1
|
Endzhievskaya S, Chahal K, Resnick J, Khare E, Roy S, Handel TM, Kufareva I. Essential strategies for the detection of constitutive and ligand-dependent Gi-directed activity of 7TM receptors using bioluminescence resonance energy transfer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626681. [PMID: 39713355 PMCID: PMC11661105 DOI: 10.1101/2024.12.04.626681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The constitutive (ligand-independent) signaling of G protein-coupled receptors (GPCRs) is being increasingly appreciated as an integral aspect of their function; however, it can be technically hard to detect for poorly characterized, e.g. orphan, receptors of the cAMP-inhibitory Gi-coupled (GiPCR) family. In this study, we delineate the optimal strategies for the detection of such activity across several GiPCRs in two cell lines. As our study examples, we chose two canonical GiPCRs - the constitutively active Smoothened and the ligand-activated CXCR4, - and one atypical GPCRs, the chemokine receptor ACKR3. We verified the applicability of three Bioluminescence Resonance Energy Transfer (BRET)-based assays - one measuring changes in intracellular cAMP, another in Gβγ/GRK3ct association and third in Gαi-Gβγ dissociation, - for assessing both constitutive and ligand-modulated activity of these receptors. We also revealed the possible caveats and sources of false positives, and proposed optimization strategies. All three types of assays confirmed the ligand-dependent activity of CXCR4, the controversial G protein incompetence of ACKR3, the constitutive Gi-directed activity of SMO, and its modulation by PTCH1. We also demonstrated that PTCH1 promotes SMO localization to the cell surface, thus enhancing its responsiveness not only to agonists but also to antagonists, which is a novel mechanism of regulation of a Class F GiPCR Smoothened.
Collapse
Affiliation(s)
- Sofia Endzhievskaya
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Kirti Chahal
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- LigronBio Inc., San Diego, CA, USA
| | - Julie Resnick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ekta Khare
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Suchismita Roy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy M. Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
3
|
Gauthier C, Raynaud P, Jean-Alphonse F, Vallet A, Vaugrente O, Jugnarain V, Boulo T, Gauthier C, Reiter E, Bruneau G, Crépieux P. An intracellular VHH targeting the Luteinizing Hormone receptor modulates G protein-dependent signaling and steroidogenesis. Mol Cell Endocrinol 2024; 589:112235. [PMID: 38621656 DOI: 10.1016/j.mce.2024.112235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Luteinizing hormone (LH) is essential for reproduction, controlling ovulation and steroidogenesis. Its receptor (LHR) recruits various transducers leading to the activation of a complex signaling network. We recently identified iPRC1, the first variable fragment from heavy-chain-only antibody (VHH) interacting with intracellular loop 3 (ICL3) of the follicle-stimulating hormone receptor (FSHR). Because of the high sequence similarity of the human FSHR and LHR (LHCGR), here we examined the ability of the iPRC1 intra-VHH to modulate LHCGR activity. In this study, we demonstrated that iPRC1 binds LHCGR, to a greater extent when the receptor was stimulated by the hormone. In addition, it decreased LH-induced cAMP production, cAMP-responsive element-dependent transcription, progesterone and testosterone production. These impairments are not due to Gs nor β-arrestin recruitment to the LHCGR. Consequently, iPRC1 is the first intra-VHH to bind and modulate LHCGR biological activity, including steroidogenesis. It should help further understand signaling mechanisms elicited at this receptor and their outcomes on reproduction.
Collapse
Affiliation(s)
| | - Pauline Raynaud
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Frédéric Jean-Alphonse
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France; Inria, Inria Saclay-Ile-de-France, 91120, Palaiseau, France
| | - Amandine Vallet
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | | | - Thomas Boulo
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | | | - Eric Reiter
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France; Inria, Inria Saclay-Ile-de-France, 91120, Palaiseau, France
| | - Gilles Bruneau
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France
| | - Pascale Crépieux
- INRAE, CNRS, Université de Tours, PRC, 37380, Nouzilly, France; Inria, Inria Saclay-Ile-de-France, 91120, Palaiseau, France.
| |
Collapse
|
4
|
Lazzaretti C, Roy N, Paradiso E, Capponi C, Ferrari T, Reggianini F, Sperduti S, Perri C, Baschieri L, Mascolo E, Varani M, Canu G, Trenti T, Nicoli A, Morini D, Iannotti F, Villani MT, Vicini E, Simoni M, Casarini L. Benzo[a]pyrene disrupts LH/hCG-dependent mouse Leydig cell steroidogenesis through receptor/Gαs protein targeting. Sci Rep 2024; 14:844. [PMID: 38191651 PMCID: PMC10774265 DOI: 10.1038/s41598-024-51516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/06/2024] [Indexed: 01/10/2024] Open
Abstract
Steroidogenesis of gonadal cells is tightly regulated by gonadotropins. However, certain polycyclic aromatic hydrocarbons, including Benzo[a]pyrene (BaP), induce reproductive toxicity. Several existing studies have considered higher than environmentally relevant concentrations of BaP on male and female steroidogenesis following long-term exposure. Also, the impact of short-term exposure to BaP on gonadotropin-stimulated cells is understudied. Therefore, we evaluated the effect of 1 nM and 1 µM BaP on luteinizing hormone/choriogonadotropin (LH/hCG)-mediated signalling in two steroidogenic cell models, i.e. the mouse tumor Leydig cell line mLTC1, and the human primary granulosa lutein cells (hGLC) post 8- and 24-h exposure. Cell signalling studies were performed by homogeneous time-resolved fluorescence (HTRF) assay, bioluminescence energy transfer (BRET) and Western blotting, while immunostainings and immunoassays were used for intracellular protein expression and steroidogenesis analyses, respectively. BaP decreased cAMP production in gonadotropin-stimulated mLTC1 interfering with Gαs activation. Therefore, decrease in gonadotropin-mediated CREB phosphorylation in mLTC1 treated with 1 μM BaP was observed, while StAR protein levels in gonadotropin-stimulated mLTC1 cells were unaffected by BaP. Further, BaP decreased LH- and hCG-mediated progesterone production in mLTC1. Contrastingly, BaP failed to mediate any change in cAMP, genes and proteins of steroidogenic machinery and steroidogenesis of gonadotropin-treated hGLC. Our results indicate that short-term exposure to BaP significantly impairs steroidogenic signalling in mLTC1 interfering with Gαs. These findings could have a significant impact on our understanding of the mechanism of reproductive toxicity by endocrine disruptors.
Collapse
Affiliation(s)
- Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy.
| | - Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Chiara Capponi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Tommaso Ferrari
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Francesca Reggianini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
| | - Carmela Perri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Lara Baschieri
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
| | - Elisa Mascolo
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
| | - Manuela Varani
- Department of Laboratory Medicine and Pathology, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Giulia Canu
- Department of Laboratory Medicine and Pathology, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Alessia Nicoli
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Daria Morini
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Francesca Iannotti
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42123, Reggio Emilia, Italy
| | - Elena Vicini
- Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, La Sapienza University, Rome, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, Baggiovara Hospital, University of Modena and Reggio Emilia, via Pietro Giardini 1355, 41126, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via Giuseppe Campi 287, 41125, Modena, Italy
| |
Collapse
|
5
|
Raynaud P, Jugnarain V, Vaugrente O, Vallet A, Boulo T, Gauthier C, Inoue A, Sibille N, Gauthier C, Jean-Alphonse F, Reiter E, Crépieux P, Bruneau G. A single-domain intrabody targeting the follicle-stimulating hormone receptor impacts FSH-induced G protein-dependent signalling. FEBS Lett 2024; 598:220-232. [PMID: 37923554 DOI: 10.1002/1873-3468.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Intracellular variable fragments of heavy-chain antibody from camelids (intra-VHH) have been successfully used as chaperones to solve the 3D structure of active G protein-coupled receptors bound to their transducers. However, their effect on signalling has been poorly explored, although they may provide a better understanding of the relationships between receptor conformation and activity. Here, we isolated and characterized iPRC1, the first intra-VHH recognizing a member of the large glycoprotein hormone receptor family, the follicle-stimulating hormone receptor (FSHR). This intra-VHH recognizes the FSHR third intracellular loop and decreases cAMP production in response to FSH, without altering Gαs recruitment. Hence, iPRC1 behaves as an allosteric modulator and provides a new tool to complete structure/activity studies performed thus far on this receptor.
Collapse
Affiliation(s)
- Pauline Raynaud
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Vinesh Jugnarain
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Océane Vaugrente
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Amandine Vallet
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Thomas Boulo
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Camille Gauthier
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, France
| | - Christophe Gauthier
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| | - Frédéric Jean-Alphonse
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| | - Gilles Bruneau
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly, France
| |
Collapse
|
6
|
Zehnaker A, Vallet A, Gourdon J, Sarti C, Jugnarain V, Haj Hassan M, Mathias L, Gauthier C, Raynaud P, Boulo T, Beauclair L, Bigot Y, Casarini L, Crépieux P, Poupon A, Piégu B, Jean-Alphonse F, Bruneau G, Reiter É. Combined Multiplexed Phage Display, High-Throughput Sequencing, and Functional Assays as a Platform for Identifying Modulatory VHHs Targeting the FSHR. Int J Mol Sci 2023; 24:15961. [PMID: 37958944 PMCID: PMC10650796 DOI: 10.3390/ijms242115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Developing modulatory antibodies against G protein-coupled receptors is challenging. In this study, we targeted the follicle-stimulating hormone receptor (FSHR), a significant regulator of reproduction, with variable domains of heavy chain-only antibodies (VHHs). We built two immune VHH libraries and submitted them to multiplexed phage display approaches. We used next-generation sequencing to identify 34 clusters of specifically enriched sequences that were functionally assessed in a primary screen based on a cAMP response element (CRE)-dependent reporter gene assay. In this assay, 23 VHHs displayed negative or positive modulation of FSH-induced responses, suggesting a high success rate of the multiplexed strategy. We then focused on the largest cluster identified (i.e., PRC1) that displayed positive modulation of FSH action. We demonstrated that PRC1 specifically binds to the human FSHR and human FSHR/FSH complex while potentiating FSH-induced cAMP production and Gs recruitment. We conclude that the improved selection strategy reported here is effective for rapidly identifying functionally active VHHs and could be adapted to target other challenging membrane receptors. This study also led to the identification of PRC1, the first potential positive modulator VHH reported for the human FSHR.
