1
|
Deng L, Guan G, Cannon RD, Mei L. Age-related oral microbiota dysbiosis and systemic diseases. Microb Pathog 2025; 205:107717. [PMID: 40403989 DOI: 10.1016/j.micpath.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 05/08/2025] [Accepted: 05/17/2025] [Indexed: 05/24/2025]
Abstract
The oral microbiota is an essential microbial community within the human body, playing a vital role in maintaining health. In older adults, age-related changes in the oral microbiota are linked to both systemic and oral health impairments. The use of various medications for systemic diseases in the elderly can also contribute to the development of oral diseases. Oral microbiota dysbiosis refers to an imbalance in the composition of oral microbial communities. This imbalance, along with disruptions in the host immune response and prolonged inflammation, is closely associated with the onset and progression of several diseases. It contributes to oral conditions such as dental caries, periodontal disease, and halitosis. It is also linked to systemic diseases, including Alzheimer's disease, type 2 diabetes mellitus, rheumatoid arthritis, atherosclerotic cardiovascular disease, and aspiration pneumonia. This review aims to explore how oral microbiota influences specific health outcomes in older individuals, focusing on Alzheimer's disease, type 2 diabetes mellitus, rheumatoid arthritis, atherosclerotic cardiovascular disease, and aspiration pneumonia. The oral microbiota holds promise as a diagnostic tool, therapeutic target, and prognostic biomarker for managing cardiovascular disease, metabolic diseases, infectious diseases and autoimmune diseases. Emphasizing proper oral health care and instilling an understanding of how drugs prescribed for systemic disease impact the oral microbiome, is anticipated to emerge as a key strategy for promoting the general health of older adults.
Collapse
Affiliation(s)
- Ling Deng
- Department of Oral Pathology, The Affiliated Stomatological Hospital of Guizhou Medical University, Guiyang, PR China
| | - Guangzhao Guan
- Department of Oral Diagnostic and Surgical Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Richard D Cannon
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Gualtero DF, Buitrago DM, Pinzón-García AD, Cely Veloza WF, Figueroa-Ariza LT, Torres-Morales S, Rodriguez-Navarrete JD, Jimenez VJ, Lafaurie GI. Biopolymers of Polycaprolactone Loaded with Caffeic Acid and Trametes versicolor Extract Induced Proliferation in Human Coronary Artery Endothelial Cells and Inhibited Platelet Activity. Int J Mol Sci 2025; 26:4949. [PMID: 40430091 PMCID: PMC12112702 DOI: 10.3390/ijms26104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 05/29/2025] Open
Abstract
In atherosclerosis, the proliferation and migration of endothelial and smooth muscle cells (SMCs) and platelet activation alter endothelial function. Naturally occurring substances, such as caffeic acid (CA) and Trametes versicolor extract (TvE), have medicinal properties and are traditionally used for their antiproliferative, antioxidant, and anti-inflammatory effects. Electrospun 5% and 8% polycaprolactone-loaded CA or TvE was developed as a delivery system. Cytocompatibility was evaluated using human coronary artery endothelial cells (HCAECs), coronary artery SMCs (CASMCs), and platelets. Three types of systems (µF-CA, µF-TvE, and µF-CA/TvE) were developed and microscopically characterized. Analysis with scanning electron microscopy showed multidirectional fibers with diameters of 2-4.5 μm. The µF systems were hydrophobic and low cellular adhesion. The viability of CASMCs decreased with microfibers of 8% PCL and high CA concentration. However, the viability of CASMCs and HCAECs improved with 5% PCL and low CA concentration. Treatment with µF-TvE and µF-CA/TvE increased cell viability. HCAEC proliferation was affected by µF-CA, but incorporating TvE improved it. Platelet viability was unaffected by any µF system, but µF-CA and µF-CA/TvE inhibited the activation and adhesion of platelets. The results suggest that microfibers loaded with CA and TvE play a dual role in modifying HCAEC proliferation and blocking human platelet activation and adhesion. These findings have the potential to mitigate the atherosclerotic process.
Collapse
Affiliation(s)
- Diego Fernando Gualtero
- Unidad de Investigación Básica Oral—UIBO, Vicerrectoría de Investigación, Facultad de Odontología, Universidad El Bosque, Bogotá 111321, Colombia; (D.M.B.); (A.D.P.-G.); (L.T.F.-A.)
| | - Diana Marcela Buitrago
- Unidad de Investigación Básica Oral—UIBO, Vicerrectoría de Investigación, Facultad de Odontología, Universidad El Bosque, Bogotá 111321, Colombia; (D.M.B.); (A.D.P.-G.); (L.T.F.-A.)
| | - Ana Delia Pinzón-García
- Unidad de Investigación Básica Oral—UIBO, Vicerrectoría de Investigación, Facultad de Odontología, Universidad El Bosque, Bogotá 111321, Colombia; (D.M.B.); (A.D.P.-G.); (L.T.F.-A.)
| | - Willy Fernando Cely Veloza
- Unidad de Investigación Básica Oral—UIBO, Vicerrectoría de Investigación, Facultad de Odontología, Universidad El Bosque, Bogotá 111321, Colombia; (D.M.B.); (A.D.P.-G.); (L.T.F.-A.)
| | - Leydy Tatiana Figueroa-Ariza
- Unidad de Investigación Básica Oral—UIBO, Vicerrectoría de Investigación, Facultad de Odontología, Universidad El Bosque, Bogotá 111321, Colombia; (D.M.B.); (A.D.P.-G.); (L.T.F.-A.)
| | - Santiago Torres-Morales
- Facultad de Odontología—UBSIFO, Universidad El Bosque, Bogotá 111321, Colombia; (S.T.-M.); (J.D.R.-N.); (V.J.J.)
