1
|
Kim J, Ślęczkowska M, Nobre B, Wieringa P. Study Models for Chlamydia trachomatis Infection of the Female Reproductive Tract. Microorganisms 2025; 13:553. [PMID: 40142446 PMCID: PMC11945960 DOI: 10.3390/microorganisms13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Chlamydia trachomatis (Ct) is a leading cause of sexually transmitted infections globally, often resulting in inflammatory disorders, ectopic pregnancies, and infertility. Studying Ct's pathogenesis remains challenging due to its unique life cycle and host-specific interactions, which require diverse experimental models. Animal studies using mouse, guinea pig, pig, and non-human primate models provide valuable insights into immune responses, hormonal influences, and disease progression. However, they face limitations in terms of translational relevance due to physiological differences, as well as ethical concerns. Complementing these, in vitro systems, ranging from simple monolayer to advanced three-dimensional models, exhibit improved physiological relevance by replicating the human tissue architecture. This includes the detailed investigation of epithelial barrier disruptions, epithelium-stroma interactions, and immune responses at a cellular level. Nonetheless, in vitro models fall short in mimicking the intricate tissue structures found in vivo and, therefore, cannot faithfully replicate the host-pathogen interactions or infection dynamics observed in living organisms. This review presents a comprehensive overview of the in vivo and in vitro models employed over the past few decades to investigate Ct and its pathogenesis, addressing their strengths and limitations. Furthermore, we explore emerging technologies, including organ-on-chip and in silico models, as promising tools to overcome the existing challenges and refine our understanding of Ct infections.
Collapse
Affiliation(s)
| | | | | | - Paul Wieringa
- Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands; (J.K.); (M.Ś.); (B.N.)
| |
Collapse
|
2
|
Spencer BL, Nguyen DT, Marroquin SM, Gapin L, O’Brien RL, Doran KS. Characterization of the Cellular Immune Response to Group B Streptococcal Vaginal Colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635275. [PMID: 39975125 PMCID: PMC11838357 DOI: 10.1101/2025.01.29.635275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Introduction Group B Streptococcus (GBS) asymptomatic colonizes the female genital tract (FGT) but can contribute to adverse pregnancy outcomes including pre-term birth, chorioamnionitis, and neonatal infection. We previously observed that GBS elicits FGT cytokine responses, including IL-17, during murine vaginal colonization; yet the anti-GBS cellular immune response during colonization remained unknown. We hypothesized that GBS may induce cellular immunity, resulting in FGT clearance. Methods Herein, we utilize depleting antibodies and knockout mice and performed flow cytometry to investigate cellular immunes responses during GBS colonization. Results We found that neutrophils (effectors of the IL-17 response) are important for GBS mucosal control as neutrophil depletion promoted increased GBS burdens in FGT tissues. Flow cytometric analysis of immune populations in the vagina, cervix, and uterus revealed, however, that GBS colonization did not induce a marked increase in FGT CD45+ immune cells. We also found that that Vγ6+ γδ T cells comprise a primary source of FGT IL-17. Finally, using knockout mice, we observed that IL-17-producing γδ T cells are important for the control of GBS in the FGT during murine colonization. Conclusions Taken together, this work characterizes FGT cellular immunity and suggests that GBS colonization does not elicit a significant immune response, which may be a bacterial directed adaptive outcome. However, certain FGT immune cells, such as neutrophils and ɣδ T cells, contribute to host defense and control of GBS colonization.
Collapse
Affiliation(s)
- Brady L. Spencer
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Dustin T. Nguyen
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Stephanie M. Marroquin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Laurent Gapin
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| | - Rebecca L. O’Brien
- National Jewish Health, Department of Biomedical Research, Denver, CO, USA
| | - Kelly S. Doran
- University of Colorado-Anschutz, Department of Immunology & Microbiology, Aurora, CO, USA
| |
Collapse
|
3
|
Letchumanan P, Theva Das K. The role of genetic diversity, epigenetic regulation, and sex-based differences in HIV cure research: a comprehensive review. Epigenetics Chromatin 2025; 18:1. [PMID: 39754177 PMCID: PMC11697457 DOI: 10.1186/s13072-024-00564-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
Despite significant advances in HIV treatment, a definitive cure remains elusive. The first-in-human clinical trial of Excision BioTherapeutics' CRISPR-based HIV cure, EBT-101, demonstrated safety but failed to prevent viral rebound. These outcomes may result from the interplay of several factors. Growing evidence indicates that intricate epigenetic modifications play a major role in the persistence of HIV latency, presenting a significant barrier to eradication efforts and causing viral rebound after ART discontinuation. Current strategies to purge the latent reservoir involve LRAs that reactivate latent proviruses. However, their clinical success is hindered by the heterogeneity of HIV reservoirs and the virus's diverse pathways. Additionally, RNA modifications like N6-methyladenosine (m^6 A) methylation influence HIV biology beyond transcriptional control, affect RNA stability, splicing, and translation, which could enhance therapeutic efficacy. The regulatory framework of chromatin dynamics is also key to understanding viral latency and reactivation, such as Vpr's role in reactivating latent HIV by targeting HDACs. Sex-specific factors were also shown to play an important role with females, showing stronger early immune responses and higher representation among elite controllers. This review addresses the multifaceted challenges of HIV cure research, focusing on genetic diversity, epigenetic regulation, RNA modifications, chromatin remodeling, and sex-specific factors. By integrating insights into these aspects, this paper aims to advance our understanding of HIV cure strategies and highlight directions for future research.
