1
|
An W, Zhang W, Qi J, Xu W, Long Y, Qin H, Yao K. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: a promising strategy for treating retinal degenerative diseases. Mol Med 2025; 31:75. [PMID: 39984849 PMCID: PMC11846226 DOI: 10.1186/s10020-025-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic strategy in regenerative medicine, demonstrating significant potential for clinical applications. Evidence suggests that MSCs not only exhibit multipotent differentiation potential but also exert critical therapeutic effects in retinal degenerative diseases via robust paracrine mechanisms. MSCs protect retinal cells from degenerative damage by modulating inflammation, inhibiting apoptosis, alleviating oxidative stress, and suppressing cell death pathways. Furthermore, MSCs contribute to retinal structural and functional stability by facilitating vascular remodeling and donating mitochondria to retinal cells. Of particular interest, MSC-derived exosomes have gained widespread attention as a compelling cell-free therapy. Owing to their potent anti-inflammatory, anti-apoptotic, and vascular-stabilizing properties, exosomes show significant promise for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Wenjing An
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Wenliang Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jia Qi
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yushan Long
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China.
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Kim H, Goh YS, Park SE, Hwang J, Kang N, Jung JS, Kim YB, Choi EK, Park KM. Preventive Effects of Exosome-Rich Conditioned Medium From Amniotic Membrane-Derived Mesenchymal Stem Cells for Diabetic Retinopathy in Rats. Transl Vis Sci Technol 2023; 12:18. [PMID: 37610767 PMCID: PMC10461646 DOI: 10.1167/tvst.12.8.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/22/2023] [Indexed: 08/24/2023] Open
Abstract
PURPOSE Diabetic retinopathy (DR) is an important disease that causes vision loss in many diabetic patients. Stem cell therapy has been attempted for treatment of this disease; however, it has some limitations. This study aimed to evaluate the preventive efficacy of exosome-rich conditioned medium (ERCM) derived from amniotic membrane stem cells for DR in rats. METHODS Twenty-eight 8-week-old male Sprague-Dawley rats were divided into three groups: group 1, normal control (Con) group; group 2, diabetes mellitus (DM) group; and group 3, DM with ERCM-treated (DM-ERCM) group. DM was induced by intraperitoneal injection of streptozotocin. The DM-ERCM group received ERCM containing 1.2 × 10⁹ exosomes into subconjunctival a total of four times every 2 weeks. RESULTS On electroretinogram, the DM-ERCM group had significantly higher b-wave and flicker amplitudes than those in the DM group. In fundoscopy, retinal vascular attenuation was found in both the DM and DM-ERCM groups; however, was more severe in the DM group. On histology, the ganglion cell and nerve fiber layer rates of the total retinal layer significantly increased in the DM group compared with the Con group, whereas the DM-ERCM group showed no significant difference compared with the Con group. Cataracts progressed significantly more in the DM group than that in the DM-ERCM group and there was no uveitis in the DM-ERCM group. CONCLUSIONS Subconjunctival ERCM delayed the progression of DR and cataracts and significantly reduced the incidence of uveitis. TRANSLATIONAL RELEVANCE Our study shows the clinical potential of minimally invasive exosome-rich conditioned medium treatment to prevent diabetic retinopathy.
Collapse
Affiliation(s)
- Hyemin Kim
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Yeong-Seok Goh
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang-Eun Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Jiyi Hwang
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Nanyoung Kang
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Ji Seung Jung
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Yun-Bae Kim
- Laboratory of Toxicology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Ehn-Kyoung Choi
- Central Research Institute, Designed Cells Co., Ltd., Cheongju, Korea
| | - Kyung-Mee Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
3
|
Saha B, Roy A, Beltramo E, Sahoo OS. Stem cells and diabetic retinopathy: From models to treatment. Mol Biol Rep 2023; 50:4517-4526. [PMID: 36842153 DOI: 10.1007/s11033-023-08337-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
Diabetic retinopathy is a common yet complex microvascular disease, caused as a complication of diabetes mellitus. Associated with hyperglycemia and subsequent metabolic abnormalities, advanced stages of the disease lead to fibrosis, subsequent visual impairment and blindness. Though clinical postmortems, animal and cell models provide information about the progression and prognosis of diabetic retinopathy, its underlying pathophysiology still needs a better understanding. In addition to it, the loss of pericytes, immature retinal angiogenesis and neuronal apoptosis portray the disease treatment to be challenging. Indulged with cell loss of both vascular and neuronal type cells, novel therapies like cell replacement strategies by various types of stem cells have been sightseen as a possible treatment of the disease. This review provides insight into the pathophysiology of diabetic retinopathy, current models used in modelling the disease, as well as the varied aspects of stem cells in generating three-dimensional retinal models. Further outlook on stem cell therapy and the future directions of stem cell treatment in diabetic retinopathy have also been contemplated.
Collapse
Affiliation(s)
- Bihan Saha
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India
| | - Akshita Roy
- Autonomous State Medical College, Fatehpur, 212601, Uttar Pradesh, India
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, 10124, Turin, Italy
| | - Om Saswat Sahoo
- National Institute of Technology Durgapur, Durgapur, 713209, West Bengal, India.
| |
Collapse
|
4
|
Chen X, Jiang Y, Duan Y, Zhang X, Li X. Mesenchymal-Stem-Cell-Based Strategies for Retinal Diseases. Genes (Basel) 2022; 13:genes13101901. [PMID: 36292786 PMCID: PMC9602395 DOI: 10.3390/genes13101901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022] Open
Abstract
Retinal diseases are major causes of irreversible vision loss and blindness. Despite extensive research into their pathophysiology and etiology, pharmacotherapy effectiveness and surgical outcomes remain poor. Based largely on numerous preclinical studies, administration of mesenchymal stem cells (MSCs) as a therapeutic strategy for retinal diseases holds great promise, and various approaches have been applied to the therapies. However, hindered by the retinal barriers, the initial vision for the stem cell replacement strategy fails to achieve the anticipated effect and has now been questioned. Accumulating evidence now suggests that the paracrine effect may play a dominant role in MSC-based treatment, and MSC-derived extracellular vesicles emerge as a novel compelling alternative for cell-free therapy. This review summarizes the therapeutic potential and current strategies of this fascinating class of cells in retinal degeneration and other retinal dysfunctions.