| | | | - Victor Junior Jimenez
- Facultad de Odontología—UBSIFO, Universidad El Bosque, Bogotá 111321, Colombia; (S.T.-M.); (J.D.R.-N.); (V.J.J.)
| | - Gloria Inés Lafaurie
- Unidad de Investigación Básica Oral—UIBO, Vicerrectoría de Investigación, Facultad de Odontología, Universidad El Bosque, Bogotá 111321, Colombia; (D.M.B.); (A.D.P.-G.); (L.T.F.-A.)
| |
Collapse
|
3
|
Moscoso SB, Mendoza F, Castillo DM, Delgadillo N, Trujillo TG, Diaz-Baez D, Rios-Osorio N, Sarmiento JM, Lafaurie GI. Periodontitis Progression During Cardiac Rehabilitation After Acute Coronary Syndrome: Cohort Study. Oral Dis 2025. [PMID: 40364535 DOI: 10.1111/odi.15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
OBJECTIVES To assess changes in periodontal status and factors related to periodontitis progression in acute coronary syndrome patients who undergo a cardiovascular rehabilitation program following an acute coronary incident. MATERIALS AND METHODS Fifty-two acute coronary syndrome patients with periodontitis were evaluated during a six-month follow-up period. Periodontal indices were taken at baseline and at 3 and 6 months. Progression of periodontitis was established as clinical attachment loss > 3 mm in two or more teeth at nonadjacent sites. Baseline clinical conditions, microbiological concentration of subgingival biofilm, and risk factors for cardiovascular disease were associated with the incidence of periodontitis progression by a linear mixed-effects model. RESULTS 57.69% of the patients had severe periodontitis upon admission, and 64.58% presented a progression of periodontitis during the follow-up periods. Hypertension, low HDL, and high levels of T. forsythia in patients with elevated total cholesterol were the best predictors of clinical attachment loss, with a predictability of 99%. At 6 months, 35.41% of patients' high-sensitivity C-reactive protein (hs-CRP) levels remained over the cardiovascular risk range. CONCLUSIONS Periodontal condition deterioration was observed. Hypertension and poor metabolic control were associated with the progression of periodontitis. T. forsythia was the most critical local factor in periodontitis progression.
Collapse
Affiliation(s)
- Sandra Bibiana Moscoso
- Magister Oral Science Program, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | | | - Diana Marcela Castillo
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Nathaly Delgadillo
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - Tammy Goretty Trujillo
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | - David Diaz-Baez
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| | | | | | - Gloria Inés Lafaurie
- Unit of Basic Oral Investigation-UIBO, School of Dentistry, Universidad El Bosque, Bogotá, Colombia
| |
Collapse
|
4
|
Puel EM, Taruhn LF, Damé-Teixeira N, Stefani CM, Lataro RM. Is there a link between the abundance of nitrate-reducing bacteria and arterial hypertension? A systematic review. Nitric Oxide 2025; 157:19-33. [PMID: 40220988 DOI: 10.1016/j.niox.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
CONTEXT Nitric oxide is a vasodilator molecule that acts on blood pressure (BP) control, and its production can occur through the reduction of nitrates by oral or intestinal nitrate-reducing bacteria. However, the relationship between nitrate-reducing bacteria and arterial hypertension (HTN) remains under debate. OBJECTIVE Systematically review if there is an association between the abundance of oral and intestinal nitrate-reducing bacteria and the occurrence of HTN in humans. DATABASES AND ELIGIBILITY CRITERIA MEDLINE, Scopus, Cochrane Library, EMBASE, LILACS, Web of Science, Livivo, ProQuest Dissertations, and Google Scholar were searched for eligible articles until February 10th, 2024. Studies were included if they: (1) were observational studies or clinical trials; (2) included adults (≥18 years old) with HTN (systolic BP ≥ 130 mmHg and/or diastolic BP > 80 mmHg and/or use of BP lowering medication); (3) compared (or not) to no-HTN adults; and (4) used next-generation sequencing microbiome analysis to identify bacterial taxa in the oral and/or gut nitrate-reducing bacteria. RESULTS The search identified 9365 articles, and 28 were included in the study after applying the inclusion and exclusion criteria; 23 articles assessed the gut microbiota, 4 assessed the oral microbiota, and 1 assessed both. Depletion of nitrate-reducing bacteria was not consistently shown in the studies. The included studies reported reduction, increase, and no change in the nitrate-reducing bacteria genera or species in oral or gut microbiota. CONCLUSION We found no association between the abundance of oral and gut nitrate-reducing bacteria and the occurrence of HTN in humans. REGISTRATION PROSPERO identification number CRD42022315891.
Collapse
Affiliation(s)
- Esthela M Puel
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lillian F Taruhn
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nailê Damé-Teixeira
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Cristine M Stefani
- Department of Dentistry, School of Health Sciences, University of Brasília, Brasília, Brazil
| | - Renata M Lataro
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
5
|
Kruger A, Joffe D, Lloyd-Jones G, Khan MA, Šalamon Š, Laubscher GJ, Putrino D, Kell DB, Pretorius E. Vascular Pathogenesis in Acute and Long COVID: Current Insights and Therapeutic Outlook. Semin Thromb Hemost 2025; 51:256-271. [PMID: 39348850 PMCID: PMC11906225 DOI: 10.1055/s-0044-1790603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Long coronavirus disease 2019 (COVID-19)-a postacute consequence of severe acute respiratory syndrome coronavirus 2 infection-manifests with a broad spectrum of relapsing and remitting or persistent symptoms as well as varied levels of organ damage, which may be asymptomatic or present as acute events such as heart attacks or strokes and recurrent infections, hinting at complex underlying pathogenic mechanisms. Central to these symptoms is vascular dysfunction rooted in thrombotic endothelialitis. We review the scientific evidence that widespread endothelial dysfunction (ED) leads to chronic symptomatology. We briefly examine the molecular pathways contributing to endothelial pathology and provide a detailed analysis of how these cellular processes underpin the clinical picture. Noninvasive diagnostic techniques, such as flow-mediated dilation and peripheral arterial tonometry, are evaluated for their utility in identifying ED. We then explore mechanistic, cellular-targeted therapeutic interventions for their potential in treating ED. Overall, we emphasize the critical role of cellular health in managing Long COVID and highlight the need for early intervention to prevent long-term vascular and cellular dysfunction.