Collapse
Affiliation(s)
- Punitha Letchumanan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Gelugor, Penang, Malaysia.
| |
Collapse
|
4
|
Donmez HG, Sahal G, Beksac MS. Microbial cell-type-based grouping model as a potential indicator of cervicovaginal flora prone to biofilm formation. Biotech Histochem 2025; 100:17-22. [PMID: 39688594 DOI: 10.1080/10520295.2024.2439447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Cervicovaginal (CV) microbiota is critical for the well-being of host. We investigated the relationship between the ratio of Lactobacilli (LB) and cocci/coccobacilli (C/CB)-type microbial cells with biofilm formation of CV mixed cultures of women with no inflammation/infection or any epithelial abnormalities in Pap-stained smears Group 1 (G1) corresponds to the flora with LB-type cells alone, whereas G2 corresponds to the LB-dominated flora. G3 contains balanced LB and C/CB cells and G4 is dominated with C/CB. G5 corresponds to a flora with C/CB-type cells alone. Biofilm formation of CV mixed cultures was assessed by crystal violet binding assay and optical density (OD)≥0.8 were defined as biofilm producers. G1 and G3 exist in higher frequencies compared to the other smear groups. However, although the frequency of G5 dominated with C/CB-type cells were the lowest (4%); biofilm formation in that group was observed in the highest frequency (42.9%). The least biofilm formation frequency was observed in G3 smears with balanced flora (1%). Biofilm formation in healthy CV flora increases when there becomes an imbalance between LB and C/CB-type cells and an increase in C/CB-type cells. Our approach may enable early detection of vaginal dysbiosis in healthy flora prone to biofilm-associated CV infections such as bacterial vaginosis (BV).
Collapse
Affiliation(s)
- Hanife Guler Donmez
- Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey
| | - Gulcan Sahal
- Department of Biology, Faculty of Science, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Sinan Beksac
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Izadifar Z, Charrez B, Almeida M, Robben S, Pilobello K, van der Graaf-Mas J, Marquez SL, Ferrante TC, Shcherbina K, Gould R, LoGrande NT, Sesay AM, Ingber DE. Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at controlled oxygen levels. Biosens Bioelectron 2024; 265:116683. [PMID: 39213819 PMCID: PMC11391946 DOI: 10.1016/j.bios.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Despite remarkable advances in Organ-on-a-chip (Organ Chip) microfluidic culture technology, recreating tissue-relevant physiological conditions, such as the region-specific oxygen concentrations, remains a formidable technical challenge, and analysis of tissue functions is commonly carried out using one analytical technique at a time. Here, we describe two-channel Organ Chip microfluidic devices fabricated from polydimethylsiloxane and gas impermeable polycarbonate materials that are integrated with multiple sensors, mounted on a printed circuit board and operated using a commercially available Organ Chip culture instrument. The novelty of this system is that it enables the recreation of physiologically relevant tissue-tissue interfaces and oxygen tension as well as non-invasive continuous measurement of transepithelial electrical resistance, oxygen concentration and pH, combined with simultaneous analysis of cellular metabolic activity (ATP/ADP ratio), cell morphology, and tissue phenotype. We demonstrate the reliable and reproducible functionality of this system in living human Gut and Liver Chip cultures. Changes in tissue barrier function and oxygen tension along with their functional and metabolic responses to chemical stimuli (e.g., calcium chelation, oligomycin) were continuously and noninvasively monitored on-chip for up to 23 days. A physiologically relevant microaerobic microenvironment that supports co-culture of human intestinal cells with living Lactococcus lactis bacteria also was demonstrated in the Gut Chip. The integration of multi-functional sensors into Organ Chips provides a robust and scalable platform for the simultaneous, continuous, and non-invasive monitoring of multiple physiological functions that can significantly enhance the comprehensive and reliable evaluation of engineered tissues in Organ Chip models in basic research, preclinical modeling, and drug development.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Berenice Charrez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Micaela Almeida
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Stijn Robben
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Department of Microelectronics, Technical University Delft, Delft, 2628 CD, Netherlands
| | - Kanoelani Pilobello
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Janet van der Graaf-Mas
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Susan L Marquez
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Thomas C Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Kostyantyn Shcherbina
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Russell Gould
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Adama M Sesay
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA; Vascular Biology Program and Department of Surgery, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Zhao X, Shi W, Li Z, Zhang W. Linking reproductive tract microbiota to premature ovarian insufficiency: Pathophysiological mechanisms and therapies. J Reprod Immunol 2024; 166:104325. [PMID: 39265315 DOI: 10.1016/j.jri.2024.104325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/06/2024] [Accepted: 09/01/2024] [Indexed: 09/14/2024]
Abstract
Over the past decade, research on the human microbiota has become a hot topic. Among them, the female reproductive tract (FRT) also has a specific microbiota that maintains the body's health and dynamic balance, especially in the reproductive aspect. When the FRT ecosystem is dysregulated, changes in immune and metabolic signals can lead to pathological and physiological changes such as chronic inflammation, epithelial barrier disruption, changes in cell proliferation and apoptosis, and dysregulation of angiogenesis and metabolism, thereby causing disruption of the female endocrine system. Premature ovarian insufficiency (POI), a clinical syndrome of ovarian dysfunction, is primarily influenced by immune, genetic, and environmental factors. New evidence suggests that dysbiosis of the FRT microbiota and/or the presence of specific bacteria may contribute to the occurrence and progression of POI. This influence occurs through both direct and indirect mechanisms, including the regulation of estrogen metabolism. The use of probiotics or microbiota transplantation to regulate the microbiome has also been proven to be beneficial in improving ovarian function and the quality of life in women with premature aging. This article provides an overview of the interrelationships and roles between the FRT microbiome and POI in recent years, to fully understand the risk factors affecting female reproductive health, and to offer insights for the future diagnosis, treatment, and application of the FRT microbiome in POI patients.