Collapse
|
5
|
Dezfuly AR, Safaee A, Amirpour N, Kazemi M, Ramezani A, Jafarinia M, Dehghani A, Salehi H. Therapeutic effects of human adipose mesenchymal stem cells and their paracrine agents on sodium iodate induced retinal degeneration in rats. Life Sci 2022; 300:120570. [DOI: 10.1016/j.lfs.2022.120570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 11/24/2022]
|
6
|
Intravitreal Administration Effect of Adipose-Derived Mesenchymal Stromal Cells Combined with Anti-VEGF Nanocarriers, in a Pharmaceutically Induced Animal Model of Retinal Vein Occlusion. Stem Cells Int 2022; 2022:2760147. [PMID: 35251186 PMCID: PMC8890865 DOI: 10.1155/2022/2760147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Antiangiogenic therapeutic agents (anti-VEGF) have contributed to the treatment of retinal vein occlusion (RVO) while mesenchymal stromal cell- (MSCs-) mediated therapies limit eye degeneration. The aim of the present study is to determine the effect of adipose-derived MSCs (ASCs) combination with nanocarriers of anti-VEGF in a pharmaceutically induced animal model of RVO. Nanoparticles (NPs) of thiolated chitosan (ThioCHI) with encapsulated anti-VEGF antibody were prepared. ASCs were isolated and genetically modified to secrete the green fluorescence GFP. Twenty-four New Zealand rabbits were divided into the I-IV equal following groups: ASCs, ASCs + nanoThioCHI-anti-VEGF, RVO, and control. For the RVO induction, groups I-III received intravitreal (iv) injections of MEK kinase inhibitor, PD0325901. Twelve days later, therapeutic regiments were administered at groups I-II while groups III-IV received BSS. Two weeks later, the retinal damage evaluated via detailed ophthalmic examinations, histological analysis of fixed retinal sections, ELISA for secreted cytokines in peripheral blood or vitreous fluid, and Q-PCR for the expression of related to the occlusion and inflammatory genes. Mild retinal edema and hemorrhages, limited retinal detachment, and vasculature attenuation were observed in groups I and II compared with the pathological symptoms of group III which presented a totally disorganized retinal structure, following of positive immunostaining for neovascularization and related to RVO markers. Important reduction of the high secreted levels of inflammatory cytokines was quantified in groups I and II vitreous fluid, while the expression of the RVO-related and inflammatory genes has been significantly decreased especially in group II. GFP+ ASCs, capable of being differentiated towards neural progenitors, detected in dissociated retina tissues of group II presenting their attachment to damaged area. Conclusively, a stem cell-based therapy for RVO is proposed, accompanied by sustained release of anti-VEGF, in order to combine the paracrine action of ASCs and the progressive reduction of neovascularization.
Collapse
|
7
|
Modulation of Mesenchymal Stem Cells for Enhanced Therapeutic Utility in Ischemic Vascular Diseases. Int J Mol Sci 2021; 23:ijms23010249. [PMID: 35008675 PMCID: PMC8745455 DOI: 10.3390/ijms23010249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells are multipotent stem cells isolated from various tissue sources, including but not limited to bone marrow, adipose, umbilical cord, and Wharton Jelly. Although cell-mediated mechanisms have been reported, the therapeutic effect of MSCs is now recognized to be primarily mediated via paracrine effects through the secretion of bioactive molecules, known as the “secretome”. The regenerative benefit of the secretome has been attributed to trophic factors and cytokines that play neuroprotective, anti-angiogenic/pro-angiogenic, anti-inflammatory, and immune-modulatory roles. The advancement of autologous MSCs therapy can be hindered when introduced back into a hostile/disease environment. Barriers include impaired endogenous MSCs function, limited post-transplantation cell viability, and altered immune-modulatory efficiency. Although secretome-based therapeutics have gained popularity, many translational hurdles, including the heterogeneity of MSCs, limited proliferation potential, and the complex nature of the secretome, have impeded the progress. This review will discuss the experimental and clinical impact of restoring the functional capabilities of MSCs prior to transplantation and the progress in secretome therapies involving extracellular vesicles. Modulation and utilization of MSCs–secretome are most likely to serve as an effective strategy for promoting their ultimate success as therapeutic modulators.
Collapse
|
8
|
Yuan J, Botchway BOA, Zhang Y, Wang X, Liu X. Combined bioscaffold with stem cells and exosomes can improve traumatic brain injury. Stem Cell Rev Rep 2021; 16:323-334. [PMID: 31808037 DOI: 10.1007/s12015-019-09927-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intricacy of the brain, along with the existence of blood brain barrier (BBB) does complicate the delivery of effective therapeutics through simple intravascular injection. Hence, an effective delivery mechanism of therapeutics in the event of either traumatic brain injury (TBI) or other brain injuries is needed. Stem cells can promote regeneration and repair injury. The usage of biomaterials and exosomes in transporting stem cells to target lesion sites has been suggested as a potential option. The combination of biomaterials with modified exosomes can help in transporting stem cells to injury sites, whiles also increasing their survival and promoting effective treatment. Herein, we review the current researches pertinent to biological scaffolds and exosomes in repairing TBI and present the current progress and new direction in the clinical setting. We begin with the role of bioscaffold in treating neuronal conditions, the effect of exosomes in injury, and conclude with the improvement of TBI via the employment of combined exosomes, bioscaffold and stem cells.