Collapse
Affiliation(s)
- Arneaux Kruger
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - David Joffe
- Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia
- World Health Network, Cambridge, Massachusetts
| | - Graham Lloyd-Jones
- Department of Radiology, Salisbury District Hospital, Salisbury NHS Foundation Trust, United Kingdom
| | - Muhammed Asad Khan
- World Health Network, Cambridge, Massachusetts
- Directorate of Respiratory Medicine, Manchester University Hospitals, Wythenshawe Hospital, Manchester, United Kingdom
| | | | | | - David Putrino
- Respiratory and Sleep Medicine, Royal North Shore Hospital, Sydney, Australia
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- World Health Network, Cambridge, Massachusetts
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
6
|
Natarajan P, Madanian S, Marshall S. Investigating the link between oral health conditions and systemic diseases: A cross-sectional analysis. Sci Rep 2025; 15:10476. [PMID: 40140465 PMCID: PMC11947117 DOI: 10.1038/s41598-025-92523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/28/2025] [Indexed: 03/28/2025] Open
Abstract
This study investigates the association between oral health issues, specifically periodontitis and dental caries, and systemic health conditions such as diabetes and hypertension. The goal is to determine the strength of these associations using statistical analysis. We conducted a cross-sectional study utilizing the National Health and Nutrition Examination Survey (NHANES) data from 2017-2020, focusing on 13,772 adults with complete data on oral and systemic health variables. Oral health indicators were periodontitis and dental caries, while systemic health variables included diabetes and hypertension. The statistical analysis involved Cramer's V to assess the strength of associations between these health conditions. The study found statistically significant associations between oral and systemic health conditions. There was a moderate association between periodontitis and diabetes (Cramer's V = 0.14) and a moderate association between dental caries and hypertension (Cramer's V = 0.12). The results underscore the interconnected nature of oral and systemic health, suggesting that poor oral health can be an indicator of broader health issues. These associations could guide integrated health care strategies, emphasizing the need for dental health evaluations in patients with diabetes and hypertension.
Collapse
Affiliation(s)
- Priyadarshini Natarajan
- Department of Computer Science and Software Engineering, Auckland University of Technology (AUT), 6 St. Paul Street, Auckland, 1010, Auckland, New Zealand
| | - Samaneh Madanian
- Department of Computer Science and Software Engineering, Auckland University of Technology (AUT), 6 St. Paul Street, Auckland, 1010, Auckland, New Zealand.
| | - Sarah Marshall
- Department of Information Systems and Operations Management, University of Auckland, Private Bag 92019, Auckland, 1142, Auckland, New Zealand
| |
Collapse
|
7
|
Shamim A, Herzog H, Shah R, Pecorelli S, Nisbet V, George A, Cuadra GA, Palazzolo DL. Pathophysiological Responses of Oral Keratinocytes After Exposure to Flavored E-Cigarette Liquids. Dent J (Basel) 2025; 13:60. [PMID: 39996934 PMCID: PMC11854566 DOI: 10.3390/dj13020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Electronic cigarettes (ECIGs) have grown in popularity, particularly among adolescents and young adults. Flavored ECIG-liquids (E-liquids) are aerosolized by these ECIGs and inhaled into the respiratory system. Several studies have shown detrimental effects of E-liquids in airway tissues, revealing that flavoring agents may be the most irritating component. However, research on the effects of E-liquids on biological processes of the oral cavity, which is the first site of aerosol contact, is limited. Hence, this study focuses on the effects of E-liquid flavors on oral epithelial cells using the OKF6/TERT-2 cell line model. METHODOLOGY E-liquid was prepared with and without flavors (tobacco, menthol, cinnamon, and strawberry). OKF6/TERT-2 oral epithelial cells, cultured at 37 °C and 5% CO2, were exposed to 1% E-liquid ± flavors for 24 h. Outcomes determined include cell morphology, media pH, wound healing capability, oxidative stress, expression of mucin and tight junction genes, glycoprotein release, and levels of inflammatory cytokines (TNFα, IL-6, and IL-8). RESULTS Exposure to 1% flavored E-liquids negatively affect cellular confluency, adherence, and morphology. E-liquids ± flavors, particularly cinnamon, increase oxidative stress and production of IL-8, curtail wound healing recovery, and decrease glycoprotein release. Gene expression of muc5b is downregulated after exposure to E-liquids. In contrast, E-liquids upregulate occludin and claudin-1. CONCLUSIONS This study suggests that ECIG use is not without risk. Flavored E-liquids, particularly cinnamon, result in pathophysiological responses of OKF6/TERT-2 cells. The dysregulation of inflammatory responses and cellular biology induced by E-liquids may contribute to various oral pathologies.
Collapse
Affiliation(s)
- Abrar Shamim
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.S.); (H.H.); (R.S.); (S.P.); (G.A.C.)
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hannah Herzog
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.S.); (H.H.); (R.S.); (S.P.); (G.A.C.)
- Department of Oral and Craniofacial Science, University of California San Francisco, 707 Parnassus Ave, San Francisco, CA 94143, USA
| | - Raivat Shah
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.S.); (H.H.); (R.S.); (S.P.); (G.A.C.)