Collapse
Affiliation(s)
- Anielka Zehnaker
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Amandine Vallet
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Juliette Gourdon
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Caterina Sarti
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Vinesh Jugnarain
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Maya Haj Hassan
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Laetitia Mathias
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Camille Gauthier
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Pauline Raynaud
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Thomas Boulo
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Linda Beauclair
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Yves Bigot
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Livio Casarini
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
| | - Anne Poupon
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
- MAbSilico, 1 Impasse du Palais, 37000 Tours, France
| | - Benoît Piégu
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Frédéric Jean-Alphonse
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
| | - Gilles Bruneau
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
| | - Éric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, 37380 Nouzilly, France; (A.Z.); (A.V.); (J.G.); (C.S.); (V.J.); (M.H.H.); (L.M.); (C.G.); (P.R.); (T.B.); (L.B.); (Y.B.); (L.C.); (P.C.); (A.P.); (B.P.); (F.J.-A.)
- Inria, Inria Saclay-Ile-de-France, 91120 Palaiseau, France
| |
Collapse
|
7
|
Paradiso E, Lazzaretti C, Sperduti S, Melli B, Trenti T, Tagliavini S, Roli L, D'Achille F, Beltrán-Frutos E, Simoni M, Casarini L. Protein kinase B (Akt) blockade inhibits LH/hCG-mediated 17,20-lyase, but not 17α-hydroxylase activity of Cyp17a1 in mouse Leydig cell steroidogenesis. Cell Signal 2023; 111:110872. [PMID: 37640196 DOI: 10.1016/j.cellsig.2023.110872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Androgens are produced by adrenal and gonadal cells thanks to the action of specific enzymes. We investigated the role of protein kinase B (Akt) in the modulation of Δ4 steroidogenic enzymes' activity, in the mouse Leydig tumor cell line mLTC1. Cells were treated for 0-24 h with the 3 × 50% effective concentration of human luteinizing hormone (LH) and choriogonadotropin (hCG), in the presence and in the absence of the specific Akt inhibitor 3CAI. Cell signaling analysis was performed by bioluminescence resonance energy transfer (BRET) and Western blotting, while the expression of key target genes was investigated by real-time PCR. The synthesis of progesterone, 17α-hydroxy (OH)-progesterone and testosterone was measured by immunoassay. Control experiments for cell viability and caspase 3 activation were performed as well. We found that both hormones activated cAMP and downstream effectors, such as extracellularly-regulated kinase 1/2 (Erk1/2) and cAMP response element-binding protein (Creb), as well as Akt, and the transcription of Stard1, Hsd3b1, Cyp17a1 and Hsd17b3 genes, boosting the Δ4 steroidogenic pathway. Interestingly, Akt blockade decreased selectively Cyp17a1 expression levels, inhibiting its 17,20-lyase, but not the 17-hydroxylase activity. This effect is consistent with lower Cyp17a1 affinity to 17α-OH-progesterone than progesterone. As a result, cell treatment with 3CAI resulted in 17α-OH-progesterone accumulation at 16-24 h and decreased testosterone levels after 24 h. In conclusion, in the mouse Leydig cell line mLTC1, we found substantial Akt dependence of the 17,20-lyase activity and testosterone synthesis. Our results indicate that different intracellular pathways modulate selectively the dual activity of Cyp17a1.
Collapse
Affiliation(s)
- Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy.
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Beatrice Melli
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Laura Roli
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Fabio D'Achille
- Department of Laboratory Medicine and Pathological Anatomy, Azienda Ospedaliero Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Ester Beltrán-Frutos
- Department of Cell Biology and Histology, Medical School, IMIB-Arrixaca, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30120 Murcia, Spain
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia. Via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| |
Collapse
|
8
|
Somalo-Barranco G, Pagano Zottola AC, Abdulrahman AO, El Zein RM, Cannich A, Muñoz L, Serra C, Oishi A, Marsicano G, Masri B, Bellocchio L, Llebaria A, Jockers R. Mitochondria-targeted melatonin photorelease supports the presence of melatonin MT1 receptors in mitochondria inhibiting respiration. Cell Chem Biol 2023; 30:920-932.e7. [PMID: 37572668 DOI: 10.1016/j.chembiol.2023.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/16/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
The presence of signaling-competent G protein-coupled receptors in intracellular compartments is increasingly recognized. Recently, the presence of Gi/o protein-coupled melatonin MT1 receptors in mitochondria has been revealed, in addition to the plasma membrane. Melatonin is highly cell permeant, activating plasma membrane and mitochondrial receptors equally. Here, we present MCS-1145, a melatonin derivative bearing a triphenylphosphonium cation for specific mitochondrial targeting and a photocleavable o-nitrobenzyl group releasing melatonin upon illumination. MCS-1145 displayed low affinity for MT1 and MT2 but spontaneously accumulated in mitochondria, where it was resistant to washout. Uncaged MCS-1145 and exogenous melatonin recruited β-arrestin 2 to MT1 in mitochondria and inhibited oxygen consumption in mitochondria isolated from HEK293 cells only when expressing MT1 and from mouse cerebellum of WT mice but not from MT1-knockout mice. Overall, we developed the first mitochondria-targeted photoactivatable melatonin ligand and demonstrate that melatonin inhibits mitochondrial respiration through mitochondrial MT1 receptors.
Collapse
Affiliation(s)
- Gloria Somalo-Barranco
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France; MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | | | | | - Rami M El Zein
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Lourdes Muñoz
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Carme Serra
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; SIMChem, Synthesis of High Added Value Molecules, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Atsuro Oishi
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Bernard Masri
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry & Synthesis, Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Ralf Jockers
- Université Paris Cité, Institut Cochin, INSERM, CNRS, 75014 PARIS, France.
| |
Collapse
|
9
|
Reiter E. [β-arrestins, their mechanisms of action and multiple roles in the biology of G protein-coupled receptors]. Biol Aujourdhui 2022; 215:107-118. [PMID: 35275055 DOI: 10.1051/jbio/2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 06/14/2023]
Abstract
The stimulation of G protein-coupled receptors (GPCRs) induces biological responses to a wide range of extracellular cues. The heterotrimeric G proteins, which are recruited to the active conformation of GPCRs, lead to the generation of various diffusible second messengers. Only two other families of proteins exhibit the remarkable characteristic of recognizing and binding to the active conformation of most GPCRs: GPCR kinases (GRKs) and β-arrestins. These two families of proteins were initially identified as key players in the desensitization of G protein activation by GPCRs. Over the years, β-arrestins have been implicated in an increasing number of interactions with non-receptor proteins, expanding the range of cellular functions in which they are involved. It is now well established that β-arrestins, by scaffolding and recruiting protein complexes in an agonist-dependent manner, directly regulate the trafficking and signaling of GPCRs. Remarkable advances have been made in recent years which have made it possible i) to identify biased ligands capable, by stabilizing particular conformations of a growing number of GPCRs, of activating or blocking the action of β-arrestins independently of that of G proteins, some of these ligands holding great therapeutic interest; ii) to demonstrate β-arrestins' role in the compartmentalization of GPCR signaling within the cell, and iii) to understand the molecular details of their interaction with GPCRs and of their activation through structural and biophysical approaches.
Collapse
Affiliation(s)
- Eric Reiter
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France - Inria, Centre de recherche Inria Saclay-Île-de-France, 91120 Palaiseau, France
| |
Collapse
|
10
|
Limoncella S, Lazzaretti C, Paradiso E, D'Alessandro S, Barbagallo F, Pacifico S, Guerrini R, Tagliavini S, Trenti T, Santi D, Simoni M, Sola M, Di Rocco G, Casarini L. Phosphodiesterase (PDE) 5 inhibitors sildenafil, tadalafil and vardenafil impact cAMP-specific PDE8 isoforms-linked second messengers and steroid production in a mouse Leydig tumor cell line. Mol Cell Endocrinol 2022; 542:111527. [PMID: 34875337 DOI: 10.1016/j.mce.2021.111527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
Type 5 phosphodiesterase (PDE5) blockade by inhibitors (PDE5i) results in intracellular cyclic guanosine monophosphate (cGMP) increase and smooth muscle relaxation and are used for the treatment of men erectile dysfunction. Although they have high specificity for PDE5, these inhibitors are suspected to cross-interact also with cyclic adenosine monophosphate (cAMP)-specific PDEs, inducing the intracellular accumulation of this cyclic nucleotide and related testosterone increase, positively impacting male reproductive parameters. However, the link between the use of PDE5i and the activation of cAMP-mediated steroidogenesis is still unclear. We have investigated whether three PDE5i, sildenafil, tadalafil and vardenafil, cross-interacts with the high affinity cAMP-specific enzymes type 8A and 8B PDEs (PDE8A and PDE8B), in live, transfected mouse Leydig tumor (mLTC1) and human embryonic kidney (HEK293) cell lines in vitro. The PDE5i-induced production of cAMP-dependent testosterone and its precursor progesterone was evaluated as well. We have developed PDE8A/B biosensors and modified cyclic nucleotides confirming enzyme binding to cAMP, but not to cGMP, in our cell models. cAMP binding to PDE8A/B was displaced upon cell treatment with PDE5i, revealing that sildenafil, tadalafil and vardenafil have similar effectiveness in live cells, in vitro. The cross-interaction between PDE5i and PDE8A/B supports the gonadotropin-enhanced intracellular cAMP increase, occurring together with cGMP increase, as well as steroid synthesis. Indeed, we found that Leydig cell treatment by PDE5i increases progesterone and testosterone production triggered by gonadotropins. We demonstrated that PDE5i may interact with the cAMP-specific PDE8A and PDE8B, possibly inducing intracellular cAMP and sex steroid hormone increase. These findings support clinical data suggesting that PDE5i might increase testosterone levels in men.