Collapse
Affiliation(s)
- Jiaying Yuan
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xizhi Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, 312000, Shaoxing, Zhejiang, China.
| |
Collapse
|
9
|
Induction of Differentiation of Mesenchymal Stem Cells into Retinal Pigment Epithelial Cells for Retinal Regeneration by Using Ciliary Neurotrophic Factor in Diabetic Rats. Curr Med Sci 2021; 41:145-152. [PMID: 33582919 DOI: 10.1007/s11596-021-2329-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/18/2020] [Indexed: 10/22/2022]
Abstract
Diabetic retinopathy (DR) is a common cause of blindness all over the world. Bone marrow mesenchymal stem cells (BMSCs) have been considered as a promising strategy for retinal regeneration in the treatment of DR. However, the poor viability and low levels of BMSCs engraftment limit the therapeutic potential of BMSCs. The present study aimed to examine the direct induction of BMSCs differentiation into the cell types related to retinal regeneration by using soluble cytokine ciliary neurotrophic factor (CNTF). We observed remarkably increased expression of cellular retinaldehyde-binding protein (CRALBP) and retinoid isomerohydrolase (RPE65) in BMSCs treated with CNTF in vitro, indicating the directional differentiation of BMSCs into the retinal pigment epithelium (RPE) cells, which are crucial for retinal healing. In vivo, the diabetic rat model was established by use of streptozotocin (STZ), and animals treated with BMSCs+CNTF exhibited better viability and higher delivery efficiency of the transplanted cells than those treated with BMSCs injection alone. Similar to the in-vitro result, treatment with BMSCs and CNTF combined led to the differentiation of BMSCs into beneficial cells (RPE cells), and accelerated retinal healing characterized by the activation of rod photoreceptor cells and phagocytosis function of RPE cells. In conclusion, CNTF contributes to the differentiation of BMSCs into RPE cells, which may help overcome the current stem cell therapy limitations in the field of retinal regeneration.
Collapse
|
10
|
Goenka V, Borkar T, Desai A, Das RK. Therapeutic potential of mesenchymal stem cells in treating both types of diabetes mellitus and associated diseases. J Diabetes Metab Disord 2020; 19:1979-1993. [PMID: 33520872 PMCID: PMC7843693 DOI: 10.1007/s40200-020-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus is a common lifestyle disease which can be classified into type 1 diabetes mellitus and type 2 diabetes mellitus. While both result in hyperglycemia due to lack of insulin action and further associated chronic ailments, there is a marked distinction in the cause for each type due to which both require a different prophylaxis. As observed, type 1 diabetes is caused due to the autoimmune action of the body resulting in the destruction of pancreatic islet cells. On the other hand, type 2 diabetes is caused either due to insulin resistance of target cells or lack of insulin production as per physiological requirements. Attempts to cure the disease have been made by bringing drastic changes in the patients' lifestyle; parenteral administration of insulin; prescription of drugs such as biguanides, meglitinides, and amylin; pancreatic transplantation; and immunotherapy. While these attempts cause a certain degree of relief to the patient, none of these can cure diabetes mellitus. However, a new treatment strategy led by the discovery of mesenchymal stem cells and their unique immunomodulatory and multipotent properties has inspired therapies to treat diabetes by essentially reversing the conditions causing the disease. The current review aims to enumerate the role of various mesenchymal stem cells and the different approaches to treat both types of diabetes and its associated diseases as well.
Collapse
Affiliation(s)
- Vidul Goenka
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Tanhai Borkar
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Aska Desai
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - Raunak Kumar Das
- Centre for Biomaterials, Cellular and Molecular Theranostics, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
11
|
Bertelli PM, Pedrini E, Guduric-Fuchs J, Peixoto E, Pathak V, Stitt AW, Medina RJ. Vascular Regeneration for Ischemic Retinopathies: Hope from Cell Therapies. Curr Eye Res 2020; 45:372-384. [PMID: 31609636 DOI: 10.1080/02713683.2019.1681004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
Abstract
Retinal vascular diseases, such as diabetic retinopathy, retinopathy of prematurity, retinal vein occlusion, ocular ischemic syndrome and ischemic optic neuropathy, are leading causes of vision impairment and blindness. Whilst drug, laser or surgery-based treatments for the late stage complications of many of these diseases are available, interventions that target the early vasodegenerative stages are lacking. Progressive vasculopathy and ensuing ischemia is an underpinning pathology in many of these diseases, leading to hypoperfusion, hypoxia, and ultimately pathological neovascularization and/or edema in the retina and other ocular tissues, such as the optic nerve and iris. Therefore, repairing the retinal vasculature may prevent progression of ischemic retinopathies into late stage vascular complications. Various cell types have been explored for their vascular repair potential. Endothelial progenitor cells, mesenchymal stem cells and induced pluripotent stem cells are studied for their potential to integrate with the damaged retinal vasculature and limit ischemic injury. Clinical trials for some of these cell types have confirmed safety and feasibility in the treatment of ischemic diseases, including some retinopathies. Another promising avenue is mobilization of endogenous endothelial progenitors, whereby reparative cells are moved from their niche to circulating blood to target and home into ischemic tissues. Several aspects and properties of these cell types have yet to be elucidated. Nevertheless, we foresee that cell therapy, whether through delivery of exogenous or enhancement of endogenous reparative cells, will become a valuable and beneficial treatment for ischemic retinopathies.
Collapse
Affiliation(s)
- Pietro Maria Bertelli
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Edoardo Pedrini
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Elisa Peixoto
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Varun Pathak
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
12
|
Caporarello N, D’Angeli F, Cambria MT, Candido S, Giallongo C, Salmeri M, Lombardo C, Longo A, Giurdanella G, Anfuso CD, Lupo G. Pericytes in Microvessels: From "Mural" Function to Brain and Retina Regeneration. Int J Mol Sci 2019; 20:ijms20246351. [PMID: 31861092 PMCID: PMC6940987 DOI: 10.3390/ijms20246351] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/13/2022] Open
Abstract
Pericytes are branched cells located in the wall of capillary blood vessels that are found throughout the body, embedded within the microvascular basement membrane and wrapping endothelial cells, with which they establish a strong physical contact. Pericytes regulate angiogenesis, vessel stabilization, and contribute to the formation of both the blood-brain and blood-retina barriers by Angiopoietin-1/Tie-2, platelet derived growth factor (PDGF) and transforming growth factor (TGF) signaling pathways, regulating pericyte-endothelial cell communication. Human pericytes that have been cultured for a long period give rise to multilineage progenitor cells and exhibit mesenchymal stem cell (MSC) features. We focused our attention on the roles of pericytes in brain and ocular diseases. In particular, pericyte involvement in brain ischemia, brain tumors, diabetic retinopathy, and uveal melanoma is described. Several molecules, such as adenosine and nitric oxide, are responsible for pericyte shrinkage during ischemia-reperfusion. Anti-inflammatory molecules, such as IL-10, TGFβ, and MHC-II, which are increased in glioblastoma-activated pericytes, are responsible for tumor growth. As regards the eye, pericytes play a role not only in ocular vessel stabilization, but also as a stem cell niche that contributes to regenerative processes in diabetic retinopathy. Moreover, pericytes participate in melanoma cell extravasation and the genetic ablation of the PDGF receptor reduces the number of pericytes and aberrant tumor microvessel formation with important implications for therapy efficacy. Thanks to their MSC features, pericytes could be considered excellent candidates to promote nervous tissue repair and for regenerative medicine.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
| | - Floriana D’Angeli
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Maria Teresa Cambria
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Saverio Candido
- Section of General and Clinical Pathology and Oncology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Cesarina Giallongo
- Section of Haematology, Department of General Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, Italy;
| | - Mario Salmeri
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (C.L.)