- University of Michigan Medical School, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Sara Pecorelli
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.S.); (H.H.); (R.S.); (S.P.); (G.A.C.)
| | - Virginia Nisbet
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (V.N.); (A.G.)
- University of Tennessee Health Science Center, Nashville, TN 37205, USA
| | - Ann George
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (V.N.); (A.G.)
- St. Francis-Emory Healthcare, Columbus, GA 31904, USA
| | - Giancarlo A. Cuadra
- Department of Biology, Muhlenberg College, 2400 W. Chew Street, Allentown, PA 18104, USA; (A.S.); (H.H.); (R.S.); (S.P.); (G.A.C.)
| | - Dominic L. Palazzolo
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA; (V.N.); (A.G.)
| |
Collapse
|
8
|
Widziolek M, Mieszkowska A, Marcinkowska M, Salamaga B, Folkert J, Rakus K, Chadzinska M, Potempa J, Stafford GP, Prajsnar TK, Murdoch C. Gingipains protect Porphyromonas gingivalis from macrophage-mediated phagocytic clearance. PLoS Pathog 2025; 21:e1012821. [PMID: 39836688 PMCID: PMC11801703 DOI: 10.1371/journal.ppat.1012821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/06/2025] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
Porphyromonas gingivalis (Pg) is a keystone pathogen in periodontitis, a highly prevalent disease manifested by chronic inflammation of the periodontium, alveolar bone resorption and tooth loss. During periodontitis pathobionts such as Pg can enter the bloodstream and growing evidence correlates periodontitis with increased risk of cardiovascular and neurodegenerative diseases. However, the mechanism by which immune cells respond to Pg challenge in vivo remains elusive. Pg produce aggressive proteolytic virulence factors termed gingipains which not only provide nutrients necessary for bacterial growth, but also subvert the host immune response, facilitating bacterial survival. Using transgenic zebrafish with fluorescently labelled macrophages and neutrophils, the role of gingipains in bacterial survival and interaction with phagocytes during systemic and local infection was examined. In contrast to the wild-type (W83) Pg, isogenic gingipain-null (ΔK/R-ab) or wild-type Pg treated with gingipain inhibitors caused less zebrafish mortality, bacteria were rapidly phagocytosed, acidified in phagosomes and eradicated when systemically injected, showing that gingipains are instrumental in preventing phagocytosis and intracellular killing of Pg by innate immune cells. Moreover, Pg were predominantly phagocytosed by macrophages, and gingipain depletion/inactivation increased bacterial phagocytosis when bacteria were injected either systemically or locally in the otic vesicle, with less bacteria internalised by neutrophils. This phenomenon was Pg-specific as Fusobacterium nucleatum caused neutrophil recruitment that then effectively phagocytosed these bacteria. These data demonstrate the important role of phagocytes, especially macrophages, in combating Pg infection and highlight the crucial protective role of gingipains in subverting the innate immune response. This study also emphasizes the advantages of using zebrafish to study interactions of Pg with phagocytes in vivo in real-time, providing a valuable experimental system for testing new therapeutic strategies aimed at reducing periodontal-associated systemic or neurodegenerative disease.
Collapse
Affiliation(s)
- Magdalena Widziolek
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Anna Mieszkowska
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Magdalena Marcinkowska
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | | | - Justyna Folkert
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Rakus
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Magdalena Chadzinska
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Kentucky, United States of America
| | - Graham P. Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Tomasz K. Prajsnar
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- The Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Johansson A, Ho NPY, Takizawa H. Microbiome and Hemato-immune Aging. Exp Hematol 2025; 141:104685. [PMID: 39581302 DOI: 10.1016/j.exphem.2024.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/17/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
The microbiome is a highly complex and diverse symbiotic component that undergoes dynamic changes with the organismal aging. Microbial perturbations, termed dysbiosis, exert strong influence on dysregulating the bone marrow niche and subsequently promoting the aging of hematopoietic and immune system. Accumulating studies have revealed the substantial impact of intestinal microbiome on the initiation and progression of age-related hematologic alteration and diseases, such as clonal hematopoiesis and blood cancers. Current therapeutic approaches to restore the altered microbiome diversity target specific pathobionts and are demonstrated to improve clinical outcomes of antihematologic malignancy treatments. In this review, we discuss the interplay between the microbiome and the hemato-immune system during aging process. We also shed light on the emerging therapeutic strategies to tackle the dysbiosis for amelioration of aging and disease progression.
Collapse
Affiliation(s)
- Alban Johansson
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Nicole Pui-Yu Ho
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Japan.
