1
|
Miceli G, Ciaccio AM, Tuttolomondo A. From Circulating Biomarkers to Polymorphic Variants: A Narrative Review of Challenges in Thrombophilia Evaluation. J Clin Med 2025; 14:3448. [PMID: 40429442 PMCID: PMC12111975 DOI: 10.3390/jcm14103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Thrombophilia is characterized by a hypercoagulable state that predisposes individuals to venous and arterial thrombotic events, posing significant challenges for clinical evaluation and management. This narrative review critically examines the current landscape of thrombophilia testing, focusing on the utility and limitations of both circulating and genetic biomarkers. Circulating biomarkers-such as D-dimer, antithrombin, protein C, and protein S-offer dynamic insights into the coagulation process yet often suffer from low specificity in varied clinical settings. In contrast, genetic biomarkers, notably Factor V Leiden and the prothrombin G20210A mutation, provide stable risk stratification but are limited by their low prevalence in the general population. Emerging markers, including selectins, Factor VIII, Factor XI, neutrophil extracellular traps, and extracellular vesicles, are also discussed for their potential to refine thrombotic risk assessment. By integrating evidence-based guidelines from international health organizations, this review underscores the need for a personalized approach to thrombophilia evaluation that balances comprehensive risk assessment with the avoidance of over-testing. Such an approach is crucial for optimizing patient outcomes and informing the duration and intensity of anticoagulant therapy.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Anna Maria Ciaccio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE) Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90100 Palermo, Italy
| |
Collapse
|
2
|
Xu DG, Tan J. Interplay of genetic and clinical factors in cancer-associated thrombosis: Deciphering the prothrombotic landscape of colorectal cancer. World J Gastroenterol 2025; 31:103901. [PMID: 40248375 PMCID: PMC12001197 DOI: 10.3748/wjg.v31.i14.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Colorectal cancer (CRC), the third most prevalent cancer globally, exhibits a notable association with venous thromboembolism (VTE), significantly impacting patient morbidity and mortality. We delve into the complex pathogenesis of cancer-associated thrombosis (CAT) in CRC, highlighting the interplay of clinical risk factors and tumor-specific mechanisms. Our comprehensive review synthesizes the current understanding of CRC's pro-thrombotic tendencies, examining both general clinical factors (e.g., age, gender, obesity, prior VTE history) and tumor-specific aspects (e.g., tumor location, stage, targeted therapies). Key findings illustrate how CRC cells themselves actively contribute to coagulation cascade activation through various procoagulant elements such as tissue factor, cancer procoagulant, and extracellular vesicles. We also explore how CRC influences host cells to adopt a procoagulant phenotype, thereby exacerbating thrombotic risks. This review underscores the role of genetic mutations in CRC (e.g., KRAS, p53) in modulating coagulation-related protein expression and thrombosis risks. An in-depth understanding of the genetic landscape specific to CRC subtypes is essential for developing targeted anticoagulation strategies and could significantly advance thrombosis prevention while improving the overall management of patients with CRC. This highlights the urgent need for precision in addressing CAT within clinical settings.
Collapse
Affiliation(s)
- Duo-Gang Xu
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| | - Jing Tan
- Department of General Surgery, Yan'an Hospital Affiliated to Kunming Medical University, Kunming 650051, Yunnan Province, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming 650051, Yunnan Province, China
| |
Collapse
|
3
|
Zhang B, Yang N, Li L. Bullous pemphigoid and hypercoagulability: a review. Expert Rev Clin Immunol 2025; 21:323-332. [PMID: 39772971 DOI: 10.1080/1744666x.2025.2450766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/25/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies against hemidesmosomal proteins in the basal membrane zone. The presence of a high incidence of thrombotic events has led to the identification of a hypercoagulable state in BP patients. AREAS COVERED This review highlights the interactions between coagulation and immune-inflammatory responses based on the currently available literature, as well as individual changes in characteristic coagulation parameters in BP. This review is based on publications up to August 2024 that were retrieved by a selective search in the PubMed database. EXPERT OPINION The hypercoagulable state and bullous pemphigoid (BP) have a reciprocally enhancing effect on each other. For clinicians, it is crucial to closely monitor the fluctuations in circulating coagulation markers among BP patients, such as D-dimer, fibrinogen, and fibrin degradation products (FDP). Furthermore, considering the interplay between coagulation and immune-inflammatory responses in BP, targeting the shared pathways in treatment strategies could be beneficial for patients who exhibit both BP and a hypercoagulable state.
Collapse
Affiliation(s)
- Bingjie Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Li Li
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
4
|
Li H, Li C, Fu C, Wang Y, Liang T, Wu H, Wu C, Wang C, Sun T, Liu S. Innovative nanoparticle-based approaches for modulating neutrophil extracellular traps in diseases: from mechanisms to therapeutics. J Nanobiotechnology 2025; 23:88. [PMID: 39915767 PMCID: PMC11800495 DOI: 10.1186/s12951-025-03195-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/02/2025] [Indexed: 02/11/2025] Open
Abstract
Neutrophil extracellular traps (NETs) participate in both host defense and the pathogenesis of various diseases, such as infections, thrombosis, and tumors. While they help capture and eliminate pathogens, NETs' excessive or dysregulated formation can lead to tissue damage and disease progression. Therapeutic strategies targeting NET modulation have shown potential, but challenges remain, particularly in achieving precise drug delivery and maintaining drug stability. Nanoparticle (NP)-based drug delivery systems offer innovative solutions for overcoming the limitations of conventional therapies. This review explores the biological mechanisms of NET formation, their interactions with NPs, and the therapeutic applications of NP-based drug delivery systems for modulating NETs. We discuss how NPs can be designed to either promote or inhibit NET formation and provide a comprehensive analysis of their potential in treating NET-related diseases. Additionally, we address the current challenges and future prospects for NP-based therapies in NET research, aiming to bridge the gap between nanotechnology and NET modulation for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Haisong Li
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
- Department of Neurosurgery, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Can Li
- Department of Hematology, The Second Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Cong Fu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yizhuo Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Tingting Liang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Haitao Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chenxi Wu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China
| | - Chang Wang
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Shuhan Liu
- Cancer Center, The First Hospital, Jilin University, Changchun, Jilin, China.
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China.
| |
Collapse
|
5
|
Retter A, Singer M, Annane D. "The NET effect": Neutrophil extracellular traps-a potential key component of the dysregulated host immune response in sepsis. Crit Care 2025; 29:59. [PMID: 39905519 PMCID: PMC11796136 DOI: 10.1186/s13054-025-05283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Neutrophils release neutrophil extracellular traps (NETs) as part of a healthy host immune response. NETs physically trap and kill pathogens as well as activating and facilitating crosstalk between immune cells and complement. Excessive or inadequately resolved NETs are implicated in the underlying pathophysiology of sepsis and other inflammatory diseases, including amplification of the inflammatory response and inducing thrombotic complications. Here, we review the growing evidence implicating neutrophils and NETs as central players in the dysregulated host immune response. We discuss potential strategies for modifying NETs to improve patient outcomes and the need for careful patient selection.
Collapse
Affiliation(s)
- Andrew Retter
- Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK.
- School of Immunology and Microbial Sciences, King's College, London, UK.
- Volition, London, UK.