Collapse
Affiliation(s)
- Xi Zhao
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wenying Shi
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Zhengyu Li
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| | - Wei Zhang
- The First Affiliated Hospital of Hunan University of traditional Chinese medicine, Changsha, Hunan 410000, PR China.
| |
Collapse
|
7
|
van Staden D, Gerber M, Lemmer HJR. The Application of Nano Drug Delivery Systems in Female Upper Genital Tract Disorders. Pharmaceutics 2024; 16:1475. [PMID: 39598598 PMCID: PMC11597179 DOI: 10.3390/pharmaceutics16111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
The prevalence of female reproductive system disorders is increasing, especially among women of reproductive age, significantly impacting their quality of life and overall health. Managing these diseases effectively is challenging due to the complex nature of the female reproductive system, characterized by dynamic physiological environments and intricate anatomical structures. Innovative drug delivery approaches are necessary to facilitate the precise regulation and manipulation of biological tissues. Nanotechnology is increasingly considered to manage reproductive system disorders, for example, nanomaterial imaging allows for early detection and enhances diagnostic precision to determine disease severity and progression. Additionally, nano drug delivery systems are gaining attention for their ability to target the reproductive system successfully, thereby increasing therapeutic efficacy and decreasing side effects. This comprehensive review outlines the anatomy of the female upper genital tract by highlighting the complex mucosal barriers and their impact on systemic and local drug delivery. Advances in nano drug delivery are described for their sustainable therapeutic action and increased biocompatibility to highlight the potential of nano drug delivery strategies in managing female upper genital tract disorders.
Collapse
Affiliation(s)
| | | | - Hendrik J. R. Lemmer
- Centre of Excellence for Pharmaceutical Sciences (PharmacenTM), North-West University, Potchefstroom 2531, South Africa; (D.v.S.); (M.G.)
| |
Collapse
|
8
|
Jendraszak M, Skibińska I, Kotwicka M, Andrusiewicz M. The elusive male microbiome: revealing the link between the genital microbiota and fertility. Critical review and future perspectives. Crit Rev Clin Lab Sci 2024; 61:559-587. [PMID: 38523477 DOI: 10.1080/10408363.2024.2331489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
There is a growing focus on understanding the role of the male microbiome in fertility issues. Although research on the bacterial communities within the male reproductive system is in its initial phases, recent discoveries highlight notable variations in the microbiome's composition and abundance across distinct anatomical regions like the skin, foreskin, urethra, and coronary sulcus. To assess the relationship between male genitourinary microbiome and reproduction, we queried various databases, including MEDLINE (available via PubMed), SCOPUS, and Web of Science to obtain evidence-based data. The literature search was conducted using the following terms "gut/intestines microbiome," "genitourinary system microbiome," "microbiome and female/male infertility," "external genital tract microbiome," "internal genital tract microbiome," and "semen microbiome." Fifty-one relevant papers were analyzed, and eleven were strictly semen quality or male fertility related. The male microbiome, especially in the accessory glands like the prostate, seminal vesicles, and bulbourethral glands, has garnered significant interest because of its potential link to male fertility and reproduction. Studies have also found differences in bacterial diversity present in the testicular tissue of normozoospermic men compared to azoospermic suggesting a possible role of bacterial dysbiosis and reproduction. Correlation between the bacterial taxa in the genital microbiota of sexual partners has also been found, and sexual activity can influence the composition of the urogenital microbiota. Exploring the microbial world within the male reproductive system and its influence on fertility opens doors to developing ways to prevent, diagnose, and treat infertility. The present work emphasizes the importance of using consistent methods, conducting long-term studies, and deepening our understanding of how the reproductive tract microbiome works. This helps make research comparable, pinpoint potential interventions, and smoothly apply microbiome insights to real-world clinical practices.
Collapse
Affiliation(s)
- Magdalena Jendraszak
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Izabela Skibińska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Małgorzata Kotwicka
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| | - Mirosław Andrusiewicz
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
9
|
Gordhan BG, Liebenberg D, Scarlatti G, Herrera C, Chiodi F, Martinson N, Fox J, Kana BD. Ex vivo challenge models for infectious diseases. Crit Rev Microbiol 2024; 50:785-804. [PMID: 37909097 DOI: 10.1080/1040841x.2023.2274855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
Traditionally, molecular mechanisms of pathogenesis for infectious agents were studied in cell culture or animal models but have limitations on the extent to which the resulting data reflect natural infection in humans. The COVID-19 pandemic has highlighted the urgent need to rapidly develop laboratory models that enable the study of host-pathogen interactions, particularly the relative efficacy of preventive measures. Recently, human and animal ex vivo tissue challenge models have emerged as a promising avenue to study immune responses, screen potential therapies and triage vaccine candidates. This approach offers the opportunity to closely approximate human disease from the perspective of pathology and immune response. It has advantages compared to animal models which are expensive, lengthy and often require containment facilities. Herein, we summarize some recent advances in the development of ex vivo tissue challenge models for COVID-19, HIV-1 and other pathogens. We focus on the contribution of these models to enhancing knowledge of host-pathogen interactions, immune modulation, and their value in testing therapeutic agents. We further highlight the advantages and limitations of using ex vivo challenge models and briefly summarize how the use of organoids provides a useful advancement over current approaches. Collectively, these developments have enormous potential for the study of infectious diseases.
Collapse
Affiliation(s)
- Bhavna Gowan Gordhan
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Dale Liebenberg
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Carolina Herrera
- Department of Infectious Disease, Imperial College London, London, UK
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Neil Martinson
- Perinatal HIV Research Unit (PHRU), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Julie Fox
- Guys and St. Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Bavesh Davandra Kana
- Department of Science and Innovation/National Research Foundation Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
10
|
Silva B, Marques EF, Gomes AC. Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery. Expert Opin Drug Deliv 2024; 21:1007-1027. [PMID: 39001669 DOI: 10.1080/17425247.2024.2380338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. AREAS COVERED In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. EXPERT OPINION Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.
