1
|
Shapira G, Karmon G, Hacohen-Kleiman G, Ganaiem M, Shazman S, Theotokis P, Grigoriadis N, Shomron N, Gozes I. ADNP is essential for sex-dependent hippocampal neurogenesis, through male unfolded protein response and female mitochondrial gene regulation. Mol Psychiatry 2024:10.1038/s41380-024-02879-w. [PMID: 39715923 DOI: 10.1038/s41380-024-02879-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Essential for brain formation and protective against tauopathy, activity-dependent neuroprotective protein (ADNP) is critical for neurogenesis and cognitive functions, while regulating steroid hormone biogenesis. As such, de novo mutations in ADNP lead to syndromic autism and somatic ADNP mutations parallel Alzheimer's disease progression. Furthermore, clinical trials with the ADNP fragment NAP (the investigational drug davunetide) showed efficacy in women suffering from the tauopathy progressive supranuclear palsy and differentially boosted memory in men (spatial) and women (verbal), exhibiting prodromal Alzheimer's disease. While autism is more prevalent in boys and Alzheimer's disease in women, both involve impaired neurogenesis. Here, we asked whether ADNP sex-dependently regulates neurogenesis. Using bromodeoxyuridine (BrdU) as a marker of neurogenesis, we identified two-fold higher labeling in the hippocampal sub-ventricular zone of ADNP-intact male versus female mice. Adnp haplo-insufficient (Adnp+/-) mice or mice CRSIPR/Cas9-edited to present the most prevalent neurodevelopmental ADNP syndrome mutation, p.Tyr718* (Tyr) showed dramatic reductions in male BrdU incorporation, resulting in mutated females presenting higher labeling than males. Treatment with NAP compensated for the male reduction of BrdU labeling. Mechanistically, hippocampal RNAseq revealed male-specific Tyr down-regulation of endoplasmic reticulum unfolded protein response genes critical for sex-dependent organogenesis. Newly discovered mitochondrial accessibility of ADNP was inhibited by the Tyr718* mutation further revealing female-specific Tyr downregulation of mitochondrial ATP6. NAP moderated much of the differential expression caused by p.Tyr718*, accompanied by the down-regulation of neurotoxic, pro-inflammatory and pro-apoptotic genes. Thus, ADNP is a key regulator of sex-dependent neurogenesis that acts by controlling canonical pathways, with NAP compensating for fundamental ADNP deficiencies, striding toward clinical development targeting the ADNP syndrome and related neurodevelopmental/neurodegenerative diseases.
Collapse
Affiliation(s)
- Guy Shapira
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gidon Karmon
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gal Hacohen-Kleiman
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Maram Ganaiem
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, 4353701, Israel
| | - Paschalis Theotokis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, Laboratory of Experimental Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Sagol School of Neuroscience, Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
2
|
Kraatz G, Xie HTH, Long H, Walker CD. Neonatal estradiol and early adversity interact to modify basolateral amygdala morphology and adult behavior in female rats. J Neuroendocrinol 2024:e13483. [PMID: 39694537 DOI: 10.1111/jne.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Being raised under adverse conditions during infancy and childhood represents a significant risk factor for developing later psychopathologies and dysfunctions in emotional, affective, and cognitive abilities. Depending on the type, timing, and duration of early adversity, different consequences emerge across the sexes in both human and animal models, although our understanding of the underlying interactions between sex and early life stress (ELS) is still incomplete. In this study, we used the limited bedding (LB) paradigm, a well-described model of ELS in rat pups during the first 10 days of life, and tested whether masculinization of the female brain by neonatal injections of estradiol benzoate (EB) would recapitulate the ELS-induced vulnerability phenotype of males on morphology of the basolateral amygdala (BLA) principal neurons and pre-adolescent and adult behavior. Our results show that LB-induced morphological changes in BLA neurons of weaning female rats were eliminated by EB treatment independently of early changes in estrogen receptor (ERα) expression in this region. EB treatment synergized with LB to enhance play behavior of pre-adolescent females to levels far greater than those observed in control males. In adult offspring, LB reduced time spent in the center in males and EB tended to increase social contact time compared to normal females, but only in LB conditions. Our findings indicate that neonatal masculinization of the female brain modifies specific, but not all aspects of BLA morphology and both pre-adolescent and adult behavior that are altered by ELS.
Collapse
Affiliation(s)
- Grace Kraatz
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute Research Center, Montreal, Quebec, Canada
| | - Henry Tian Hao Xie
- Douglas Mental Health University Institute Research Center, Montreal, Quebec, Canada
| | - Hong Long
- Douglas Mental Health University Institute Research Center, Montreal, Quebec, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute Research Center, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Sanguino-Gómez J, Krugers HJ. Early-life stress impairs acquisition and retrieval of fear memories: sex-effects, corticosterone modulation, and partial prevention by targeting glucocorticoid receptors at adolescent age. Neurobiol Stress 2024; 31:100636. [PMID: 38883213 PMCID: PMC11177066 DOI: 10.1016/j.ynstr.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 06/18/2024] Open
Abstract
The early postnatal period is a sensitive time window that is characterized by several neurodevelopmental processes that define neuronal architecture and function later in life. Here, we examined in young adult mice, using an auditory fear conditioning paradigm, whether stress during the early postnatal period 1) impacts fear acquisition and memory consolidation in male and female mice; 2) alters the fear responsiveness to corticosterone and 3) whether effects of early-life stress (ELS) can be prevented by treating mice with a glucocorticoid (GR) antagonist at adolescence. Male and female mice were exposed to a limited nesting and bedding model of ELS from postnatal day (PND) 2-9 and injected i.p with RU38486 (RU486) at adolescent age (PND 28-30). At two months of age, mice were trained in the fear conditioning (FC) paradigm (with and without post training administration of corticosterone - CORT) and freezing behavior during fear acquisition and contextual and auditory memory retrieval was scored. We observed that ELS impaired fear acquisition specifically in male mice and reduced both contextual and auditory memory retrieval in male and female mice. Acute post-training administration of CORT increased freezing levels during auditory memory retrieval in female mice but reduced freezing levels during the tone presentation in particular in control males. Treatment with RU486 prevented ELS-effects in acquisition in male mice and in females during auditory memory retrieval. In conclusion, this study highlights the long-lasting consequences of early-life stress on fear memory processing and further illustrates 1) the potential of a glucocorticoid antagonist intervention during adolescence to mitigate these effects and 2) the partial modulation of the auditory retrieval upon post training administration of CORT, with all these effects being sex-dependent.
Collapse
Affiliation(s)
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Eachus H, Choi MK, Tochwin A, Kaspareit J, Ho M, Ryu S. Elevated glucocorticoid alters the developmental dynamics of hypothalamic neurogenesis in zebrafish. Commun Biol 2024; 7:416. [PMID: 38580727 PMCID: PMC10997759 DOI: 10.1038/s42003-024-06060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/16/2024] [Indexed: 04/07/2024] Open
Abstract
Exposure to excess glucocorticoid (GC) during early development is implicated in adult dysfunctions. Reduced adult hippocampal neurogenesis is a well-known consequence of exposure to early life stress or elevated GC, however the effects on neurogenesis during development and effects on other brain regions are not well understood. Using an optogenetic zebrafish model, here we analyse the effects of GC exposure on neurogenesis during development in the whole brain. We identify that the hypothalamus is a highly GC-sensitive region where elevated GC causes precocious development. This is followed by failed maturation and early decline accompanied by impaired feeding, growth, and survival. In GC-exposed animals, the developmental trajectory of hypothalamic progenitor cells is strikingly altered, potentially mediated by direct regulation of transcription factors such as rx3 by GC. Our data provide cellular and molecular level insight into GC-induced alteration of the hypothalamic developmental trajectory, a process crucial for health across the life-course.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Institute of Health and Neurodevelopment & Aston Pharmacy School, Aston University, Birmingham, B4 7ET, UK
| | - Min-Kyeung Choi
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Anna Tochwin
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Johanna Kaspareit
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - May Ho
- Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Soojin Ryu
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
5
|
Gorthy AS, Balleste AF, Placeres-Uray F, Atkins CM. Chronic Stress in Early Development and Effects on Traumatic Brain Injury Outcome. ADVANCES IN NEUROBIOLOGY 2024; 42:179-204. [PMID: 39432043 PMCID: PMC11556197 DOI: 10.1007/978-3-031-69832-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
In recent years, significant advances have been made in the study of mild traumatic brain injury (mTBI). Complete recovery from mTBI normally requires days to weeks, yet a subset of the population suffers from symptoms for weeks to months after injury. The risk factors for these prolonged symptoms have not yet been fully understood. In this chapter, we address one proposed risk factor, early life stress (ELS) and its influence on mTBI recovery. To study the effects of ELS on mTBI recovery, accepted animal models of ELS, including maternal separation, limited bedding and nesting, and chronic unpredictable stress, have been implemented. Combining these ELS models with standardized mTBI models, such as fluid percussion injury or controlled cortical impact, has allowed for a deeper understanding of the neuronal, hormonal, and cognitive changes that occur after mTBI following ELS. These preclinical findings are being used to understand how adverse childhood experiences may predispose a subset of individuals to poorer recovery after mTBI.
Collapse
Affiliation(s)
- Aditi S Gorthy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alyssa F Balleste
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fabiola Placeres-Uray
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Coleen M Atkins
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Hussain G, Akram R, Anwar H, Sajid F, Iman T, Han HS, Raza C, De Aguilar JLG. Adult neurogenesis: a real hope or a delusion? Neural Regen Res 2024; 19:6-15. [PMID: 37488837 PMCID: PMC10479850 DOI: 10.4103/1673-5374.375317] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/27/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neurogenesis, the process of creating new neurons, involves the coordinated division, migration, and differentiation of neural stem cells. This process is restricted to neurogenic niches located in two distinct areas of the brain: the subgranular zone of the dentate gyrus of the hippocampus and the subventricular zone of the lateral ventricle, where new neurons are generated and then migrate to the olfactory bulb. Neurogenesis has been thought to occur only during the embryonic and early postnatal stages and to decline with age due to a continuous depletion of neural stem cells. Interestingly, recent years have seen tremendous progress in our understanding of adult brain neurogenesis, bridging the knowledge gap between embryonic and adult neurogenesis. Here, we discuss the current status of adult brain neurogenesis in light of what we know about neural stem cells. In this notion, we talk about the importance of intracellular signaling molecules in mobilizing endogenous neural stem cell proliferation. Based on the current understanding, we can declare that these molecules play a role in targeting neurogenesis in the mature brain. However, to achieve this goal, we need to avoid the undesired proliferation of neural stem cells by controlling the necessary checkpoints, which can lead to tumorigenesis and prove to be a curse instead of a blessing or hope.