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Djillali Annane
- Department of Intensive Care, Raymond Poincaré Hospital, APHP University Versailles Saint Quentin-University Paris Saclay, INSERM, Garches, France
- IHU PROMETHEUS, Comprehensive Sepsis Center, Garches, France
- University Versailles Saint Quentin-University Paris Saclay, INSERM, Garches, France
- FHU SEPSIS (Saclay and Paris Seine Nord Endeavour to PerSonalize Interventions for Sepsis), Garches, France
| |
Collapse
|
6
|
Begue F, Veeren B, Rondeau P, Florence AM, Jamard S, Montravers P, Tanaka S, Meilhac O. HDL proteome and apolipoproteins concentrations in severe ICU COVID-19 patients. Lipids Health Dis 2025; 24:32. [PMID: 39891286 PMCID: PMC11783863 DOI: 10.1186/s12944-024-02381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/18/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND SARS-CoV-2 infection affects both lipid metabolism and lung function. The severity of the disease has been associated with reduced levels of both high-density lipoprotein (HDL) and low-density lipoprotein cholesterol. Despite the crucial role that these nanoparticles play in SARS-CoV-2 infection, few studies have examined their structure during COVID-19 beyond HDL quantity. The study aimed to assess apolipoprotein levels in COVID-19 patients who either survived or died following ICU admission. In addition, ICU survivors and non-survivors were compared for HDL particle size and proteome. METHODS Between February and April 2020, our study enrolled 37 COVID-19 patients upon their intensive care unit admission. Among them, 18 survived the disease, while 19 succumbed to it. We used mass spectrometry to assess plasma levels of 14 apolipoproteins and LCAT. Additionally, we analyzed HDL subpopulation distribution by utilizing native polyacrylamide gel electrophoresis. HDL particles were isolated from both surviving and non-surviving patients using ultracentrifugation, followed by characterization of their proteomes with NanoLC-MS/MS. RESULTS Plasma apolipoproteins, including Apo A-II, Apo Cs (I, II, III), Apo H, Apo J, Apo M, and LCAT, were decreased in patients who did not survive COVID-19. However, no alterations were noted in the distribution of HDL subpopulations in relation to mortality. HDL composition was further altered based on mortality, displaying a decline in Apo H and paraoxonase 3. CONCLUSION In conclusion, we have shown an alteration in plasma apolipoproteins and HDL composition between surviving COVID-19 patients and non-survivors. Some markers, such as Apo H, are more predictive than baseline lipid concentrations such as HDL-C. These markers appear to provide a more accurate indication of mortality during COVID-19 compared with baseline lipid concentrations such as HDL-C.
Collapse
Affiliation(s)
- Floran Begue
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, 97410, France
- Délégation de la Recherche Clinique et de l'Innovation, USMD, CHU Réunion, Saint-Pierre, 97448, France
| | - Bryan Veeren
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, 97410, France
| | - Philippe Rondeau
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, 97410, France
| | - Aline-Marie Florence
- INSERM IAME UMR 1137, Université Paris Cité, Paris, France
- Department of Epidemiology Biostatistics and Clinical Research, Assistance Publique-Hopitaux de Paris (AP-HP) Nord, Hopital Bichat, Paris, France
| | - Simon Jamard
- Department of Infectious Disease, University Hospital of Tours, Tours, France
| | - Philippe Montravers
- Department of Anesthesiology and Critical Care Medicine, Assistance, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
- University of Paris, UFR Denis Diderot, Paris, France
- PHERE, Physiopathology and Epidemiology of Respiratory Diseases, INSERM U1152, Paris, France
| | - Sébastien Tanaka
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, 97410, France
- Department of Anesthesiology and Critical Care Medicine, Assistance, AP-HP, Bichat-Claude Bernard Hospital, Paris, France
| | - Olivier Meilhac
- Université de La Réunion, INSERM, UMR 1188 Diabète athérothombose Réunion Océan Indien (DéTROI), Saint-Pierre de La Réunion, 97410, France.
- CHU de La Réunion, Saint-Pierre, 97410, France.
| |
Collapse
|
7
|
Piegols L, Dwyer T, Glotzer SC, Eniola-Adefeso O. Shape-Dependent Structural Order of Red Blood Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1876-1888. [PMID: 39807598 PMCID: PMC11780740 DOI: 10.1021/acs.langmuir.4c04335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
In this work, we show how shape matters for the ordering of red blood cells (RBCs) at a water-air interface for both artificially rigidified and sphered cells as a model system for hereditary spherocytosis. We report enhanced long-range order for spherical RBCs over disk-shaped RBCs arising from the increased local ordering of spheres relative to disks. We show that rigidity has a greater effect on the radial distribution of spherical vs disk-shaped RBCs by slightly increasing the average distance between cells. The onset of local hexatic bond order of spherical RBCs in mixed disc-sphere systems coincides with the appearance of clustering of spherical cells as the number fraction of spherocytes increases. Additionally, the radial distribution function in mixed-shape systems begins to change with the onset of local hexatic order and clustering of spherical RBCs. By analyzing the radial distribution functions of RBCs, local hexatic bond order, and clustering, we show that the structure of settled RBCs is dictated by shape. These shape-dictated structures may provide a basis for future tools for detecting RBC shape-altering diseases and disorders.
Collapse
Affiliation(s)
- Logan
D. Piegols
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tobias Dwyer
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Sharon C. Glotzer
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Omolola Eniola-Adefeso
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Zeng Y, Xu W, Chao P, Xiao Y, Yang T. Neutrophil extracellular traps as a potential marker of systemic lupus erythematosus activity. Int Immunopharmacol 2025; 146:113840. [PMID: 39689598 DOI: 10.1016/j.intimp.2024.113840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The heterogeneity of systemic lupus erythematosus (SLE) poses a significant challenge in identifying biomarkers for assessing disease activity. Currently, there is a paucity of established biomarkers capable of evaluating SLE flares. This study aimed to identify novel biomarkers that exhibit improved diagnostic accuracy in assessing SLE activity. METHODS A cross-sectional study was conducted at Zhongshan Hospital Xiamen University from August 2021 to April 2024,enrolling 118 patients with SLE, including 81 cases of active SLE, 50 cases of active lupus nephritis (LN) and 30 cases of active non-LN. The objective was to evaluate the diagnostic accuracy of novel biomarker called Neutrophil Extracellular Traps(NETs) for SLE activity and analyze its correlations with conventional biomarkers such as complement C3, C4, and anti-dsDNA. RESULTS Serum NETs levels were significantly elevated in patients with active SLE and active LN(P < 0.001). Furthermore, positive correlations were observed between NETs levels and disease activity score based on Systemic Lupus Erythematosus Disease Activity Index-2 K (SLEDAI-2 K) (r = 0.64, P < 0.001), as well as anti-dsDNA antibody (r = 0.54, P < 0.001).Conversely, the NETs levels were negativity correlated with complement C3 concentration (r = -0.50, P < 0.001), as well as C4 concentration (r = -0.34,P < 0.001). Univariate and multivariate analysis revealed two biomarkers performed statistical significance: NETs (OR = 6.802, 95 %CI: 2.414-19.167,P < 0.001) and anti-dsDN A(OR = 3.95,95 %CI:1.582-9.864, P = 0.003). NETs had the highest AUC of 0.82(P < 0.001), with a cut-off at 515.47 ng/L demonstrating 61.63 % sensitivity and 96.87 % specificity. For the active LN group, the AUC was found to be 0.97 (P < 0.001), with a cutoff value of 515.47 ng/L, sensitivity of 100 %, and specificity of 59.76 %. Moreover, the active non-LN group had AUC of 0.70 (P = 0.007), with the same cutoff value, sensitivity of 89.61 %, and specificity of 51.61 %. CONCLUSION In contrast to conventional laboratory markers, serum NETs represent a novel diagnostic marker for assessing disease activity in SLE, demonstrating promising potential for clinical application.
Collapse
Affiliation(s)
- Yanli Zeng
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease,School of Medicine,XiamenUniversity, Xiamen 361004, China; Xiamen Clinical Laboratory Quality ControlCenter,Zhongshan Hospital Xiamen University, Xiamen 361004, China.
| | - Wenlong Xu
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Pengli Chao
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Yun Xiao
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Tianci Yang
- Center of Clinical Laboratory, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China; Institute of Infectious Disease,School of Medicine,XiamenUniversity, Xiamen 361004, China; Xiamen Clinical Laboratory Quality ControlCenter,Zhongshan Hospital Xiamen University, Xiamen 361004, China.
| |
Collapse
|
9
|
Jin J, Zhao Y, Fang Y, Pan Y, Wang P, Fan Z, Yu H. Neutrophil extracellular traps promote the activation of the NLRP3 inflammasome and PBMCs pyroptosis via the ROS-dependent signaling pathway in Kawasaki disease. Int Immunopharmacol 2025; 145:113783. [PMID: 39647285 DOI: 10.1016/j.intimp.2024.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Kawasaki disease (KD) is an acute systemic vasculitis predominantly affecting infants and children under the age of 5. Recent studies have indicated that excessively released neutrophil extracellular traps (NETs) are involved in the progression of vasculitis. The purpose of this study was to investigate the role of NETs, especially their interaction with peripheral blood mononuclear cells (PBMCs), in the pathogenesis of KD. First, we demonstrated that the levels of NETs (cfDNA, MPO, and NE) in the serum of KD patients were significantly higher than those in healthy controls (HCs) and notably decreased after treatment. During the acute phase of KD, inflammatory markers (CRP and ESR) were positively correlated with NETs levels. Furthermore, we observed that neutrophils from KD patients in the acute phase produced elevated levels of NETs, and aspirin could effectively regulate the release of NETs. Additionally, NETs significantly increased the mRNA levels of NLRP3 and IL-1β in PBMCs, as well as the protein expression of NLRP3, caspase-1, ASC and gasdermin D, and the concentration of IL-1β in the cell supernatant. Moreover, NETs stimulated the production of reactive oxygen species (ROS) in PBMCs. N-acetylcysteine significantly reduced the expression of inflammatory factors and pyroptosis-related proteins in PBMCs. In conclusion, our findings suggest that NETs induce the generation of ROS, which in turn activates the NLRP3 inflammasome to mediate PBMCs pyroptosis and perpetuate inflammation in KD patients. This study reveals that targeting NETs or ROS could be a potential therapeutic approach for alleviating systemic inflammation, and that NETs may be a novel target for aspirin in the treatment of KD patients.