Collapse
Affiliation(s)
- Bruna Silva
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
11
|
Cuffaro F, Russo E, Amedei A. Endometriosis, Pain, and Related Psychological Disorders: Unveiling the Interplay among the Microbiome, Inflammation, and Oxidative Stress as a Common Thread. Int J Mol Sci 2024; 25:6473. [PMID: 38928175 PMCID: PMC11203696 DOI: 10.3390/ijms25126473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Endometriosis (EM), a chronic condition in endometrial tissue outside the uterus, affects around 10% of reproductive-age women, significantly affecting fertility. Its prevalence remains elusive due to the surgical confirmation needed for diagnosis. Manifesting with a range of symptoms, including dysmenorrhea, dyschezia, dysuria, dyspareunia, fatigue, and gastrointestinal discomfort, EM significantly impairs quality of life due to severe chronic pelvic pain (CPP). Psychological manifestations, notably depression and anxiety, frequently accompany the physical symptoms, with CPP serving as a key mediator. Pain stems from endometrial lesions, involving oxidative stress, neuroinflammation, angiogenesis, and sensitization processes. Microbial dysbiosis appears to be crucial in the inflammatory mechanisms underlying EM and associated CPP, as well as psychological symptoms. In this scenario, dietary interventions and nutritional supplements could help manage EM symptoms by targeting inflammation, oxidative stress, and the microbiome. Our manuscript starts by delving into the complex relationship between EM pain and psychological comorbidities. It subsequently addresses the emerging roles of the microbiome, inflammation, and oxidative stress as common links among these abovementioned conditions. Furthermore, the review explores how dietary and nutritional interventions may influence the composition and function of the microbiome, reduce inflammation and oxidative stress, alleviate pain, and potentially affect EM-associated psychological disorders.
Collapse
Affiliation(s)
- Francesca Cuffaro
- Division of Interdisciplinary Internal Medicine, Careggi University Hospital of Florence, 50134 Florence, Italy;
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
12
|
Marcos AT, Rus MJ, Areal-Quecuty V, Simon-Soro A, Navarro-Pando JM. Distinct Gastrointestinal and Reproductive Microbial Patterns in Female Holobiont of Infertility. Microorganisms 2024; 12:989. [PMID: 38792817 PMCID: PMC11124254 DOI: 10.3390/microorganisms12050989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The microbiota is in symbiosis with the human body as a holobiont. Infertility conditions affect the female reproductive tract (FRT) and its resident microbiota. However, a disturbance in homeostasis could influence the FRT and other distal body sites, such as the gastrointestinal tract (GIT). We included 21 patients with endometriosis and other infertility-associated diseases with clinical profiles and biological samples from the FRT (endometrium, endometrial fluid, and vagina), and GIT samples (oral and feces). We performed a 16S rRNA analysis of site-specific microbial communities and estimated diversity metrics. The study found body site-specific microbial patterns in the FRT-GIT. In both study groups, Lactobacillus was the most shared Amplicon Sequence Variant (ASV), a precise identifier of microbial sequences, between endometrial and vagina samples. However, shared Gardnerella and Enterobacteriaceae ASVs were linked to other conditions but not endometriosis. Remarkably, Haemophilus was a specific GIT-shared taxon in endometriosis cases. In conclusion, infertility influences distinctly the FRT and GIT microbiomes, with endometriosis showing unique microbial characteristics. We proposed the concept of 'female holobiont' as a community that comprises the host and microbes that must maintain overall homeostasis across all body sites to ensure a woman's health. Insights into these microbial patterns not only advance our understanding of the pathophysiology of infertility but also open new avenues for developing microbe-based therapeutic interventions aimed at restoring microbial balance, thereby enhancing fertility prospects.
Collapse
Affiliation(s)
- Ana T. Marcos
- Unidad de Genética, INEBIR (Instituto para el Estudio de la Biología de la Reproducción Humana), 41001 Sevilla, Spain (J.M.N.-P.)
- Cátedra de Reproducción y Genética Humana, INEBIR/Universidad Europea del Atlántico (UNEATLANTICO), 39011 Santander, Spain
- FUNIBER (Fundación Universitaria Iberoamericana), 08005 Barcelona, Spain
- Hospital San Juan de Dios, 41005 Sevilla, Spain
| | - Maria J. Rus
- Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Victoria Areal-Quecuty
- Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Aurea Simon-Soro
- Departamento de Estomatología, Facultad de Odontología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - José Manuel Navarro-Pando
- Unidad de Genética, INEBIR (Instituto para el Estudio de la Biología de la Reproducción Humana), 41001 Sevilla, Spain (J.M.N.-P.)
- Cátedra de Reproducción y Genética Humana, INEBIR/Universidad Europea del Atlántico (UNEATLANTICO), 39011 Santander, Spain
- FUNIBER (Fundación Universitaria Iberoamericana), 08005 Barcelona, Spain
- Hospital San Juan de Dios, 41005 Sevilla, Spain
| |
Collapse
|
13
|
Zeber-Lubecka N, Kulecka M, Dabrowska M, Baginska-Drabiuk K, Glowienka-Stodolak M, Nowakowski A, Slabuszewska-Jozwiak A, Bednorz B, Jędrzejewska I, Piasecka M, Pawelec J, Wojciechowska-Lampka E, Ostrowski J. Cervical microbiota dysbiosis associated with high-risk Human Papillomavirus infection. PLoS One 2024; 19:e0302270. [PMID: 38669258 PMCID: PMC11051640 DOI: 10.1371/journal.pone.0302270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
High-risk Human Papillomavirus (HR-HPV) genotypes, specifically HPV16 and HPV18, pose a significant risk for the development of cervical intraepithelial neoplasia and cervical cancer. In the multifaceted cervical microenvironment, consisting of immune cells and diverse microbiota, Lactobacillus emerges as a pivotal factor, wielding significant influence in both stabilizing and disrupting the microbiome of the reproductive tract. To analyze the distinction between the cervical microbiota and Lactobacillus-dominant/non-dominant status of HR-HPV and non-infected healthy women, sixty-nine cervical swab samples were analyzed, included 44 with HR-HPV infection and healthy controls. All samples were recruited from Human Papillomavirus-based cervical cancer screening program and subjected to 16s rRNA sequencing analysis. Alpha and beta diversity analyses reveal no significant differences in the cervical microbiota of HR-HPV-infected women, including 16 and 18 HPV genotypes, and those with squamous intraepithelial lesion (SIL), compared to a control group. In this study we identified significantly lower abundance of Lactobacillus mucosae in women with HR-HPV infection compared to the control group. Furthermore, changes in bacterial diversity were noted in Lactobacillus non-dominant (LND) samples compared to Lactobacillus-dominant (LD) in both HR-HPV-infected and control groups. LND samples in HR-HPV-infected women exhibited a cervical dysbiotic state, characterized by Lactobacillus deficiency. In turn, the LD HR-HPV group showed an overrepresentation of Lactobacillus helveticus. In summary, our study highlighted the distinctive roles of L. mucosae and L. helveticus in HR-HPV infections, signaling a need for further research to demonstrate potential clinical implications of cervical microbiota dysbiosis.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Maria Glowienka-Stodolak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrzej Nowakowski