| | - Cinzia Lombardo
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.); (C.L.)
| | - Anna Longo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Giovanni Giurdanella
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
| | - Carmelina Daniela Anfuso
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
- Correspondence: (G.L.); (C.D.A.); Tel.: +39-095-4781158 (G.L.); +39-095-4781170 (C.D.A.)
| | - Gabriella Lupo
- Section of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (F.D.); (M.T.C.); (A.L.); (G.G.)
- Correspondence: (G.L.); (C.D.A.); Tel.: +39-095-4781158 (G.L.); +39-095-4781170 (C.D.A.)
| |
Collapse
|
13
|
Huang H, Kolibabka M, Eshwaran R, Chatterjee A, Schlotterer A, Willer H, Bieback K, Hammes HP, Feng Y. Intravitreal injection of mesenchymal stem cells evokes retinal vascular damage in rats. FASEB J 2019; 33:14668-14679. [DOI: 10.1096/fj.201901500r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hongpeng Huang
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Kolibabka
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rachana Eshwaran
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anupriya Chatterjee
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andrea Schlotterer
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hélène Willer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
14
|
Gaddam S, Periasamy R, Gangaraju R. Adult Stem Cell Therapeutics in Diabetic Retinopathy. Int J Mol Sci 2019; 20:ijms20194876. [PMID: 31575089 PMCID: PMC6801872 DOI: 10.3390/ijms20194876] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR), a complication of diabetes, is one of the leading causes of blindness in working-age adults. The pathology of the disease prevents the endogenous stem cells from participating in the natural repair of the diseased retina. Current treatments, specifically stem cell therapeutics, have shown variable efficacy in preclinical models due to the multi-faceted nature of the disease. Among the various adult stem cells, mesenchymal stem cells, especially those derived from adipose tissue and bone marrow, have been explored as a possible treatment for DR. This review summarizes the current literature around the various adult stem cell treatments for the disease and outlines the benefits and limitations of the therapeutics that are being explored in the field. The paracrine nature of adipose stem cells, in particular, has been highlighted as a potential solution to the lack of a homing and conducive environment that poses a challenge to the implantation of exogenous stem cells in the target tissue. Various methods of mesenchymal stem cell priming to adapt to a hostile retinal microenvironment have been discussed. Current clinical trials and potential safety concerns have been examined, and the future directions of stem cell therapeutics in DR have also been contemplated.
Collapse
Affiliation(s)
- Sriprachodaya Gaddam
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA.
| | - Ramesh Periasamy
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA.
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA.
- Department of Anatomy & Neurobiology, University of Tennessee Health Science Center, College of Medicine, Memphis, TN 38163, USA.
| |
Collapse
|
15
|
Elshaer SL, Evans W, Pentecost M, Lenin R, Periasamy R, Jha KA, Alli S, Gentry J, Thomas SM, Sohl N, Gangaraju R. Adipose stem cells and their paracrine factors are therapeutic for early retinal complications of diabetes in the Ins2 Akita mouse. Stem Cell Res Ther 2018; 9:322. [PMID: 30463601 PMCID: PMC6249931 DOI: 10.1186/s13287-018-1059-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Early-stage diabetic retinopathy (DR) is characterized by neurovascular defects. In this study, we hypothesized that human adipose-derived stem cells (ASCs) positive for the pericyte marker CD140b, or their secreted paracrine factors, therapeutically rescue early-stage DR features in an Ins2Akita mouse model. METHODS Ins2Akita mice at 24 weeks of age received intravitreal injections of CD140b-positive ASCs (1000 cells/1 μL) or 20× conditioned media from cytokine-primed ASCs (ASC-CM, 1 μL). Age-matched wildtype mice that received saline served as controls. Visual function experiments and histological analyses were performed 3 weeks post intravitreal injection. Biochemical and molecular analyses assessed the ASC-CM composition and its biological effects. RESULTS Three weeks post-injection, Ins2Akita mice that received ASCs had ameliorated decreased b-wave amplitudes and vascular leakage but failed to improve visual acuity, whereas Ins2Akita mice that received ASC-CM demonstrated amelioration of all aforementioned visual deficits. The ASC-CM group demonstrated partial amelioration of retinal GFAP immunoreactivity and DR-related gene expression but the ASC group did not. While Ins2Akita mice that received ASCs exhibited occasional (1 in 8) hemorrhagic retinas, mice that received ASC-CM had no adverse complications. In vitro, ASC-CM protected against TNFα-induced retinal endothelial permeability as measured by transendothelial electrical resistance. Biochemical and molecular analyses demonstrated several anti-inflammatory proteins including TSG-6 being highly expressed in cytokine-primed ASC-CM. CONCLUSIONS ASCs or their secreted factors mitigate retinal complications of diabetes in the Ins2Akita model. Further investigation is warranted to determine whether ASCs or their secreted factors are safe and effective therapeutic modalities long-term as current locally delivered therapies fail to effectively mitigate the progression of early-stage DR. Nonetheless, our study sheds new light on the therapeutic mechanisms of adult stem cells, with implications for assessing relative risks/benefits of experimental regenerative therapies for vision loss.