Collapse
Affiliation(s)
- Jing Jin
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Zhao
- Department of Ultrasonography, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuying Fang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuting Pan
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Panpan Wang
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhidan Fan
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Haiguo Yu
- Department of Rheumatology and Immunology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
10
|
Vladic N, Englisch C, Ay C, Pabinger I. Risk assessment and prevention of cancer-associated venous thromboembolism in ambulatory patients with solid malignancies. Res Pract Thromb Haemost 2025; 9:102664. [PMID: 39877524 PMCID: PMC11772966 DOI: 10.1016/j.rpth.2024.102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 01/31/2025] Open
Abstract
Venous thromboembolism remains a major cause of morbidity and mortality among ambulatory cancer patients, necessitating effective risk assessment and prevention strategies. Despite the availability of risk assessment models and guidelines recommending primary thromboprophylaxis with low-molecular-weight heparins or direct oral anticoagulants, the application of these strategies is inconsistent. This review provides an overview of the current state-of-the-art venous thromboembolism risk assessment and thromboprophylaxis in ambulatory patients with cancer, focusing on existing risk assessment models and the latest guideline recommendations. Finally, it summarizes gaps in knowledge, discusses future directions, and highlights recent advances and state-of-the-art research presented at the 2024 International Society on Thrombosis and Haemostasis Congress in Bangkok, Thailand.
Collapse
Affiliation(s)
- Nikola Vladic
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cornelia Englisch
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Cihan Ay
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Ingrid Pabinger
- Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Amin A, Mohajerian A, Ghalehnoo SR, Mohamadinia M, Ahadi S, Sohbatzadeh T, Pazoki M, Hasanvand A, Faghihkhorasani F, Habibi Z. Potential Player of Platelet in the Pathogenesis of Cardiotoxicity: Molecular Insight and Future Perspective. Cardiovasc Toxicol 2024; 24:1381-1394. [PMID: 39397196 DOI: 10.1007/s12012-024-09924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
Cancer patients may encounter the onset of cardiovascular disease due to tumor advancement or chemotherapy, commonly known as "cardiotoxicity." In this respect, the conventional chemotherapy treatment protocol involves a mixture of different medications. These medications can be detrimental to cardiac tissue, consequently exposing the patient to the possibility of irreversible cardiac injury. The enhancement of oxidative stress and inflammation is an important mechanism of chemotherapeutic agents for developing cardiotoxicity. Regarding their dual pro- and anti-inflammatory functions, platelets can significantly influence the progression or suppression of cardiotoxicity. Therefore, the expression of platelet activatory markers can serve as valuable prognostic indicators for cardiotoxicity. The primary objective of this study is to examine the significance of platelets in cardiotoxicity and explore potential strategies that could effectively target malignant cells while minimizing their cytotoxic impact, such as cardiotoxicity and thrombosis.
Collapse
Affiliation(s)
- Arash Amin
- Department of Cardiology, School of Medicine, Shahid Madani Hospital, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Ahmad Mohajerian
- Department of Emergency Medicine, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rashki Ghalehnoo
- Department of Cardiology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mehdi Mohamadinia
- Department of Dental Prosthesis, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shana Ahadi
- School of Medicine, Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Science, Alborz, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Afshin Hasanvand
- Department of General Surgery, Lorestan University of Medical Science, Khorramabad, Iran
| | | | - Zeinab Habibi
- Lorestan University of Medical Science, Lorestan, Iran.
| |
Collapse
|
12
|
Whitefoot-Keliin KM, Benaske CC, Allen ER, Guerrero MT, Grapentine JW, Schiff BD, Mahon AR, Greenlee-Wacker MC. In response to bacteria, neutrophils release extracellular vesicles capable of initiating thrombin generation through DNA-dependent and independent pathways. J Leukoc Biol 2024; 116:1223-1236. [PMID: 38809773 PMCID: PMC11599124 DOI: 10.1093/jleuko/qiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Neutrophils release extracellular vesicles, and some subsets of neutrophil-derived extracellular vesicles are procoagulant. In response to Staphylococcus aureus, neutrophils produce extracellular vesicles that associate electrostatically with neutrophil extracellular traps. DNA in neutrophil extracellular traps is procoagulant, but whether neutrophil extracellular vesicles produced during bacterial challenge have similar activity is unknown. Given that extracellular vesicle activity is agonist and cell-type dependent and coagulation contributes to sepsis, we hypothesized that sepsis-causing bacteria increase production of neutrophil-derived extracellular vesicles, as well as extracellular vesicle-associated DNA, and intact extracellular vesicles and DNA cause coagulation. We recovered extracellular vesicles from neutrophils challenged with S. aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa and measured associated DNA and procoagulant activity. Extracellular vesicles from S. aureus-challenged neutrophils, which were previously characterized, displayed dose-dependent procoagulant activity as measured by thrombin generation in platelet-poor plasma. Extracellular vesicle lysis and DNase treatment reduced thrombin generation by 90% and 37%, respectively. S. epidermidis, E. coli, and P. aeruginosa also increased extracellular vesicle production and extracellular vesicle-associated extracellular DNA, and these extracellular vesicles were also procoagulant. Compared to spontaneously released extracellular vesicles, which demonstrated some ability to amplify factor XII-dependent coagulation in the presence of an activator, only extracellular vesicles produced in response to bacteria could initiate the pathway. S. aureus and S. epidermidis extracellular vesicles had more surface-associated DNA than E. coli and P. aeruginosa extracellular vesicles, and S. aureus and S. epidermidis extracellular vesicles contributed to initiation and amplification of thrombin generation in a DNA-dependent manner. However, DNA on E. coli or P. aeruginosa extracellular vesicles played no role, suggesting that neutrophils release procoagulant extracellular vesicles, which can activate the coagulation cascade through both DNA-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Kaitlyn M Whitefoot-Keliin
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Chase C Benaske
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Edwina R Allen
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Mariana T Guerrero
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| | - Justin W Grapentine
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| | - Benjamin D Schiff
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| | - Andrew R Mahon
- Deparment of Biology, Central Michigan University, 1200 S Franklin St., Mt. Pleasant, MI 48859, United States
| | - Mallary C Greenlee-Wacker
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, 1 Grand Avenue, San Luis Obispo, CA 93407, United States
| |
Collapse
|
13
|
Tian F, Lu Y, Liu X, Zhao C, Xi X, Hu X, Xue Y, Sun X, Yuan H. Relationship Between the Systemic Immune-Inflammation Index and Deep Venous Thrombosis After Spinal Cord Injury: A Cross-Sectional Study. J Inflamm Res 2024; 17:8325-8334. [PMID: 39525312 PMCID: PMC11550696 DOI: 10.2147/jir.s491055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose To explore the relationship between the systemic immune-inflammation index (SII) and deep venous thrombosis (DVT) in patients with spinal cord injury (SCI). Methods This cross-sectional study included data from 382 participants with SCI. The SII was calculated for all participants. Logistic regression, smooth curve fitting, interaction effects were used to substantiate the research objectives. Results The overall prevalence of DVT was 23.1% (22.4% among males, 25.6% among females). A positive association between SII and the risk for DVT was observed (odds ratio 1.39 [95% CI 1.03-1.87]; P=0.032), independent of confounders. Similar patterns of association were observed in the subgroup analysis (P values for interaction, all >0.05). Further sensitivity analyses provided confidence that the results were reliable and unlikely to be substantially altered by unmeasured confounding factors. Conclusion Results of the present suggest that higher SII may be associated with DVT in patients with SCI, highlighting a potential link between SII and DVT. These findings underscore the potential of SII as a valuable predictive biomarker for DVT, thus offering a promising avenue for early detection and intervention strategies in patients with SCI.