Collapse
Affiliation(s)
- Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Tehreem Iman
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Punjab, Pakistan
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Chand Raza
- Department of Zoology, Faculty of Chemistry and Life Sciences, Government College University, Lahore, Pakistan
| | - Jose-Luis Gonzalez De Aguilar
- INSERM, U1118, Mécanismes Centraux et Péripheriques de la Neurodégénérescence, Strasbourg, France, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Alberry B, Silveira PP. Brain insulin signaling as a potential mediator of early life adversity effects on physical and mental health. Neurosci Biobehav Rev 2023; 153:105350. [PMID: 37544390 DOI: 10.1016/j.neubiorev.2023.105350] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
In numerous brain structures, insulin signaling modulates the homeostatic processes, sensitivity to reward pathways, executive function, memory, and cognition. Through human studies and animal models, mounting evidence implicates central insulin signaling in the metabolic, physiological, and psychological consequences of early life adversity. In this review, we describe the consequences of early life adversity in the brain where insulin signaling is a key factor and how insulin may moderate the effects of adversity on psychiatric and cardio-metabolic health outcomes. Further understanding of how early life adversity and insulin signaling impact specific brain regions and mental and physical health outcomes will assist in prevention, diagnosis, and potential intervention following early life adversity.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Warhaftig G, Almeida D, Turecki G. Early life adversity across different cell- types in the brain. Neurosci Biobehav Rev 2023; 148:105113. [PMID: 36863603 DOI: 10.1016/j.neubiorev.2023.105113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Early life adversity (ELA)- which includes physical, psychological, emotional, and sexual abuse is one of the most common predictors to diverse psychopathologies later in adulthood. As ELA has a lasting impact on the brain at a developmental stage, recent findings from the field highlighted the specific contributions of different cell types to ELA and their association with long lasting consequences. In this review we will gather recent findings describing morphological, transcriptional and epigenetic alterations within neurons, glia and perineuronal nets and their associated cellular subpopulation. The findings reviewed and summarized here highlight important mechanisms underlying ELA and point to therapeutic approaches for ELA and related psychopathologies later in life.
Collapse
Affiliation(s)
- Gal Warhaftig
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal QC H3A 1A1, Canada.
| |
Collapse
|
9
|
Helman TJ, Headrick JP, Stapelberg NJC, Braidy N. The sex-dependent response to psychosocial stress and ischaemic heart disease. Front Cardiovasc Med 2023; 10:1072042. [PMID: 37153459 PMCID: PMC10160413 DOI: 10.3389/fcvm.2023.1072042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Stress is an important risk factor for modern chronic diseases, with distinct influences in males and females. The sex specificity of the mammalian stress response contributes to the sex-dependent development and impacts of coronary artery disease (CAD). Compared to men, women appear to have greater susceptibility to chronic forms of psychosocial stress, extending beyond an increased incidence of mood disorders to include a 2- to 4-fold higher risk of stress-dependent myocardial infarction in women, and up to 10-fold higher risk of Takotsubo syndrome-a stress-dependent coronary-myocardial disorder most prevalent in post-menopausal women. Sex differences arise at all levels of the stress response: from initial perception of stress to behavioural, cognitive, and affective responses and longer-term disease outcomes. These fundamental differences involve interactions between chromosomal and gonadal determinants, (mal)adaptive epigenetic modulation across the lifespan (particularly in early life), and the extrinsic influences of socio-cultural, economic, and environmental factors. Pre-clinical investigations of biological mechanisms support distinct early life programming and a heightened corticolimbic-noradrenaline-neuroinflammatory reactivity in females vs. males, among implicated determinants of the chronic stress response. Unravelling the intrinsic molecular, cellular and systems biological basis of these differences, and their interactions with external lifestyle/socio-cultural determinants, can guide preventative and therapeutic strategies to better target coronary heart disease in a tailored sex-specific manner.
Collapse
Affiliation(s)
- Tessa J. Helman
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
- Correspondence: Tessa J. Helman
| | - John P. Headrick
- Schoolof Pharmacy and Medical Sciences, Griffith University, Southport, QLD, Australia
| | | | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
10
|
Calanni JS, Dieguez HH, González Fleitas MF, Canepa E, Berardino B, Repetto EM, Villarreal A, Dorfman D, Rosenstein RE. Early life stress induces visual dysfunction and retinal structural alterations in adult mice. J Neurochem 2022; 165:362-378. [PMID: 36583234 DOI: 10.1111/jnc.15752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Early life stress (ELS) is defined as a period of severe and/or chronic trauma, as well as environmental/social deprivation or neglect in the prenatal/early postnatal stage. Presently, the impact of ELS on the retina in the adult stage is unknown. The long-term consequences of ELS at retinal level were analyzed in an animal model of maternal separation with early weaning (MSEW), which mimics early life maternal neglect. For this purpose, mice were separated from the dams for 2 h at postnatal days (PNDs) 4-6, for 3 h at PNDs 7-9, for 4 h at PNDs 10-12, for 6 h at PNDs 13-16, and weaned at PND17. At the end of each separation period, mothers were subjected to movement restriction for 10 min. Control pups were left undisturbed from PND0, and weaned at PND21. Electroretinograms, visual evoked potentials, vision-guided behavioral tests, retinal anterograde transport, and retinal histopathology were examined at PNDs 60-80. MSEW induced long-lasting functional and histological effects at retinal level, including decreased retinal ganglion cell function and alterations in vision-guided behaviors, likely associated to decreased synaptophysin content, retina-superior colliculus communication deficit, increased microglial phagocytic activity, and retinal ganglion cell loss through a corticoid-dependent mechanism. A treatment with mifepristone, injected every 3 days between PNDs 4 and16, prevented functional and structural alterations induced by MSEW. These results suggest that retinal alterations might be included among the childhood adversity-induced threats to life quality, and that an early intervention with mifepristone avoided ELS-induced retinal disturbances.
Collapse
Affiliation(s)
- Juan S Calanni
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Hernán H Dieguez
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - María F González Fleitas
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Eduardo Canepa
- Neuroepigenetics Laboratory, Department of Biological Chemistry and Institute of Biological Chemistry, School of Science, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Bruno Berardino
- Neuroepigenetics Laboratory, Department of Biological Chemistry and Institute of Biological Chemistry, School of Science, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Esteban M Repetto
- Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Alejandro Villarreal
- Molecular Neuropathology Laboratory, School of Medicine, Cellular Biology and Neuroscience Institute, "Prof. E. De Robertis", University of Buenos Aires/CONICET, Argentina
| | - Damian Dorfman
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| | - Ruth E Rosenstein
- Laboratory of Retinal Neurochemistry and Experimental Ophthalmology, Department of Human Biochemistry, School of Medicine/CEFyBO, University of Buenos Aires/CONICET, Buenos Aires, Argentina
| |
Collapse
|
11
|
Westrick SE, Moss JB, Fischer EK. Who cares? An integrative approach to understanding the evolution of behavioural plasticity in parental care. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Grochecki P, Smaga I, Surowka P, Marszalek-Grabska M, Kalaba P, Dragacevic V, Kotlinska P, Filip M, Lubec G, Kotlinska JH. Novel Dopamine Transporter Inhibitor, CE-123, Ameliorates Spatial Memory Deficits Induced by Maternal Separation in Adolescent Rats: Impact of Sex. Int J Mol Sci 2022; 23:ijms231810718. [PMID: 36142621 PMCID: PMC9503873 DOI: 10.3390/ijms231810718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal separation (MS) is a key contributor to neurodevelopmental disorders, including learning disabilities. To test the hypothesis that dopamine signaling is a major factor in this, an atypical new dopamine transporter (DAT) inhibitor, CE-123, was assessed for its potential to counteract the MS-induced spatial learning and memory deficit in male and female rats. Hence, neonatal rats (postnatal day (PND)1 to 21) were exposed to MS (180 min/day). Next, the acquisition of spatial learning and memory (Barnes maze task) and the expression of dopamine D1 receptor, dopamine transporter (DAT), and the neuronal GTPase, RIT2, which binds DAT in the vehicle-treated rats were evaluated in the prefrontal cortex and hippocampus in the adolescent animals. The results show that MS impairs the acquisition of spatial learning and memory in rats, with a more severe effect in females. Moreover, the MS induced upregulation of DAT and dopamine D1 receptors expression in the prefrontal cortex and hippocampus in adolescent rats. Regarding RIT2, the expression was decreased in the hippocampus for both the males and females, however, in the prefrontal cortex, reduction was found only in the females, suggesting that there are region-specific differences in DAT endocytic trafficking. CE-123 ameliorated the behavioral deficits associated with MS. Furthermore, it decreased the MS-induced upregulation of D1 receptor expression level in the hippocampus. These effects were more noted in females. Overall, CE-123, an atypical DAT inhibitor, is able to restore cognitive impairment and dopamine signaling in adolescent rats exposed to MS—with more evident effect in females than males.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Surowka
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
| | | | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81-448-7255; Fax: +48-81-448-7250
| |
Collapse
|
13
|
Early life adversity shapes neural circuit function during sensitive postnatal developmental periods. Transl Psychiatry 2022; 12:306. [PMID: 35915071 PMCID: PMC9343623 DOI: 10.1038/s41398-022-02092-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
Early life adversity (ELA) is a major risk factor for mental illness, but the neurobiological mechanisms by which ELA increases the risk for future psychopathology are still poorly understood. Brain development is particularly malleable during prenatal and early postnatal life, when complex neural circuits are being formed and refined through an interplay of excitatory and inhibitory neural input, synaptogenesis, synaptic pruning, myelination, and neurogenesis. Adversity that influences these processes during sensitive periods of development can thus have long-lasting and pervasive effects on neural circuit maturation. In this review, we will discuss clinical and preclinical evidence for the impact of ELA on neural circuit formation with a focus on the early postnatal period, and how long-lasting impairments in these circuits can affect future behavior. We provide converging evidence from human and animal studies on how ELA alters the functional development of brain regions, neural circuits, and neurotransmitter systems that are crucial for cognition and affective behavior, including the hippocampus, the hypothalamus-pituitary-adrenal (HPA) axis, neural networks of fear responses and cognition, and the serotonin (5-HT) system. We also discuss how gene-by-environment (GxE) interactions can determine individual differences in susceptibility and resilience to ELA, as well as molecular pathways by which ELA regulates neural circuit development, for which we emphasize epigenetic mechanisms. Understanding the molecular and neurobiological mechanisms underlying ELA effects on brain function and psychopathology during early postnatal sensitive periods may have great potential to advance strategies to better treat or prevent psychiatric disorders that have their origin early in life.
Collapse
|
14
|
Shahrbabaki SV, Jonaidi H, Sheibani V, Bashiri H. Early postnatal handling alters social behavior, learning, and memory of pre- and post-natal VPA-induced rat models of autism in a context-based manner. Physiol Behav 2022; 249:113739. [DOI: 10.1016/j.physbeh.2022.113739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/20/2022]
|
15
|
Waters RC, Worth HM, Vasquez B, Gould E. Inhibition of adult neurogenesis reduces avoidance behavior in male, but not female, mice subjected to early life adversity. Neurobiol Stress 2022; 17:100436. [PMID: 35146080 PMCID: PMC8819473 DOI: 10.1016/j.ynstr.2022.100436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/08/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Early life adversity (ELA) increases the risk of developing neuropsychiatric illnesses such as anxiety disorders. However, the mechanisms connecting these negative early life experiences to illness later in life remain unclear. In rodents, plasticity mechanisms, specifically adult neurogenesis in the ventral hippocampus, have been shown to be altered by ELA and important for buffering against detrimental stress-induced outcomes. The current study sought to explore whether adult neurogenesis contributes to ELA-induced changes in avoidance behavior. Using the GFAP-TK transgenic model, which allows for the inhibition of adult neurogenesis, and CD1 littermate controls, we subjected mice to an ELA paradigm of maternal separation and early weaning (MSEW) or control rearing. We found that mice with intact adult neurogenesis showed no behavioral changes in response to MSEW. After reducing adult neurogenesis, however, male mice previously subjected to MSEW had an unexpected decrease in avoidance behavior. This finding was not observed in female mice, suggesting that a sex difference exists in the role of adult-born neurons in buffering against ELA-induced changes in behavior. Taken together with the existing literature on ELA and avoidance behavior, this work suggests that strain differences exist in susceptibility to ELA and that adult-born neurons may play a role in regulating adaptive behavior.