| |
Collapse
|
10
|
Xu Y, Yu M, Huang X, Wang G, Wang H, Zhang F, Zhang J, Gao X. Differences in salivary microbiome among children with tonsillar hypertrophy and/or adenoid hypertrophy. mSystems 2024; 9:e0096824. [PMID: 39287377 PMCID: PMC11494981 DOI: 10.1128/msystems.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Children diagnosed with severe tonsillar hypertrophy display discernible craniofacial features distinct from those with adenoid hypertrophy, prompting illuminating considerations regarding microbiota regulation in this non-inflammatory condition. The present study aimed to characterize the salivary microbial profile in children with tonsillar hypertrophy and explore the potential functionality therein. A total of 112 children, with a mean age of 7.79 ± 2.41 years, were enrolled and divided into the tonsillar hypertrophy (TH) group (n = 46, 8.4 ± 2.5 years old), adenoid hypertrophy (AH) group (n = 21, 7.6 ± 2.8 years old), adenotonsillar hypertrophy (ATH) group (n = 23, 7.2 ± 2.1 years old), and control group (n = 22, 8.6 ± 2.1 years old). Unstimulated saliva samples were collected, and microbial profiles were analyzed by 16S rRNA sequencing of V3-V4 regions. Diversity and composition of salivary microbiome and the correlation with parameters of overnight polysomnography and complete blood count were investigated. As a result, children with tonsillar hypertrophy had significantly higher α-diversity indices (P<0.05). β-diversity based on Bray-Curtis distance revealed that the salivary microbiome of the tonsillar hypertrophy group had a slight separation from the other three groups (P<0.05). The linear discriminant analysis effect size (LEfSe) analysis indicated that Gemella was most closely related to tonsillar hypertrophy, and higher abundance of Gemella, Parvimonas, Dialister, and Lactobacillus may reflect an active state of immune regulation. Meanwhile, children with different degrees of tonsillar hypertrophy shared similar salivary microbiome diversity. This study demonstrated that the salivary microbiome in pediatric tonsillar hypertrophy patients had different signatures, highlighting that the site of upper airway obstruction primarily influences the salivary microbiome rather than hypertrophy severity.IMPORTANCETonsillar hypertrophy is the most frequent cause of upper airway obstruction and one of the primary risk factors for pediatric obstructive sleep apnea (OSA). Studies have discovered that children with isolated tonsillar hypertrophy exhibit different craniofacial morphology features compared with those with isolated adenoid hypertrophy or adenotonsillar hypertrophy. Furthermore, characteristic salivary microbiota from children with OSA compared with healthy children has been identified in our previous research. However, few studies provided insight into the relationship between the different sites of upper airway obstruction resulting from the enlargement of pharyngeal lymphoid tissue at different sites and the alterations in the microbiome. Here, to investigate the differences in the salivary microbiome of children with tonsillar hypertrophy and/or adenoid hypertrophy, we conducted a cross-sectional study and depicted the unique microbiome profile of pediatric tonsillar hypertrophy, which was mainly characterized by a significantly higher abundance of genera belonging to phyla Firmicutes and certain bacteria involving in the immune response in tonsillar hypertrophy, offering novel perspectives for future related research.
Collapse
Affiliation(s)
- Ying Xu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guixiang Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Hua Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Fengzhen Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
11
|
Ge J, Zhu X, Weng C, Yuan D, Zhao J, Zhao L, Wang T, Wu Y. Periodontitis impacts on thrombotic diseases: from clinical aspect to future therapeutic approaches. Int J Oral Sci 2024; 16:58. [PMID: 39402049 PMCID: PMC11473739 DOI: 10.1038/s41368-024-00325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/08/2024] [Accepted: 09/12/2024] [Indexed: 10/17/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease initiated by biofilm microorganisms and mediated by host immune imbalance. Uncontrolled periodontal infections are the leading cause of tooth loss in adults. Thrombotic diseases can lead to partial or complete obstruction of blood flow in the circulatory system, manifesting as organ or tissue ischemia and necrosis in patients with arterial thrombosis, and local edema, pain and circulatory instability in patients with venous thrombosis, which may lead to mortality or fatality in severe case. Recent studies found that periodontitis might enhance thrombosis through bacterial transmission or systemic inflammation by affecting platelet-immune cell interactions, as well as the coagulation, and periodontal therapy could have a prophylactic effect on patients with thrombotic diseases. In this review, we summarized clinical findings on the association between periodontitis and thrombotic diseases and discussed several novel prothrombotic periodontitis-related agents, and presented a perspective to emphasize the necessity of oral health management for people at high risk of thrombosis.
Collapse
Affiliation(s)
- Jinting Ge
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanzhi Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengxin Weng
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ding Yuan
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jichun Zhao
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tiehao Wang
- Division of Vascular Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| | - Yafei Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Duque Duque A, Chaparro Padilla A, Almeida ML, Marín Jaramillo RA, Romanelli HJ, Lafaurie Villamil GI. Strategies for the prevention of periodontal disease and its impact on general health: Latin America and the Caribbean Consensus 2024. Braz Oral Res 2024; 38:e120. [PMID: 39607151 DOI: 10.1590/1807-3107bor-2024.vol38.0120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 11/29/2024] Open
Abstract
Periodontal diseases are closely related to non-communicable diseases, and their prevention depends on their link with healthy lifestyle programs. The purpose of this consensus was to summarize and propose preventive strategies at the community, individual, and research levels in Latin America and the Caribbean. A critical review and search strategy was carried out in Pubmed, LILACS, and SCIELO on three topics: a) Social determinants, risk factors, and behavioral changes related to PD throughout the lives of individuals; b) Impact of mechanical and chemical control of plaque for the prevention of gingivitis; c) Impact on prevention of systemic diseases. Relative to public health policies, no consensus was reported in the region. In some countries, periodontal educational strategies, mainly for pregnant women and for other chronic diseases have been implemented, but their impact on primary and secondary prevention has hardly been evaluated. In recent years, a positive aspect has been the implementation of some public policies, including clinical practice guidelines and care pathways. Based on the latest consensus, multicenter educational research and technological strategies were found in the region, but their effectiveness needs to be evaluated in clinical studies. A barrier to the implementation of preventive strategies has to do with the human factor. Therefore, the training of periodontists to be experts in communication strategies, technologies that allow the empowerment of patients for taking care of their periodontal health are required . Moreover, it is necessary to train professionals from other areas of health, who are more aware of the importance of oral health as a healthy lifestyle.