Collapse
Affiliation(s)
- Fei Tian
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yuheng Lu
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xinyu Liu
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Chenguang Zhao
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xiao Xi
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xu Hu
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yike Xue
- Department of Diagnostic Radiology, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xiaolong Sun
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hua Yuan
- Department of Rehabilitation Medicine, Xijing Hospital, The Fourth Military Medical University, Xi’an, People’s Republic of China
| |
Collapse
|
14
|
Enochs C, Colpo GD, Couture L, Baskin L, Cahuiche AE, Lee EA, Nimjee S, McCullough LD. The Contribution of Neutrophil Extracellular Traps to Coagulopathy in Patients with COVID-19-Related Thrombosis. Viruses 2024; 16:1677. [PMID: 39599792 PMCID: PMC11598969 DOI: 10.3390/v16111677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is associated with hypercoagulability and increased incidence of thrombotic events. In this study, we investigated the levels of neutrophil extracellular trap biomarkers and von Willebrand factor to assess if these could predict the occurrence of a thrombotic event in COVID-19 patients. We enrolled 202 patients hospitalized with symptomatic COVID-19 infection. Of those, 104 patients did not experience any type of thrombotic events before or during their hospitalization. These patients were compared to the other cohort of 98, who experienced thrombotic events before or during their hospitalization. In total, 61 patients who experienced thrombotic events had the event after initial blood collection, so the predictive capacity of biomarkers in these patients was evaluated. Citrullinated histone H3 was the best predictive biomarker for thrombotic events in COVID-19 regardless of age, sex, and race; disease severity was also a significant predictor in most thrombotic event groups. These results may better inform treatment and prophylaxis of thrombotic events in COVID-19 and similar viral illnesses in the future to improve outcomes and reduce mortality.
Collapse
Affiliation(s)
- Carolyn Enochs
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Gabriela Delevati Colpo
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Lucy Couture
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Lynae Baskin
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Ana E. Cahuiche
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Eunyoung Angela Lee
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| | - Shahid Nimjee
- Neurosurgery, The Ohio State University Medical Center, Columbus, OH 43210, USA;
| | - Louise D. McCullough
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA; (C.E.); (G.D.C.); (L.B.); (A.E.C.); (E.A.L.); (L.D.M.)
| |
Collapse
|
15
|
Gunasekara S, Tamil Selvan M, Murphy CL, Shatnawi S, Cowan S, More S, Ritchey J, Miller CA, Rudd JM. Characterization of Neutrophil Functional Responses to SARS-CoV-2 Infection in a Translational Feline Model for COVID-19. Int J Mol Sci 2024; 25:10054. [PMID: 39337543 PMCID: PMC11432149 DOI: 10.3390/ijms251810054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
There is a complex interplay between viral infection and host innate immune response regarding disease severity and outcomes. Neutrophil hyperactivation, including excessive release of neutrophil extracellular traps (NETs), is linked to exacerbated disease in acute COVID-19, notably in hospitalized patients. Delineating protective versus detrimental neutrophil responses is essential to developing targeted COVID-19 therapies and relies on high-quality translational animal models. In this study, we utilize a previously established feline model for COVID-19 to investigate neutrophil dysfunction in which experimentally infected cats develop clinical disease that mimics acute COVID-19. Specific pathogen-free cats were inoculated with SARS-CoV-2 (B.1.617.2; Delta variant) (n = 24) or vehicle (n = 6). Plasma, bronchoalveolar lavage fluid, and lung tissues were collected at various time points over 12 days post-inoculation. Systematic and temporal evaluation of the kinetics of neutrophil activation was conducted by measuring markers of activation including myeloperoxidase (MPO), neutrophil elastase (NE), and citrullinated histone H3 (citH3) in SARS-CoV-2-infected cats at 4 and 12 days post-inoculation (dpi) and compared to vehicle-inoculated controls. Cytokine profiling supported elevated innate inflammatory responses with specific upregulation of neutrophil activation and NET formation-related markers, namely IL-8, IL-18, CXCL1, and SDF-1, in infected cats. An increase in MPO-DNA complexes and cell-free dsDNA in infected cats compared to vehicle-inoculated was noted and supported by histopathologic severity in respiratory tissues. Immunofluorescence analyses further supported correlation of NET markers with tissue damage, especially 4 dpi. Differential gene expression analyses indicated an upregulation of genes associated with innate immune and neutrophil activation pathways. Transcripts involved in activation and NETosis pathways were upregulated by 4 dpi and downregulated by 12 dpi, suggesting peak activation of neutrophils and NET-associated markers in the early acute stages of infection. Correlation analyses conducted between NET-specific markers and clinical scores as well as histopathologic scores support association between neutrophil activation and disease severity during SARS-CoV-2 infection in this model. Overall, this study emphasizes the effect of neutrophil activation and NET release in SARS-CoV-2 infection in a feline model, prompting further investigation into therapeutic strategies aimed at mitigating excessive innate inflammatory responses in COVID-19.
Collapse
Affiliation(s)
- Sachithra Gunasekara
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chelsea L Murphy
- Department of Mathematical Sciences, College of Arts and Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shannon Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Sunil More
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jerry Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Craig A Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer M Rudd
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
16
|
Tzang BS, Chin HY, Tzang CC, Chuang PH, Chen DY, Hsu TC. Parvovirus B19 Infection Is Associated with the Formation of Neutrophil Extracellular Traps and Thrombosis: A Possible Linkage of the VP1 Unique Region. Int J Mol Sci 2024; 25:9917. [PMID: 39337405 PMCID: PMC11432092 DOI: 10.3390/ijms25189917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) formation, namely NETosis, is implicated in antiphospholipid syndrome (APS)-related thrombosis in various autoimmune disorders such as systemic lupus erythematosus (SLE) and APS. Human parvovirus B19 (B19V) infection is closely associated with SLE and APS and causes various clinical manifestations such as blood disorders, joint pain, fever, pregnancy complications, and thrombosis. Additionally, B19V may trigger the production of autoantibodies, including those against nuclear and phospholipid components. Thus, exploring the connection between B19V, NETosis, and thrombosis is highly relevant. An in vitro NETosis model using differentiated HL-60 neutrophil-like cells (dHL-60) was employed to investigate the effect of B19V-VP1u IgG on NETs formation. A venous stenosis mouse model was used to test how B19V-VP1u IgG-mediated NETs affect thrombosis in vivo. The NETosis was observed in the dHL-60 cells treated with rabbit anti-B19V-VP1u IgG and was inhibited in the presence of either 8-Br-cAMP or CGS216800 but not GSK484. Significantly elevated reactive oxygen species (ROS), myeloperoxidase (MPO), and citrullinated histone (Cit-H3) levels were detected in the dHL60 treated with phorbol myristate acetate (PMA), human aPLs IgG and rabbit anti-B19V-VP1u IgG, respectively. Accordingly, a significantly larger thrombus was observed in a venous stenosis-induced thrombosis mouse model treated with PMA, human aPLs IgG, rabbit anti-B19V-VP1u IgG, and human anti-B19V-VP1u IgG, respectively, along with significantly increased amounts of Cit-H3-, MPO- and CRAMP-positive infiltrated neutrophils in the thrombin sections. This research highlights that anti-B19V-VP1u antibodies may enhance the formation of NETosis and thrombosis and implies that managing and treating B19V infection could lower the risk of thrombosis.
Collapse
Affiliation(s)
- Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei City 100, Taiwan;
| | - Pei-Hua Chuang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
| | - Der-Yuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- College of Medicine, China Medical University, Taichung 404, Taiwan
- Rheumatology and Immunology Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (B.-S.T.); (H.-Y.C.); (P.-H.C.)