Collapse
|
16
|
Early life exposure to poly I:C impairs striatal DA-D2 receptor binding, myelination and associated behavioural abilities in rats. J Chem Neuroanat 2021; 118:102035. [PMID: 34597812 DOI: 10.1016/j.jchemneu.2021.102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022]
Abstract
Early-life viral infections critically influence the brain development and have been variously reported to cause neuropsychiatric diseases such as Schizophrenia, Parkinson's diseases, demyelinating diseases, etc. To investigate the alterations in the dopaminergic system, myelination and associated behavioral impairments following neonatal viral infection, the viral immune activation model was created by an intraperitoneal injection of Poly I:C (5 mg/kg bw/ip) to neonatal rat pups on PND-7. The DA-D2 receptor binding was assessed in corpus striatum by using 3H-Spiperone at 3, 6 and 12 weeks of age. MOG immunolabelling was performed to check myelination stature and myelin integrity, while corpus callosum calibre was assessed by Luxol fast blue staining. Relative behavioral tasks i.e., motor activity, motor coordination and neuromuscular strength were assessed by open field, rotarod and grip strength meter respectively at 3, 6 and 12 weeks of age. Following Poly I:C exposure, a significant decrease in DA-D2 receptor binding, reduction in corpus callosum calibre and MOG immunolabelling indicating demyelination and a significant decrease in locomotor activity, neuromuscular strength and motor coordination signify motor deficits and hypokinetic influence of early life viral infection. Thus, the findings suggest that early life poly I:C exposure may cause demyelination and motor deficits by decreasing DA-D2 receptor binding affinity.
Collapse
|
17
|
FKBP5 and early life stress affect the hippocampus by an age-dependent mechanism. Brain Behav Immun Health 2021; 9:100143. [PMID: 34589890 PMCID: PMC8474669 DOI: 10.1016/j.bbih.2020.100143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/30/2023] Open
Abstract
Early life stress (ELS) adversely affects the brain and is commonly associated with the etiology of mental health disorders, like depression. In addition to the mood-related symptoms, patients with depression show dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, increased peripheral inflammation, and structural brain alterations. Although the underlying causes are unknown, polymorphisms in the FK506-binding protein 5 (FKBP5) gene, a regulator of glucocorticoid receptor (GR) activity, interact with childhood adversities to increase vulnerability to depressive disorders. We hypothesized that high FKBP5 protein levels combined with early life stress (ELS) would alter the HPA axis and brain, promoting depressive-like behaviors. To test this, we exposed males and females of a mouse model overexpressing FKBP5 in the brain (rTgFKBP5 mice), or littermate controls, to maternal separation for 14 days after birth. Then, we evaluated neuroendocrine, behavioral, and brain changes in young adult and aged mice. We observed lower basal corticosterone (CORT) levels in rTgFKBP5 mice, which was exacerbated in females. Aged, but not young, rTgFKBP5 mice showed increased depressive-like behaviors. Moreover, FKBP5 overexpression reduced hippocampal neuron density in aged mice, while promoting markers of microglia expression, but these effects were reversed by ELS. Together, these results demonstrate that high FKBP5 affects basal CORT levels, depressive-like symptoms, and numbers of neurons and microglia in the hippocampus in an age-dependent manner. High FKBP5 reduces basal corticosterone levels in mice, especially in females. ELS prevents FKBP5-induced susceptibility to depressive-like behavior in aged mice. FKBP5 overexpression reduces hippocampal neuron density in aged mice, while increasing microglial markers.
Collapse
|
18
|
Kalamari A, Kentrop J, Hinna Danesi C, Graat EAM, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Complex Housing, but Not Maternal Deprivation Affects Motivation to Liberate a Trapped Cage-Mate in an Operant Rat Task. Front Behav Neurosci 2021; 15:698501. [PMID: 34512284 PMCID: PMC8427758 DOI: 10.3389/fnbeh.2021.698501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Early life environment influences the development of various aspects of social behavior, particularly during sensitive developmental periods. We studied how challenges in the early postnatal period or (early) adolescence affect pro-social behavior. To this end, we designed a lever-operated liberation task, to be able to measure motivation to liberate a trapped conspecific (by progressively increasing required lever pressing for door-opening). Liberation of the trapped rat resulted either in social contact or in liberation into a separate compartment. Additionally, a condition was tested in which both rats could freely move in two separate compartments and lever pressing resulted in social contact. When partners were not trapped, rats were more motivated to press the lever for opening the door than in either of the trapped configurations. Contrary to our expectations, the trapped configuration resulted in a reduced motivation to act. Early postnatal stress (24 h maternal deprivation on postnatal day 3) did not affect behavior in the liberation task. However, rearing rats from early adolescence onwards in complex housing conditions (Marlau cages) reduced the motivation to door opening, both in the trapped and freely moving conditions, while the motivation for a sucrose reward was not affected.
Collapse
Affiliation(s)
- Aikaterini Kalamari
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jiska Kentrop
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chiara Hinna Danesi
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evelien A M Graat
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,University Medical Center Groningen, Groningen University, Groningen, Netherlands
| | - Rixt van der Veen
- Brain Plasticity group, SILS Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Guadagno A, Belliveau C, Mechawar N, Walker CD. Effects of Early Life Stress on the Developing Basolateral Amygdala-Prefrontal Cortex Circuit: The Emerging Role of Local Inhibition and Perineuronal Nets. Front Hum Neurosci 2021; 15:669120. [PMID: 34512291 PMCID: PMC8426628 DOI: 10.3389/fnhum.2021.669120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
The links between early life stress (ELS) and the emergence of psychopathology such as increased anxiety and depression are now well established, although the specific neurobiological and developmental mechanisms that translate ELS into poor health outcomes are still unclear. The consequences of ELS are complex because they depend on the form and severity of early stress, duration, and age of exposure as well as co-occurrence with other forms of physical or psychological trauma. The long term effects of ELS on the corticolimbic circuit underlying emotional and social behavior are particularly salient because ELS occurs during critical developmental periods in the establishment of this circuit, its local balance of inhibition:excitation and its connections with other neuronal pathways. Using examples drawn from the human and rodent literature, we review some of the consequences of ELS on the development of the corticolimbic circuit and how it might impact fear regulation in a sex- and hemispheric-dependent manner in both humans and rodents. We explore the effects of ELS on local inhibitory neurons and the formation of perineuronal nets (PNNs) that terminate critical periods of plasticity and promote the formation of stable local networks. Overall, the bulk of ELS studies report transient and/or long lasting alterations in both glutamatergic circuits and local inhibitory interneurons (INs) and their associated PNNs. Since the activity of INs plays a key role in the maturation of cortical regions and the formation of local field potentials, alterations in these INs triggered by ELS might critically participate in the development of psychiatric disorders in adulthood, including impaired fear extinction and anxiety behavior.
Collapse
Affiliation(s)
- Angela Guadagno
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
20
|
Eachus H, Choi MK, Ryu S. The Effects of Early Life Stress on the Brain and Behaviour: Insights From Zebrafish Models. Front Cell Dev Biol 2021; 9:657591. [PMID: 34368117 PMCID: PMC8335398 DOI: 10.3389/fcell.2021.657591] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 01/27/2023] Open
Abstract
The early life period represents a window of increased vulnerability to stress, during which exposure can lead to long-lasting effects on brain structure and function. This stress-induced developmental programming may contribute to the behavioural changes observed in mental illness. In recent decades, rodent studies have significantly advanced our understanding of how early life stress (ELS) affects brain development and behaviour. These studies reveal that ELS has long-term consequences on the brain such as impairment of adult hippocampal neurogenesis, altering learning and memory. Despite such advances, several key questions remain inadequately answered, including a comprehensive overview of brain regions and molecular pathways that are altered by ELS and how ELS-induced molecular changes ultimately lead to behavioural changes in adulthood. The zebrafish represents a novel ELS model, with the potential to contribute to answering some of these questions. The zebrafish offers some important advantages such as the ability to non-invasively modulate stress hormone levels in a whole animal and to visualise whole brain activity in freely behaving animals. This review discusses the current status of the zebrafish ELS field and its potential as a new ELS model.
Collapse
Affiliation(s)
- Helen Eachus
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Min-Kyeung Choi
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom
| | - Soojin Ryu
- Living Systems Institute and College of Medicine and Health, University of Exeter, Exeter, United Kingdom.,Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
21
|
Leschik J, Lutz B, Gentile A. Stress-Related Dysfunction of Adult Hippocampal Neurogenesis-An Attempt for Understanding Resilience? Int J Mol Sci 2021; 22:7339. [PMID: 34298958 PMCID: PMC8305135 DOI: 10.3390/ijms22147339] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy;
| |
Collapse
|
22
|
Rule L, Yang J, Watkin H, Hall J, Brydges NM. Environmental enrichment rescues survival and function of adult-born neurons following early life stress. Mol Psychiatry 2021; 26:1898-1908. [PMID: 32286496 DOI: 10.1038/s41380-020-0718-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Adverse experiences early in life are associated with the development of psychiatric illnesses. The hippocampus is likely to play pivotal role in generating these effects: it undergoes significant development during childhood and is extremely reactive to stress. In rodent models, stress in the pre-pubertal period impairs adult hippocampal neurogenesis (AHN) and behaviours which rely on this process. In normal adult animals, environmental enrichment (EE) is a potent promoter of AHN and hippocampal function. Whether exposure to EE during adolescence can restore normal hippocampal function and AHN following pre-pubertal stress (PPS) is unknown. We investigated EE as a treatment for reduced AHN and hippocampal function following PPS in a rodent model. Stress was administered between post-natal days (PND) 25-27, EE from PND 35 to early adulthood, when behavioural testing and assessment of AHN took place. PPS enhanced fear reactions to a conditioned stimulus (CS) following a trace fear protocol and reduced the survival of 4-week-old adult-born neurons throughout the adult hippocampus. Furthermore, we show that fewer adult-born neurons were active during recall of the CS stimulus following PPS. All effects were reversed by EE. Our results demonstrate lasting effects of PPS on the hippocampus and highlight the utility of EE during adolescence for restoring normal hippocampal function. EE during adolescence is a promising method of enhancing impaired hippocampal function resulting from early life stress, and due to multiple benefits (low cost, few side effects, widespread availability) should be more thoroughly explored as a treatment option in human sufferers of childhood adversity.