Collapse
Affiliation(s)
- Andres Duque Duque
- CES University, School of Dentistry, Department of Periodontics, Medellín, Colombia
| | | | | | | | - Hugo Jorge Romanelli
- Maimonides University, Faculty of Health Sciences, Department of Periodontics, Buenos Aires, Argentina
| | | |
Collapse
|
13
|
Ryder MI, Fine DH, Barron AE. From Global to Nano: A Geographical Perspective of Aggregatibacter actinomycetemcomitans. Pathogens 2024; 13:837. [PMID: 39452709 PMCID: PMC11510556 DOI: 10.3390/pathogens13100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The periodontal disease pathobiont Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) may exert a range of detrimental effects on periodontal diseases in general and, more specifically, with the initiation and progression of Localized Stage III Grade C periodontitis (molar-incisor pattern). In this review of the biogeography of this pathobiont, the full range of geographical scales for A. actinomycetemcomitans, from global origins and transmission to local geographical regions, to more locally exposed probands and families, to the individual host, down to the oral cavity, and finally, to spatial interactions with other commensals and pathobionts within the plaque biofilms at the micron/nanoscale, are reviewed. Using the newest technologies in genetics, imaging, in vitro cultures, and other research disciplines, investigators may be able to gain new insights to the role of this pathobiont in the unique initial destructive patterns of Localized Stage III Grade C periodontitis. These findings may incorporate the unique features of the microbiome that are influenced by variations in the geographic environment within the entire mouth. Additional insights into the geographic distribution of molar-incisor periodontal breakdown for Localized Stage III Grade C periodontitis may derive from the spatial interactions between A. actinomycetemcomitans and other pathobionts such as Porphyromonas gingivalis, Filifactor aclocis, and commensals such as Streptococcus gordonii. In addition, while the association of A. actinomycetemcomitans in systemic diseases is limited at the present time, future studies into possible periodontal disease-systemic disease links may also find A. actinomycetemcomitans and its geographical interactions with other microbiome members to provide important clues as to implications of pathobiological communications.
Collapse
Affiliation(s)
- Mark I. Ryder
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94143, USA;
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA
| | - Daniel H. Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, 443 Via Ortega, Stanford, CA 94305, USA
| | - Annelise E. Barron
- Department of Bioengineering, School of Medicine and School of Engineering, Stanford University, Stanford, CA 94143, USA;
| |
Collapse
|
14
|
Jeong J, Ahn K, Yun K, Kim M, Choi Y, Han M, Mun S, Kim YT, Lee KE, Kim MY, Ahn Y, Han K. Exploring oral bacterial compositional network in two oral disease groups using a convergent approach of NGS-molecular diagnostics. Genes Genomics 2024; 46:881-898. [PMID: 38847972 DOI: 10.1007/s13258-024-01526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/26/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Since most of the commonly known oral diseases are explained in link with balance of microbial community, an accurate bacterial taxonomy profiling for determining bacterial compositional network is essential. However, compared to intestinal microbiome, research data pool related to oral microbiome is small, and general 16S rRNA screening method has a taxonomy misclassification issue in confirming complex bacterial composition at the species level. OBJECTIVE Present study aimed to explore bacterial compositional networks at the species level within saliva of 39 oral disease patients (Dental Caries group: n = 26 and Periodontitis group: n = 13) through comparison with public Korean-specific healthy oral microbiome data. METHODS Here, we applied comprehensive molecular diagnostics based on qRT-PCR and Sanger sequencing methods to complement the technical limitations of NGS-based 16S V3-V4 amplicon sequencing technology. RESULTS As a result of microbiome profiling at the genus level, relative frequencies of many nitrate-reducing bacteria within each oral disease group were found to be significantly low compared to the healthy group. In addition, the molecular diagnostics-based bacterial identification method allowed the determination of the correct taxonomy of screened primary colonizers (Streptococcus and Actinomyces unclassification clusters) for each oral disease. Finally, as with the results of microbiome profiling at the genus level, many core-species classified within the saliva of each oral disease group were also related to nitrate-reduction, and it was estimated that various pathogens associated with each disease formed a bacterial network with the core-species. CONCLUSION Our study introduced a novel approach that can compensate for the difficulty of identifying an accurate bacterial compositional network at the species level due to unclear taxonomy classification by using the convergent approach of NGS-molecular diagnostics. Ultimately, we suggest that our experimental approach and results could be potential reference materials for researchers who intend to prevent oral disease by determining the correlation between oral health and bacterial compositional network according to the changes in the relative frequency for nitrate-reducing species.
Collapse
Affiliation(s)
- Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Kung Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea
| | - Kyeongeui Yun
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Minseo Kim
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Yeseul Choi
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Miyang Han
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea
| | - Yeon-Tae Kim
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Kyung Eun Lee
- Department of Oral Medicine, Department of Anesthesiology, School of Dentistry, Jeonbuk National University, Jeonju, 54896, Korea
| | - Moon-Young Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Dankook University, Cheonan, 31116, Korea
| | - Yongju Ahn
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea.
| | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Yongin, 16890, Republic of Korea.
- HuNbiome Co., Ltd, R&D Center, Gasan Digital 1-Ro, Geumcheon-Gu, Seoul, Korea.
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- College of Science & Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, Republic of Korea.