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan
| |
Collapse
|
17
|
Park Y, Park S, Chinratanalab W, Savani B, Kassim A, Douds JJ, Sengsayadeth S, Kim TK. SARS-CoV2 is not just infection but a culprit of donor graft failure post-allogeneic stem cell transplant. Clin Hematol Int 2024; 6:33-37. [PMID: 39071177 PMCID: PMC11283860 DOI: 10.46989/001c.121430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Yoojin Park
- Duke University
- MedicineVanderbilt University Medical Center
| | - Silvia Park
- MedicineVanderbilt University Medical Center
- Department of HematologyThe Catholic University of Korea
| | - Wichai Chinratanalab
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| | - Bipin Savani
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| | - Adetola Kassim
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| | | | - Salyka Sengsayadeth
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| | - Tae Kon Kim
- MedicineVanderbilt University Medical Center
- Vanderbilt-Ingram Cancer Center
- VA Tennessee Valley Healthcare System
| |
Collapse
|
18
|
Awad MA, Sun W, Han D, Griffith BP, Wu ZJ. Increased phagocytosis capacity of circulating neutrophils in patients on continuous flow ventricular assist device support. Artif Organs 2024; 48:636-645. [PMID: 38133151 PMCID: PMC11105991 DOI: 10.1111/aor.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Neutrophils take part in the innate immune response, phagocytosis, and pro-inflammatory cytokine release. The phagocytic capacity of circulating neutrophils in patients on continuous flow (CF) ventricular assist device (VAD) has not been well studied. METHODS Blood samples from 14 patients undergoing CF-VAD implantation were collected and analyzed preoperatively (at baseline) and on postoperative days (POD) 3, 7, 14, and 28. Flow cytometry was used to assess the surface expression levels of CD62L, CD162, and macrophage antigen-1 (MAC-1) and neutrophil phagocytic capacity. Interleukin 1 (IL1), IL6, IL8, TNF-α, neutrophil elastase, and myeloperoxidase in plasma were measured using enzyme-linked immunosorbent assays. RESULTS Among the 14 patients, seven patients had preoperative bridge device support. Relative to baseline, patients with no bridge device had elevated leukocyte count and neutrophil elastase by POD3 which normalized by POD7. Neutrophil activation level, IL6, IL8, and TNF-α increased by POD3 and sustained elevated levels for 7-14 days postoperatively. Elevated neutrophil phagocytic capacity persisted even until POD28. Similar patterns were observed in patients on a preoperative bridge device. CONCLUSIONS Neutrophil activation and phagocytic capacity increased in response to VAD support, while inflammatory cytokines remain elevated for up to 2 weeks postoperatively. These findings may indicate that VAD implantation elicits circulating neutrophils to an abnormal preemptive phagocytotic phenotype.
Collapse
Affiliation(s)
- Morcos A. Awad
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dong Han
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bartley P. Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhongjun J. Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
19
|
Wang Q, Gu Y, Chen J, Liu X, Xie C, Wang X. Bioinformatics gene analysis for potential biomarkers and therapeutic targets of Parkinson's disease based on neutrophil extracellular traps. Front Aging Neurosci 2024; 16:1388226. [PMID: 38882525 PMCID: PMC11178047 DOI: 10.3389/fnagi.2024.1388226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/30/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Neutrophil extracellular traps (NETs) provide key innate immune mechanisms, and studies have shown innate immunity and adaptive immunity are directly linked to Parkinson's disease (PD) pathology. However, limited research has been conducted on NETs in the context of PD. Methods A differential analysis was implemented to acquire differentially expressed genes (DEGs) between PD and control as well as between high- and low-score groups determined by a gene set variation analysis (GSVA). Then, the genes within the critical module, obtained through a weighted gene co-expression network analysis (WGCNA), were intersected with the DEGs to identify the overlapping genes. Then, five kinds of algorithms in the protein-protein interaction (PPI) were performed to identify potential biomarkers. Subsequently, a nomogram for forecasting PD probability was created. An enrichment analysis and an immune infiltration analysis were performed on the identified biomarkers. qRT-PCR was performed to validate the expression trends of three biomarkers. Results We revealed 798 DEGs between PD and control groups as well as 168 DEGs between high- and low-score groups obtained by differential analyses. The pink module containing 926 genes was identified as the critical module. According to the intersection of these gene sets, a total of 43 overlapping genes were screened out. Furthermore, GPR78, CADM3, and CACNA1E were confirmed as biomarkers. Moreover, we found that biomarkers mainly participated in pathways, such as the 'hydrogen peroxide catabolic process', and 'cell cycle'; five kinds of differential immune cells between PD and control groups were identified. Finally, the qRT-PCR analysis demonstrated the up-regulation of GPR78, CADM3, and CACNA1E in the PD group. Discussion Our study authenticated GPR78, CADM3, and CACNA1E as the biomarkers associated with PD. These findings provide an original reference for the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Youquan Gu
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Jun Chen
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoyan Liu
- Chengdu shi Longquanyi qu Diyi Renmin Yiyuan: The First People's Hospital of Longquanyi District, Longquanyi District, Chengdu, China
| | - Chen Xie
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xueping Wang
- Department of Neurology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Liu R, Zhang J, Rodrigues Lima F, Zeng J, Nian Q. Targeting neutrophil extracellular traps: A novel strategy in hematologic malignancies. Biomed Pharmacother 2024; 173:116334. [PMID: 38422658 DOI: 10.1016/j.biopha.2024.116334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Neutrophil extracellular traps (NETs) have emerged as a critical factor in malignant hematologic disease pathogenesis. These structures, comprising DNA, histones, and cytoplasmic proteins, were initially recognized for their role in immune defense against microbial threats. Growing evidence suggests that NETs contribute to malignant cell progression and dissemination, representing a double-edged sword. However, there is a paucity of reports on its involvement in hematological disorders. A comprehensive understanding of the intricate relationship between malignant cells and NETs is necessary to explore effective therapeutic strategies. This review highlights NET formation and mechanisms underlying disease pathogenesis. Moreover, we discuss recent advancements in targeted inhibitor development for selective NET disruption, empowering precise design and efficacious therapeutic interventions for malignant hematologic diseases.
Collapse
Affiliation(s)
- Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing 400000, China
| | - Jin Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1stRing Rd, Qingyang District, Chengdu, Sichuan 610072, China
| | - Fernando Rodrigues Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, 2-16 Rue Theroigne deMericourt, Paris 75013, France
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, No.37 Shierqiaolu, Chengdu, Sichuan 610000, China.
| | - Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32# W. Sec 2, 1stRing Rd, Qingyang District, Chengdu, Sichuan 610072, China.
| |
Collapse
|
21
|
Zhao H, Sengupta SK, Sisley JM, Haddadin O, Pfeifer H, Ortega-Loayza AG. Deep Vein Thrombosis and Healing Outcomes in Patients With Pyoderma Gangrenosum. JAMA Dermatol 2024; 160:472-474. [PMID: 38353971 PMCID: PMC10867771 DOI: 10.1001/jamadermatol.2023.6066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/11/2023] [Indexed: 02/17/2024]
Abstract
This single-center prospective case-control study assessed the association between deep vein thrombosis and healing outcomes in patients with pyoderma gangrenosum.
Collapse
Affiliation(s)
- Hannah Zhao
- School of Medicine, Oregon Health & Science University, Portland
| | | | | | - Olivia Haddadin
- School of Medicine, Oregon Health & Science University, Portland
| | - Hailey Pfeifer
- School of Medicine, Oregon Health & Science University, Portland
| | | |
Collapse
|
22
|
Takeuchi H. Left Atrial Diverticula Present in the Right Lower Pulmonary Vein Thrombus Attachment Area. Cureus 2024; 16:e53422. [PMID: 38314379 PMCID: PMC10835019 DOI: 10.7759/cureus.53422] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 02/06/2024] Open
Abstract
Left atrial diverticula (LADs) are thought to be associated with atrial fibrillation and an ischemic brain state. However, the mechanisms of LAD formation are unknown. Pulmonary vein thrombi (PVTs) can cause acute myocardial infarction (AMI) and ischemic stroke by releasing rather large particles. Additionally, PVTs can release much smaller particles, including neutrophil extracellular traps (NETs) and/or other components of NETs, such as DNA and histones. To treat these diseases, it may be crucial to know the specific traits of PVTs. However, these issues are not direct effects of PVTs on the left atrium (LA). It is unclear whether PVTs affect the LA directly. We checked the direct effects of PVTs on the LA using cardiac computed tomography (CT) and transesophageal echocardiography (TEE). The patient was a 73-year-old female with hypertension. TEE revealed extended LA thrombi from the right lower pulmonary vein, which were attached to the anterosuperior wall of the LA. Cardiac CT revealed the attaching area as a defect of enhancement and dimly revealed LAD with full thrombi on the attaching area. It was difficult to recognize the LAD at first; however, after one month of standard-dose heparin-warfarin treatment, the LAD was clearly detected using cardiac CT. LA thrombi could not be detected using cardiac CT.