Collapse
Affiliation(s)
- Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D'Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | | | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Pharmacological Characterization of Low Molecular Weight Biased Agonists at the Follicle Stimulating Hormone Receptor. Int J Mol Sci 2021; 22:ijms22189850. [PMID: 34576014 PMCID: PMC8469697 DOI: 10.3390/ijms22189850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/14/2023] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) plays a key role in reproduction through the activation of multiple signaling pathways. Low molecular weight (LMW) ligands composed of biased agonist properties are highly valuable tools to decipher complex signaling mechanisms as they allow selective activation of discrete signaling cascades. However, available LMW FSHR ligands have not been fully characterized yet. In this context, we explored the pharmacological diversity of three benzamide and two thiazolidinone derivatives compared to FSH. Concentration/activity curves were generated for Gαs, Gαq, Gαi, β-arrestin 2 recruitment, and cAMP production, using BRET assays in living cells. ERK phosphorylation was analyzed by Western blotting, and CRE-dependent transcription was assessed using a luciferase reporter assay. All assays were done in either wild-type, Gαs or β-arrestin 1/2 CRISPR knockout HEK293 cells. Bias factors were calculated for each pair of read-outs by using the operational model. Our results show that each ligand presented a discrete pharmacological efficacy compared to FSH, ranging from super-agonist for β-arrestin 2 recruitment to pure Gαs bias. Interestingly, LMW ligands generated kinetic profiles distinct from FSH (i.e., faster, slower or transient, depending on the ligand) and correlated with CRE-dependent transcription. In addition, clear system biases were observed in cells depleted of either Gαs or β-arrestin genes. Such LMW properties are useful pharmacological tools to better dissect the multiple signaling pathways activated by FSHR and assess their relative contributions at the cellular and physio-pathological levels.
Collapse
|
12
|
Abstract
Gonadotropins are glycoprotein sex hormones regulating development and reproduction and bind to specific G protein–coupled receptors expressed in the gonads. Their effects on multiple signaling cascades and intracellular events have recently been characterized using novel technological and scientific tools. The impact of allosteric modulators on gonadotropin signaling, the role of sugars linked to the hormone backbone, the detection of endosomal compartments supporting signaling modules, and the dissection of different effects mediated by these molecules are areas that have advanced significantly in the last decade. The classic view providing the exclusive activation of the cAMP/protein kinase A (PKA) and the steroidogenic pathway by these hormones has been expanded with the addition of novel signaling cascades as determined by high-resolution imaging techniques. These new findings provided new potential therapeutic applications. Despite these improvements, unanswered issues of gonadotropin physiology, such as the intrinsic pro-apoptotic potential to these hormones, the existence of receptors assembled as heteromers, and their expression in extragonadal tissues, remain to be studied. Elucidating these issues is a challenge for future research.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
13
|
Munier M, Ayoub M, Suteau V, Gourdin L, Henrion D, Reiter E, Rodien P. In vitro effects of the endocrine disruptor p,p'DDT on human choriogonadotropin/luteinizing hormone receptor signalling. Arch Toxicol 2021; 95:1671-1681. [PMID: 33638691 DOI: 10.1007/s00204-021-03007-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
Dichlorodiphenyltrichloroethane (p,p'DDT) is an endocrine-disrupting chemical (EDC). Several studies showed an association between p,p'DDT exposure and reprotoxic effects. We showed that p,p'DDT was a positive allosteric modulator of human follitropin receptor (FSHR). In contrast, we demonstrated that p,p'DDT decreased the cyclic AMP (cAMP) production induced by human choriogonadotropin (hCG). This study evaluated further the effects of p,p'DDT on Gs-, β-arrestin 2- and steroidogenesis pathways induced by hCG or luteinizing hormone (LH). We used Chinese hamster ovary cells line stably expressing hCG/LHR. The effects of 10-100 µM p,p'DDT on cAMP production and on β-arrestin 2 recruitment were measured using bioluminescence and time-resolved resonance energy transfer technology. The impact of 100 µM of p,p'DDT on steroid secretion was analysed in murine Leydig tumor cell line (mLTC-1). In cAMP assays, 100 µM p,p'DDT increased the EC50 by more than 300% and reduced the maximum response of the hCG/LHR to hCG and hLH by 30%. This inhibitory effect was also found in human granulosa cells line and in mLTC-1 cells. Likewise, 100 µM p,p'DDT decreased the hCG- and hLH-promoted β-arrestin 2 recruitment down to 14.2 and 26.6%, respectively. Moreover, 100 µM p,p'DDT decreased by 30 and 47% the progesterone secretion induced by hCG or hLH, respectively, without affecting testosterone secretion. This negative effect of p,p'DDT was independent of cytotoxicity. p,p'DDT acted as a negative allosteric modulator of the hCG/LHR signalling. This emphasizes the importance of analyzing all receptor-downstream pathways to fully understand the deleterious effects of EDC on human health.
Collapse
Affiliation(s)
- Mathilde Munier
- UMR CNRS 6015, INSERM 1083, 3 Rue Roger Amsler - Angers University, 49000, Angers, France. .,Department of Endocrinology, University Hospital, 4 Rue Larrey, 49933, Angers, France. .,Reference Center for Rare Diseases of Thyroid and Hormone Receptors, University Hospital, 4 Rue Larrey, 49933, Angers, France.
| | - Mohammed Ayoub
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.,Reproductive and Behavioural Physiology, INRAE, CNRS, IFCE, Tours University, 37380, Nouzilly, France
| | - Valentine Suteau
- UMR CNRS 6015, INSERM 1083, 3 Rue Roger Amsler - Angers University, 49000, Angers, France.,Department of Endocrinology, University Hospital, 4 Rue Larrey, 49933, Angers, France
| | - Louis Gourdin
- UMR CNRS 6015, INSERM 1083, 3 Rue Roger Amsler - Angers University, 49000, Angers, France.,Reference Center for Rare Diseases of Thyroid and Hormone Receptors, University Hospital, 4 Rue Larrey, 49933, Angers, France
| | - Daniel Henrion
- UMR CNRS 6015, INSERM 1083, 3 Rue Roger Amsler - Angers University, 49000, Angers, France
| | - Eric Reiter
- Reproductive and Behavioural Physiology, INRAE, CNRS, IFCE, Tours University, 37380, Nouzilly, France
| | - Patrice Rodien
- UMR CNRS 6015, INSERM 1083, 3 Rue Roger Amsler - Angers University, 49000, Angers, France.,Department of Endocrinology, University Hospital, 4 Rue Larrey, 49933, Angers, France.,Reference Center for Rare Diseases of Thyroid and Hormone Receptors, University Hospital, 4 Rue Larrey, 49933, Angers, France
| |
Collapse
|
14
|
Kim N, Shin S, Bae SW. cAMP Biosensors Based on Genetically Encoded Fluorescent/Luminescent Proteins. BIOSENSORS-BASEL 2021; 11:bios11020039. [PMID: 33572585 PMCID: PMC7911721 DOI: 10.3390/bios11020039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) plays a key role in signal transduction pathways as a second messenger. Studies on the cAMP dynamics provided useful scientific insights for drug development and treatment of cAMP-related diseases such as some cancers and prefrontal cortex disorders. For example, modulation of cAMP-mediated intracellular signaling pathways by anti-tumor drugs could reduce tumor growth. However, most early stage tools used for measuring the cAMP level in living organisms require cell disruption, which is not appropriate for live cell imaging or animal imaging. Thus, in the last decades, tools were developed for real-time monitoring of cAMP distribution or signaling dynamics in a non-invasive manner. Genetically-encoded sensors based on fluorescent proteins and luciferases could be powerful tools to overcome these drawbacks. In this review, we discuss the recent genetically-encoded cAMP sensors advances, based on single fluorescent protein (FP), Föster resonance energy transfer (FRET), single luciferase, and bioluminescence resonance energy transfer (BRET) for real-time non-invasive imaging.
Collapse
Affiliation(s)
- Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Korea;
| | - Seunghan Shin
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
| | - Se Won Bae
- Green Chemistry & Materials Group, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Korea;
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea
- Correspondence: ; Tel.: +82-64-754-3543
| |
Collapse
|
15
|
Clément F, Crépieux P, Yvinec R, Monniaux D. Mathematical modeling approaches of cellular endocrinology within the hypothalamo-pituitary-gonadal axis. Mol Cell Endocrinol 2020; 518:110877. [PMID: 32569857 DOI: 10.1016/j.mce.2020.110877] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/26/2023]
Abstract
The reproductive neuroendocrine axis, or hypothalamo-pituitary-gonadal (HPG) axis, is a paragon of complex biological system involving numerous cell types, spread over several anatomical levels communicating through entangled endocrine feedback loops. The HPG axis exhibits remarkable dynamic behaviors on multiple time and space scales, which are an inexhaustible source of studies for mathematical and computational biology. In this review, we will describe a variety of modeling approaches of the HPG axis from a cellular endocrinology viewpoint. We will in particular investigate the questions raised by some of the most striking features of the HPG axis: (i) the pulsatile secretion of hypothalamic and pituitary hormones, and its counterpart, the cell signaling induced by frequency-encoded hormonal signals, and (ii) the dual, gametogenic and glandular function of the gonads, which relies on the tight control of the somatic cell populations ensuring the proper maturation and timely release of the germ cells.
Collapse
Affiliation(s)
- Frédérique Clément
- Inria, Centre de Recherche Inria Saclay-Île-de-France, Palaiseau, France.
| | - Pascale Crépieux
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| | - Romain Yvinec
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| | - Danielle Monniaux
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France; CNRS, UMR7247, F-37380, Nouzilly, France; Université de Tours, F-37041, Tours, France
| |
Collapse
|
16
|
Sposini S, De Pascali F, Richardson R, Sayers NS, Perrais D, Yu HN, Palmer S, Nataraja S, Reiter E, Hanyaloglu AC. Pharmacological Programming of Endosomal Signaling Activated by Small Molecule Ligands of the Follicle Stimulating Hormone Receptor. Front Pharmacol 2020; 11:593492. [PMID: 33329002 PMCID: PMC7734412 DOI: 10.3389/fphar.2020.593492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Follicle-stimulating hormone receptor (FSHR) is a G protein-coupled receptor (GPCR) with pivotal roles in reproduction. One key mechanism dictating the signal activity of GPCRs is membrane trafficking. After binding its hormone FSH, FSHR undergoes internalization to very early endosomes (VEEs) for its acute signaling and sorting to a rapid recycling pathway. The VEE is a heterogeneous compartment containing the Adaptor Protein Phosphotyrosine Interacting with Pleckstrin homology Domain and Leucine Zipper 1 (APPL1) with distinct functions in regulating endosomal Gαs/cAMP signaling and rapid recycling. Low molecular weight (LMW) allosteric FSHR ligands were developed for use in assisted reproductive technology yet could also provide novel pharmacological tools to study FSHR. Given the critical nature of receptor internalization and endosomal signaling for FSHR activity, we assessed whether these compounds exhibit differential abilities to alter receptor endosomal trafficking and signaling within the VEE. Two chemically distinct LMW agonists (benzamide, termed B3 and thiazolidinone, termed T1) were employed. T1 was able to induce a greater level of cAMP than FSH and B3. As cAMP signaling drives gonadotrophin hormone receptor recycling, rapid exocytic events were evaluated at single event resolution. Strikingly, T1 was able to induce a 3-fold increase in recycling events compared to FSH and two-fold more compared to B3. As T1-induced internalization was only marginally greater, the dramatic increase in recycling and cAMP signaling may be due to additional mechanisms. All compounds exhibited a similar requirement for receptor internalization to increase cAMP and proportion of FSHR endosomes with active Gαs, suggesting regulation of cAMP signaling induced by T1 may be altered. APPL1 plays a central role for GPCRs targeted to the VEE, and indeed, loss of APPL1 inhibited FSH-induced recycling and increased endosomal cAMP signaling. While T1-induced FSHR recycling was APPL1-dependent, its elevated cAMP signaling was only partially increased following APPL1 knockdown. Unexpectedly, B3 altered the dependence of FSHR to APPL1 in an opposing manner, whereby its endosomal signaling was negatively regulated by APPL1, while B3-induced FSHR recycling was APPL1-independent. Overall, FSHR allosteric compounds have the potential to re-program FSHR activity via altering engagement with VEE machinery and also suggests that these two distinct functions of APPL1 can potentially be selected pharmacologically.