Collapse
Affiliation(s)
- Sally L. Elshaer
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
- Pharmacology & Toxicology Department, College of Pharmacy, Mansoura University, Mansoura, Egypt
| | - William Evans
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | | | - Raji Lenin
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Ramesh Periasamy
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Kumar Abhiram Jha
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Shanta Alli
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Jordy Gentry
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Samuel M. Thomas
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
| | - Nicolas Sohl
- Cell Care Therapeutics, Inc., Monrovia, CA 91016 USA
| | - Rajashekhar Gangaraju
- Ophthalmology, University of Tennessee Health Science Center, 930 Madison Ave, Suite#768, Memphis, TN 38163 USA
- Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
16
|
Concentrated Conditioned Media from Adipose Tissue Derived Mesenchymal Stem Cells Mitigates Visual Deficits and Retinal Inflammation Following Mild Traumatic Brain Injury. Int J Mol Sci 2018; 19:ijms19072016. [PMID: 29997321 PMCID: PMC6073664 DOI: 10.3390/ijms19072016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023] Open
Abstract
Blast concussions are a common injury sustained in military combat today. Inflammation due to microglial polarization can drive the development of visual defects following blast injuries. In this study, we assessed whether anti-inflammatory factors released by the mesenchymal stem cells derived from adipose tissue (adipose stem cells, ASC) can limit retinal tissue damage and improve visual function in a mouse model of visual deficits following mild traumatic brain injury. We show that intravitreal injection of 1 μL of ASC concentrated conditioned medium from cells pre-stimulated with inflammatory cytokines (ASC-CCM) mitigates loss of visual acuity and contrast sensitivity four weeks post blast injury. Moreover, blast mice showed increased retinal expression of genes associated with microglial activation and inflammation by molecular analyses, retinal glial fibrillary acidic protein (GFAP) immunoreactivity, and increased loss of ganglion cells. Interestingly, blast mice that received ASC-CCM improved in all parameters above. In vitro, ASC-CCM not only suppressed microglial activation but also protected against Tumor necrosis alpha (TNFα) induced endothelial permeability as measured by transendothelial electrical resistance. Biochemical and molecular analyses demonstrate TSG-6 is highly expressed in ASC-CCM from cells pre-stimulated with TNFα and IFNγ but not from unstimulated cells. Our findings suggest that ASC-CCM mitigates visual deficits of the blast injury through their anti-inflammatory properties on activated pro-inflammatory microglia and endothelial cells. A regenerative therapy for immediate delivery at the time of injury may provide a practical and cost-effective solution against the traumatic effects of blast injuries to the retina.
Collapse
|
17
|
Periasamy R, Elshaer SL, Gangaraju R. CD140b (PDGFRβ) signaling in adipose-derived stem cells mediates angiogenic behavior of retinal endothelial cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 5:1-9. [PMID: 30976657 DOI: 10.1007/s40883-018-0068-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adipose-derived stem cells (ASCs) are multipotent mesenchymal progenitor cells that have functional and phenotypic overlap with pericytes lining microvessels in adipose tissue. The role of CD140b [platelet-derived growth factor receptor- β (PDGFR-β)], a constitutive marker expressed by ASCs, in the angiogenic behavior of human retinal endothelial cells (HREs) is not known. CD140b was knocked down in ASCs using targeted siRNA and lipofectamine transfection protocol. Both CD140b+ and CD140b- ASCs were tested for their proliferation (WST-1 reagent), adhesion (laminin-1 coated plates), and migration (wound-scratch assay). Angiogenic effect of CD140b+ and CD140b- ASCs on HREs was examined by co-culturing ASCs:HREs in 12:1 ratio for 6 days followed by visualization of vascular network by Isolectin B4 staining. The RayBio® Membrane-Based Antibody Array was used to assess differences in human cytokines released by CD140b+ or CD140b- ASCs. Knockdown of CD140b in ASCs resulted in a significant 50% decrease in proliferation rate, 25% decrease in adhesion ability to Laminin-1, and 50% decrease in migration rate, as compared to CD140b+ ASCs. Direct contact of ASCs expressing CD140b+ with HREs resulted in robust vascular network formation that was significantly reduced with using CD140b- ASCs. Of the 80 proteins tested, 45 proteins remained unchanged (>0.5-<1.5 fold), 6 proteins including IL-10 downregulated (<0.5 fold) and 29 proteins including IL-16 & TNF-β were upregulated (>1.5 fold) in CD140b- ASCs compared to CD140b+ ASCs. Our data demonstrate a substantial role for CD140b in the intrinsic abilities of ASCs and their angiogenic influence on HREs. Future studies are needed to fully explore the signaling of CD140b in ASCs in vivo for retinal regeneration.
Collapse
Affiliation(s)
- Ramesh Periasamy
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, 38163. USA
| | - Sally L Elshaer
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, 38163. USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN, 38163. USA.,Anatomy and neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, 38163. USA
| |
Collapse
|
18
|
Fiori A, Terlizzi V, Kremer H, Gebauer J, Hammes HP, Harmsen MC, Bieback K. Mesenchymal stromal/stem cells as potential therapy in diabetic retinopathy. Immunobiology 2018; 223:729-743. [PMID: 29402461 DOI: 10.1016/j.imbio.2018.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy (DR) is a multifactorial microvascular disease induced by hyperglycemia and subsequent metabolic abnormalities. The resulting cell stress causes a sequela of events that ultimately can lead to severe vision impairment and blindness. The early stages are characterized by activation of glia and loss of pericytes, endothelial cells (EC) and neuronal cells. The integrity of the retinal microvasculature becomes affected, and, as a possible late response, macular edema may develop as a common reason for vision loss in patients with non-proliferative DR. Moreover, the local ischemia can trigger vasoproliferation leading to vision-threating proliferative DR (PDR) in humans. Available treatment options include control of metabolic and hemodynamic factors. Timely intervention of advanced DR stages with laser photocoagulation, intraocular anti-vascular endothelial growth factor (VEGF) or glucocorticoid drugs can reduce vision loss. As the pathology involves cell loss of both the vascular and neuroglial compartments, cell replacement strategies by stem and progenitor cells have gained considerable interest in the past years. Compared to other disease entities, so far little is known about the efficacy and potential mode of action of cell therapy in treatment of DR. In preclinical models of DR different cell types have been applied ranging from embryonic or induced pluripotent stem cells, hematopoietic stem cells, and endothelial progenitor cells to mesenchymal stromal cells (MSC). The latter cell population can combine various modes of action (MoA), thus they are among the most intensely tested cell types in cell therapy. The aim of this review is to discuss the rationale for using MSC as potential cell therapy to treat DR. Accordingly, we will revise identified MoA of MSCs and speculate how these may support the repair of the damaged retina.