Collapse
Affiliation(s)
- Lowenna Rule
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Jessica Yang
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Holly Watkin
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.,MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Nichola Marie Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
23
|
Barroca NCB, Baes CVW, Martins-Monteverde CMS, Bosaipo NB, Santos da Silva Umeoka M, Tejada J, Antunes-Rodrigues J, de Castro M, Juruena MF, Garcia-Cairasco N, Umeoka EHDL. Evaluation of the HPA Axis' Response to Pharmacological Challenges in Experimental and Clinical Early-Life Stress-Associated Depression. eNeuro 2021; 8:ENEURO.0222-20.2020. [PMID: 33318074 PMCID: PMC7814478 DOI: 10.1523/eneuro.0222-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 02/08/2023] Open
Abstract
Early-life stress (ELS) is associated with a higher risk of psychopathologies in adulthood, such as depression, which may be related to persistent changes in the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to evaluate the effects of ELS on the functioning of the HPA axis in clinical and experimental situations. Clinically, patients with current depressive episodes, with and without ELS, and healthy controls, composed the sample. Subjects took a capsule containing placebo, fludrocortisone, prednisolone, dexamethasone or spironolactone followed by an assessment of plasma cortisol the morning after. Experimentally, male Wistar rats were submitted to ELS protocol based on variable, unpredictable stressors from postnatal day (PND)1 to PND21. On PND65 animals were behaviorally evaluated through the forced-swimming test (FST). At PND68, pharmacological challenges started, using mifepristone, dexamethasone, spironolactone, or fludrocortisone, and corticosterone levels were determined 3 h after injections. Cortisol response of the patients did not differ significantly from healthy subjects, regardless of their ELS history, and it was lower after fludrocortisone, prednisolone, and dexamethasone compared with placebo, indicating the suppression of plasma cortisol by all these treatments. Animals exposed to ELS presented altered phenotype as indicated by an increased immobility time in the FST when compared with control, but no significant long-lasting effects of ELS were observed on the HPA axis response. Limitations on the way the volunteers were sampled may have contributed to the lack of ELS effects on the HPA axis, pointing out the need for further research to understand these complex phenomena.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Cristiane Von Werne Baes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | | | - Nayanne Beckmann Bosaipo
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Marcia Santos da Silva Umeoka
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
- Research Group on Neurobiology of Behavior, Cognition and Emotions, Faculty of Medicine, University Center Unicerrado, Goiatuba, 75600-000, Brazil
| | - Julian Tejada
- Psychology Department, Federal University of Sergipe, São Cristóvão, 49100-000, Brazil
| | - José Antunes-Rodrigues
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Margaret de Castro
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Mario Francisco Juruena
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
- Department of Psychological Medicine, Kings College London, London, SE5 8AF, United Kingdom
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, 14040-900, Brazil
- Research Group on Neurobiology of Behavior, Cognition and Emotions, Faculty of Medicine, University Center Unicerrado, Goiatuba, 75600-000, Brazil
| |
Collapse
|
24
|
Podgorny OV, Gulyaeva NV. Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J Neurochem 2020; 157:370-392. [PMID: 33301616 DOI: 10.1111/jnc.15265] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
A comprehensive overview of the interplay between glucocorticoids (GCs) and adult hippocampal neurogenesis (AHN) is presented, particularly, in the context of a diseased brain. The effectors of GCs in the dentate gyrus neurogenic niche of the hippocampal are reviewed, and the consequences of the GC signaling on the generation and integration of new neurons are discussed. Recent findings demonstrating how GC signaling mediates impairments of the AHN in various brain pathologies are overviewed. GC-mediated effects on the generation and integration of adult-born neurons in the hippocampal dentate gyrus depend on the nature, severity, and duration of the acting stress factor. GCs realize their effects on the AHN primarily via specific glucocorticoid and mineralocorticoid receptors. Disruption of the reciprocal regulation between the hypothalamic-pituitary-adrenal (HPA) axis and the generation of the adult-born granular neurons is currently considered to be a key mechanism implicating the AHN into the pathogenesis of numerous brain diseases, including those without a direct hippocampal damage. These alterations vary from reduced proliferation of stem and progenitor cells to increased cell death and abnormalities in morphology, connectivity, and localization of young neurons. Although the involvement of the mutual regulation between the HPA axis and the AHN in the pathogenesis of cognitive deficits and mood impairments is evident, several unresolved critical issues are stated. Understanding the details of GC-mediated mechanisms involved in the alterations in AHN could enable the identification of molecular targets for ameliorating pathology-induced imbalance in the HPA axis/AHN mutual regulation to conquer cognitive and psychiatric disturbances.
Collapse
Affiliation(s)
- Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, Russia
| |
Collapse
|
25
|
Cushman JD, Drew MR, Krasne FB. The environmental sculpting hypothesis of juvenile and adult hippocampal neurogenesis. Prog Neurobiol 2020; 199:101961. [PMID: 33242572 DOI: 10.1016/j.pneurobio.2020.101961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
We propose that a major contribution of juvenile and adult hippocampal neurogenesis is to allow behavioral experience to sculpt dentate gyrus connectivity such that sensory attributes that are relevant to the animal's environment are more strongly represented. This "specialized" dentate is then able to store a larger number of discriminable memory representations. Our hypothesis builds on accumulating evidence that neurogenesis declines to low levels prior to adulthood in many species. Rather than being necessary for ongoing hippocampal function, as several current theories posit, we argue that neurogenesis has primarily a prospective function, in that it allows experience to shape hippocampal circuits and optimize them for future learning in the particular environment in which the animal lives. Using an anatomically-based simulation of the hippocampus (BACON), we demonstrate that environmental sculpting of this kind would reduce overlap among hippocampal memory representations and provide representation cells with more information about an animal's current situation; consequently, it would allow more memories to be stored and accurately recalled without significant interference. We describe several new, testable predictions generated by the sculpting hypothesis and evaluate the hypothesis with respect to existing evidence. We argue that the sculpting hypothesis provides a strong rationale for why juvenile and adult neurogenesis occurs specifically in the dentate gyrus and why it declines significantly prior to adulthood.
Collapse
Affiliation(s)
- Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, United States.
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States.
| | - Franklin B Krasne
- Department of Psychology, University of California Los Angeles, Box 951563, Los Angeles, CA 90095-1563, United States.
| |
Collapse
|
26
|
Eagleson KL, Villaneuva M, Southern RM, Levitt P. Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress 2020; 13:100251. [PMID: 33344706 PMCID: PMC7739184 DOI: 10.1016/j.ynstr.2020.100251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Exposure to early-life stress (ELS) increases risk for poor mental and physical health outcomes that emerge at different stages across the lifespan. Yet, how age interacts with ELS to impact the expression of specific phenotypes remains largely unknown. An established limited-bedding paradigm was used to induce ELS in mouse pups over the early postnatal period. Initial analyses focused on the hippocampus, based on documented sensitivity to ELS in humans and various animal models, and the large body of data reporting anatomical and physiological outcomes in this structure using this ELS paradigm. An unbiased discovery proteomics approach revealed distinct adaptations in the non-nuclear hippocampal proteome in male versus female offspring at two distinct developmental stages: juvenile and adult. Gene ontology and KEGG pathway analyses revealed significant enrichment in proteins associated with mitochondria and the oxidative phosphorylation (OXPHOS) pathway in response to ELS in female hippocampus only. To determine whether the protein adaptations to ELS reflected altered function, mitochondrial respiration (driven through complexes II-IV) and complex I activity were measured in isolated hippocampal mitochondria using a Seahorse X96 Flux analyzer and immunocapture ELISA, respectively. ELS had no effect on basal respiration in either sex at either age. In contrast, ELS increased OXPHOS capacity in juvenile males and females, and reduced OXPHOS capacity in adult females but not adult males. A similar pattern of ELS-induced changes was observed for complex I activity. These data suggest that initial adaptations in juvenile hippocampus due to ELS were not sustained in adults. Mitochondrial adaptations to ELS were also exhibited peripherally by liver. Overall, the temporal distinctions in mitochondrial responses to ELS show that ELS-generated adaptations and outcomes are complex over the lifespan. This may contribute to differences in the timing of appearance of mental and physical disturbances, as well as potential sex differences that influence only select outcomes.
Collapse
Key Words
- AA, antimycin A
- ADP, adenosine diphosphate
- CI, confidence interval
- Complex I activity
- ELS, early-life stress
- Early-life stress
- FCCP, carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone
- GO, gene ontology
- HCD, high energy C-trap dissociation
- Hippocampus
- Liver
- MS/MS, tandem mass spectrometry
- Mitochondrial respiration
- OCR, oxygen consumption rate
- OXPHOS, oxidative phosphorylation
- P, postnatal day
- Proteomics
- SCX, strong cation exchange
- iTRAQ, isobaric tag for relative and absolute quantitation
- oligo, oligomycin
Collapse
Affiliation(s)
- Kathie L. Eagleson
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Miranda Villaneuva
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rebecca M. Southern
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pat Levitt
- Department of Pediatrics and Program in Developmental Neuroscience and Neurogenetics, USA
- The Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Sex differences in health and disease: A review of biological sex differences relevant to cancer with a spotlight on glioma. Cancer Lett 2020; 498:178-187. [PMID: 33130315 DOI: 10.1016/j.canlet.2020.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The influence of biological sex differences on human health and disease, while being increasingly recognized, has long been underappreciated and underexplored. While humans of all sexes are more alike than different, there is evidence for sex differences in the most basic aspects of human biology and these differences have consequences for the etiology and pathophysiology of many diseases. In a disease like cancer, these consequences manifest in the sex biases in incidence and outcome of many cancer types. The ability to deliver precise, targeted therapies to complex cancer cases is limited by our current understanding of the underlying sex differences. Gaining a better understanding of the implications and interplay of sex differences in diseases like cancer will thus be informative for clinical practice and biological research. Here we review the evidence for a broad array of biological sex differences in humans and discuss how these differences may relate to observed sex differences in various diseases, including many cancers and specifically glioblastoma. We focus on areas of human biology that play vital roles in healthy and disease states, including metabolism, development, hormones, and the immune system, and emphasize that the intersection of sex differences in these areas should not go overlooked. We further propose that mathematical approaches can be useful for exploring the extent to which sex differences affect disease outcomes and accounting for those in the development of therapeutic strategies.
Collapse
|
28
|
van der Veen R, Bonapersona V, Joëls M. The relevance of a rodent cohort in the Consortium on Individual Development. Dev Cogn Neurosci 2020; 45:100846. [PMID: 32957026 PMCID: PMC7509002 DOI: 10.1016/j.dcn.2020.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
One of the features of the Consortium on Individual Development is the existence of a rodent cohort, in parallel with the human cohorts. Here we give an overview of the current status. We first elaborate on the choice of rat and mouse models mimicking early life adverse or beneficial conditions during development. We performed a systematic literature search on early life adversity and adult social behavior to address the status quo. Next, we describe the behavioral tasks we used and designed to examine behavioral control and social competence in rodents. The results so far indicate that manipulation of the environment in the first postnatal week only subtly affects social behavior. Stronger effects were seen in the model that targeted early adolescence; once adult, these rats are characterized by increased attention, a higher degree of impulsiveness and reduced social interest in peers. Many experiments in our rodent models with tightly controlled conditions were inspired by findings in human cohorts, and now allow in-depth mechanistic investigations. Vice versa, some of the findings in rodents are currently followed up by dedicated investigations in the human cohorts. This exemplifies the added value of animal investigations in a consortium encompassing primarily human developmental cohorts.