Collapse
Affiliation(s)
- Silvia Sposini
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Francesco De Pascali
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, Institut Français du Cheval et de l'Equitation (IFCE), Nouzilly, France
| | - Rachel Richardson
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Niamh S. Sayers
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - David Perrais
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Henry N. Yu
- CanWell Pharma Inc., Wellesley, MA, United States
| | - Stephen Palmer
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | | | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Université de Tours, Institut Français du Cheval et de l'Equitation (IFCE), Nouzilly, France
| | - Aylin C. Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Höring C, Seibel U, Tropmann K, Grätz L, Mönnich D, Pitzl S, Bernhardt G, Pockes S, Strasser A. A Dynamic, Split-Luciferase-Based Mini-G Protein Sensor to Functionally Characterize Ligands at All Four Histamine Receptor Subtypes. Int J Mol Sci 2020; 21:ijms21228440. [PMID: 33182741 PMCID: PMC7698210 DOI: 10.3390/ijms21228440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 02/06/2023] Open
Abstract
In drug discovery, assays with proximal readout are of great importance to study target-specific effects of potential drug candidates. In the field of G protein-coupled receptors (GPCRs), the determination of GPCR-G protein interactions and G protein activation by means of radiolabeled GTP analogs ([35S]GTPγS, [γ-32P]GTP) has widely been used for this purpose. Since we were repeatedly faced with insufficient quality of radiolabeled nucleotides, there was a requirement to implement a novel proximal functional assay for the routine characterization of putative histamine receptor ligands. We applied the split-NanoLuc to the four histamine receptor subtypes (H1R, H2R, H3R, H4R) and recently engineered minimal G (mini-G) proteins. Using this method, the functional response upon receptor activation was monitored in real-time and the four mini-G sensors were evaluated by investigating selected standard (inverse) agonists and antagonists. All potencies and efficacies of the studied ligands were in concordance with literature data. Further, we demonstrated a significant positive correlation of the signal amplitude and the mini-G protein expression level in the case of the H2R, but not for the H1R or the H3R. The pEC50 values of histamine obtained under different mini-G expression levels were consistent. Moreover, we obtained excellent dynamic ranges (Z’ factor) and the signal spans were improved for all receptor subtypes in comparison to the previously performed [35S]GTPγS binding assay.
Collapse
Affiliation(s)
- Carina Höring
- Correspondence: (C.H.); , (A.S.); Tel.: +49-941-943-4748 (C.H.); +49-941-943-4821 (A.S.)
| | | | | | | | | | | | | | | | - Andrea Strasser
- Correspondence: (C.H.); , (A.S.); Tel.: +49-941-943-4748 (C.H.); +49-941-943-4821 (A.S.)
| |
Collapse
|
18
|
Casarini L, Riccetti L, Paradiso E, Benevelli R, Lazzaretti C, Sperduti S, Melli B, Tagliavini S, Varani M, Trenti T, Morini D, Falbo A, Villani MT, Jonas KC, Simoni M. Two human menopausal gonadotrophin (hMG) preparations display different early signaling in vitro. Mol Hum Reprod 2020; 26:894-905. [PMID: 33084890 DOI: 10.1093/molehr/gaaa070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Commercial hMG drugs are marketed for the treatment of infertility and consist of highly purified hormones acting on receptors expressed in target gonadal cells. Menopur® and Meriofert® are combined preparation of FSH and hCG and are compared in vitro herein. To this purpose, the molecular composition of the two drugs was analyzed by immunoassay. The formation of FSH receptor and LH/hCG receptor (FSHR; LHCGR) heteromer, intracellular Ca2+ and cAMP activation, β-arrestin 2 recruitment and the synthesis of progesterone and estradiol were evaluated in transfected HEK293 and human primary granulosa lutein cells treated by drugs administered within the pg-mg/ml concentration range. Molecular characterization revealed that Meriofert® has a higher FSH:hCG ratio than Menopur® which, in turn, displays the presence of LH molecules. While both drugs induced similar FSHR-LHCGR heteromeric formations and intracellular Ca2+ increase, Meriofert® had a higher potency than Menopur® in inducing a cAMP increase. Moreover, Meriofert® revealed a higher potency than Menopur® in recruiting β-arrestin 2, likely due to different FSH content modulating the tridimensional structure of FSHR-LHCGR-β-arrestin 2 complexes, as evidenced by a decrease in bioluminescence resonance energy transfer signal. This drug-specific activation of intracellular signaling pathways is consistent with the molecular composition of these preparations and impacts downstream progesterone and estradiol production, with Menopur® more potent than Meriofert® in inducing the synthesis of both the steroids. These findings are suggestive of distinct in-vivo activities of these preparations, but require cautious interpretation and further validation from clinical studies.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Riccardo Benevelli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Beatrice Melli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL. NOCSAE, Modena 41126, Italy
| | - Manuela Varani
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL. NOCSAE, Modena 41126, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL. NOCSAE, Modena 41126, Italy
| | - Daria Morini
- Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Angela Falbo
- Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Maria Teresa Villani
- Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Kim C Jonas
- Department of Women and Children's Health, School of Life course Sciences, King's College London, London SE1 1UL, UK
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.,International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena 41125, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, 41126 Modena, Italy.,PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
19
|
Zamel IA, Palakkott A, Ashraf A, Iratni R, Ayoub MA. Interplay Between Angiotensin II Type 1 Receptor and Thrombin Receptor Revealed by Bioluminescence Resonance Energy Transfer Assay. Front Pharmacol 2020; 11:1283. [PMID: 32973514 PMCID: PMC7468457 DOI: 10.3389/fphar.2020.01283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The key hormone of the renin-angiotensin system (RAS), angiotensin II (AngII), and thrombin are known to play major roles in the vascular system and its related disorders. Previous studies reported connections between AngII and thrombin in both physiological and pathophysiological models. However, the molecular mechanisms controlling such interplay at the level of their receptors belonging to the family of G protein-coupled receptors (GPCRs) are not fully understood. In this study, we investigated the functional interaction between the AngII type 1 receptor (AT1R) and the thrombin receptor [or protease-activated receptor 1 (PAR1)] in human embryonic kidney 293 (HEK293) cells. For this, we used various bioluminescence resonance energy transfer (BRET) proximity-based assays to profile the coupling to the heterotrimeric Gαq protein, β-arrestin recruitment, and receptor internalization and trafficking in intact cells. The overall dose-response and real-time kinetic BRET data demonstrated the specific molecular proximity between AT1R and PAR1 resulting in their functional interaction. This was characterized by thrombin inducing BRET increase within AT1R/Gαq and AT1R/β-arrestin pairs and synergistic effects observed upon the concomitant activation of both receptors suggesting a positive allosteric interaction. The BRET data corroborated with the data on the downstream Gαq/inositol phosphate pathway. Moreover, the selective pharmacological blockade of the receptors revealed the implication of both AT1R and PAR1 protomers in such a synergistic interaction and the possible transactivation of AT1R by PAR1. Interestingly, the positive action of PAR1 on AT1R activation was contrasted with its apparent inhibition of AT1R internalization and its endosomal trafficking. Finally, BRET saturation and co-immunoprecipitation assays supported the physical AT1-PAR1 interaction in HEK293 cells. Our study reveals for the first time the functional interaction between AT1R and PAR1 in vitro characterized by a transactivation and positive allosteric modulation of AT1R and inhibition of its desensitization and internalization. This finding may constitute the molecular basis of the well-known interplay between RAS and thrombin. Thus, our data should lead to revising some findings on the implication of RAS and thrombin in vascular physiology and pathophysiology revealing the importance to consider the functional and pharmacological interaction between AT1R and thrombin receptors.
Collapse
Affiliation(s)
- Isra Al Zamel
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Arshida Ashraf
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, The United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
20
|
Human Recombinant FSH and Its Biosimilars: Clinical Efficacy, Safety, and Cost-Effectiveness in Controlled Ovarian Stimulation for In Vitro Fertilization. Pharmaceuticals (Basel) 2020; 13:ph13070136. [PMID: 32605133 PMCID: PMC7407829 DOI: 10.3390/ph13070136] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
Exogenous human follicle-stimulating hormone (hFSH), either derived from extraction and purification from the urine or obtained by recombinant technology in the form of follitropin α, β and δ (rFSH), has been used for decades in the treatment of infertility. The main applications of FSH treatment in the woman have been, and still are, ovulation induction in oligo-anovulatory subjects, and stimulation of the development of a cohort of follicles in patients undergoing controlled ovarian stimulation (COS) for in vitro fertilization (IVF). In the last years, two biosimilars of follitropin alfa, rFSH compounds structurally and functionally similar to the originator, have been approved and marketed for clinical use in Europe. Moreover, some other rFSH biosimilars are currently under investigation. The objective of this article is to review the available evidences comparing the efficacy, safety, and cost-effectiveness of rFSH follitropin alpha originator with its biosimilars, discussing the clinical trials that allowed biosimilars to get registration and marketing authorization.