Collapse
Affiliation(s)
- Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Vincenzo Terlizzi
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Heiner Kremer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Julian Gebauer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany
| | - Hans-Peter Hammes
- Dept. Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Germany
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Lab for Cardiovascular Regenerative Medicine (CAVAREM), Groningen, The Netherlands
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg - Hessen, Germany.
| |
Collapse
|
19
|
Abstract
Purpose of review Progress in stem cell research for blinding diseases over the past decade is now being applied to patients with retinal degenerative diseases and soon perhaps, glaucoma. However, the field still has much to learn about the conversion of stem cells into various retinal cell types, and the potential delivery methods that will be required to optimize the clinical efficacy of stem cells delivered into the eye. Recent findings Recent groundbreaking human clinical trials have demonstrated both the opportunities and current limitations of stem cell transplantation for retinal diseases. New progress in developing in vitro retinal organoids, coupled with the maturation of bio-printing technology, and non-invasive high-resolution imaging have created new possibilities for repairing and regenerating the diseased retina and rigorously validating its clinical impact in vivo. Summary While promising progress is being made, meticulous clinical trials with cells derived using good manufacturing practice, novel surgical methods, and improved methods to derive all of the neuronal cell types present in the retina will be indispensable for developing stem cell transplantation as a paradigm shift for the treatment of blinding diseases.
Collapse
|
20
|
Selvaraj K, Gowthamarajan K, Karri VVSR, Barauah UK, Ravisankar V, Jojo GM. Current treatment strategies and nanocarrier based approaches for the treatment and management of diabetic retinopathy. J Drug Target 2017; 25:386-405. [DOI: 10.1080/1061186x.2017.1280809] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kousalya Selvaraj
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | | | - Uday K. Barauah
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | - Vanka Ravisankar
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| | - Gifty M. Jojo
- Department of Pharmaceutics, JSS College of Pharmacy, Ootacamund, JSS University, Mysuru, India
| |
Collapse
|
21
|
Overview of retinal differentiation potential of mesenchymal stem cells: A promising approach for retinal cell therapy. Ann Anat 2016; 210:52-63. [PMID: 27986614 DOI: 10.1016/j.aanat.2016.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Retinal disease caused by retinal cell apoptosis leads to irreversible vision loss. Stem cell investigation efforts have been made to solve and cure retinal disorders. There are several sources of stem cells which have been used in these experiments. Numerous studies demonstrated that transplanted stem cells can migrate into and integrate in different layers of retina. Among these, mesenchymal stem cells (MSCs) were considered a promising source for cell therapy. Here, we review the literature assessing the potential of MSCs to differentiate into retinal cells in vivo and in vitro as well as their clinical application. However, more investigation is required to define the protocols that optimize stem cell differentiation and their functional integration in the retina.
Collapse
|
22
|
Hajmousa G, Elorza AA, Nies VJM, Jensen EL, Nagy RA, Harmsen MC. Hyperglycemia Induces Bioenergetic Changes in Adipose-Derived Stromal Cells While Their Pericytic Function Is Retained. Stem Cells Dev 2016; 25:1444-53. [PMID: 27473785 DOI: 10.1089/scd.2016.0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a hyperglycemia (HG)-mediated microvascular complication. In DR, the loss of pericytes and subsequently endothelial cells leads to pathologic angiogenesis in retina. Adipose-derived stromal cells (ASC) are a promising source of therapeutic cells to replace lost pericytes in DR. To date, knowledge of the influence of HG on the bioenergetics and pericytic function of ASC is negligible. Human ASC were cultured in normoglycemia medium (5 mM d-glucose) or under HG (30 mM d-glucose) and assessed. Our data showed that HG increased the level of apoptosis and reactive oxygen species production in ASC, yet their proliferation rate was not affected. HG induced alterations in mitochondrial function and morphology in ASC. HG also strongly affected the bioenergetic status of ASC in which both the maximum oxygen consumption rate and extracellular acidification rate were decreased. This was corroborated by a reduced uptake of glucose under HG. In spite of these observations, in vitro, ASC promoted the formation of vascular-like networks of human umbilical vein endothelial cells on monolayers of ASC under HG with minimally affected.
Collapse
Affiliation(s)
- Ghazaleh Hajmousa
- 1 Department of Pathology and Medical Biology, University Medical Center Groningen , University of Groningen, Groningen, the Netherlands
| | - Alvaro A Elorza
- 2 Millennium Institute of Immunology and Immunotherapy , Santiago, Chile .,3 Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research , Universidad Andres Bello, Santiago, Chile
| | - Vera J M Nies
- 4 Department of Pediatrics and Laboratory Medicine, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Erik L Jensen
- 3 Faculty of Biological Sciences and Faculty of Medicine, Center for Biomedical Research , Universidad Andres Bello, Santiago, Chile
| | - Ruxandra A Nagy
- 1 Department of Pathology and Medical Biology, University Medical Center Groningen , University of Groningen, Groningen, the Netherlands
| | - Martin C Harmsen
- 1 Department of Pathology and Medical Biology, University Medical Center Groningen , University of Groningen, Groningen, the Netherlands
| |
Collapse
|
23
|
Çerman E, Akkoç T, Eraslan M, Şahin Ö, Özkara S, Vardar Aker F, Subaşı C, Karaöz E, Akkoç T. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS One 2016; 11:e0156495. [PMID: 27300133 PMCID: PMC4907488 DOI: 10.1371/journal.pone.0156495] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/16/2016] [Indexed: 01/09/2023] Open
Abstract
Diabetic retinopathy is the most common cause of legal blindness in developed countries at middle age adults. In this study diabetes was induced by streptozotocin (STZ) in male Wistar albino rats. After 3 months of diabetes, rights eye were injected intravitreally with green fluorescein protein (GFP) labelled bone marrow derived stem cells (BMSC) and left eyes with balanced salt solution (Sham). Animals were grouped as Baseline (n = 51), Diabetic (n = 45), Diabetic+BMSC (n = 45 eyes), Diabetic+Sham (n = 45 eyes), Healthy+BMSC (n = 6 eyes), Healthy+Sham (n = 6 eyes). Immunohistology analysis showed an increased retinal gliosis in the Diabetic group, compared to Baseline group, which was assessed with GFAP and vimentin expression. In the immunofluorescence analysis BMSC were observed to integrate mostly into the inner retina and expressing GFP. Diabetic group had prominently lower oscillatory potential wave amplitudes than the Baseline group. Three weeks after intravitreal injection Diabetic+BMSC group had significantly better amplitudes than the Diabetic+Sham group. Taken together intravitreal BMSC were thought to improve visual function.