Collapse
Affiliation(s)
- Rixt van der Veen
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioral Sciences, Leiden University, Leiden, the Netherlands.
| | - Valeria Bonapersona
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marian Joëls
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
29
|
Sachser N, Zimmermann TD, Hennessy MB, Kaiser S. Sensitive phases in the development of rodent social behavior. Curr Opin Behav Sci 2020; 36:63-70. [PMID: 34337112 DOI: 10.1016/j.cobeha.2020.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, we summarize recent advances on how environmental influences during sensitive phases alter the social behavioral phenotype of rodents later in life. Current studies support the view that the prenatal, early postnatal and adolescent periods of life can be regarded as sensitive phases. Environmental cues acting on the organism during these phases have a wide variety of effects on adult social behavior. One pattern that emerges across species and sensitive phases is that adversity tends to reduce social interactions and particularly affiliative social behavior. Concerning underlying mechanisms, various hormones can be involved; however, glucocorticoids frequently serve as the signal instigating plasticity. There is also increasing appreciation of non-endocrine mechanisms, specifically epigenetics and the microbiome. Concerning function, some evidence exists that sensitive phase outcomes adjust the individual's social phenotype to the nature of the social environment to be present during adulthood and breeding, though additional empirical support is still needed.
Collapse
Affiliation(s)
- Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Tobias D Zimmermann
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Michael B Hennessy
- Department of Psychology, Wright State University, Dayton, OH 45435, USA
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
30
|
Farinetti A, Aspesi D, Marraudino M, Marzola E, Abbate-Daga G, Gotti S. Maternal Separation in ABA Rats Promotes Cell Proliferation in the Dentate Gyrus of the Hippocampus. Neuroscience 2020; 446:238-248. [PMID: 32795557 DOI: 10.1016/j.neuroscience.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/26/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
Anorexia nervosa (AN) is a serious eating disorder characterized by self-starvation and excessive weight loss. Several studies support the idea that life stressors during the postnatal period could play a pivotal role in the pathogenesis of AN, underlying the multifactorial etiology of this disease. The activity-based anorexia (ABA) animal model mimics core features of the mental disorder, including severe food restriction, weight loss, and hyperactivity. Previous results obtained in our lab showed that maternal separation (MS) induces behavioral changes in anorexic-like ABA rats in a sexually dimorphic way: in females, the MS promoted hyperactivity and a less anxious-like phenotype in ABA animals; in males, instead, the MS attenuated the anxiolytic effect of the ABA protocol. These results led us to investigate the effect of the MS on brain areas involved in the control of the anxiety-like behavior. We focused our attention on the adult hippocampal neurogenesis, a process involved in the response to environmental stimuli and stressful condition. We analyzed the volume of the whole hippocampus and the proliferation rate in the dentate gyrus (DG) by quantifying Ki67-cells density and characterizing neuronal phenotype (DCX) and glial cells (GFAP) with double-fluorescence technique. The results obtained showed that only in maternally separated anorexic rats there is an increase of proliferation in DG, underlying the presence of a synergic effect of MS and ABA that boost the proliferation of new neurons and glia progenitors in a more evident way in females in comparison to males.
Collapse
Affiliation(s)
- Alice Farinetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy; NICO-Neuroscience Institute Cavalieri Ottolenghi, Orbassano, 10043 Turin, Italy
| | - Dario Aspesi
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marilena Marraudino
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy; NICO-Neuroscience Institute Cavalieri Ottolenghi, Orbassano, 10043 Turin, Italy
| | - Enrica Marzola
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy; Eating Disorders Unit of AOU Città della Salute e della Scienza, University of Turin, 10126 Turin, Italy
| | - Giovanni Abbate-Daga
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy; Eating Disorders Unit of AOU Città della Salute e della Scienza, University of Turin, 10126 Turin, Italy
| | - Stefano Gotti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10126 Turin, Italy; NICO-Neuroscience Institute Cavalieri Ottolenghi, Orbassano, 10043 Turin, Italy.
| |
Collapse
|
31
|
Sex differences in the interactive effects of early life stress and the endocannabinoid system. Neurotoxicol Teratol 2020; 80:106893. [PMID: 32437941 DOI: 10.1016/j.ntt.2020.106893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Sex differences in both the endocannabinoid system and stress responses have been established for decades. While there is ample evidence that the sexes respond differently to stress and that the endocannabinoid system is involved in this response, what is less clear is whether the endocannabinoid system mediates this response to stress differently in both sexes. Also, do the sexes respond similarly to exogenous cannabinoids (CBs) following stress? Can the administration of exogenous CBs normalize the effects of stress and if so, does this happen similarly in male and female subjects? This review will attempt to delineate the stress induced neurochemical alterations in the endocannabinoid system and the resulting behavioral changes across periods of development: prenatal, early neonatal or adolescent in males and females. Within this frame work, we will then examine the neurochemical and behavioral effects of exogenous CBs and illustrate that the response to CBs is determined by the stress history of the animal. The theoretical framework for this endeavor relates to the established effects of adverse childhood experiences (ACE) in increasing substance abuse, depression and anxiety and the possibility that individuals with high ACE scores may consume cannabinoids to "self-medicate". Overall, we see that while there are instances where exogenous cannabinoids "normalize" the adverse effects produced by early stress, this normalization does not occur in all animal models with any sort of consistency. The most compelling report where CB administration appears to normalize behaviors altered by early stress, shows minimal differences between the sexes (Alteba et al., 2016). This is in stark contrast to the majority of studies on early stress and the endocannabinoid system where both sexes are included and show quite divergent, in fact opposite, effects in males and females. Frequently there is a disconnect between neurochemical changes and behavioral changes and often, exogenous CBs have greater effects in stressed animals compared to non-stressed controls. This report as well as others reviewed here do support the concept that the effects of exogenous CBs are different in individuals experiencing early stress and that these differences are not equal in males and females. However, due to the wide variety of stressors used and the range of ages when the stress is applied, additional careful studies are warranted to fully understand the interactive effects of stress and the endocannabinoid system in males and females. In general, the findings do not support the statement that CB self-administration is an effective treatment for the adverse behavioral effects of early maltreatment in either males or females. Certainly this review should draw the attention of clinicians working with children, adolescents and adults exposed to early trauma and provide some perspective on the dysregulation of the endocannabinoid system in the response to trauma, the complex actions of exogenous CBs based on stress history and the unique effects of these factors in men and women.
Collapse
|
32
|
Murthy S, Gould E. How Early Life Adversity Influences Defensive Circuitry. Trends Neurosci 2020; 43:200-212. [PMID: 32209452 DOI: 10.1016/j.tins.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Childhood maltreatment increases the likelihood of developing anxiety disorders in humans. Early life adversity (ELA) paradigms in rodents produce lasting increases in avoidant and inhibitory responses to both immediate and nonspecific threats, collectively referred to as defensive behaviors. This approach provides an opportunity to thoroughly investigate the underlying mechanisms, an effort that is currently under way. In this review, we consider the growing literature indicating that ELA alters the rhythmic firing of neurons in brain regions associated with defensive behavior, as well as potential neuronal, glial, and extracellular matrix contributions to functional changes in this circuitry. We also consider how ELA studies in rodents may inform us about both susceptible and resilient outcomes in humans.
Collapse
Affiliation(s)
- Sahana Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
33
|
Abbink MR, Schipper L, Naninck EF, de Vos CM, Meier R, van der Beek EM, Lucassen PJ, Korosi A. The Effects of Early Life Stress, Postnatal Diet Modulation, and Long-Term Western-Style Diet on Later-Life Metabolic and Cognitive Outcomes. Nutrients 2020; 12:nu12020570. [PMID: 32098348 PMCID: PMC7071477 DOI: 10.3390/nu12020570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/27/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Early life stress (ES) increases the risk to develop metabolic and brain disorders in adulthood. Breastfeeding (exclusivity and duration) is associated with improved metabolic and neurocognitive health outcomes, and the physical properties of the dietary lipids may contribute to this. Here, we tested whether early life exposure to dietary lipids mimicking some physical characteristics of breastmilk (i.e., large, phospholipid-coated lipid droplets; Concept Nuturis® infant milk formula (N-IMF)), could protect against ES-induced metabolic and brain abnormalities under standard circumstances, and in response to prolonged Western-style diet (WSD) in adulthood. ES was induced by exposing mice to limited nesting material from postnatal day (P) 2 to P9. From P16 to P42, male offspring were fed a standard IMF (S-IMF) or N-IMF, followed by either standard rodent diet (SD) or WSD until P230. We then assessed body composition development, fat mass, metabolic hormones, hippocampus-dependent cognitive function, and neurogenesis (proliferation and survival). Prolonged WSD resulted in an obesogenic phenotype at P230, which was not modulated by previous ES or N-IMF exposure. Nevertheless, ES and N-IMF modulated the effect of WSD on neurogenesis at P230, without affecting cognitive function, highlighting programming effects of the early life environment on the hippocampal response to later life challenges at a structural level.
Collapse
Affiliation(s)
- Maralinde R. Abbink
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Lidewij Schipper
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.S.); (E.M.v.d.B.)
| | - Eva F.G. Naninck
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Cato M.H. de Vos
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Romy Meier
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Eline M. van der Beek
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (L.S.); (E.M.v.d.B.)
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
| | - Aniko Korosi
- Brain Plasticity Group, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.R.A.); (R.M.); (P.J.L.)
- Correspondence: ; Tel.: +0031205257638
| |
Collapse
|
34
|
Gustus K, Lozano E, Newville J, Li L, Valenzuela CF, Cunningham LA. Resistance of Postnatal Hippocampal Neurogenesis to Alcohol Toxicity in a Third Trimester-Equivalent Mouse Model of Gestational Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:2504-2513. [PMID: 31573091 DOI: 10.1111/acer.14207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/22/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The adult hippocampal dentate is comprised of both developmentally generated dentate granule cells (dDGCs) and adult-generated dentate granule cells (aDGCs), which play distinct roles in hippocampal information processing and network function. EtOH exposure throughout gestation in mouse impairs the neurogenic response to enriched environment (EE) in adulthood, although the basal rate of adult neurogenesis under standard housing (SH) is unaffected. Here, we tested whether the production and/or survival of either dDGCs or aDGCs are selectively impaired following exposure of mice to EtOH vapors during early postnatal development (human third trimester-equivalent), and whether this exposure paradigm leads to impairment of EE-mediated dentate neurogenesis in adulthood. METHODS All experiments were performed using NestinCreERT2 :tdTomato bitransgenic mice, which harbor a tamoxifen-inducible tdTomato (tdTom) reporter for indelible labeling of newborn hippocampal DGCs. We exposed all mice to EtOH vapor or room air (Control) for 4 h/d from postnatal day (PND) 3 through PND 15. This paradigm resulted in a mean daily postexposure blood EtOH concentration of ~160 mg/dl. One cohort of neonatal mice received a single injection of tamoxifen at PND 2 and was sacrificed at either PND 16 or PND 50 to assess the impact of EtOH exposure on the production and long-term survival of dDGCs born during the early postnatal period. A second cohort of mice received daily injections of tamoxifen at PND 35 to 39 to label aDGCs and was exposed to SH or EE for 6 weeks prior to sacrifice. RESULTS Early postnatal EtOH exposure had no statistically significant effect on the production or survival of tdTom+ dDGCs, as assessed at PND 16 or PND 50. Early postnatal EtOH exposure also had no effect on the number of tdTom+ aDGCs under SH conditions. Furthermore, early postnatal EtOH exposure had no significant impact on the adult neurogenic response to EE. CONCLUSIONS Both early postnatal dentate neurogenesis and adult dentate neurogenesis, as well as the adult neurogenic response to EE, are surprisingly resistant to early postnatal EtOH vapor exposure in mice.