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
15
|
Inchingolo F, Inchingolo AM, Inchingolo AD, Fatone MC, Ferrante L, Avantario P, Fiore A, Palermo A, Amenduni T, Galante F, Dipalma G. Bidirectional Association between Periodontitis and Thyroid Disease: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:860. [PMID: 39063437 PMCID: PMC11277102 DOI: 10.3390/ijerph21070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Periodontitis is a chronic inflammatory disease of the tissues surrounding and supporting the teeth. Due to the development of chronic inflammation, periodontitis can contribute to the development of several systemic diseases, including thyroid disease. Thyroid pathology includes benign, malignant, and autoimmune conditions leading to hypothyroidism, hyperthyroidism, or euthyroidism. Alterations in thyroid hormones, especially hypothyroidism, can reveal significant oral manifestations, including periodontitis. This scoping review aims to explore the probable causal relationship between periodontitis and thyroid disease, in terms of epidemiology, pathogenesis, and treatment. The search strategy follows the PRISMA-ScR guidelines. PubMed, Scopus, Web of Science, and Cochrane were searched from January 2014 to January 2024, entering the MESH terms "periodontitis" and "thyroid". Of 153 initial records, 20 articles were selected and discussed. There is a high prevalence of periodontitis among patients with thyroid disease, including thyroid cancer. The causes at the basis of this association are genetic factors, the oral microbiome, and proinflammatory cytokines. Periodontal treatment, specifically scaling and root planning, can ameliorate thyroid parameters. Although there are a few randomized controlled studies in the literature, this review lays the foundation for a bidirectional relationship between periodontitis and thyroid disease, the link to which is, once again, systemic inflammation.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (F.I.); or (A.M.I.); or (L.F.); or (P.A.); or (A.F.); or (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (F.I.); or (A.M.I.); or (L.F.); or (P.A.); or (A.F.); or (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (F.I.); or (A.M.I.); or (L.F.); or (P.A.); or (A.F.); or (G.D.)
| | | | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (F.I.); or (A.M.I.); or (L.F.); or (P.A.); or (A.F.); or (G.D.)
| | - Pasquale Avantario
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (F.I.); or (A.M.I.); or (L.F.); or (P.A.); or (A.F.); or (G.D.)
| | - Arianna Fiore
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (F.I.); or (A.M.I.); or (L.F.); or (P.A.); or (A.F.); or (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Tommaso Amenduni
- PTA Trani-ASL BT, Viale Padre Pio, 76125 Trani, Italy; (T.A.); (F.G.)
| | - Francesco Galante
- PTA Trani-ASL BT, Viale Padre Pio, 76125 Trani, Italy; (T.A.); (F.G.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy or (F.I.); or (A.M.I.); or (L.F.); or (P.A.); or (A.F.); or (G.D.)
| |
Collapse
|
16
|
Dickstein DR, Edwards CR, Rowan CR, Avanessian B, Chubak BM, Wheldon CW, Simoes PK, Buckstein MH, Keefer LA, Safer JD, Sigel K, Goodman KA, Rosser BRS, Goldstone SE, Wong SY, Marshall DC. Pleasurable and problematic receptive anal intercourse and diseases of the colon, rectum and anus. Nat Rev Gastroenterol Hepatol 2024; 21:377-405. [PMID: 38763974 DOI: 10.1038/s41575-024-00932-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
The ability to experience pleasurable sexual activity is important for human health. Receptive anal intercourse (RAI) is a common, though frequently stigmatized, pleasurable sexual activity. Little is known about how diseases of the colon, rectum, and anus and their treatments affect RAI. Engaging in RAI with gastrointestinal disease can be difficult due to the unpredictability of symptoms and treatment-related toxic effects. Patients might experience sphincter hypertonicity, gastrointestinal symptom-specific anxiety, altered pelvic blood flow from structural disorders, decreased sensation from cancer-directed therapies or body image issues from stoma creation. These can result in problematic RAI - encompassing anodyspareunia (painful RAI), arousal dysfunction, orgasm dysfunction and decreased sexual desire. Therapeutic strategies for problematic RAI in patients living with gastrointestinal diseases and/or treatment-related dysfunction include pelvic floor muscle strengthening and stretching, psychological interventions, and restorative devices. Providing health-care professionals with a framework to discuss pleasurable RAI and diagnose problematic RAI can help improve patient outcomes. Normalizing RAI, affirming pleasure from RAI and acknowledging that the gastrointestinal system is involved in sexual pleasure, sexual function and sexual health will help transform the scientific paradigm of sexual health to one that is more just and equitable.
Collapse
Affiliation(s)
- Daniel R Dickstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Collin R Edwards
- Department of Radiology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Catherine R Rowan
- Inflammatory Bowel Disease Unit, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta, Canada
| | - Bella Avanessian
- Center for Transgender Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Plastic and Reconstructive Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Barbara M Chubak
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher W Wheldon
- Department of Social and Behavioral Sciences, College of Public Health at Temple University, Philadelphia, PA, USA
| | - Priya K Simoes
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael H Buckstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurie A Keefer
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua D Safer
- Center for Transgender Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Endocrinology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith Sigel
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karyn A Goodman
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - B R Simon Rosser
- Division of Epidemiology and Community Health, School of Public Health at University of Minnesota, Minneapolis, MN, USA
| | - Stephen E Goldstone
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Serre-Yu Wong
- The Dr. Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deborah C Marshall
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Bernardoni BL, D'Agostino I, La Motta C, Angeli A. An insight into the last 5-year patents on Porphyromonas gingivalis and Streptococcus mutans, the pivotal pathogens in the oral cavity. Expert Opin Ther Pat 2024; 34:433-463. [PMID: 38684444 DOI: 10.1080/13543776.2024.2349739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION The oral cavity harbors an extensive array of over 700 microorganisms, forming the most complex biome of the entire human body, with bacterial species being the most abundant. Oral diseases, e.g. periodontitis and caries, are strictly associated with bacterial dysbiosis. Porphyromonas gingivalis and Streptococcus mutans stand out among bacteria colonizing the oral cavity. AREAS COVERED After a brief overview of the bacterial populations in the oral cavity and their roles in regulating (flora) oral cavity or causing diseases like periodontal and cariogenic pathogens, we focused our attention on P. gingivalis and S. mutans, searching for the last-5-year patents dealing with the proposal of new strategies to fight their infections. Following the PRISMA protocol, we filtered the results and analyzed over 100 applied/granted patents, to provide an in-depth insight into this R&D scenario. EXPERT OPINION Several antibacterial proposals have been patented in this period, from both chemical - peptides and small molecules - and biological - probiotics and antibodies - sources, along with natural extracts, polymers, and drug delivery systems. Most of the inventors are from China and Korea and their studies also investigated anti-inflammatory and antioxidant effects, being beneficial to oral health through a prophylactic, protective, or curative effect.
