.K.); (M.K.); (M.K.-S.)
| | - Zuzanna Bębenek
- Department of Mycology, Collegium Medicum, Jagiellonian University, Czysta St 18, 31-121 Cracow, Poland;
| | - Małgorzata Staszczyk
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Cracow, Poland; (A.J.); (M.J.-K.); (M.S.); (D.K.); (I.G.-M.); (I.K.); (M.K.); (M.K.-S.)
| | - Paweł Jagielski
- Department of Nutrition and Drug Research, Faculty of Health Science, Collegium Medicum, Jagiellonian University, Grzegórzecka St 20, 31-531 Cracow, Poland;
| | - Dorota Kościelniak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Cracow, Poland; (A.J.); (M.J.-K.); (M.S.); (D.K.); (I.G.-M.); (I.K.); (M.K.); (M.K.-S.)
| | - Iwona Gregorczyk-Maga
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Cracow, Poland; (A.J.); (M.J.-K.); (M.S.); (D.K.); (I.G.-M.); (I.K.); (M.K.); (M.K.-S.)
| | - Iwona Kołodziej
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Cracow, Poland; (A.J.); (M.J.-K.); (M.S.); (D.K.); (I.G.-M.); (I.K.); (M.K.); (M.K.-S.)
| | - Magdalena Kępisty
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Cracow, Poland; (A.J.); (M.J.-K.); (M.S.); (D.K.); (I.G.-M.); (I.K.); (M.K.); (M.K.-S.)
| | - Magdalena Kukurba-Setkowicz
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, Montelupich 4, 31-155 Cracow, Poland; (A.J.); (M.J.-K.); (M.S.); (D.K.); (I.G.-M.); (I.K.); (M.K.); (M.K.-S.)
| | - Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Cracow, Poland;
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
- Correspondence: ; Tel.: +48-12-620-57-60
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The human body plays host to bacterial biofilms across diverse anatomical sites. The treatment of pathogenic biofilm infection is confounded by their high rate of antibiotic resistance. Therefore, it is critical to understand the interplay between these biofilms and the host immune system to develop new tactics to combat these infections. RECENT FINDINGS Bacterial biofilms and the components they produce affect and are affected by the host immune system. Host anatomical sites represent distinct niches in which defined bacterial biofilms are able to form and interact with the host immune system. For persistent colonization to occur, the bacteria must either avoid or suppress the host immune system, or induce an immune response that facilitates their perpetuation. SUMMARY Commensal bacterial biofilms form a protective barrier against colonization by pathogens. Using similar mechanisms, bacteria modulate the immune system to orchestrate persistence and sometimes disease. Clinicians must balance the need to avoid disturbing beneficial commensal biofilms with the difficulty in preventing or treating pathogenic bacterial biofilms such as those that develop on medical implants and open wounds.
Collapse
Affiliation(s)
- Christina N Morra
- Department of Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
40
|
Tabatabaei F, Moharamzadeh K, Tayebi L. Three-Dimensional In Vitro Oral Mucosa Models of Fungal and Bacterial Infections. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:443-460. [PMID: 32131719 DOI: 10.1089/ten.teb.2020.0016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oral mucosa is the target tissue for many microorganisms involved in periodontitis and other infectious diseases affecting the oral cavity. Three-dimensional (3D) in vitro and ex vivo oral mucosa equivalents have been used for oral disease modeling and investigation of the mechanisms of oral bacterial and fungal infections. This review was conducted to analyze different studies using 3D oral mucosa models for the evaluation of the interactions of different microorganisms with oral mucosa. In this study, based on our inclusion criteria, 43 articles were selected and analyzed. Different types of 3D oral mucosa models of bacterial and fungal infections were discussed in terms of the biological system used, culture conditions, method of infection, and the biological endpoints assessed in each study. The critical analysis revealed some contradictory reports in this field of research in the literature. Challenges in recovering bacteria from oral mucosa models were further discussed, suggesting possible future directions in microbiomics, including the use of oral mucosa-on-a-chip. The potential use of these 3D tissue models for the evaluation of the effects of antiseptic agents on bacteria and oral mucosa was also addressed. This review concluded that there were many aspects that would require optimization and standardization with regard to using oral mucosal models for infection by microorganisms. Using new technologies-such as microfluidics and bioreactors-could help to reproduce some of the physiologically relevant conditions and further simulate the clinical situation. Impact statement Tissue-engineered or commercial models of the oral mucosa are very useful for the study of diseases that involve the interaction of microorganisms and oral epithelium. In this review, challenges in recovering bacteria from oral mucosa models, the potential use of these three-dimensional tissue models for the evaluation of the effects of antiseptic agents, and future directions in microbiomics are discussed.
Collapse
Affiliation(s)
- Fahimeh Tabatabaei
- School of Dentistry, Marquette University, Milwaukee, Wisconsin.,Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Keyvan Moharamzadeh
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
41
|
Sun Z, Xiong C, Teh SW, Lim JCW, Kumar S, Thilakavathy K. Mechanisms of Oral Bacterial Virulence Factors in Pancreatic Cancer. Front Cell Infect Microbiol 2019; 9:412. [PMID: 31867287 PMCID: PMC6904357 DOI: 10.3389/fcimb.2019.00412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is a highly lethal disease, and most patients remain asymptomatic until the disease enters advanced stages. There is lack of knowledge in the pathogenesis, effective prevention and early diagnosis of pancreatic cancer. Recently, bacteria were found in pancreatic tissue that has been considered sterile before. The distribution of flora in pancreatic cancer tissue was reported to be different from normal pancreatic tissue. These abnormally distributed bacteria may be the risk factors for inducing pancreatic cancer. Therefore, studies on combined effect of multi-bacterial and multi-virulence factors may add to the knowledge of pancreatic cancer pathogenesis and aid in designing new preventive and therapeutic strategies. In this review, we outlined three oral bacteria associated with pancreatic cancer and their virulence factors linked with cancer.
Collapse
Affiliation(s)
- Zhong Sun
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Malaysia
| | - ChengLong Xiong
- Department of Public Health Microbiology, School of Public Health, Fudan University, Shanghai, China
| | - Seoh Wei Teh
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Jonathan Chee Woei Lim
- Pharmacotherapeutics Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, Serdang, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|