Collapse
|
21
|
Czogalla B, Partenheimer A, Jeschke U, von Schönfeldt V, Mayr D, Mahner S, Burges A, Simoni M, Melli B, Benevelli R, Bertini S, Casarini L, Trillsch F. β-arrestin 2 Is a Prognostic Factor for Survival of Ovarian Cancer Patients Upregulating Cell Proliferation. Front Endocrinol (Lausanne) 2020; 11:554733. [PMID: 33042017 PMCID: PMC7530235 DOI: 10.3389/fendo.2020.554733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/12/2020] [Indexed: 01/02/2023] Open
Abstract
Establishing reliable prognostic factors as well as specific targets for new therapeutic approaches is an urgent requirement in advanced ovarian cancer. For several tumor entities, the ubiquitously spread scaffold protein β-arrestin 2, a multifunctional scaffold protein regulating signal transduction and internalization of activated G protein-coupled receptors (GPCRs), has been considered with rising interest for carcinogenesis. Therefore, we aimed to elucidate the prognostic impact of β-arrestin 2 and its functional role in ovarian cancer. β-arrestin 2 expression was analyzed in a subset of 156 samples of ovarian cancer patients by immunohistochemistry. Cytoplasmic expression levels were correlated with clinical as well as pathological characteristics and with prognosis. The biologic impact of β-arrestin 2 on cell proliferation and survival was evaluated, in vitro. Following transient transfection by increasing concentrations of plasmid encoding β-arrestin 2, different cell lines were evaluated in cell viability and death. β-arrestin 2 was detected in all histological ovarian cancer subtypes with highest intensity in clear cell histology. High β-arrestin 2 expression levels correlated with high-grade serous histology and the expression of the gonadotropin receptors FSHR and LHCGR, as well as the membrane estrogen receptor GPER and hCGβ. Higher cytoplasmic β-arrestin 2 expression was associated with a significantly impaired prognosis (median 29.88 vs. 50.64 months; P = 0.025). Clinical data were confirmed in transfected HEK293 cells, human immortalized granulosa cell line (hGL5) and the ovarian cancer cell line A2780 in vitro, where the induction of β-arrestin 2 cDNA expression enhanced cell viability, while the depletion of the molecule by siRNA resulted in cell death. Reflecting the role of β-arrestin 2 in modulating GPCR-induced proliferative and anti-apoptotic signals, we propose β-arrestin 2 as an important prognostic factor and also as a promising target for new therapeutic approaches in advanced ovarian cancer.
Collapse
Affiliation(s)
- Bastian Czogalla
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- *Correspondence: Bastian Czogalla
| | - Alexandra Partenheimer
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
- Department of Obstetrics and Gynecology, University Hospital Augsburg, Augsburg, Germany
| | | | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alexander Burges
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Beatrice Melli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Riccardo Benevelli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara Bertini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabian Trillsch
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
22
|
GnRH Antagonists Produce Differential Modulation of the Signaling Pathways Mediated by GnRH Receptors. Int J Mol Sci 2019; 20:ijms20225548. [PMID: 31703269 PMCID: PMC6888270 DOI: 10.3390/ijms20225548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Commercial gonadotropin-releasing hormone (GnRH) antagonists differ by 1-2 amino acids and are used to inhibit gonadotropin production during assisted reproduction technologies (ART). In this study, potencies of three GnRH antagonists, Cetrorelix, Ganirelix and Teverelix, in inhibiting GnRH-mediated intracellular signaling, were compared in vitro. GnRH receptor (GnRHR)-transfected HEK293 and neuroblastoma-derived SH-SY5Y cell lines, as well as mouse pituitary LβT2 cells endogenously expressing the murine GnRHR, were treated with GnRH in the presence or absence of the antagonist. We evaluated intracellular calcium (Ca2+) and cAMP increases, cAMP-responsive element binding-protein (CREB) and extracellular-regulated kinase 1 and 2 (ERK1/2) phosphorylation, β-catenin activation and mouse luteinizing-hormone β-encoding gene (Lhb) transcription by bioluminescence resonance energy transfer (BRET), Western blotting, immunostaining and real-time PCR as appropriate. The kinetics of GnRH-induced Ca2+ rapid increase revealed dose-response accumulation with potency (EC50) of 23 nM in transfected HEK293 cells, transfected SH-SY5Y and LβT2 cells. Cetrorelix inhibited the 3 × EC50 GnRH-activated calcium signaling at concentrations of 1 nM-1 µM, demonstrating higher potency than Ganirelix and Teverelix, whose inhibitory doses fell within the 100 nM-1 µM range in both transfected HEK293 and SH-SY5Y cells in vitro. In transfected SH-SY5Y, Cetrorelix was also significantly more potent than other antagonists in reducing GnRH-mediated cAMP accumulation. All antagonists inhibited pERK1/2 and pCREB activation at similar doses, in LβT2 and transfected HEK293 cells treated with 100 nM GnRH. Although immunostainings suggested that Teverelix could be less effective than Cetrorelix and Ganirelix in inhibiting 1 µM GnRH-induced β-catenin activation, Lhb gene expression increase occurring upon LβT2 cell treatment by 1 µM GnRH was similarly inhibited by all antagonists. To conclude, this study has demonstrated Cetrorelix-, Ganirelix- and Teverelix-specific biased effects at the intracellular level, not affecting the efficacy of antagonists in inhibiting Lhb gene transcription.
Collapse
|
23
|
Ali A, Palakkott A, Ashraf A, Al Zamel I, Baby B, Vijayan R, Ayoub MA. Positive Modulation of Angiotensin II Type 1 Receptor-Mediated Signaling by LVV-Hemorphin-7. Front Pharmacol 2019; 10:1258. [PMID: 31708782 PMCID: PMC6823245 DOI: 10.3389/fphar.2019.01258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Hemorphins are hemoglobin β-chain–derived peptides initially known for their analgesic effects via binding to the opioid receptors belonging to the family of G protein–coupled receptor (GPCR), as well as their physiological action on blood pressure. However, their molecular mechanisms in the regulation of blood pressure are not fully understood. Studies have reported an antihypertensive action via the inhibition of the angiotensin-converting enzyme, a key enzyme in the renin–angiotensin system. In this study, we hypothesized that hemorphins may also target angiotensin II (AngII) type 1 receptor (AT1R) as a key GPCR in the renin–angiotensin system. To investigate this, we examined the effects of LVV–hemorphin-7 on AT1R transiently expressed in human embryonic kidney (HEK293) cells using bioluminescence resonance energy transfer (BRET) technology for the assessment of AT1R/Gαq coupling and β-arrestin 2 recruitment. Interestingly, while LVV–hemorphin-7 alone had no significant effect on BRET signals between AT1R and Gαq or β-arrestin 2, it nicely potentiated AngII-induced BRET signals and significantly increased AngII potency. The BRET data were also correlated with AT1R downstream signaling with LVV–hemorphin-7 potentiating the canonical AngII-mediated Gq-dependent inositol phosphate pathway as well as the activation of the extracellular signal–regulated kinases (ERK1/2). Both AngII and LVV–hemorphin-7–mediated responses were fully abolished by AT1R antagonist demonstrating the targeting of the active conformation of AT1R. Our data report for the first time the targeting and the positive modulation of AT1R signaling by hemorphins, which may explain their role in the physiology and pathophysiology of both vascular and renal systems. This finding further consolidates the pharmacological targeting of GPCRs by hemorphins as previously shown for the opioid receptors in analgesia opening a new era for investigating the role of hemorphins in physiology and pathophysiology via the targeting of GPCR pharmacology and signaling.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Arshida Ashraf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Isra Al Zamel
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
24
|
Zhu X, Finlay DB, Glass M, Duffull SB. Model-free and kinetic modelling approaches for characterising non-equilibrium pharmacological pathway activity: Internalisation of cannabinoid CB 1 receptors. Br J Pharmacol 2019; 176:2593-2607. [PMID: 30945265 PMCID: PMC6592866 DOI: 10.1111/bph.14684] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Receptor internalisation is by nature kinetic. Application of a standard equilibrium dose response model to describe the properties of a ligand inducing internalisation, while commonly used, are therefore problematic. Here, we propose two quantitative approaches to address this issue-(a) a model-free method and (b) a kinetic modelling approach-and systematically evaluate the performance of these methods against traditional equilibrium methods to characterise the internalisation profiles of cannabinoid CB1 receptor agonists. EXPERIMENTAL APPROACH Kinetic internalisation assays were conducted using a concentration series of six CB1 receptor ligands. Internalisation rate analysis and snapshot equilibrium analysis were performed. A model-free method was developed based on the mean residence time of internalisation. A kinetic internalisation model was developed under the quasi-steady state assumption. KEY RESULTS Rates of receptor internalisation depended on both agonist and concentration. Agonist potencies from snapshot equilibrium analysis increased with stimulation time, and there was no single time point at which internalisation profiles could infer agonist properties in a comparative manner. The model-free method yielded a time-invariant measure of potency/efficacy for internalisation. The kinetic model adequately described the internalisation of CB1 receptors over time and provided robust estimates of both potency and efficacy. CONCLUSION AND IMPLICATIONS Applying equilibrium analysis to a non-equilibrium pathway cannot provide a reliable estimate of agonist potency. Both the model-free and kinetic modelling approaches characterised the internalisation profiles of CB1 receptor agonists. The kinetic model provides additional advantages as a method to capture changes in receptor number during other functional assays.