Collapse
Affiliation(s)
- Kymberly Gustus
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Evelyn Lozano
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Jessie Newville
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Lu Li
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | - Lee Anna Cunningham
- Department of Neuroscience, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
35
|
Perry RE, Rincón-Cortés M, Braren SH, Brandes-Aitken AN, Opendak M, Pollonini G, Chopra D, Raver CC, Alberini CM, Blair C, Sullivan RM. Corticosterone administration targeting a hypo-reactive HPA axis rescues a socially-avoidant phenotype in scarcity-adversity reared rats. Dev Cogn Neurosci 2019; 40:100716. [PMID: 31704654 PMCID: PMC6939642 DOI: 10.1016/j.dcn.2019.100716] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/07/2019] [Accepted: 10/01/2019] [Indexed: 01/22/2023] Open
Abstract
It is well-established that children from low-income, under-resourced families are at increased risk of altered social development. However, the biological mechanisms by which poverty-related adversities can “get under the skin” to influence social behavior are poorly understood and cannot be easily ascertained using human research alone. This study utilized a rodent model of “scarcity-adversity,” which encompasses material resource deprivation (scarcity) and reduced caregiving quality (adversity), to explore how early-life scarcity-adversity causally influences social behavior via disruption of developing stress physiology. Results showed that early-life scarcity-adversity exposure increased social avoidance when offspring were tested in a social approach test in peri-adolescence. Furthermore, early-life scarcity-adversity led to blunted hypothalamic-pituitary-adrenal (HPA) axis activity as measured via adrenocorticotropic hormone (ACTH) and corticosterone (CORT) reactivity following the social approach test. Western blot analysis of brain tissue revealed that glucocorticoid receptor levels in the dorsal (but not ventral) hippocampus and medial prefrontal cortex were significantly elevated in scarcity-adversity reared rats following the social approach test. Finally, pharmacological repletion of CORT in scarcity-adversity reared peri-adolescents rescued social behavior. Our findings provide causal support that early-life scarcity-adversity exposure negatively impacts social development via a hypocorticosteronism-dependent mechanism, which can be targeted via CORT administration to rescue social behavior.
Collapse
Affiliation(s)
- Rosemarie E Perry
- Department of Applied Psychology, New York University, 627 Broadway, New York, NY 10012, USA.
| | - Millie Rincón-Cortés
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine, 1 Park Ave, New York, NY 10016, USA.
| | - Stephen H Braren
- Department of Applied Psychology, New York University, 627 Broadway, New York, NY 10012, USA.
| | - Annie N Brandes-Aitken
- Department of Applied Psychology, New York University, 627 Broadway, New York, NY 10012, USA.
| | - Maya Opendak
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine, 1 Park Ave, New York, NY 10016, USA.
| | - Gabriella Pollonini
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| | - Divija Chopra
- Department of Applied Psychology, New York University, 627 Broadway, New York, NY 10012, USA.
| | - C Cybele Raver
- Department of Applied Psychology, New York University, 627 Broadway, New York, NY 10012, USA.
| | - Cristina M Alberini
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| | - Clancy Blair
- Department of Applied Psychology, New York University, 627 Broadway, New York, NY 10012, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine, 1 Park Ave, New York, NY 10016, USA.
| |
Collapse
|
36
|
Fu Y, Xiao Y, Du M, Mao C, Fu G, Yang L, Liu X, Sweeney JA, Lui S, Yan Z. Brain Structural Alterations in Left-Behind Children: A Magnetic Resonance Imaging Study. Front Neural Circuits 2019; 13:33. [PMID: 31133820 PMCID: PMC6517480 DOI: 10.3389/fncir.2019.00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 04/15/2019] [Indexed: 02/05/2023] Open
Abstract
Parental migration has caused millions of children left behind, especially in China and India. Left-behind children (LBC) have a high risk of mental disorders and may present negative life outcomes in the future. However, little is known whether there are cerebral structural alterations in LBC in relative to those with parents. This study is to explore the effect of parental migration on brain maturation by comparing gray matter volume (GMV) and fractional anisotropy (FA) of LBC with well-matched non-LBC. Thirty-eight LBC (21 boys, age = 9.60 ± 1.8 years) and 30 non-LBC (19 boys, age = 10.00 ± 1.95 years) were recruited and underwent brain scans in 3.0 T MR. Intelligence quotient and other factors including family income, guardians’ educational level and separation time were also acquired. GMV and FA were measured for each participant and compared between groups using 2-sample t-tests with atlas-based analysis. Compared to non-LBC, LBC exhibited greater GMV in emotional and cortico-striato-thalamo-cortical circuits, and altered FA in bilateral superior occipitofrontal fasciculi and right medial lemniscus (p < 0.05, Cohen’s d > 0.89, corrected for false-discovery rate). Other factors including family income, guardians’ educational level and separation time were not associated with these brain changes. Our study provides empirical evidence of altered brain structure in LBC compared to non-LBC, responsible for emotion regulation and processing, which may account for mental disorders and negative life outcome of LBC. Our study suggests that absence of direct biological parental care may impact children’s brain development. Therefore, public health efforts may be needed to provide additional academic and social/emotional supports to LBC when their parents migrate to seeking better economic circumstances, which has become increasingly common in developing countries.
Collapse
Affiliation(s)
- Yuchuan Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuan Xiao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Meimei Du
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chuanwan Mao
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui Fu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Lili Yang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaozheng Liu
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - John A Sweeney
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Su Lui
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
37
|
Ströher R, de Oliveira C, Costa Lopes B, da Silva LS, Regner GG, Richardt Medeiros H, de Macedo IC, Caumo W, Torres ILS. Maternal deprivation alters nociceptive response in a gender-dependent manner in rats. Int J Dev Neurosci 2019; 76:25-33. [PMID: 31071409 DOI: 10.1016/j.ijdevneu.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 04/07/2019] [Accepted: 05/03/2019] [Indexed: 12/27/2022] Open
Abstract
The present study aimed at investigating both the early and long-term effects of maternal deprivation as well as gender on neuromotor reflexes, anxiety behavior and thermal nociceptive responses. A total of 64 Wistar rats pups (32 males, 32 females) were utilized and were deprived of their mother for 3 h/daily, from postnatal day 1 (P1) until P10. Successively, animals were divided into 2 groups: control group (C) - pups no subjected to intervention; and the maternal-deprived group (MD): pups subjected to maternal deprivation. The neuromotor reflexes were evaluated through the righting reflex and negative geotaxis tests; the exploratory behavior by open field test (OFT); the anxiety-like behavior by elevated plus-maze test (EPM); the thermal nociceptive responses byhot plate (HP) and tail-flick (TFL) tests. All the animals subjected to maternal deprivation showed a delayed reflex response at P8 in the negative geotaxis test. In contrast, the OFT at P20 identified an effect of gender on the outer crossings and grooming as well as an interaction between gender and maternal deprivation on latency. Additionally, effect of maternal deprivation in the open and closed arms as well as gender effect in the protected head-dipping (PHD) and non-protected head-dipping (NPHD) were observed at P20 (EPM). In contrast, there were a gender effect on latency and an interaction between gender and maternal deprivation on rearing at P42. Moreover, in nociceptive tests was observed an analgesic effect induced by maternal deprivation; however, in the TFL test, only deprived females showed this effect. Surprisingly, only control animals presented an ontogeny nociceptive effect in the HP testat P21 and P43, which may be related to an increase in the inhibitory nociceptive pathways throughout life. In this way, we suggest maternal deprivation to be able to anticipate the maturation of the inhibitory nociceptive pathway. In conclusion, maternal deprivation induced a delayed reflex response at P8 and altered the anxiety and nociceptive behaviors according to the time after exposure to this stressor, in a gender-specific manner.
Collapse
Affiliation(s)
- Roberta Ströher
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica-Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | - Carla de Oliveira
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bettega Costa Lopes
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lisiane Santos da Silva
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriela Gregory Regner
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica-Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil
| | - Helouise Richardt Medeiros
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isabel Cristina de Macedo
- Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Universidade Federal do Pampa, São Gabriel, RS, Brazil
| | - Wolnei Caumo
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Programa de Pós-Graduação em Ciências Biológicas, Farmacologia e Terapêutica-Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Departamento de Farmacologia, Instituto de CiênciasBásicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Laboratório de Farmacologia da Dor e Neuromodulação, Investigações Pré-clínicas, Departamento de Farmacologia, ICBS, UFRGS, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas, Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
38
|
Abbink MR, van Deijk ALF, Heine VM, Verheijen MH, Korosi A. The involvement of astrocytes in early-life adversity induced programming of the brain. Glia 2019; 67:1637-1653. [PMID: 31038797 PMCID: PMC6767561 DOI: 10.1002/glia.23625] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/29/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022]
Abstract
Early‐life adversity (ELA) in the form of stress, inflammation, or malnutrition, can increase the risk of developing psychopathology or cognitive problems in adulthood. The neurobiological substrates underlying this process remain unclear. While neuronal dysfunction and microglial contribution have been studied in this context, only recently the role of astrocytes in early‐life programming of the brain has been appreciated. Astrocytes serve many basic roles for brain functioning (e.g., synaptogenesis, glutamate recycling), and are unique in their capacity of sensing and integrating environmental signals, as they are the first cells to encounter signals from the blood, including hormonal changes (e.g., glucocorticoids), immune signals, and nutritional information. Integration of these signals is especially important during early development, and therefore we propose that astrocytes contribute to ELA induced changes in the brain by sensing and integrating environmental signals and by modulating neuronal development and function. Studies in rodents have already shown that ELA can impact astrocytes on the short and long term, however, a critical review of these results is currently lacking. Here, we will discuss the developmental trajectory of astrocytes, their ability to integrate stress, immune, and nutritional signals from the early environment, and we will review how different types of early adversity impact astrocytes.