Collapse
Affiliation(s)
- Hidekazu Takeuchi
- Internal Medicine (Cardiology), Takeuchi Naika Clinic, Ogachi-Gun, JPN
| |
Collapse
|
23
|
Miwa T, Sato S, Golla M, Song WC. Expansion of Anticomplement Therapy Indications from Rare Genetic Disorders to Common Kidney Diseases. Annu Rev Med 2024; 75:189-204. [PMID: 37669567 DOI: 10.1146/annurev-med-042921-102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Complement constitutes a major part of the innate immune system. The study of complement in human health has historically focused on infection risks associated with complement protein deficiencies; however, recent interest in the field has focused on overactivation of complement as a cause of immune injury and the development of anticomplement therapies to treat human diseases. The kidneys are particularly sensitive to complement injury, and anticomplement therapies for several kidney diseases have been investigated. Overactivation of complement can result from loss-of-function mutations in complement regulators; gain-of-function mutations in key complement proteins such as C3 and factor B; or autoantibody production, infection, or tissue stresses, such as ischemia and reperfusion, that perturb the balance of complement activation and regulation. Here, we provide a high-level review of the status of anticomplement therapies, with an emphasis on the transition from rare diseases to more common kidney diseases.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| |
Collapse
|
24
|
Trotta MC, Gesualdo C, Russo M, Lepre CC, Petrillo F, Vastarella MG, Nicoletti M, Simonelli F, Hermenean A, D’Amico M, Rossi S. Changes in Circulating Acylated Ghrelin and Neutrophil Elastase in Diabetic Retinopathy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:118. [PMID: 38256379 PMCID: PMC10820226 DOI: 10.3390/medicina60010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Background and Objectives: The role and the levels of ghrelin in diabetes-induced retinal damage have not yet been explored. The present study aimed to measure the serum levels of total ghrelin (TG), and its acylated (AG) and des-acylated (DAG) forms in patients with the two stages of diabetic retinopathy (DR), non-proliferative (NPDR) and proliferative (PDR). Moreover, the correlation between serum ghrelin and neutrophil elastase (NE) levels was investigated. Materials and Methods: The serum markers were determined via enzyme-linked immunosorbent assays in 12 non-diabetic subjects (CTRL), 15 diabetic patients without DR (Diabetic), 15 patients with NPDR, and 15 patients with PDR. Results: TG and AG serum levels were significantly decreased in Diabetic (respectively, p < 0.05 and p < 0.01 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and in PDR patients (p < 0.01 vs. NPDR). AG serum levels were inversely associated with DR abnormalities (microhemorrhages, microaneurysms, and exudates) progression (r = -0.83, p < 0.01), serum neutrophil percentage (r = -0.74, p < 0.01), and serum NE levels (r = -0.73, p < 0.01). The latter were significantly increased in the Diabetic (p < 0.05 vs. CTRL), NPDR (p < 0.01 vs. Diabetic), and PDR (p < 0.01 vs. PDR) groups. Conclusions: The two DR stages were characterized by decreased AG and increased NE levels. In particular, serum AG levels were lower in PDR compared to NPDR patients, and serum NE levels were higher in the PDR vs. the NPDR group. Together with the greater presence of retinal abnormalities, this could underline a distinctive role of AG in PDR compared to NPDR.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
| | - Carlo Gesualdo
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- School of Pharmacology and Clinical Toxicology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Caterina Claudia Lepre
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Francesco Petrillo
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Giovanna Vastarella
- PhD Course in Translational Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maddalena Nicoletti
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Francesca Simonelli
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 310144 Arad, Romania;
| | - Michele D’Amico
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.T.); (C.C.L.); (F.P.); (M.D.)
| | - Settimio Rossi
- Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (C.G.); (M.N.); (F.S.)
| |
Collapse
|
25
|
Harte JV, Coleman-Vaughan C, Crowley MP, Mykytiv V. It's in the blood: a review of the hematological system in SARS-CoV-2-associated COVID-19. Crit Rev Clin Lab Sci 2023; 60:595-624. [PMID: 37439130 DOI: 10.1080/10408363.2023.2232010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented global healthcare crisis. While SARS-CoV-2-associated COVID-19 affects primarily the respiratory system, patients with COVID-19 frequently develop extrapulmonary manifestations. Notably, changes in the hematological system, including lymphocytopenia, neutrophilia and significant abnormalities of hemostatic markers, were observed early in the pandemic. Hematological manifestations have since been recognized as important parameters in the pathophysiology of SARS-CoV-2 and in the management of patients with COVID-19. In this narrative review, we summarize the state-of-the-art regarding the hematological and hemostatic abnormalities observed in patients with SARS-CoV-2-associated COVID-19, as well as the current understanding of the hematological system in the pathophysiology of acute and chronic SARS-CoV-2-associated COVID-19.
Collapse
Affiliation(s)
- James V Harte
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- School of Biochemistry & Cell Biology, University College Cork, Cork, Ireland
| | | | - Maeve P Crowley
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
- Irish Network for Venous Thromboembolism Research (INViTE), Ireland
| | - Vitaliy Mykytiv
- Department of Haematology, Cork University Hospital, Wilton, Cork, Ireland
| |
Collapse
|
26
|
Liu Z, Zhao F, Huang Z, Hu Q, Meng R, Lin Y, Qi J, Lin G. Revisiting the Asian Buffalo Leech ( Hirudinaria manillensis) Genome: Focus on Antithrombotic Genes and Their Corresponding Proteins. Genes (Basel) 2023; 14:2068. [PMID: 38003011 PMCID: PMC10671345 DOI: 10.3390/genes14112068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Leeches are well-known annelids due to their obligate blood-feeding habits. Some leech species secrete various biologically active substances which have important medical and pharmaceutical value in antithrombotic treatments. In this study, we provided a high-quality genome of the Asian buffalo leech (Hirudinaria manillensis), based on which we performed a systematic identification of potential antithrombotic genes and their corresponding proteins. Combining automatic and manual prediction, we identified 21 antithrombotic gene families including fourteen coagulation inhibitors, three platelet aggregation inhibitors, three fibrinolysis enhancers, and one tissue penetration enhancer. A total of 72 antithrombotic genes, including two pseudogenes, were identified, including most of their corresponding proteins forming three or more disulfide bonds. Three protein families (LDTI, antistasin, and granulin) had internal tandem repeats containing 6, 10, and 12 conserved cysteines, respectively. We also measured the anticoagulant activities of the five identified hirudins (hirudin_Hman1 ~ hirudin_Hman5). The results showed that three (hirudin_Hman1, hirudin_Hman2, and hirudin_Hman5), but not the remaining two, exhibited anticoagulant activities. Our study provides the most comprehensive collection of antithrombotic biomacromolecules from a leech to date. These results will greatly facilitate the research and application of leech derivatives for medical and pharmaceutical purposes in the treatment of thrombotic diseases.
Collapse
Affiliation(s)
- Zichao Liu
- Engineering Research Center for Exploitation and Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Z.L.); (Q.H.); (R.M.)
| | - Fang Zhao
- School of Life Sciences, Jinggangshan University, Ji’an 343009, China; (F.Z.); (Z.H.); (Y.L.)
| | - Zuhao Huang
- School of Life Sciences, Jinggangshan University, Ji’an 343009, China; (F.Z.); (Z.H.); (Y.L.)
| | - Qingmei Hu
- Engineering Research Center for Exploitation and Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Z.L.); (Q.H.); (R.M.)
| | - Renyuan Meng
- Engineering Research Center for Exploitation and Utilization of Leech Resources in Universities of Yunnan Province, School of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (Z.L.); (Q.H.); (R.M.)
| | - Yiquan Lin
- School of Life Sciences, Jinggangshan University, Ji’an 343009, China; (F.Z.); (Z.H.); (Y.L.)
| | - Jianxia Qi
- Nujiang Management Bureau of Gaoligongshan National Nature Reserve, Nujiang 673199, China;
| | - Gonghua Lin
- School of Life Sciences, Jinggangshan University, Ji’an 343009, China; (F.Z.); (Z.H.); (Y.L.)