Collapse
Affiliation(s)
| | | | | | - Andrea Angeli
- Neurofarba Department, University of Florence, Florence, Italy
| |
Collapse
|
18
|
Tatullo M, Nor J, Orrù G, Piattelli A, Cascardi E, Spagnuolo G. Oral-Gut-Estrobolome Axis May Exert a Selective Impact on Oral Cancer. J Dent Res 2024; 103:461-466. [PMID: 38584298 DOI: 10.1177/00220345241236125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
A subset of bacterial species that holds genes encoding for β-glucuronidase and β-galactosidase, enzymes involved in the metabolism of conjugated estrogens, is called the "estrobolome." There is an emerging interest embracing this concept, as it may exert a selective impact on a number of pathologies, including oral cancer. Although the estrobolome bacteria are typically part of the gut microbiota, recent experimental pieces of evidence have suggested a crosstalk among oral and gut microbiota. In fact, several oral bacterial species are well represented also in the gut microbiota, and these microbes can effectively induce the estrobolome activation. The main pathways used for activating the estrobolome are based on the induction of the expression patterns for 2 bacterial enzymes: β-glucuronidase and aromatase, both involved in the increase of estrogen released in the bloodstream and consequently in the salivary compartment. Mechanistically, high estrogen availability in saliva is responsible for an increase in oral cancer risk for different reasons: briefly, 1) estrogens directly exert biological and metabolic effects on oral mucosa cells; 2) they can modulate the pathological profile of some bacteria, somewhere associated with neoplastic processes (i.e., Fusobacterium spp., Parvimonas ssp.); and 3) some oral bacteria are able to convert estrogens into carcinogenic metabolites, such as 4-hydroxyestrone and 16α-hydroxyestrone (16α-OHE), and can also promote local and systemic inflammation. Nowadays, only a small number of scientific studies have taken into consideration the potential correlations among oral dysbiosis, alterations of the gut estrobolome, and some hormone-dependent cancers: this lack of attention on such a promising topic could be a bias affecting the full understanding of the pathogenesis of several estrogen-related oral pathologies. In our article, we have speculated on the activity of an oral-gut-estrobolome axis, capable of synergizing these 2 important microbiotas, shedding light on a pilot hypothesis requiring further research.
Collapse
Affiliation(s)
- M Tatullo
- Department of Translational Biomedicine and Neuroscience, University of Bari "Aldo Moro," Bari, Italy
- School of Dentistry, University of Dundee, Dundee, Scotland, UK
| | - J Nor
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
- Department of Otolaryngology-Head & Neck Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - G Orrù
- Department of Surgical Sciences, Oral Biotechnology Laboratory (OBL), University of Cagliari, Cagliari, Italy
| | - A Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, Rome, Italy
| | - E Cascardi
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Bari, Puglia, Italy
| | - G Spagnuolo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II" Naples, Italy
| |
Collapse
|
19
|
Svärd A, LoMartire R, Martinsson K, Öhman C, Kastbom A, Johansson A. Presence and Immunoreactivity of Aggregatibacter actinomycetemcomitans in Rheumatoid Arthritis. Pathogens 2024; 13:368. [PMID: 38787220 PMCID: PMC11123772 DOI: 10.3390/pathogens13050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The presence of periodontal pathogens is associated with an increased prevalence of rheumatoid arthritis (RA). The systemic antibody response to epitopes of these bacteria is often used as a proxy to study correlations between bacteria and RA. The primary aim of the present study is to examine the correlation between the presence of Aggregatibacter actinomycetemcomitans (Aa) in the oral cavity and serum antibodies against the leukotoxin (LtxA) produced by this bacterium. The salivary presence of Aa was analyzed with quantitative PCR and serum LtxA ab in a cell culture-based neutralization assay. The analyses were performed on samples from a well-characterized RA cohort (n = 189) and a reference population of blood donors (n = 101). Salivary Aa was present in 15% of the RA patients and 6% of the blood donors. LtxA ab were detected in 19% of RA-sera and in 16% of sera from blood donors. The correlation between salivary Aa and serum LtxA ab was surprisingly low (rho = 0.55 [95% CI: 0.40, 0.68]). The presence of salivary Aa showed no significant association with any of the RA-associated parameters documented in the cohort. A limitation of the present study is the relatively low number of individuals with detectable concentrations of Aa in saliva. Moreover, in the comparison of detectable Aa prevalence between RA patients and blood donors, we assumed that the two groups were equivalent in other Aa prognostic factors. These limitations must be taken into consideration when the result from the study is interpreted. We conclude that a systemic immune response to Aa LtxA does not fully reflect the prevalence of Aa in saliva. In addition, the association between RA-associated parameters and the presence of Aa was negligible in the present RA cohort.
Collapse
Affiliation(s)
- Anna Svärd
- Center for Clinical Research Dalarna, Uppsala University, 791 82 Falun, Sweden; (A.S.); (R.L.)
- Department of Rheumatology, Linköping University Hospital, 581 85 Linköping, Sweden;
| | - Riccardo LoMartire
- Center for Clinical Research Dalarna, Uppsala University, 791 82 Falun, Sweden; (A.S.); (R.L.)
- School of Health and Welfare, Dalarna University, 791 88 Falun, Sweden
| | - Klara Martinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Carina Öhman
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden;
| | - Alf Kastbom
- Department of Rheumatology, Linköping University Hospital, 581 85 Linköping, Sweden;
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | | |
Collapse
|