Collapse
Affiliation(s)
- Maralinde R Abbink
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Anne-Lieke F van Deijk
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Mark H Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Cowan CSM, Stylianakis AA, Richardson R. Early-life stress, microbiota, and brain development: probiotics reverse the effects of maternal separation on neural circuits underpinning fear expression and extinction in infant rats. Dev Cogn Neurosci 2019; 37:100627. [PMID: 30981894 PMCID: PMC6969299 DOI: 10.1016/j.dcn.2019.100627] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022] Open
Abstract
Early-life stress has pervasive, typically detrimental, effects on physical and mental health across the lifespan. In rats, maternal-separation stress results in premature expression of an adult-like profile of fear regulation that predisposes stressed rats to persistent fear, one of the hallmarks of clinical anxiety. Probiotic treatment attenuates the effects of maternal separation on fear regulation. However, the neural pathways underlying these behavioral changes are unknown. Here, we examined the neural correlates of stress-induced alterations in fear behavior and their reversal by probiotic treatment. Male Sprague-Dawley rats were exposed to either standard rearing conditions or maternal-separation stress (postnatal days [P] 2–14). Some maternally-separated (MS) animals were also exposed to probiotics (Lactobacillus rhamnosus and L. helveticus) via the maternal drinking water during the period of stress. Using immunohistochemistry, we demonstrated that stressed rat pups prematurely exhibit adult-like engagement of the medial prefrontal cortex during fear regulation, an effect that can be prevented using a probiotic treatment. The present results add to the cross-species evidence that early adversity hastens maturation in emotion-related brain circuits. Importantly, our results also demonstrate that the precocious neural maturation in stressed infants is prevented by a non-invasive probiotic treatment.
Collapse
Affiliation(s)
- Caitlin S M Cowan
- School of Psychology, The University of New South Wales, Sydney, Australia.
| | | | - Rick Richardson
- School of Psychology, The University of New South Wales, Sydney, Australia
| |
Collapse
|
40
|
Kolmogorova D, Paré C, Kostuck S, Hudson EC, Lebel N, Houlding E, Gregory JG, Ismail N. Pubertal immune stress transiently alters spatial memory processes in adulthood. Psychoneuroendocrinology 2019; 102:261-272. [PMID: 30594819 DOI: 10.1016/j.psyneuen.2018.12.224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/20/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023]
Abstract
Pubertal immune challenge can permanently alter hippocampus-dependent memory processes in a sex-specific manner. Although gonadal hormones can influence various cognitive processes, their role in regulating the cognitive sequelae to pubertal immune challenge has not been thoroughly assessed. We examined whether a pubertal immune challenge could affect hippocampus-dependent memory functions in adulthood and whether these effects are regulated by gonadal steroid hormones. We hypothesized that exposure to an immune challenge during puberty would induce sex-specific deficits in the behavioral and cellular correlates of hippocampus-dependent memory during adulthood. At six weeks of age, during the stress-vulnerable pubertal period, male and female CD-1 mice were injected with either saline or the bacterial endotoxin lipopolysaccharide (LPS). Three weeks later, mice underwent either gonadectomy or sham-surgery. At ten weeks of age (i.e., in adulthood), mice began behavioral testing in an open field, Barnes maze, and Morris water maze. Brain tissue was collected at 17 weeks of age and stained for doublecortin and Ki67 to examine migrating neuronal progenitor cells and cellular proliferation in the neurogenic subgranular zone (SGZ) and the cornus ammonis (CA)1 and CA3 regions of the hippocampus. Pubertal LPS treatment impaired learning during adulthood in both sexes and increased cellular proliferation in the CA1 region in castrated males only. Although adult sex hormones did not reliably modulate these changes, gonadectomy impaired learning during the Morris water maze in both sexes. Learning deficits were more prominent during the Barnes maze, which suggests a stress-dependent expression of LPS-induced cognitive deficits. Neurogenesis in the SGZ and cellular proliferation in the CA3 were not affected by pubertal LPS treatment or gonadectomy. These novel findings emphasize the sensitivity of developing cognitive processes during puberty to immune challenges and suggest a possible mechanism for learning-based difficulties in adulthood.
Collapse
Affiliation(s)
- Daria Kolmogorova
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Catherine Paré
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sarah Kostuck
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ella Christine Hudson
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Nicholas Lebel
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Elizabeth Houlding
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - James Gardner Gregory
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada; Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
41
|
Umeoka EHL, Robinson EJ, Turimella SL, van Campen JS, Motta-Teixeira LC, Sarabdjitsingh RA, Garcia-Cairasco N, Braun K, de Graan PN, Joëls M. Hyperthermia-induced seizures followed by repetitive stress are associated with age-dependent changes in specific aspects of the mouse stress system. J Neuroendocrinol 2019; 31:e12697. [PMID: 30773738 DOI: 10.1111/jne.12697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/04/2019] [Accepted: 02/13/2019] [Indexed: 11/28/2022]
Abstract
Stress is among the most frequently self-reported factors provoking epileptic seizures in children and adults. It is still unclear, however, why some people display stress-sensitive seizures and others do not. Recently, we showed that young epilepsy patients with stress-sensitive seizures exhibit a dysregulated hypothalamic-pituitary-adrenal (HPA)-axis. Most likely, this dysregulation gradually develops, and is triggered by stressors occurring early in life (early-life stress [ELS]). ELS may be particularly impactful when overlapping with the period of epileptogenesis. To examine this in a controlled and prospective manner, the present study investigated the effect of repetitive variable stressors or control treatment between postnatal day (PND) 12 and 24 in male mice exposed on PND10 to hyperthermia (HT)-induced prolonged seizures (control: normothermia). A number of peripheral and central indices of HPA-axis activity were evaluated at pre-adolescent and young adult age (ie, at PND25 and 90, respectively). At PND25 but not at PND90, body weight gain and absolute as well as relative (to body weight) thymus weight were reduced by ELS (vs control), whereas relative adrenal weight was enhanced, confirming the effectiveness of the stress treatment. Basal and stress-induced corticosterone levels were unaffected, though, by ELS at both ages. HT by itself did not affect any of these peripheral markers of HPA-axis activity, nor did it interact with ELS. However, centrally we did observe age-specific interaction effects of HT and ELS with regard to hippocampal glucocorticoid receptor mRNA expression, neurogenesis with the immature neurone marker doublecortin and the number of hilar (ectopic) granule cells using Prox1 staining. This lends some support to the notion that exposure to repetitive stress after HT-induced seizures may dysregulate central components of the stress system in an age-dependent manner. Such dysregulation could be one of the mechanisms conferring higher vulnerability of individuals with epilepsy to develop seizures in the face of stress.
Collapse
Affiliation(s)
- Eduardo H L Umeoka
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Edward J Robinson
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Sada Lakshmi Turimella
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jolien S van Campen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lívia C Motta-Teixeira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - R Angela Sarabdjitsingh
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kees Braun
- Department of Pediatric Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pierre N de Graan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marian Joëls
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Yam K, Schipper L, Reemst K, Ruigrok SR, Abbink MR, Hoeijmakers L, Naninck EFG, Zarekiani P, Oosting A, Van Der Beek EM, Lucassen PJ, Korosi A. Increasing availability of ω‐3 fatty acid in the early‐life diet prevents the early‐life stress‐induced cognitive impairments without affecting metabolic alterations. FASEB J 2019; 33:5729-5740. [DOI: 10.1096/fj.201802297r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kit‐Yi Yam
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | | | - Kitty Reemst
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Silvie R. Ruigrok
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Maralinde R. Abbink
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Lianne Hoeijmakers
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Eva F. G. Naninck
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Parand Zarekiani
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | | | - Eline M. Van Der Beek
- Danone Nutricia Research Utrecht The Netherlands
- Department of PediatricsUniversity Medical Centre GroningenUniversity of Groningen Groningen The Netherlands
| | - Paul J. Lucassen
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| | - Aniko Korosi
- Centre for NeuroscienceSwammerdam Institute for Life SciencesUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
43
|
Brydges NM, Moon A, Rule L, Watkin H, Thomas KL, Hall J. Sex specific effects of pre-pubertal stress on hippocampal neurogenesis and behaviour. Transl Psychiatry 2018; 8:271. [PMID: 30531788 PMCID: PMC6288078 DOI: 10.1038/s41398-018-0322-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022] Open
Abstract
Experience of traumatic events in childhood is linked to an elevated risk of developing psychiatric disorders in adulthood. The neurobiological mechanisms underlying this phenomenon are not fully understood. The limbic system, particularly the hippocampus, is significantly impacted by childhood trauma. In particular, it has been hypothesised that childhood stress may impact adult hippocampal neurogenesis (AHN) and related behaviours, conferring increased risk for later mental illness. Stress in utero can lead to impaired hippocampal synaptic plasticity, and stress in the first 2-3 weeks of life reduces AHN in animal models. Less is known about the effects of stress in the post-weaning, pre-pubertal phase, a developmental time-point more akin to human childhood. Therefore, we investigated persistent effects of pre-pubertal stress (PPS) on functional and molecular aspects of the hippocampus. AHN was altered following PPS in male rats only. Specifically males showed reduced production of new neurons following PPS, but increased survival in the ventral dentate gyrus. In adult males, but not females, pattern separation and trace fear conditioning, behaviours that rely heavily on AHN, were also impaired after PPS. PPS also increased the expression of parvalbumin-positive GABAergic interneurons in the ventral dentate gyrus and increased glutamic acid decarboxylase 67 expression in the ventral hilus, in males only. Our results demonstrate the lasting effects of PPS on the hippocampus in a sex- and time-dependent manner, provide a potential mechanistic link between PPS and later behavioural impairments, and highlight sex differences in vulnerability to neuropsychiatric conditions after early-life stress.
Collapse
Affiliation(s)
- Nichola Marie Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Anna Moon
- 0000 0001 0807 5670grid.5600.3Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Lowenna Rule
- 0000 0001 0807 5670grid.5600.3Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Holly Watkin
- 0000 0001 0807 5670grid.5600.3Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| | - Kerrie L. Thomas
- 0000 0001 0807 5670grid.5600.3Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK ,0000 0001 0807 5670grid.5600.3School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX UK
| | - Jeremy Hall
- 0000 0001 0807 5670grid.5600.3Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK ,0000 0001 0807 5670grid.5600.3MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| |
Collapse
|
44
|
Hill MN, Eiland L, Lee TTY, Hillard CJ, McEwen BS. Early life stress alters the developmental trajectory of corticolimbic endocannabinoid signaling in male rats. Neuropharmacology 2018; 146:154-162. [PMID: 30496752 DOI: 10.1016/j.neuropharm.2018.11.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/15/2018] [Accepted: 11/24/2018] [Indexed: 01/19/2023]
Abstract
Early-life stress modulates the development of cortico-limbic circuits and increases vulnerability to adult psychopathology. Given the important stress-buffering role of endocannabinoid (eCB) signaling, we performed a comprehensive investigation of the developmental trajectory of the eCB system and the impact of exposure to early life stress induced by repeated maternal separation (MS; 3 h/day) from postnatal day 2 (PND2) to PND12. Tissue levels of the eCB molecules anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured after MS exposures, as well under basal conditions at juvenile (PND14), adolescent (PND40) and adult (PND70) timepoints in the prefrontal cortex (PFC), amygdala and hippocampus. We also examined the effects of MS on CB1 receptor binding in these three brain regions at PND40 and PND70. AEA content was found to increase from PND2 into adulthood in a linear manner across all brain regions, while 2-AG was found to exhibit a transient spike during the juvenile period (PND12-14) within the amygdala and PFC, but increased in a linear manner across development in the hippocampus. Exposure to MS resulted in bidirectional changes in AEA and 2-AG tissue levels within the amygdala and hippocampus and produced a sustained reduction in eCB function in the hippocampus at adulthood. CB1 receptor densities across all brain regions were generally found to be downregulated later in life following exposure to MS. Collectively, these data demonstrate that early life stress can alter the normative ontogeny of the eCB system, resulting in a sustained deficit in eCB function, particularly within the hippocampus, in adulthood.