| |
Collapse
|
27
|
Liu Y, Ma YH, Yang JW, Man JW, Wang HB, Li Y, Liang C, Cao JL, Chen SY, Li KP, Yang L. Rethinking neutrophil extracellular traps. Int Immunopharmacol 2023; 124:110834. [PMID: 37625368 DOI: 10.1016/j.intimp.2023.110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Neutrophils are a major subset of leukocytes in human circulating blood. In some circumstances, neutrophils release neutrophil extracellular traps (NETs). lnitially, NETs were considered to have a strong antibacterial capacity. However, currently, NETs have been shown to have a pivotal impact on various diseases. Different stimulators induce the production of different types of NETs, and their biological functions and modes of clearance do not appear to be the same. In this review, we will discuss several important issues related to NETs in order to better understand the relationship between NETs and diseases, as well as how to utilize the characteristics of NETs for disease treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Yu-Hua Ma
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jian-Wei Yang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jiang-Wei Man
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Hua-Bin Wang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Yi Li
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Cheng Liang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Jin-Long Cao
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Si-Yu Chen
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Kun-Peng Li
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China
| | - Li Yang
- Department of Urology, The Second Hospital of Lanzhou University, Gansu Province Clinical Research Center for Urology, Second Clinical School Lanzhou University, China.
| |
Collapse
|
28
|
Zhang L, Zheng B, Bai Y, Zhou J, Zhang X, Yang Y, Yu J, Zhao H, Ma D, Wu H, Wen J. Exosomes-transferred LINC00668 Contributes to Thrombosis by Promoting NETs Formation in Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300560. [PMID: 37590310 PMCID: PMC10558653 DOI: 10.1002/advs.202300560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/03/2023] [Indexed: 08/19/2023]
Abstract
Epidemiological studies show an association between inflammatory bowel disease (IBD) and increased risk of thrombosis. However, how IBD influences thrombosis remains unknown. The current study shows that formation of neutrophil extracellular traps (NETs) significantly increased in the dextran sulfate sodium (DSS)-induced IBD mice, which in turn, contributes to thrombus formation in a NETs-dependent fashion. Furthermore, the exosomes isolated from the plasma of the IBD mice induce arterial and venous thrombosis in vivo. Importantly, proinflammatory factors-exposed intestinal epithelial cells (inflamed IECs) promote neutrophils to release NETs through their secreted exosomes. RNA sequencing revealed that LINC00668 is highly enriched in the inflamed IECs-derived exosomes. Mechanistically, LINC00668 facilitates the translocation of neutrophil elastase (NE) from the cytoplasmic granules to the nucleus via its interaction with NE in a sequence-specific manner, thereby inducing NETs release and thrombus formation. Importantly, berberine (BBR) suppresses the nuclear translocation of NE and subsequent NETs formation by inhibiting the interaction of LINC00668 with NE, thus exerting its antithrombotic effects. This study provides a novel pathobiological mechanism linking IBD and thrombosis by exosome-mediated NETs formation. Targeting LINC00668 can serve as a novel molecular treatment strategy to treat IBD-related thrombosis.
Collapse
Affiliation(s)
- Long Zhang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education of ChinaHebei Medical UniversityShijiazhuang050017China
| | - Bin Zheng
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education of ChinaHebei Medical UniversityShijiazhuang050017China
| | - Yang Bai
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education of ChinaHebei Medical UniversityShijiazhuang050017China
| | - Jing Zhou
- Department of EndocrineThe Second Hospital of Hebei Medical UniversityShijiazhuang050017China
| | - Xin‐hua Zhang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education of ChinaHebei Medical UniversityShijiazhuang050017China
- Institution of Chinese Integrative MedicineHebei Medical UniversityShijiazhuang050017China
| | - Yu‐qin Yang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education of ChinaHebei Medical UniversityShijiazhuang050017China
| | - Jing Yu
- Department of RespiratoryThe Second Hospital of Hebei Medical UniversityShijiazhuang050017China
| | - Hong‐ye Zhao
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education of ChinaHebei Medical UniversityShijiazhuang050017China
| | - Dong Ma
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education of ChinaHebei Medical UniversityShijiazhuang050017China
| | - Han Wu
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education of ChinaHebei Medical UniversityShijiazhuang050017China
| | - Jin‐kun Wen
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of Education of ChinaHebei Medical UniversityShijiazhuang050017China
| |
Collapse
|
29
|
Reshetnyak T, Nurbaeva K. The Role of Neutrophil Extracellular Traps (NETs) in the Pathogenesis of Systemic Lupus Erythematosus and Antiphospholipid Syndrome. Int J Mol Sci 2023; 24:13581. [PMID: 37686381 PMCID: PMC10487763 DOI: 10.3390/ijms241713581] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease of unknown aetiology [...].
Collapse
Affiliation(s)
- Tatiana Reshetnyak
- Department of Thromboinflammation, V.A. Nasonova Research Institute of Rheumatology, 115522 Moscow, Russia;
| | | |
Collapse
|
30
|
Rouka E, Zarogiannis SG, Hatzoglou C, Gourgoulianis KI, Malli F. Identification of Genes and miRNAs Associated with TAFI-Related Thrombosis: An in Silico Study. Biomolecules 2023; 13:1318. [PMID: 37759718 PMCID: PMC10526758 DOI: 10.3390/biom13091318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Thrombin-Activatable Fibrinolysis Inhibitor (TAFI) is a carboxypeptidase B-like proenzyme encoded by the CPB2 gene. After thrombin activation, TAFI downregulates fibrinolysis, thus linking the latter with coagulation. TAFI has been shown to play a role in venous and arterial thrombotic diseases, yet, data regarding the molecular mechanisms underlying its function have been conflicting. In this study, we focused on the prediction and functional enrichment analysis (FEA) of the TAFI interaction network and the microRNAs (miRNAs) targeting the members of this network in an attempt to identify novel components and pathways of TAFI-related thrombosis. To this end, we used nine bioinformatics software tools. We found that the TAFI interactome consists of 28 unique genes mainly involved in hemostasis. Twenty-four miRNAs were predicted to target these genes. Co-annotation analysis of the predicted interactors with respect to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and transcription factors (TFs) pointed to the complement and coagulation cascades as well as neutrophil extracellular trap formation. Cancer, stroke, and intracranial aneurysm were among the top 20 significant diseases related to the identified miRNAs. We reason that the predicted biomolecules should be further studied in the context of TAFI-related thrombosis.
Collapse
Affiliation(s)
- Erasmia Rouka
- Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, 41500 Larissa, Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (S.G.Z.); (C.H.)
| | - Sotirios G. Zarogiannis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (S.G.Z.); (C.H.)
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (S.G.Z.); (C.H.)
| | - Konstantinos I. Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - Foteini Malli
- Department of Nursing, School of Health Sciences, University of Thessaly, GAIOPOLIS, 41500 Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| |
Collapse
|
31
|
Wu Y, Wei S, Wu X, Li Y, Han X. Neutrophil extracellular traps in acute coronary syndrome. J Inflamm (Lond) 2023; 20:17. [PMID: 37165396 PMCID: PMC10171160 DOI: 10.1186/s12950-023-00344-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Acute coronary syndrome (ACS) is a group of clinical syndromes caused by acute myocardial ischemia, which can cause heart failure, arrhythmia and even sudden death. It is the major cause of disability and death worldwide. Neutrophil extracellular traps (NETs) are reticular structures released by neutrophils activation and have various biological functions. NETs are closely related to the occurrence and development of ACS and also the subsequent damage after myocardial infarction. The mechanisms are complex and interdependent on various pathways, which require further exploration. This article reviewed the role and mechanism of NETs in ACS, thereby providing a valuable reference for the diagnosis and clinical treatment of ACS.
Collapse
Affiliation(s)
- Yawen Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
- Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shilin Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
| | - Xue Han
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, No. 80 Cuiyingmen, Chengguan District, Lanzhou, 730030, China.
| |
Collapse
|
32
|
Zhou H, Khan D, Gerdes N, Hagenbeck C, Rana M, Cornelius JF, Muhammad S. Colchicine Protects against Ethanol-Induced Senescence and Senescence-Associated Secretory Phenotype in Endothelial Cells. Antioxidants (Basel) 2023; 12:antiox12040960. [PMID: 37107335 PMCID: PMC10135532 DOI: 10.3390/antiox12040960] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammaging is a potential risk factor for cardiovascular diseases. It results in the development of thrombosis and atherosclerosis. The accumulation of senescent cells in vessels causes vascular inflammaging and contributes to plaque formation and rupture. In addition to being an acquired risk factor for cardiovascular diseases, ethanol can induce inflammation and senescence, both of which have been implicated in cardiovascular diseases. In the current study, we used colchicine to abate the cellular damaging effects of ethanol on endothelial cells. Colchicine prevented senescence and averted oxidative stress in endothelial cells exposed to ethanol. It lowered the relative protein expression of aging and senescence marker P21 and restored expression of the DNA repair proteins KU70/KU80. Colchicine inhibited the activation of nuclear factor kappa B (NFκ-B) and mitogen activated protein kinases (MAPKs) in ethanol-treated endothelial cells. It reduced ethanol-induced senescence-associated secretory phenotype. In summary, we show that colchicine ameliorated the ethanol-caused molecular events, resulting in attenuated senescence and senescence-associated secretory phenotype in endothelial cells.