Collapse
Affiliation(s)
- Eren Çerman
- Marmara University School of Medicine, Department of Ophthalmology, Istanbul, Turkey
- * E-mail:
| | - Tolga Akkoç
- Genetic Engineering and Biotechnology Institution, The Scientific and Technological Research Council of Turkey, Kocaeli, Turkey
| | - Muhsin Eraslan
- Marmara University School of Medicine, Department of Ophthalmology, Istanbul, Turkey
| | - Özlem Şahin
- Marmara University School of Medicine, Department of Ophthalmology, Istanbul, Turkey
| | - Selvinaz Özkara
- Haydarpaşa Numune Education and Research Hospital, Department of Pathology, Istanbul, Turkey
| | - Fugen Vardar Aker
- Haydarpaşa Numune Education and Research Hospital, Department of Pathology, Istanbul, Turkey
| | - Cansu Subaşı
- Kocaeli University Center for Stem Cell and Gene Therapies, Kocaeli, Turkey
| | - Erdal Karaöz
- Kocaeli University Center for Stem Cell and Gene Therapies, Kocaeli, Turkey
| | - Tunç Akkoç
- Marmara University School of Medicine, Department of Pediatric Allergy and Immunology, Istanbul, Turkey
| |
Collapse
|
24
|
Liu H, Tang W, Li C, Lv P, Wang Z, Liu Y, Zhang C, Bao Y, Chen H, Meng X, Song Y, Xia X, Pan F, Cui D, Shi Y. CdSe/ZnS Quantum Dots-Labeled Mesenchymal Stem Cells for Targeted Fluorescence Imaging of Pancreas Tissues and Therapy of Type 1 Diabetic Rats. NANOSCALE RESEARCH LETTERS 2015; 10:959. [PMID: 26078050 PMCID: PMC4469594 DOI: 10.1186/s11671-015-0959-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 05/28/2015] [Indexed: 05/13/2023]
Abstract
Mesenchymal stem cells (MSCs) have been used for therapy of type 1 diabetes mellitus. However, the in vivo distribution and therapeutic effects of transplanted MSCs are not clarified well. Herein, we reported that CdSe/ZnS quantum dots-labeled MSCs were prepared for targeted fluorescence imaging and therapy of pancreas tissues in rat models with type 1 diabetes. CdSe/ZnS quantum dots were synthesized, their biocompatibility was evaluated, and then, the appropriate concentration of quantum dots was selected to label MSCs. CdSe/ZnS quantum dots-labeled MSCs were injected into mouse models with type 1 diabetes via tail vessel and then were observed by using the Bruker In-Vivo F PRO system, and the blood glucose levels were monitored for 8 weeks. Results showed that prepared CdSe/ZnS quantum dots owned good biocompatibility. Significant differences existed in distribution of quantum dots-labeled MSCs between normal control rats and diabetic rats (p < 0.05). The ratios of the fluorescence intensity (RFI) analysis showed an accumulation rate of MSCs in the pancreas of rats in the diabetes group which was about 32 %, while that in the normal control group rats was about 18 %. The blood glucose levels were also monitored for 8 weeks after quantum dots-labeled MSC injection. Statistical differences existed between the blood glucose levels of the diabetic rat control group and MSC-injected diabetic rat group (p < 0.01), and the MSC-injected diabetic rat group displayed lower blood glucose levels. In conclusion, CdSe/ZnS-labeled MSCs can target in vivo pancreas tissues in diabetic rats, and significantly reduce the blood glucose levels in diabetic rats, and own potential application in therapy of diabetic patients in the near future.
Collapse
Affiliation(s)
- Haoqi Liu
- />Department of Endocrinology and Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People’s Republic of China
| | - Wei Tang
- />Department of Endocrinology and Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People’s Republic of China
| | - Chao Li
- />Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, School of Electronics Information and Electronical Engineering, Collaborative Innovational Center for System Biology, National Center for Translational Medicine, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240 People’s Republic of China
| | - Pinlei Lv
- />Department of Digestion, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 People’s Republic of China
| | - Zheng Wang
- />Department of Digestion, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200001 People’s Republic of China
| | - Yanlei Liu
- />Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, School of Electronics Information and Electronical Engineering, Collaborative Innovational Center for System Biology, National Center for Translational Medicine, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240 People’s Republic of China
| | - Cunlei Zhang
- />Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, School of Electronics Information and Electronical Engineering, Collaborative Innovational Center for System Biology, National Center for Translational Medicine, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240 People’s Republic of China
| | - Yi Bao
- />Department of Endocrinology and Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People’s Republic of China
| | - Haiyan Chen
- />Department of Endocrinology and Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People’s Republic of China
| | - Xiangying Meng
- />Department of Endocrinology and Metabolism, Dahua Hospital, 901Laohumin Road, Shanghai, 200031 People’s Republic of China
| | - Yan Song
- />Department of Endocrinology and Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People’s Republic of China
| | - Xiaoling Xia
- />Department of Endocrinology and Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People’s Republic of China
| | - Fei Pan
- />Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, School of Electronics Information and Electronical Engineering, Collaborative Innovational Center for System Biology, National Center for Translational Medicine, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240 People’s Republic of China
| | - Daxiang Cui
- />Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Department of Instrument Science and Engineering, School of Electronics Information and Electronical Engineering, Collaborative Innovational Center for System Biology, National Center for Translational Medicine, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240 People’s Republic of China
| | - Yongquan Shi
- />Department of Endocrinology and Metabolism, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003 People’s Republic of China
| |
Collapse
|
25
|
Wang DJ, Li MY, Huang WT, Lu MH, Hu C, Li K, Qiu JG, Gao X. Repair of urethral defects with polylactid acid fibrous membrane seeded with adipose-derived stem cells in a rabbit model. Connect Tissue Res 2015; 56:434-9. [PMID: 25943462 DOI: 10.3109/03008207.2015.1035376] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM The aim of this study is to evaluate the capacity of polylactid acid (PLA) fibrous membrane seeded with allogeneic rabbit adipose tissue-derived stem cells (ADSCs) to repair urethral defects in a rabbit model. MATERIALS AND METHODS Rabbit ADSCs were harvested and phenotypically characterized. Twenty-four New Zealand male rabbits with 5-mm urethral mucosal defects were randomly divided into two groups. They underwent urethroplasty either with PLA fibrous membrane seeded with ADSCs (group A) or blank PLA fibrous membrane (group B). At 4 and 6 weeks after urethroplasty, the urethral grafts were collected and analyzed grossly and histologically. The incidence rate of urethrostenosis was measured. RESULTS The adipose tissue-derived cells in monolayer culture showed a typical morphology of mesenchymal stem cells (MSCs). They were positive for the MSC marker CD44 but negative for lineage markers CD45 and CD105. Six weeks after surgery, the incidence rate of urethrostenosis in group A was significantly lower than that in group B (p < 0.05). In group A, the ADSC-seeded grafts showed a normal urethral architecture with a thickened muscle layer. In contrast, the newly developed urethra in group B demonstrated a fewer number of urothelial layers and scarce or no smooth muscle cells. CONCLUSION The PLA scaffold seeded with ADSCs is effective in urethral regeneration in a rabbit model. ADSCs may represent a promising source of seed cells for urethral tissue engineering.