Collapse
Affiliation(s)
- Xiao Zhu
- Otago Pharmacometrics Group, School of PharmacyUniversity of OtagoDunedinNew Zealand
| | - David B. Finlay
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Michelle Glass
- Department of Pharmacology and ToxicologyUniversity of OtagoDunedinNew Zealand
- Department of Pharmacology and Clinical Pharmacology, Faculty of Medical and Health SciencesUniversity of AucklandAucklandNew Zealand
| | - Stephen B. Duffull
- Otago Pharmacometrics Group, School of PharmacyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
25
|
Brigante G, Riccetti L, Lazzaretti C, Rofrano L, Sperduti S, Potì F, Diazzi C, Prodam F, Guaraldi G, Lania AG, Rochira V, Casarini L. Abacavir, nevirapine, and ritonavir modulate intracellular calcium levels without affecting GHRH-mediated growth hormone secretion in somatotropic cells in vitro. Mol Cell Endocrinol 2019; 482:37-44. [PMID: 30543878 DOI: 10.1016/j.mce.2018.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022]
Abstract
Growth Hormone (GH) deficiency is frequent in HIV-infected patients treated with antiretroviral therapy. We treated GH3 cells with antiretrovirals (nevirapine, ritonavir or abacavir sulfate; 100 pM-1 mM range), after transfection with human growth hormone releasing hormone (GHRH) receptor cDNA. Cells viability, intracellular cAMP, phosphorylation of CREB and calcium increase, GH production and secretion were evaluated both in basal condition and after GHRH, using MTT, bioluminescence resonance energy transfer, western blotting and ELISA. Antiretroviral treatment did not affect GHRH 50% effective dose (EC50) calculated for 30-min intracellular cAMP increase (Mann-Whitney's U test; p ≥ 0.05; n = 4) nor 15-min CREB phosphorylation. The kinetics of GHRH-mediated, rapid intracellular calcium increase was perturbed by pre-incubation with drugs, while GHRH failed to induce the ion increase in ritonavir pre-treated cells (ANOVA; p < 0.05; n = 3). Antiretrovirals did not impact 24-h intracellular and extracellular GH levels (ANOVA; p ≥ 0.05; n = 3). We demonstrated the association between antiretrovirals and intracellular calcium increase, without consequences on somatotrope cells viability and GH synthesis. Overall, these results suggest that antiretrovirals may not directly impact on GH axis in HIV-infected patients.
Collapse
Affiliation(s)
- Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Rofrano
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery - Unit of Neurosciences, University of Parma, Parma, Italy
| | - Chiara Diazzi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Flavia Prodam
- Unit of Paediatrics, Endocrinology, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Giovanni Guaraldi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea G Lania
- Endocrine Unit, IRCCS Humanitas Clinical Institute, Rozzano, Humanitas University, Rozzano, Italy
| | - Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
26
|
Riccetti L, Sperduti S, Lazzaretti C, Klett D, De Pascali F, Paradiso E, Limoncella S, Potì F, Tagliavini S, Trenti T, Galano E, Palmese A, Satwekar A, Daolio J, Nicoli A, Villani MT, Aguzzoli L, Reiter E, Simoni M, Casarini L. Glycosylation Pattern and in vitro Bioactivity of Reference Follitropin alfa and Biosimilars. Front Endocrinol (Lausanne) 2019; 10:503. [PMID: 31396162 PMCID: PMC6667556 DOI: 10.3389/fendo.2019.00503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Recombinant follicle-stimulating hormone (FSH) (follitropin alfa) and biosimilar preparations are available for clinical use. They have specific FSH activity and a unique glycosylation profile dependent on source cells. The aim of the study is to compare the originator (reference) follitropin alfa (Gonal-f®)- with biosimilar preparations (Bemfola® and Ovaleap®)-induced cellular responses in vitro. Gonadotropin N-glycosylation profiles were analyzed by ELISA lectin assay, revealing preparation specific-patterns of glycan species (Kruskal-Wallis test; p < 0.05, n = 6) and by glycotope mapping. Increasing concentrations of Gonal-f® or biosimilar (1 × 10-3-1 × 103 ng/ml) were used for treating human primary granulosa lutein cells (hGLC) and FSH receptor (FSHR)-transfected HEK293 cells in vitro. Intracellular cAMP production, Ca2+ increase and β-arrestin 2 recruitment were evaluated by BRET, CREB, and ERK1/2 phosphorylation by Western blotting. 12-h gene expression, and 8- and 24-h progesterone and estradiol synthesis were measured by real-time PCR and immunoassay, respectively. We found preparation-specific glycosylation patterns by lectin assay (Kruskal-Wallis test; p < 0.001; n = 6), and similar cAMP production and β-arrestin 2 recruitment in FSHR-transfected HEK293 cells (cAMP EC50 range = 12 ± 0.9-24 ± 1.7 ng/ml; β-arrestin 2 EC50 range = 140 ± 14.1-313 ± 18.7 ng/ml; Kruskal-Wallis test; p ≥ 0.05; n = 4). Kinetics analysis revealed that intracellular Ca2+ increased upon cell treatment by 4 μg/ml Gonal-f®, while equal concentrations of biosimilars failed to induced a response (Kruskal-Wallis test; p < 0.05; n = 3). All preparations induced both 8 and 24 h-progesterone and estradiol synthesis in hGLC, while no different EC50s were demonstrated (Kruskal-Wallis test; p > 0.05; n = 5). Apart from preparation-specific intracellular Ca2+ increases achieved at supra-physiological hormone doses, all compounds induced similar intracellular responses and steroidogenesis, reflecting similar bioactivity, and overall structural homogeneity.
Collapse
Affiliation(s)
- Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Danièle Klett
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | | | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- International PhD School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Potì
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL, NOCSAE, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL, NOCSAE, Modena, Italy
| | - Eugenio Galano
- Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Rome, Italy
| | - Angelo Palmese
- Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Rome, Italy
| | - Abhijeet Satwekar
- Analytical Development Biotech Products, Merck Serono S.p.A. (an affiliate of Merck KGaA, Darmstadt, Germany), Rome, Italy
| | - Jessica Daolio
- Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Alessia Nicoli
- Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Maria Teresa Villani
- Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Lorenzo Aguzzoli
- Azienda Unità Sanitaria Locale—IRCCS di Reggio Emilia, Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Reggio Emilia, Italy
| | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Livio Casarini
| |
Collapse
|
27
|
Landomiel F, De Pascali F, Raynaud P, Jean-Alphonse F, Yvinec R, Pellissier LP, Bozon V, Bruneau G, Crépieux P, Poupon A, Reiter E. Biased Signaling and Allosteric Modulation at the FSHR. Front Endocrinol (Lausanne) 2019; 10:148. [PMID: 30930853 PMCID: PMC6425863 DOI: 10.3389/fendo.2019.00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge on G protein-coupled receptor (GPCRs) structure and mechanism of activation has profoundly evolved over the past years. The way drugs targeting this family of receptors are discovered and used has also changed. Ligands appear to bind a growing number of GPCRs in a competitive or allosteric manner to elicit balanced signaling or biased signaling (i.e., differential efficacy in activating or inhibiting selective signaling pathway(s) compared to the reference ligand). These novel concepts and developments transform our understanding of the follicle-stimulating hormone (FSH) receptor (FSHR) biology and the way it could be pharmacologically modulated in the future. The FSHR is expressed in somatic cells of the gonads and plays a major role in reproduction. When compared to classical GPCRs, the FSHR exhibits intrinsic peculiarities, such as a very large NH2-terminal extracellular domain that binds a naturally heterogeneous, large heterodimeric glycoprotein, namely FSH. Once activated, the FSHR couples to Gαs and, in some instances, to other Gα subunits. G protein-coupled receptor kinases and β-arrestins are also recruited to this receptor and account for its desensitization, trafficking, and intracellular signaling. Different classes of pharmacological tools capable of biasing FSHR signaling have been reported and open promising prospects both in basic research and for therapeutic applications. Here we provide an updated review of the most salient peculiarities of FSHR signaling and its selective modulation.
Collapse
|
28
|
Yvinec R, Ayoub MA, De Pascali F, Crépieux P, Reiter E, Poupon A. Workflow Description to Dynamically Model β-Arrestin Signaling Networks. Methods Mol Biol 2019; 1957:195-215. [PMID: 30919356 DOI: 10.1007/978-1-4939-9158-7_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dynamic models of signaling networks allow the formulation of hypotheses on the topology and kinetic rate laws characterizing a given molecular network, in-depth exploration, and confrontation with kinetic biological data. Despite its standardization, dynamic modeling of signaling networks still requires successive technical steps that need to be carefully performed. Here, we detail these steps by going through the mathematical and statistical framework. We explain how it can be applied to the understanding of β-arrestin-dependent signaling networks. We illustrate our methodology through the modeling of β-arrestin recruitment kinetics at the follicle-stimulating hormone (FSH) receptor supported by in-house bioluminescence resonance energy transfer (BRET) data.
Collapse
Affiliation(s)
- Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France.,Biology Department, College of Science, United Arab Emirates University, PO BOX 15551, Al Ain, United Arab Emirates
| | | | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
29
|
Casarini L, Riccetti L, Limoncella S, Lazzaretti C, Barbagallo F, Pacifico S, Guerrini R, Tagliavini S, Trenti T, Simoni M, Sola M, Di Rocco G. Probing the Effect of Sildenafil on Progesterone and Testosterone Production by an Intracellular FRET/BRET Combined Approach. Biochemistry 2018; 58:799-808. [PMID: 30532959 DOI: 10.1021/acs.biochem.8b01073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Forster resonance energy transfer (FRET)-based biosensors have been recently applied to the study of biological pathways. In this study, a new biosensor was validated for the first time in live HEK293 and steroidogenic MLTC-1 cell lines for studying the effect of the PDE5 inhibitor on the hCG/LH-induced steroidogenic pathway. The sensor improves FRET between a donor (D), the fluorescein-like diarsenical probe that can covalently bind a tetracysteine motif fused to the PDE5 catalytic domain, and an acceptor (A), the rhodamine probe conjugated to the pseudosubstrate cGMPS. Affinity constant ( Kd) values of 5.6 ± 3.2 and 13.7 ± 0.8 μM were obtained with HEK293 and MLTC-1 cells, respectively. The detection was based on the competitive displacement of the cGMPS-rhodamine conjugate by sildenafil; the Ki values were 3.6 ± 0.3 nM (IC50 = 2.3 nM) in HEK293 cells and 10 ± 1.0 nM (IC50 = 3.9 nM) in MLTC-1 cells. The monitoring of both cAMP and cGMP by bioluminescence resonance energy transfer allowed the exploitation of the effects of PDE5i on steroidogenesis, indicating that sildenafil enhanced the gonadotropin-induced progesterone-to-testosterone conversion in a cAMP-independent manner.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy.,Center for Genome Research , University of Modena and Reggio Emilia , 41126 Modena , Italy
| | - Laura Riccetti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| | - Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| | - Federica Barbagallo
- Department of Experimental Medicine , University of Rome "La Sapienza" , 00185 Rome , Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara , 44121 Ferrara , Italy
| | - Remo Guerrini
- Department of Chemical and Pharmaceutical Sciences , University of Ferrara , 44121 Ferrara , Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy , Azienda USL of Modena , 41121 Modena , Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy , Azienda USL of Modena , 41121 Modena , Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy.,Center for Genome Research , University of Modena and Reggio Emilia , 41126 Modena , Italy.,Azienda , Ospedaliero-Universitaria di Modena , 41125 Modena , Italy
| | - Marco Sola
- Department of Life Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| | - Giulia Di Rocco
- Department of Life Sciences , University of Modena and Reggio Emilia , 41125 Modena , Italy
| |
Collapse
|
30
|
Casarini L, Santi D, Brigante G, Simoni M. Two Hormones for One Receptor: Evolution, Biochemistry, Actions, and Pathophysiology of LH and hCG. Endocr Rev 2018; 39:549-592. [PMID: 29905829 DOI: 10.1210/er.2018-00065] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/08/2018] [Indexed: 01/03/2023]
Abstract
LH and chorionic gonadotropin (CG) are glycoproteins fundamental to sexual development and reproduction. Because they act on the same receptor (LHCGR), the general consensus has been that LH and human CG (hCG) are equivalent. However, separate evolution of LHβ and hCGβ subunits occurred in primates, resulting in two molecules sharing ~85% identity and regulating different physiological events. Pituitary, pulsatile LH production results in an ~90-minute half-life molecule targeting the gonads to regulate gametogenesis and androgen synthesis. Trophoblast hCG, the "pregnancy hormone," exists in several isoforms and glycosylation variants with long half-lives (hours) and angiogenic potential and acts on luteinized ovarian cells as progestational. The different molecular features of LH and hCG lead to hormone-specific LHCGR binding and intracellular signaling cascades. In ovarian cells, LH action is preferentially exerted through kinases, phosphorylated extracellular-regulated kinase 1/2 (pERK1/2) and phosphorylated AKT (also known as protein kinase B), resulting in irreplaceable proliferative/antiapoptotic signals and partial agonism on progesterone production in vitro. In contrast, hCG displays notable cAMP/protein kinase A (PKA)-mediated steroidogenic and proapoptotic potential, which is masked by estrogen action in vivo. In vitro data have been confirmed by a large data set from assisted reproduction, because the steroidogenic potential of hCG positively affects the number of retrieved oocytes, and LH affects the pregnancy rate (per oocyte number). Leydig cell in vitro exposure to hCG results in qualitatively similar cAMP/PKA and pERK1/2 activation compared with LH and testosterone. The supposed equivalence of LH and hCG has been disproved by such data, highlighting their sex-specific functions and thus deeming it an oversight caused by incomplete understanding of clinical data.