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Bożena Bednorz
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Ilona Jędrzejewska
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Piasecka
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jolanta Pawelec
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
14
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
15
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
16
|
Głowienka-Stodolak M, Bagińska-Drabiuk K, Szubert S, Hennig EE, Horala A, Dąbrowska M, Micek M, Ciebiera M, Zeber-Lubecka N. Human Papillomavirus Infections and the Role Played by Cervical and Cervico-Vaginal Microbiota-Evidence from Next-Generation Sequencing Studies. Cancers (Basel) 2024; 16:399. [PMID: 38254888 PMCID: PMC10814012 DOI: 10.3390/cancers16020399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
This comprehensive review encompasses studies examining changes in the cervical and cervico-vaginal microbiota (CM and CVM) in relation to human papillomavirus (HPV) using next-generation sequencing (NGS) technology. HPV infection remains a prominent global health concern, with a spectrum of manifestations, from benign lesions to life-threatening cervical cancers. The CM and CVM, a unique collection of microorganisms inhabiting the cervix/vagina, has emerged as a critical player in cervical health. Recent research has indicated that disruptions in the CM and CVM, characterized by a decrease in Lactobacillus and the overgrowth of other bacteria, might increase the risk of HPV persistence and the progression of cervical abnormalities. This alteration in the CM or CVM has been linked to a higher likelihood of HPV infection and cervical dysplasia. NGS technology has revolutionized the study of the cervical microbiome, providing insights into microbial diversity, dynamics, and taxonomic classifications. Bacterial 16S rRNA gene sequencing, has proven invaluable in characterizing the cervical microbiome, shedding light on its role in HPV infections and paving the way for more tailored strategies to combat cervical diseases. NGS-based studies offer personalized insights into an individual's cervical microbiome. This knowledge holds promise for the development of novel diagnostic tools, targeted therapies, and preventive interventions for cervix-related conditions, including cervical cancer.
Collapse
Affiliation(s)
- Maria Głowienka-Stodolak
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Katarzyna Bagińska-Drabiuk
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Sebastian Szubert
- Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (S.S.); (A.H.)
| | - Ewa E. Hennig
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| | - Agnieszka Horala
- Division of Gynaecological Oncology, Department of Gynaecology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (S.S.); (A.H.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
| | - Martyna Micek
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland; (M.M.); (M.C.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 00-189 Warsaw, Poland; (M.M.); (M.C.)
- Warsaw Institute of Women’s Health, 00-189 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781Warsaw, Poland; (M.G.-S.); (K.B.-D.); (E.E.H.); (M.D.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
| |
Collapse
|
17
|
Schwecht I, Nazli A, Gill B, Kaushic C. Lactic acid enhances vaginal epithelial barrier integrity and ameliorates inflammatory effects of dysbiotic short chain fatty acids and HIV-1. Sci Rep 2023; 13:20065. [PMID: 37973920 PMCID: PMC10654711 DOI: 10.1038/s41598-023-47172-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
The vaginal microenvironment is key in mediating susceptibility to sexually transmitted infections. A polymicrobial environment with reduced Lactobacilllus spp. is characteristic of vaginal dysbiosis, associated with increased production of several short chain fatty acids (SCFAs), vaginal inflammation and an increased risk of HIV-1 acquisition. In contrast, a eubiotic vaginal microbiome (VMB), dominated by Lactobacillus spp. correlates with increased production of lactic acid (LA), an acidic milieu and protection against HIV-1. Vaginal metabolites, specifically LA and SCFAs including butyric, succinic and acetic acids are associated with modulation of HIV-1 risk. We assessed the impact of combined and individual SCFAs and LA on vaginal epithelial cells (VK2) grown in air-liquid interface cultures. Treatment of VK2 cells with eubiotic SCFA + LA mixture showed increased epithelial barrier integrity, reduced FITC dextran leakage and enhanced expression of cell-cell adhesion proteins. Treatment with dysbiotic SCFA + LA mixture diminished epithelial barrier integrity, increased NFκB activation and inflammatory mediators: TNF-α, IL-6, IL-8 and RANTES. LA was found to be the primary contributor of the beneficial effects. Eubiotic SCFA + LA mixture ameliorated HIV-1 mediated barrier disruption and HIV-1 leakage, whereas dysbiotic SCFA + LA treatment exacerbated HIV-1 effects. These findings indicate a key role for LA in future prophylactic strategies.
Collapse
Affiliation(s)
- Ingrid Schwecht
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Aisha Nazli
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Biban Gill
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
- McMaster Immunology Research Center, Michael G. DeGroote Center for Learning and Discovery, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
18
|
Yang Q, Wang Y, Cai H, Zhou Q, Zeng L, Li S, Du H, Wei W, Zhang W, Dai W, Wu R. Translocation of vaginal and cervical low-abundance non-Lactobacillus bacteria notably associate with endometriosis: A pilot study. Microb Pathog 2023; 183:106309. [PMID: 37586463 DOI: 10.1016/j.micpath.2023.106309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
The etiology remains to be understood for endometriosis (EMS) which affected health negatively for 10% of reproductive-age women globally. Emerging studies found the associations of EMS with genital microbiota dysbiosis. However, the role of vaginal and cervical microbiota is not fully understood for Chinese women. This study recruited forty Chinese women (21 healthy women and 19 EMS patients) to analyze vaginal and cervical microbiota using 16S rRNA amplicon sequencing method. For both sites, there were no significant differences for distribution of microbial samples between control and EMS group, which was concordant with dominated Lactobacillus in both groups. In contrast, we observed accumulation of several low-abundance genera in vaginal and cervical microbiota of EMS patients, such as Fannyhessea, Prevotella, Streptococcus, Bifidobacterium, Veillonella, Megasphaera and Sneathia. Random forest analysis found that translocation of these genera had the significant importance in differentiating EMS patients from controls. In addition, cervix/vagina ratio of these genera also associated with EMS severity. And these genera had notable associations with ascending infection-related functional pathways, including flagellar assembly, bacterial motility proteins, bacterial toxins and epithelial cell signaling in Helicobacter pylori infection. These findings suggest that translocation of specific genera between vaginal and cervical sites play a role in EMS.