Collapse
Affiliation(s)
- Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology & Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada; Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | - Lisa Eiland
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Tiffany T Y Lee
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA; Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Bruce S McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
45
|
Gott A, Andrews C, Bedford T, Nettle D, Bateson M. Developmental history and stress responsiveness are related to response inhibition, but not judgement bias, in a cohort of European starlings (Sturnus vulgaris). Anim Cogn 2018; 22:99-111. [PMID: 30467655 PMCID: PMC6327078 DOI: 10.1007/s10071-018-1226-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022]
Abstract
Judgement bias tasks are designed to provide markers of affective states. A recent study of European starlings (Sturnus vulgaris) demonstrated modest familial effects on judgement bias performance, and found that adverse early experience and developmental telomere attrition (an integrative marker of biological age) both affected judgement bias. Other research has shown that corticosterone levels affect judgement bias. Here, we investigated judgement bias using a modified Go/No Go task in a new cohort of starlings (n = 31) hand-reared under different early-life conditions. We also measured baseline corticosterone and the corticosterone response to acute stress in the same individuals. We found evidence for familial effects on judgement bias, of a similar magnitude to the previous study. We found no evidence that developmental treatments or developmental telomere attrition were related to judgement bias per se. We did, however, find that birds that experienced the most benign developmental conditions, and birds with the greatest developmental telomere attrition, were significantly faster to probe the learned unrewarded stimulus. We also found that the birds whose corticosterone levels were faster to return towards baseline after an acute stressor were slower to probe the learned unrewarded stimulus. Our results illustrate the potential complexities of relationships between early-life experience, stress and affectively mediated decision making. For judgement bias tasks, they demonstrate the importance of clearly distinguishing factors that affect patterns of responding to the learned stimuli (i.e. response inhibition in the case of the Go/No Go design) from factors that influence judgements under ambiguity.
Collapse
Affiliation(s)
- Annie Gott
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Clare Andrews
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Tom Bedford
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Daniel Nettle
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK.
| | - Melissa Bateson
- Centre for Behaviour and Evolution and Institute of Neuroscience, Newcastle University, Newcastle, UK
| |
Collapse
|
46
|
Gemmel M, De Lacalle S, Mort SC, Hill LA, Charlier TD, Pawluski JL. Perinatal fluoxetine has enduring sexually differentiated effects on neurobehavioral outcomes related to social behaviors. Neuropharmacology 2018; 144:70-81. [PMID: 30326241 DOI: 10.1016/j.neuropharm.2018.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 01/01/2023]
Abstract
Selective serotonin reuptake inhibitor medications (SSRIs) are prescribed to up to 10% of pregnant women to treat maternal mood disorders. Exposure to these medications in-utero has raised concerns about altered neurobehavioral outcomes; most recently those related to peer-to-peer social interactions and play. While clinical data show that both perinatal SSRIs (pSSRI) and maternal stress can contribute to social behavioral changes in children, minimal animal work has investigated the effects of pSSRIs in relevant models of maternal stress or the long-term implications of these effects. Therefore the aim of this work was to investigate the long-term effects of pSSRI exposure to fluoxetine on social behaviors, the hypothalamic pituitary adrenal system (HPA) and hippocampal plasticity in adult male and female rat offspring using a model of pre-gestational maternal stress. Adult Sprague-Dawley female and male rat offspring from the following four groups were utilized: 1. Control + Vehicle, 2. Control + Fluoxetine, 3. Pre-gestational Stress + Vehicle, 4. Pre-gestational Stress + Fluoxetine (n = 8-16/female/age groups, n = 8-14/male/age groups). Main findings show pSSRIs increased social investigation in adult females and increased social play (pouncing, nape attacks) in adult males. Perinatal SSRIs also had sexually differentiated effects on hippocampal neurogenesis and GR density. Pre-gestational stress had enduring effects by decreasing social investigation and hippocampal neurogenesis in adult males. Thus pSSRIs, as well as pre-gestational maternal stress, have significant long-term effects on social neurobehavioral outcomes which differ in males and females. This suggests that it would be valuable to consider fetal-sex specific treatments for maternal mental illness.
Collapse
Affiliation(s)
- Mary Gemmel
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | | | - Sophia C Mort
- Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Lesley A Hill
- Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France.
| |
Collapse
|
47
|
Miragaia AS, de Oliveira Wertheimer GS, Consoli AC, Cabbia R, Longo BM, Girardi CEN, Suchecki D. Maternal Deprivation Increases Anxiety- and Depressive-Like Behaviors in an Age-Dependent Fashion and Reduces Neuropeptide Y Expression in the Amygdala and Hippocampus of Male and Female Young Adult Rats. Front Behav Neurosci 2018; 12:159. [PMID: 30131681 PMCID: PMC6090069 DOI: 10.3389/fnbeh.2018.00159] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/09/2018] [Indexed: 01/28/2023] Open
Abstract
Maternal deprivation for 24 h produces an immediate increase in basal and stress-induced corticosterone (CORT) secretion. Given the impact of elevated CORT levels on brain development, the goal of the present study was to characterize the effects of maternal deprivation at postnatal days 3 (DEP3) or 11 (DEP11) on emotional behavior and neuropeptide Y immunoreactivity (NPY-ir) in the basolateral amygdala (BLA) and dorsal hippocampus (dHPC) of male and female rats. Litters were distributed in control non-deprived (CTL), DEP3, or DEP11 groups. In Experiment 1, within each litter, one male and one female were submitted to one of the following tests: novelty suppressed feeding (NSF), sucrose negative contrast test (SNCT), and forced swimming test (FST), between postnatal days 52 and 60. In Experiment 2, two males and two females per litter were exposed to the elevated plus maze and 1 h later, perfused for investigation of NPY-ir, on PND 52. The results showed that DEP3 rats displayed greater anxiety-like behavior in the NSF and EPM, compared to CTL and DEP11 counterparts. In the SNCT, DEP3 and DEP11 males showed less suppression of the lower sucrose concentration intake, whereas all females suppressed less than males. Both manipulated groups displayed more immobility in the FST, although this effect was greater in DEP3 than in DEP11 rats. NPY-ir was reduced in DEP3 and DEP11 males and females in the BLA, whereas in the dHPC, DEP3 males showed less NPY-ir than DEP11, which, in turn, presented less NPY-ir than CTL rats. Females showed less NPY-ir than males in both structures. Because the deprivation effects were more intense in DEP3 than in DEP11, in Experiment 3, the frequency of nursing posture, licking-grooming, and interaction with pups was assessed upon litter reunion with mothers. Mothers of DEP11 litters engaged more in anogenital licking than mothers of DEP3 litters. The present results indicate that maternal deprivation changed affective behavior with greater impact in the earlier age and reduced the expression of NPY in emotion-related brain areas. The age-dependent differential effects of deprivation on maternal behavior could, at least in part, explain the outcomes in young adult rats.
Collapse
Affiliation(s)
- Alexandra S Miragaia
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil.,Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Amanda C Consoli
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rafael Cabbia
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Beatriz M Longo
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Carlos E N Girardi
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Deborah Suchecki
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 420] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Joëls M, Karst H, Sarabdjitsingh RA. The stressed brain of humans and rodents. Acta Physiol (Oxf) 2018; 223:e13066. [PMID: 29575542 PMCID: PMC5969253 DOI: 10.1111/apha.13066] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 01/06/2023]
Abstract
After stress, the brain is exposed to waves of stress mediators, including corticosterone (in rodents) and cortisol (in humans). Corticosteroid hormones affect neuronal physiology in two time‐domains: rapid, non‐genomic actions primarily via mineralocorticoid receptors; and delayed genomic effects via glucocorticoid receptors. In parallel, cognitive processing is affected by stress hormones. Directly after stress, emotional behaviour involving the amygdala is strongly facilitated with cognitively a strong emphasis on the “now” and “self,” at the cost of higher cognitive processing. This enables the organism to quickly and adequately respond to the situation at hand. Several hours later, emotional circuits are dampened while functions related to the prefrontal cortex and hippocampus are promoted. This allows the individual to rationalize the stressful event and place it in the right context, which is beneficial in the long run. The brain's response to stress depends on an individual's genetic background in interaction with life events. Studies in rodents point to the possibility to prevent or reverse long‐term consequences of early life adversity on cognitive processing, by normalizing the balance between the two receptor types for corticosteroid hormones at a critical moment just before the onset of puberty.
Collapse
Affiliation(s)
- M. Joëls
- Department of Translational NeuroscienceBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - H. Karst
- Department of Translational NeuroscienceBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - R. A. Sarabdjitsingh
- Department of Translational NeuroscienceBrain Center Rudolf MagnusUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
50
|
Differential effects of chronic stress in young-adult and old female mice: cognitive-behavioral manifestations and neurobiological correlates. Mol Psychiatry 2018; 23:1432-1445. [PMID: 29257131 DOI: 10.1038/mp.2017.237] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/01/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Stress-related psychopathology is highly prevalent among elderly individuals and is associated with detrimental effects on mood, appetite and cognition. Conversely, under certain circumstances repeated mild-to-moderate stressors have been shown to enhance cognitive performance in rodents and exert stress-inoculating effects in humans. As most stress-related favorable outcomes have been reported in adolescence and young-adulthood, this apparent disparity could result from fundamental differences in how aging organisms respond to stress. Furthermore, given prominent age-related alterations in sex hormones, the effect of chronic stress in aging females remains a highly relevant yet little studied issue. In the present study, female C57BL/6 mice aged 3 (young-adult) and 20-23 (old) months were subjected to 8 weeks of chronic unpredictable stress (CUS). Behavioral outcomes were measured during the last 3 weeks of the CUS protocol, followed by brain dissection for histological and molecular end points. We found that in young-adult female mice, CUS resulted in decreased anxiety-like behavior and enhanced cognitive performance, whereas in old female mice it led to weight loss, dysregulated locomotion and memory impairment. These phenotypes were paralleled by differential changes in the expression of hypothalamic insulin and melanocortin-4 receptors and were consistent with an age-dependent reduction in the dynamic range of stress-related changes in the hippocampal transcriptome. Supported by an integrated microRNA (miRNA)-mRNA expression analysis, the present study proposes that, when confronted with ongoing stress, neuroprotective mechanisms involving the upregulation of neurogenesis, Wnt signaling and miR-375 can be harnessed more effectively during young-adulthood. Conversely, we suggest that aging alters the pattern of immune activation elicited by stress. Ultimately, interventions that modulate these processes could reduce the burden of stress-related psychopathology in late life.
Collapse
|