Collapse
Affiliation(s)
- De-juan Wang
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Mao-yin Li
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Wen-tao Huang
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Min-hua Lu
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Cheng Hu
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Ke Li
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Jian-guang Qiu
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xin Gao
- a Department of Urology , The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
26
|
Herklotz M, Prewitz MC, Bidan CM, Dunlop JW, Fratzl P, Werner C. Availability of extracellular matrix biopolymers and differentiation state of human mesenchymal stem cells determine tissue-like growth in vitro. Biomaterials 2015; 60:121-9. [DOI: 10.1016/j.biomaterials.2015.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/19/2015] [Accepted: 04/30/2015] [Indexed: 12/12/2022]
|
27
|
Alonso-Alonso ML, Srivastava GK. Current focus of stem cell application in retinal repair. World J Stem Cells 2015; 7:641-648. [PMID: 25914770 PMCID: PMC4404398 DOI: 10.4252/wjsc.v7.i3.641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/06/2014] [Accepted: 01/19/2015] [Indexed: 02/06/2023] Open
Abstract
The relevance of retinal diseases, both in society’s economy and in the quality of people’s life who suffer with them, has made stem cell therapy an interesting topic for research. Embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adipose derived mesenchymal stem cells (ADMSCs) are the focus in current endeavors as a source of different retinal cells, such as photoreceptors and retinal pigment epithelial cells. The aim is to apply them for cell replacement as an option for treating retinal diseases which so far are untreatable in their advanced stage. ESCs, despite the great potential for differentiation, have the dangerous risk of teratoma formation as well as ethical issues, which must be resolved before starting a clinical trial. iPSCs, like ESCs, are able to differentiate in to several types of retinal cells. However, the process to get them for personalized cell therapy has a high cost in terms of time and money. Researchers are working to resolve this since iPSCs seem to be a realistic option for treating retinal diseases. ADMSCs have the advantage that the procedures to obtain them are easier. Despite advancements in stem cell application, there are still several challenges that need to be overcome before transferring the research results to clinical application. This paper reviews recent research achievements of the applications of these three types of stem cells as well as clinical trials currently based on them.
Collapse
|
28
|
Morgan JT, Kwon HS, Wood JA, Borjesson DL, Tomarev SI, Murphy CJ, Russell P. Thermally labile components of aqueous humor potently induce osteogenic potential in adipose-derived mesenchymal stem cells. Exp Eye Res 2015; 135:127-33. [PMID: 25720657 DOI: 10.1016/j.exer.2015.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 02/12/2015] [Accepted: 02/22/2015] [Indexed: 12/13/2022]
Abstract
Adipose-derived mesenchymal stem cells (ASCs) hold promise for use in cell-based therapies. Their intrinsic anti-inflammatory properties are potentially useful for treatments of inflammatory conditions such as uveitis, while their ability to differentiate along multiple cell lineages suggests use in regenerating damaged or degenerated tissue. However, how ASCs will respond to the intraocular environment is poorly studied. We have recently reported that aqueous humor (AH), the fluid that nourishes the anterior segment of the eye, potently increases alkaline phosphatase (ALP) activity of ASCs, indicating osteogenic differentiation. Here, we expand on our previous findings to better define the nature of this response. To this end, we cultured ASCs in the presence of 0, 5, 10, and 20% AH and assayed them for ALP activity. We found ALP activity correlates with increasing AH concentrations from 5 to 20%, and that longer treatments result in increased ALP activity. By using serum free media and pretreating AH with dextran-coated charcoal, we found that serum and charcoal-adsorbable AH components augment but are not required for this response. Further, by heat-treating the AH, we established that thermally labile components are required for the osteogenic response. Finally, we showed myocilin, a protein present in AH, could induce ALP activity in ASCs. However, this was to a lesser extent than untreated 5% AH, and myocilin could only partially rescue the effect after heat treatment, documenting there were additional thermally labile constituents of AH involved in the osteogenic response. Our work adds to the understanding of the induction of ALP in ASCs following exposure to AH, providing important insight in how ASCs will be influenced by the ocular environment. In conclusion, increased osteogenic potential upon exposure to AH represents a potential challenge to developing ASC cell-based therapies directed at the eye.
Collapse
Affiliation(s)
- Joshua T Morgan
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, USA
| | - Heung Sun Kwon
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, MD, USA
| | - Joshua A Wood
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Stanislav I Tomarev
- Section of Retinal Ganglion Cell Biology, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, NIH, Bethesda, MD, USA
| | - Christopher J Murphy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, USA; Department of Ophthalmology & Vision Science, School of Medicine, University of California, Davis, USA
| | - Paul Russell
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, USA.
| |
Collapse
|
29
|
Bhatwadekar AD. Editorial: Cell-Based Therapies for Diabetic Microvascular Complications. Front Endocrinol (Lausanne) 2015; 6:146. [PMID: 26441836 PMCID: PMC4585198 DOI: 10.3389/fendo.2015.00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/02/2015] [Indexed: 11/23/2022] Open
Affiliation(s)
- Ashay D. Bhatwadekar
- Eugene and Marilyn Glick Eye Institute, Indianapolis, IN, USA
- *Correspondence: Ashay D. Bhatwadekar,
| |
Collapse
|