Collapse
Affiliation(s)
- Qing Yang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yinan Wang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Han Cai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qian Zhou
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Liping Zeng
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Hui Du
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Weixia Wei
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wenkui Dai
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Ruifang Wu
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China; Institute of Obstetrics and Gynecology, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, China; Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
19
|
Cocomazzi G, De Stefani S, Del Pup L, Palini S, Buccheri M, Primiterra M, Sciannamè N, Faioli R, Maglione A, Baldini GM, Baldini D, Pazienza V. The Impact of the Female Genital Microbiota on the Outcome of Assisted Reproduction Treatments. Microorganisms 2023; 11:1443. [PMID: 37374945 DOI: 10.3390/microorganisms11061443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The vaginal microbiota plays a critical role in the health of the female genital tract, and its composition contributes to gynecological disorders and infertility. Lactobacilli are the dominant species in the female genital tract: their production of lactic acid, hydrogen peroxide, and bacteriocins prevents the invasion and growth of pathogenic microorganisms. Several factors such as hormonal changes, age of reproduction, sexual practices, menstrual cycle, pregnancy, and antimicrobial drugs use can cause imbalance and dysbiosis of the vaginal microbiota. This review aims to highlight the impact of the vaginal microbiota in Assisted Reproductive Technology techniques (ART) and it examines the factors that influence the vaginal microbiota, the consequences of dysbiosis, and potential interventions to restore a healthy female genital tract.
Collapse
Affiliation(s)
- Giovanna Cocomazzi
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | | | - Lino Del Pup
- Gynecological Endocrinology and Fertility, University Sanitary Agency Friuli Central (ASUFC), Via Pozzuolo, 330, 33100 Udine, Italy
| | - Simone Palini
- Ospedale "Cervesi" di Cattolica-AUSL Romagna Via Ludwig Van Beethoven, 1, 47841 Cattolica, Italy
| | - Matteo Buccheri
- Instituto Bernabeu Via Castellana, 88, 30030 Martellago, Italy
| | | | - Natale Sciannamè
- Gynecology and Obstetrics, IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Raffaele Faioli
- Gynecology and Obstetrics, IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Annamaria Maglione
- Gynecology and Obstetrics, IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Giorgio Maria Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell'Arciprete, 76011 Bisceglie, Italy
| | - Domenico Baldini
- IVF Center, Momò Fertilife, 76011 Bisceglie Via Cala dell'Arciprete, 76011 Bisceglie, Italy
| | - Valerio Pazienza
- Division of Gastroenterology, Fondazione IRCCS-Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
20
|
Berard AR, Brubaker DK, Birse K, Lamont A, Mackelprang RD, Noël-Romas L, Perner M, Hou X, Irungu E, Mugo N, Knodel S, Muwonge TR, Katabira E, Hughes SM, Levy C, Calienes FL, Lauffenburger DA, Baeten JM, Celum C, Hladik F, Lingappa J, Burgener AD. Vaginal epithelial dysfunction is mediated by the microbiome, metabolome, and mTOR signaling. Cell Rep 2023; 42:112474. [PMID: 37149863 PMCID: PMC10242450 DOI: 10.1016/j.celrep.2023.112474] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023] Open
Abstract
Bacterial vaginosis (BV) is characterized by depletion of Lactobacillus and overgrowth of anaerobic and facultative bacteria, leading to increased mucosal inflammation, epithelial disruption, and poor reproductive health outcomes. However, the molecular mediators contributing to vaginal epithelial dysfunction are poorly understood. Here we utilize proteomic, transcriptomic, and metabolomic analyses to characterize biological features underlying BV in 405 African women and explore functional mechanisms in vitro. We identify five major vaginal microbiome groups: L. crispatus (21%), L. iners (18%), Lactobacillus (9%), Gardnerella (30%), and polymicrobial (22%). Using multi-omics we show that BV-associated epithelial disruption and mucosal inflammation link to the mammalian target of rapamycin (mTOR) pathway and associate with Gardnerella, M. mulieris, and specific metabolites including imidazole propionate. Experiments in vitro confirm that type strain G. vaginalis and M. mulieris supernatants and imidazole propionate directly affect epithelial barrier function and activation of mTOR pathways. These results find that the microbiome-mTOR axis is a central feature of epithelial dysfunction in BV.
Collapse
Affiliation(s)
- Alicia R Berard
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Douglas K Brubaker
- Weldon School of Biomedical Engineering and Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Kenzie Birse
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Alana Lamont
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Romel D Mackelprang
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Laura Noël-Romas
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Michelle Perner
- Medical Microbiology and Infectious Disease University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Xuanlin Hou
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Elizabeth Irungu
- Partners in Health Research and Development, Kenya Medical Research Institute, Mbagathi Road, Nairobi, Kenya
| | - Nelly Mugo
- Department of Global Health, University of Washington, Seattle, WA 98105, USA; Partners in Health Research and Development, Kenya Medical Research Institute, Mbagathi Road, Nairobi, Kenya
| | - Samantha Knodel
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Timothy R Muwonge
- Infectious Disease Institute, Makerere University, Makerere, Kampala, Uganda
| | - Elly Katabira
- Infectious Disease Institute, Makerere University, Makerere, Kampala, Uganda
| | - Sean M Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Claire Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | | | | | - Jared M Baeten
- Department of Global Health, University of Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA; Gilead Sciences, Foster City, CA 94404, USA
| | - Connie Celum
- Department of Global Health, University of Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA; Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jairam Lingappa
- Department of Global Health, University of Washington, Seattle, WA 98105, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Adam D Burgener
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Medicine Solna, Karolinska Institutet, Framstegsgatan, 171 64 Solna, Sweden.