Collapse
Affiliation(s)
- Huakang Zhou
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dilaware Khan
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital and Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Carsten Hagenbeck
- Clinic for Gynecology and Obstetrics, University Clinic, 40225 Düsseldorf, Germany
| | - Majeed Rana
- Department of Oral, Maxillofacial and Facial Plastic Surgery, University Hospital Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jan Frederick Cornelius
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
- Department of Neurosurgery, University Hospital Helsinki, Topeliuksenkatu 5, 00260 Helsinki, Finland
| |
Collapse
|
33
|
Molecular Mechanisms of Neutrophil Extracellular Trap (NETs) Degradation. Int J Mol Sci 2023; 24:ijms24054896. [PMID: 36902325 PMCID: PMC10002918 DOI: 10.3390/ijms24054896] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Although many studies have been exploring the mechanisms driving NETs formation, much less attention has been paid to the degradation and elimination of these structures. The NETs clearance and the effective removal of extracellular DNA, enzymatic proteins (neutrophil elastase, proteinase 3, myeloperoxidase) or histones are necessary to maintain tissue homeostasis, to prevent inflammation and to avoid the presentation of self-antigens. The persistence and overabundance of DNA fibers in the circulation and tissues may have dramatic consequences for a host leading to the development of various systemic and local damage. NETs are cleaved by a concerted action of extracellular and secreted deoxyribonucleases (DNases) followed by intracellular degradation by macrophages. NETs accumulation depends on the ability of DNase I and DNAse II to hydrolyze DNA. Furthermore, the macrophages actively engulf NETs and this event is facilitated by the preprocessing of NETs by DNase I. The purpose of this review is to present and discuss the current knowledge about the mechanisms of NETs degradation and its role in the pathogenesis of thrombosis, autoimmune diseases, cancer and severe infections, as well as to discuss the possibilities for potential therapeutic interventions. Several anti-NETs approaches had therapeutic effects in animal models of cancer and autoimmune diseases; nevertheless, the development of new drugs for patients needs further study for an effective development of clinical compounds that are able to target NETs.
Collapse
|
34
|
Elrod J, Lenz M, Kiwit A, Armbrust L, Schönfeld L, Reinshagen K, Pagerols Raluy L, Mohr C, Saygi C, Alawi M, Rohde H, Herrmann M, Boettcher M. Murine scald models characterize the role of neutrophils and neutrophil extracellular traps in severe burns. Front Immunol 2023; 14:1113948. [PMID: 36825027 PMCID: PMC9941538 DOI: 10.3389/fimmu.2023.1113948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Severe burns cause unique pathophysiological alterations especially on the immune system. A murine scald model was optimized as a basis for the understanding of immunological reactions in response to heat induced injury. The understanding of the roles of neutrophil extracellular traps (NETs) and DNases will support the development of new surgical or pharmacological strategies for the therapy of severe burns. Methods We studied C57BL/6 mice (n=30) and employed four scalding protocols with varying exposure times to hot water. An additional scald group with a shorter observational time was generated to reduce mortality and study the very early phase of pathophysiology. At 24h or 72h, blood was drawn and tissue (wound, liver, lung, spleen) was analyzed for the presence of NETs, oxidative stress, apoptosis, bacterial translocation, and extracellular matrix re-organization. In addition, we analyzed the transcriptome from lung and liver tissues. Results Exposure to hot water for 7s led to significant systemic and local effects and caused considerable late mortality. Therefore, we used an observation time of 24h in this groups. To study later phases of burns (72h) an exposure time of 6s is optimal. Both conditions led to significant disorganization of collagen, increased oxidative stress, NET formation (by immunodetection of H3cit, NE, MPO), apoptosis (cC3) and alterations of the levels of DNase1 and DNase1L3. Transcriptome analysis revealed remarkable alterations in genes involved in acute phase signaling, cell cohesion, extracellular matrix organization, and immune response. Conclusion We identified two scald models that allow the analysis of early (24h) or late (72h) severe burn effects, thereby generating reproducible and standardized scald injuries. The study elucidated the important involvement of neutrophil activity and the role of NETs in burns. Extensive transcriptome analysis characterized the acute phase and tissue remodeling pathways involved in the process of healing and may serve as crucial basis for future in-depth studies.
Collapse
Affiliation(s)
- Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany,Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*Correspondence: Julia Elrod,
| | - Moritz Lenz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Kiwit
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lina Armbrust
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lavinia Schönfeld
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Mohr
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Ceren Saygi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany,Department of Medicine 3, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany,Deutsches Zentrum Immuntherapie DZI, Friedrich Alexander University Erlangen-Nuremberg and Universitaetsklinikum Erlangen, Erlangen, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany,Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
35
|
Qiao S, Sun QY, Zhou P, Zhang SC, Wang ZH, Li HY, Wang AH, Liu XW, Xin T. Increased formation of neutrophil extracellular traps in patients with anti-N-methyl-d-aspartate receptor encephalitis. Front Immunol 2022; 13:1046778. [PMID: 36569875 PMCID: PMC9780054 DOI: 10.3389/fimmu.2022.1046778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs) have been found to play an important role in several nervous system diseases. However, their role in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis remains unclear. The purpose of this study was to examine the possible role of NETs in anti-NMDAR encephalitis. Materials and methods Eleven patients with anti-NMDAR encephalitis and ten healthy participants were enrolled. Plasma NETs levels were detected using an immunofluorescence assay and enzyme-linked immunosorbent assay. Additionally, we examined 10 plasma cytokines in patients with anti-NMDAR encephalitis and analyzed the correlation between citrullinated histone 3 levels and cytokine release. Results Peripheral blood neutrophils from patients with anti-NMDAR encephalitis were more susceptible to NET generation. When compared with controls, cases of anti-NMDAR encephalitis showed elevated levels of IL-1 α, IL-6, IL-8, IL-13, MCP-1, and TNF-α (p < 0.05). Moreover, IL-6, IL-8, and TNF-α levels were positively correlated with H3Cit levels. Conclusion We provide evidence that NETs may play a role in anti-NMDAR encephalitis, providing clues for elucidation of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Shan Qiao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Quan-ye Sun
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Shan-chao Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-hao Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Hai-yun Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - Ai-hua Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xue-wu Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China,Institute of Epilepsy, Shandong University, Jinan, China,*Correspondence: Tao Xin, ; Xue-wu Liu,
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,*Correspondence: Tao Xin, ; Xue-wu Liu,
| |
Collapse
|
36
|
Liu Y, Yan P, Bin Y, Qin X, Wu Z. Neutrophil extracellular traps and complications of liver transplantation. Front Immunol 2022; 13:1054753. [PMID: 36466888 PMCID: PMC9712194 DOI: 10.3389/fimmu.2022.1054753] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/26/2022] [Indexed: 08/29/2023] Open
Abstract
Many end-stage liver disease etiologies are attributed to robust inflammatory cell recruitment. Neutrophils play an important role in inflammatory infiltration and neutrophil phagocytosis, oxidative burst, and degranulation. It has also been suggested that neutrophils may release neutrophil extracellular traps (NETs) to kill pathogens. It has been proven that neutrophil infiltration within the liver contributes to an inflammatory microenvironment and immune cell activation. Growing evidence implies that NETs are involved in the progression of numerous complications of liver transplantation, including ischemia-reperfusion injury, acute rejection, thrombosis, and hepatocellular carcinoma recurrence. NETs are discussed in this comprehensive review, focusing on their effects on liver transplantation complications. Furthermore, we discuss NETs as potential targets for liver transplantation therapy.
Collapse
Affiliation(s)
- Yanyao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Bin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyan Qin
- Department of General Surgery and Trauma Surgery, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|