Collapse
Affiliation(s)
- Livio Casarini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniele Santi
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Giulia Brigante
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Manuela Simoni
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Modena, Italy
| |
Collapse
|
31
|
Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles PY, Gauthier C, Lee MH, Pani B, Kim J, Ahn S, Rajagopal S, Reiter E, Bouvier M, Shenoy SK, Laporte SA, Rockman HA, Lefkowitz RJ. Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 2018; 11:11/549/eaat7650. [PMID: 30254056 DOI: 10.1126/scisignal.aat7650] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) use diverse mechanisms to regulate the mitogen-activated protein kinases ERK1/2. β-Arrestins (βArr1/2) are ubiquitous inhibitors of G protein signaling, promoting GPCR desensitization and internalization and serving as scaffolds for ERK1/2 activation. Studies using CRISPR/Cas9 to delete βArr1/2 and G proteins have cast doubt on the role of β-arrestins in activating specific pools of ERK1/2. We compared the effects of siRNA-mediated knockdown of βArr1/2 and reconstitution with βArr1/2 in three different parental and CRISPR-derived βArr1/2 knockout HEK293 cell pairs to assess the effect of βArr1/2 deletion on ERK1/2 activation by four Gs-coupled GPCRs. In all parental lines with all receptors, ERK1/2 stimulation was reduced by siRNAs specific for βArr2 or βArr1/2. In contrast, variable effects were observed with CRISPR-derived cell lines both between different lines and with activation of different receptors. For β2 adrenergic receptors (β2ARs) and β1ARs, βArr1/2 deletion increased, decreased, or had no effect on isoproterenol-stimulated ERK1/2 activation in different CRISPR clones. ERK1/2 activation by the vasopressin V2 and follicle-stimulating hormone receptors was reduced in these cells but was enhanced by reconstitution with βArr1/2. Loss of desensitization and receptor internalization in CRISPR βArr1/2 knockout cells caused β2AR-mediated stimulation of ERK1/2 to become more dependent on G proteins, which was reversed by reintroducing βArr1/2. These data suggest that βArr1/2 function as a regulatory hub, determining the balance between mechanistically different pathways that result in activation of ERK1/2, and caution against extrapolating results obtained from βArr1/2- or G protein-deleted cells to GPCR behavior in native systems.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bianca Plouffe
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Jeffrey S Smith
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lama Yamani
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Suneet Kaur
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Christophe Gauthier
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Mi-Hye Lee
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
32
|
Yvinec R, Crépieux P, Reiter E, Poupon A, Clément F. Advances in computational modeling approaches of pituitary gonadotropin signaling. Expert Opin Drug Discov 2018; 13:799-813. [DOI: 10.1080/17460441.2018.1501025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | | | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Frédérique Clément
- Inria, Université Paris-Saclay, Palaiseau, France
- LMS, Ecole Polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
| |
Collapse
|
33
|
Ulloa-Aguirre A, Reiter E, Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology 2018; 159:3020-3035. [PMID: 29982321 DOI: 10.1210/en.2018-00452] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| |
Collapse
|
34
|
Nataraja S, Sriraman V, Palmer S. Allosteric Regulation of the Follicle-Stimulating Hormone Receptor. Endocrinology 2018; 159:2704-2716. [PMID: 29800292 DOI: 10.1210/en.2018-00317] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/16/2018] [Indexed: 01/08/2023]
Abstract
Follicle-stimulating hormone receptor (FSHR) belongs to the leucine-rich repeat family of the G protein-coupled receptor (LGR), which includes the glycoprotein hormone receptors luteinizing hormone receptor, thyrotropin receptor, and other LGRs 4, 5, 6, and 7. FSH is the key regulator of folliculogenesis in females and spermatogenesis in males. FSH elicits its physiological response through its cognate receptor on the cell surface. Binding of the hormone FSH to its receptor FSHR brings about conformational changes in the receptor that are transduced through the transmembrane domain to the intracellular region, where the downstream effector interaction takes place, leading to activation of the downstream signaling cascade. Identification of small molecules that could activate or antagonize FSHR provided interesting tools to study the signal transduction mechanism of the receptor. However, because of the nature of the ligand-receptor interaction of FSH-FSHR, which contains multiple sites in the extracellular binding domain, most of the small-molecule modulators of FSHR are unable to bind to the orthosteric site of the receptors. Rather they modulate receptor activation through allosteric sites in the transmembrane region. This review will discuss allosteric modulation of FSHR primarily through the discovery of small-molecule modulators, focusing on current data on the status of development and the utility of these as tools to better understand signaling mechanisms.
Collapse
|
35
|
Casarini L, Santi D, Simoni M, Potì F. 'Spare' Luteinizing Hormone Receptors: Facts and Fiction. Trends Endocrinol Metab 2018; 29:208-217. [PMID: 29429918 DOI: 10.1016/j.tem.2018.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 01/08/2023]
Abstract
It is common opinion that maximal activation of luteinizing hormone (LH)-dependent steroidogenic signal occurs at <1% of human LH/choriogonadotropin (hCG) receptor (LHCGR) occupancy. This effect would be a consequence of an excess of receptors expressed on the surface of theca cells, resulting in a pool of LHCGRs remaining unbound (spare). This concept was borrowed from historical pharmacological studies, when discrepancies between ligand-receptor binding and dose-response curves of cAMP were evaluated by treating mouse or rat Leydig cells with hCG in vitro. Recent findings demonstrated the specificity of LH- and hCG-dependent effects, receptor heterodimerization, and differing behaviors of rodent versus human gonadotropin-responsive cells, which may help to revise the 'spare' LHCGRs concept applied to human ovarian physiology and assisted reproduction.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, NOCSAE, via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy.
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, NOCSAE, via P. Giardini 1355, 41126 Modena, Italy; Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda Ospedaliero-Universitaria di Modena, NOCSAE, Via P. Giardini 1355, 41126 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, NOCSAE, via P. Giardini 1355, 41126 Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, via G. Campi 287, 41125 Modena, Italy; Department of Medicine, Endocrinology, Metabolism and Geriatrics, Azienda Ospedaliero-Universitaria di Modena, NOCSAE, Via P. Giardini 1355, 41126 Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery - Unit of Neurosciences, University of Parma, via Volturno 39/F, 43125 Parma, Italy.
| |
Collapse
|
36
|
Sayers N, Hanyaloglu AC. Intracellular Follicle-Stimulating Hormone Receptor Trafficking and Signaling. Front Endocrinol (Lausanne) 2018; 9:653. [PMID: 30450081 PMCID: PMC6225286 DOI: 10.3389/fendo.2018.00653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/17/2018] [Indexed: 12/18/2022] Open
Abstract
Models of G protein-coupled receptor (GPCR) signaling have dramatically altered over the past two decades. Indeed, GPCRs such as the follicle-stimulating hormone receptor (FSHR) have contributed to these new emerging models. We now understand that receptor signaling is highly organized at a spatial level, whereby signaling not only occurs from the plasma membrane but distinct intracellular compartments. Recent studies in the role of membrane trafficking and spatial organization of GPCR signaling in regulating gonadotropin hormone receptor activity has identified novel intracellular compartments, which are tightly linked with receptor signaling and reciprocally regulated by the cellular trafficking machinery. Understanding the impact of these cell biological mechanisms to physiology and pathophysiology is emerging for certain GPCRs. However, for FSHR, the potential impact in both health and disease and the therapeutic possibilities of these newly identified systems is currently unknown, but offers the potential to reassess prior strategies, or unveil novel opportunities, in targeting this receptor.