| |
Collapse
|
21
|
Kim R. Advanced Organotypic In Vitro Model Systems for Host-Microbial Coculture. BIOCHIP JOURNAL 2023; 17:1-27. [PMID: 37363268 PMCID: PMC10201494 DOI: 10.1007/s13206-023-00103-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023]
Abstract
In vitro model systems have been advanced to recapitulate important physiological features of the target organ in vivo more closely than the conventional cell line cultures on a petri dish. The advanced organotypic model systems can be used as a complementary or alternative tool for various testing and screening. Numerous data from germ-free animal studies and genome sequencings of clinical samples indicate that human microbiota is an essential part of the human body, but current in vitro model systems rarely include them, which can be one of the reasons for the discrepancy in the tissue phenotypes and outcome of therapeutic intervention between in vivo and in vitro tissues. A coculture model system with appropriate microbes and host cells may have great potential to bridge the gap between the in vitro model and the in vivo counterpart. However, successfully integrating two species in one system introduces new variables to consider and poses new challenges to overcome. This review aims to provide perspectives on the important factors that should be considered for developing organotypic bacterial coculture models. Recent advances in various organotypic bacterial coculture models are highlighted. Finally, challenges and opportunities in developing organotypic microbial coculture models are also discussed.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
22
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 PMCID: PMC10216808 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C. Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia; (B.C.M.); (E.L.); (L.M.); (M.C.)
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
23
|
Mirzaei R, Kavyani B, Nabizadeh E, Kadkhoda H, Asghari Ozma M, Abdi M. Microbiota metabolites in the female reproductive system: Focused on the short-chain fatty acids. Heliyon 2023; 9:e14562. [PMID: 36967966 PMCID: PMC10031489 DOI: 10.1016/j.heliyon.2023.e14562] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Several disorders have been linked to modifications in the gut microbial imbalance, intestinal epithelium, and host immune system. In this regard, microbiota derived short-chain fatty acids (SCFAs) play a key function in the regulation of histone deacetylases (HDACs), which affect modulation of immunity and regulation of inflammatory responses in the intestine and other organs. Studies examining the metabolites produced by polymicrobial bacterial vaginosis (BV) states and Lactobacillus-dominated microbiota have noted a dramatic reduction of lactic acid and a shift toward SCFA synthesis. Along with higher levels of SCFAs, acetate is typically the main metabolite in the cervicovaginal fluid of women with symptomatic bacterial vaginosis. The fact that SCFAs made by the vaginal microbiota have been shown to exhibit antibacterial and immune-modulating properties suggests that they may have promise as indicators of disease and/or disease susceptibility. In this review, we overview and summarize the current findings on the detrimental or protective roles of microbiota metabolites especially SCFAs in the health and disease of the female reproductive system.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Edris Nabizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hiva Kadkhoda
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Asghari Ozma
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Abdi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
24
|
Lanza M, Scuderi SA, Capra AP, Casili G, Filippone A, Campolo M, Cuzzocrea S, Esposito E, Paterniti I. Effect of a combination of pea protein, grape seed extract and lactic acid in an in vivo model of bacterial vaginosis. Sci Rep 2023; 13:2849. [PMID: 36807330 PMCID: PMC9938223 DOI: 10.1038/s41598-023-28957-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 02/19/2023] Open
Abstract
Bacterial vaginosis (BV) is a common vaginal dysbiosis characterized by a malodorous discharge and irritation. The imbalance of the vaginal microbiota plays a key role in the development of BV. It has been demonstrated that Gardnerella vaginalis (GV), a facultative anaerobic bacillus, is involved in BV. Due to the rising number of antimicrobial-resistant species, recurrence of BV is becoming more frequent in women; thus, alternative treatments to antibiotics are needed. Natural substances have recently shown a great efficacy for the treatment of vaginal dysbiosis. Thus, this study aimed to investigate the beneficial effect of a product containing pea protein (PP), grape seed extract (GS) and lactic acid (LA) in an in vivo model of Gardnerella vaginalis-induced vaginosis by intravaginal administration of GV suspension (1 × 106 CFU/20 µL saline). Our results demonstrated that the product containing PP, GS and LA significantly reduced GV proliferation. More specifically, it significantly preserved tissue architecture and reduced neutrophil infiltration, inflammatory markers and sialidase activity when used both as a pre- or a post-treatment. Moreover, the product displayed strong bioadhesive properties. Therefore, our data suggested that the product containing PP, GS and LA could be used as alternative preventive or curative treatment for the management of BV.
Collapse
Affiliation(s)
- Marika Lanza
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Sarah Adriana Scuderi
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Anna Paola Capra
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Giovanna Casili
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Alessia Filippone
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Michela Campolo
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D 'Alcontres, 31, 98166, Messina, Italy.
| | - Irene Paterniti
- grid.10438.3e0000 0001 2178 8421Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ’Alcontres, 31, 98166 Messina, Italy
| |
Collapse
|
25
|
Takada K, Melnikov VG, Kobayashi R, Komine-Aizawa S, Tsuji NM, Hayakawa S. Female reproductive tract-organ axes. Front Immunol 2023; 14:1110001. [PMID: 36798125 PMCID: PMC9927230 DOI: 10.3389/fimmu.2023.1110001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
The female reproductive tract (FRT) and remote/versatile organs in the body share bidirectional communication. In this review, we discuss the framework of the "FRT-organ axes." Each axis, namely, the vagina-gut axis, uterus-gut axis, ovary-gut axis, vagina-bladder axis, vagina-oral axis, uterus-oral axis, vagina-brain axis, uterus-brain axis, and vagina-joint axis, is comprehensively discussed separately. Each axis could be involved in the pathogenesis of not only gynecological diseases but also diseases occurring apart from the FRT. Although the microbiota is clearly a key player in the FRT-organ axes, more quantitative insight into the homeostasis of the microbiota could be provided by host function measurements rather than current microbe-centric approaches. Therefore, investigation of the FRT-organ axes would provide us with a multicentric approach, including immune, neural, endocrine, and metabolic aspects, for understanding the homeostatic mechanism of women's bodies. The framework of the FRT-organ axes could also provide insights into finding new therapeutic approaches to maintain women's health.
Collapse
Affiliation(s)
- Kazuhide Takada
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| | | | - Ryoki Kobayashi
- Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Microbiology and Immunology, Nihon University, School of Dentistry at Matsudo, Chiba, Japan
| | - Shihoko Komine-Aizawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Noriko M. Tsuji
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Department of Food Science, Jumonji University, Saitama, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,Division of Immune Homeostasis, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan,*Correspondence: Kazuhide Takada, ; Satoshi Hayakawa,
| |
Collapse
|
26
|
Ser HL, Au Yong SJ, Shafiee MN, Mokhtar NM, Ali RAR. Current Updates on the Role of Microbiome in Endometriosis: A Narrative Review. Microorganisms 2023; 11:360. [PMID: 36838325 PMCID: PMC9962481 DOI: 10.3390/microorganisms11020360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Endometriosis affects approximately 6 to 10% of reproductive-age women globally. Despite much effort invested, the pathogenesis that promotes the development, as well as the progression of this chronic inflammatory disease, is poorly understood. The imbalance in the microbiome or dysbiosis has been implicated in a variety of human diseases, especially the gut microbiome. In the case of endometriosis, emerging evidence suggests that there may be urogenital-gastrointestinal crosstalk that leads to the development of endometriosis. Researchers may now exploit important information from microbiome studies to design endometriosis treatment strategies and disease biomarkers with the use of advanced molecular technologies and increased computational capacity. Future studies into the functional profile of the microbiome would greatly assist in the development of microbiome-based therapies to alleviate endometriosis symptoms and improve the quality of life of women suffering from endometriosis.
Collapse
Affiliation(s)
- Hooi-Leng Ser
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Siu-Jung Au Yong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsan Malaysia, Cheras 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Raja Affendi Raja Ali
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
- Gut Research Group, Faculty of Medicine, Universiti Kebangsan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
27
|
Nakama C, Thompson B, Szybala C, McBeth A, Dobner P, Zwickey H. The Continuum of Microbial Ecosystems along the Female Reproductive Tract: Implications for Health and Fertility. Pathogens 2022; 11:1244. [PMID: 36364994 PMCID: PMC9693519 DOI: 10.3390/pathogens11111244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
The microbial ecosystem of the female urogenital tract is composed of many niche microenvironments across multiple organ systems in the urinary and reproductive tract. It is complex and contains a variety of bacteria, archaea, viruses, yeast, and protozoa-Many of which are still unidentified or whose functionality is unknown. Unlike the gut microbiome, whose composition is relatively stable in the absence of external perturbations, the urogenital microbiome is constantly shifting in response to biological cycles such as hormonal fluctuations during menstruation. Microbial composition differs between women but the dominance of some microbial families, such as Lactobacillaceae and other lactic acid-producing bacteria, are shared. Research suggests that it is difficult to define a universal healthy urogenital microbiome and consequently map a path to recovery from disease due to dysbiosis. Due to its temporal shifts, the female urogenital microbiome offers a unique opportunity to examine the biological mechanisms that work to restore a microbiome to its baseline. Common functional disorders in women's health are often difficult to diagnose and treat, are prone to recurrence, and can lead to subfertility or infertility. Knowledge of the interconnected microorganism communities along the continuum of the female reproductive tract could revolutionize the quality of women's healthcare.
Collapse
Affiliation(s)
- Claudia Nakama
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Thaena, Inc., Vancouver, WA 98661, USA
| | - Brice Thompson
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Thaena, Inc., Vancouver, WA 98661, USA
| | | | - Andrea McBeth
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Thaena, Inc., Vancouver, WA 98661, USA
| | | | - Heather Zwickey
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR 97201, USA
- Thaena, Inc., Vancouver, WA 98661, USA
| |
Collapse
|
28
|
Sunkavalli A, McClure R, Genco C. Molecular Regulatory Mechanisms Drive Emergent Pathogenetic Properties of Neisseria gonorrhoeae. Microorganisms 2022; 10:922. [PMID: 35630366 PMCID: PMC9147433 DOI: 10.3390/microorganisms10050922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/05/2022] Open
Abstract
Neisseria gonorrhoeae is the causative agent of the sexually transmitted infection (STI) gonorrhea, with an estimated 87 million annual cases worldwide. N. gonorrhoeae predominantly colonizes the male and female genital tract (FGT). In the FGT, N. gonorrhoeae confronts fluctuating levels of nutrients and oxidative and non-oxidative antimicrobial defenses of the immune system, as well as the resident microbiome. One mechanism utilized by N. gonorrhoeae to adapt to this dynamic FGT niche is to modulate gene expression primarily through DNA-binding transcriptional regulators. Here, we describe the major N. gonorrhoeae transcriptional regulators, genes under their control, and how these regulatory processes lead to pathogenic properties of N. gonorrhoeae during natural infection. We also discuss the current knowledge of the structure, function, and diversity of the FGT microbiome and its influence on gonococcal survival and transcriptional responses orchestrated by its DNA-binding regulators. We conclude with recent multi-omics data and modeling tools and their application to FGT microbiome dynamics. Understanding the strategies utilized by N. gonorrhoeae to regulate gene expression and their impact on the emergent characteristics of this pathogen during infection has the potential to identify new effective strategies to both treat and prevent gonorrhea.
Collapse
Affiliation(s)
- Ashwini Sunkavalli
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Ryan McClure
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - Caroline Genco
- Department of Immunology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| |
Collapse
|