Collapse
|
37
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
39
|
Human Luteinizing Hormone and Chorionic Gonadotropin Display Biased Agonism at the LH and LH/CG Receptors. Sci Rep 2017; 7:940. [PMID: 28424471 PMCID: PMC5430435 DOI: 10.1038/s41598-017-01078-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Human luteinizing hormone (LH) and chorionic gonadotropin (hCG) have been considered biologically equivalent because of their structural similarities and their binding to the same receptor; the LH/CGR. However, accumulating evidence suggest that LH/CGR differentially responds to the two hormones triggering differential intracellular signaling and steroidogenesis. The mechanistic basis of such differential responses remains mostly unknown. Here, we compared the abilities of recombinant rhLH and rhCG to elicit cAMP, β-arrestin 2 activation, and steroidogenesis in HEK293 cells and mouse Leydig tumor cells (mLTC-1). For this, BRET and FRET technologies were used allowing quantitative analyses of hormone activities in real-time and in living cells. Our data indicate that rhLH and rhCG differentially promote cell responses mediated by LH/CGR revealing interesting divergences in their potencies, efficacies and kinetics: rhCG was more potent than rhLH in both HEK293 and mLTC-1 cells. Interestingly, partial effects of rhLH were found on β-arrestin recruitment and on progesterone production compared to rhCG. Such a link was further supported by knockdown experiments. These pharmacological differences demonstrate that rhLH and rhCG act as natural biased agonists. The discovery of novel mechanisms associated with gonadotropin-specific action may ultimately help improve and personalize assisted reproduction technologies.
Collapse
|
40
|
Bakayan A, Domingo B, Vaquero CF, Peyriéras N, Llopis J. Fluorescent Protein-photoprotein Fusions and Their Applications in Calcium Imaging. Photochem Photobiol 2017; 93:448-465. [PMID: 27925224 DOI: 10.1111/php.12682] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
Calcium-activated photoproteins, such as aequorin, have been used as luminescent Ca2+ indicators since 1967. After the cloning of aequorin in 1985, microinjection was substituted by its heterologous expression, which opened the way for a widespread use. Molecular fusion of green fluorescent protein (GFP) to aequorin recapitulated the nonradiative energy transfer process that occurs in the jellyfish Aequorea victoria, from which these two proteins were obtained, resulting in an increase of light emission and a shift to longer wavelength. The abundance and location of the chimera are seen by fluorescence, whereas its luminescence reports Ca2+ levels. GFP-aequorin is broadly used in an increasing number of studies, from organelles and cells to intact organisms. By fusing other fluorescent proteins to aequorin, the available luminescence color palette has been expanded for multiplexing assays and for in vivo measurements. In this report, we will attempt to review the various photoproteins available, their reported fusions with fluorescent proteins and their biological applications to image Ca2+ dynamics in organelles, cells, tissue explants and in live organisms.
Collapse
Affiliation(s)
- Adil Bakayan
- BioEmergences Unit (CNRS, USR3695), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Beatriz Domingo
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Cecilia F Vaquero
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Nadine Peyriéras
- BioEmergences Unit (CNRS, USR3695), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Juan Llopis
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
41
|
|
42
|
Casarini L, Reiter E, Simoni M. β-arrestins regulate gonadotropin receptor-mediated cell proliferation and apoptosis by controlling different FSHR or LHCGR intracellular signaling in the hGL5 cell line. Mol Cell Endocrinol 2016; 437:11-21. [PMID: 27502035 DOI: 10.1016/j.mce.2016.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 01/01/2023]
Abstract
Gonadotropin signaling classically involves proliferative, steroidogenic and apoptotic stimuli. In this study, we used the human granulosa cell line hGL5 to demonstrate how follicle-stimulating hormone (FSH) and luteinizing hormone (LH) differently control proliferative or apoptotic signals, revealing novel intrinsic properties of their receptors (FSHR, LHCGR). We found that, in this tumor-like cell line, the expression of endogenous FSHR and LHCGR is serum-dependent, but both receptors were unable to activate the canonical cAMP/PKA pathway upon gonadotropin stimulation, failing to produce cAMP, progesterone and G protein-coupled receptor (GPCR)-mediated apoptosis in vitro. Conversely, ligand treatment resulted in FSHR- and LHCGR-mediated ERK1/2 phosphorylation and cell proliferation due to receptor coupling to β-arrestins. The inactive cAMP/PKA pathway was unlocked by siRNA-mediated knock-down of β-arrestin 1 and 2, leading to progesterone synthesis and apoptosis. Surprisingly, FSH, but not LH treatment accelerated the cAMP/PKA-mediated apoptosis after β-arrestin silencing, an effect which could be reproduced by overexpressing the FSHR, but not the LHCGR. This work demonstrates that the expression of FSHR and LHCGR can be induced in hGL5 cells but that the FSHR-dependent cAMP/PKA pathway is constitutively silenced, possibly to protect cells from FSHR-cAMP-PKA-induced apoptosis. Also, we revealed previously unrecognized features intrinsic to the two structurally similar gonadotropin receptors, oppositely resulting in the regulation of life and death signals in vitro.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy.
| | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Manuela Simoni
- Unit of Endocrinology, Dept. of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy; Azienda USL, NOCSAE, Modena, Italy
| |
Collapse
|
43
|
Ayoub MA, Yvinec R, Jégot G, Dias JA, Poli SM, Poupon A, Crépieux P, Reiter E. Profiling of FSHR negative allosteric modulators on LH/CGR reveals biased antagonism with implications in steroidogenesis. Mol Cell Endocrinol 2016; 436:10-22. [PMID: 27424143 DOI: 10.1016/j.mce.2016.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/09/2016] [Accepted: 07/10/2016] [Indexed: 01/14/2023]
Abstract
Biased signaling has recently emerged as an interesting means to modulate the function of many G protein-coupled receptors (GPCRs). Previous studies reported two negative allosteric modulators (NAMs) of follicle-stimulating hormone receptor (FSHR), ADX68692 and ADX68693, with differential effects on FSHR-mediated steroidogenesis and ovulation. In this study, we attempted to pharmacologically profile these NAMs on the closely related luteinizing hormone/chorionic gonadotropin hormone receptor (LH/CGR) with regards to its canonical Gs/cAMP pathway as well as to β-arrestin recruitment in HEK293 cells. The NAMs' effects on cAMP, progesterone and testosterone production were also assessed in murine Leydig tumor cell line (mLTC-1) as well as rat primary Leydig cells. We found that both NAMs strongly antagonized LH/CGR signaling in the different cell models used with ADX68693 being more potent than ADX68692 to inhibit hCG-induced cAMP production in HEK293, mLTC-1 and rat primary Leydig cells as well as β-arrestin 2 recruitment in HEK293 cells. Interestingly, differential antagonism of the two NAMs on hCG-promoted steroidogenesis in mLTC-1 and rat primary Leydig cells was observed. Indeed, a significant inhibition of testosterone production by the two NAMs was observed in both cell types, whereas progesterone production was only inhibited by ADX68693 in rat primary Leydig cells. In addition, while ADX68693 totally abolished testosterone production, ADX68692 had only a partial effect in both mLTC-1 and rat primary Leydig cells. These observations suggest biased effects of the two NAMs on LH/CGR-dependent pathways controlling steroidogenesis. Interestingly, the pharmacological profiles of the two NAMs with respect to steroidogenesis were found to differ from that previously shown on FSHR. This illustrates the complexity of signaling pathways controlling FSHR- and LH/CGR-mediated steroidogenesis, suggesting differential implication of cAMP and β-arrestins mediated by FSHR and LH/CGR. Together, our data demonstrate that ADX68692 and ADX68693 are biased NAMs at the LH/CGR in addition to the FSHR. These pharmacological characteristics are important to consider for potential contraceptive and therapeutic applications based on such compounds.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France.
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gwenhaël Jégot
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - James A Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | | | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
44
|
Ulloa-Aguirre A, Zariñán T. The Follitropin Receptor: Matching Structure and Function. Mol Pharmacol 2016; 90:596-608. [PMID: 27382014 DOI: 10.1124/mol.116.104398] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/28/2016] [Indexed: 02/14/2025] Open
Abstract
Follitropin, or follicle-stimulating hormone (FSH) receptor (FSHR), is a G protein-coupled receptor belonging to the glycoprotein hormone receptor family that plays an essential role in reproduction. Although its primary location is the gonad, the FSHR has also been reported in extragonadal tissues including bone, placenta, endometrium, liver, and blood vessels from a number of malignant tumors. The recently resolved crystal structure of FSH bound to the entire FSHR ectodomain has been instrumental in more clearly defining the role of this domain in ligand binding and receptor activation. Biochemical, biophysical, and structural data also indicate that the FSHR exists as a higher order structure and that it may heterodimerize with its closely related receptor, the luteinizing hormone receptor; this association may have physiologic implications during ovarian follicle maturation given that both receptors may simultaneously coexist in the same cell. FSHR heterodimerization is unique to the ovary because in the testes, gonadotropin receptors are expressed in separate compartments. FSHR self-association appears to be required for receptor coupling to multiple effectors and adaptors, for the activation of multiple signaling pathways and the transduction of asymmetric signaling, and for negative and positive receptor cooperativity. It also provides a mechanism through which the glycosylation variants of FSH may exert distinct and differential effects at the target cell level. Given its importance in regulating activation of distinct signaling pathways, functional selectivity at the FSHR is briefly discussed, as well as the potential implications of this particular functional feature on the design of new pharmacological therapies in reproduction.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Research Support Network, National University of Mexico and National Institutes of Health, Mexico City, Mexico
| | - Teresa Zariñán
- Research Support Network, National University of Mexico and National Institutes of Health, Mexico City, Mexico
| |
Collapse
|
45
|
Ayoub MA, Yvinec R, Crépieux P, Poupon A. Computational modeling approaches in gonadotropin signaling. Theriogenology 2016; 86:22-31. [DOI: 10.1016/j.theriogenology.2016.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/27/2016] [Accepted: 04/13/2016] [Indexed: 01/14/2023]
|
46
|
Abstract
Since their discovery, G protein-coupled receptors (GPCRs) constitute one of the most studied proteins leading to important discoveries and perspectives in terms of their biology and implication in physiology and pathophysiology. This is mostly linked to the remarkable advances in the development and application of the biophysical resonance energy transfer (RET)-based approaches, including bioluminescence and fluorescence resonance energy transfer (BRET and FRET, respectively). Indeed, BRET and FRET have been extensively applied to study different aspects of GPCR functioning such as their activation and regulation either statically or dynamically, in real-time and intact cells. Consequently, our view on GPCRs has considerably changed opening new challenges for the study of GPCRs in their native tissues in the aim to get more knowledge on how these receptors control the biological responses. Moreover, the technological aspect of this field of research promises further developments for robust and reliable new RET-based assays that may be compatible with high-throughput screening as well as drug discovery programs.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- Biologie et Bioinformatique des Systèmes de Signalisation, Institut National de la Recherche Agronomique, UMR85, Unité Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, Orléans, France.
| |
Collapse
|