1
|
Huang D, Xu F, Xu L, Tang Z, Hu Y, Li J, Yu J. Triiodothyronine promotes the proliferation and chemoresistance of cholangiocarcinoma cells via HIF-1α/Glut1-stimulated glycolysis. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167814. [PMID: 40168755 DOI: 10.1016/j.bbadis.2025.167814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/15/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
Thyroid hormones not only are crucial for normal growth, development, and metabolism but also influence the development and progression of various malignancies. The effects of thyroid hormones on cholangiocarcinoma remain unclear. Here, we examined the effects of triiodothyronine (T3), a major thyroid hormone, on the behavior of cultured human cholangiocarcinoma cells after short-term (1 week) or long-term (6 months) T3 treatment. Whereas short-term T3 treatment did not influence the growth or behavior of cholangiocarcinoma cells, long-term T3 treatment had several significant effects. Cell proliferation, colony-forming and spheroid formation assays indicated the long-term T3 treatment increased cholangiocarcinoma cell growth in vitro and in mouse xenografts, and increased resistance to gemcitabine and cisplatin. Cells exposed to T3 long-term also exhibited increased glycolysis in a manner dependent on the glucose transporter 1 (Glut1). Expression of both Glut1 and hypoxia-inducible transcription factor 1α (HIF-1α) was upregulated in long-term T3-treated cholangiocarcinoma cells. Either pharmacological inhibition of Glut1 activity or siRNA-mediated knockdown of HIF-1α expression suppressed the increase in proliferation and chemoresistance induced by long-term T3 treatment. Notably, HIF-1α knockdown also reversed the effects of T3 exposure on Glut1 expression and glycolytic rate. Moreover, inhibition of lactate dehydrogenase suppressed upregulated expression of HIF-1α in long-term T3-treated cells. Finally, we found that elevated T3 levels activated the HIF-1α/Glut1 axis in ICC tissues and was associated with a worse prognosis of ICC patients. These results demonstrate that chronic exposure to T3 can promote the proliferation and chemoresistance of cholangiocarcinoma cells through a pathway involving HIF-1α, Glut1, and glycolysis.
Collapse
Affiliation(s)
- Dihua Huang
- Department of Endocrinology, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Feng Xu
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Luohang Xu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Zekai Tang
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China
| | - Yanxin Hu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China
| | - Jiandong Li
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China
| | - Jianhua Yu
- Department of Hepato-Biliary-Pancreatic Surgery, Shaoxing People's Hospital, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
2
|
Saha S, Tandon R, Sanku J, Kumari A, Shukla R, Srivastava N. siRNA-based Therapeutics in Hormone-driven Cancers: Advancements and benefits over conventional treatments. Int J Pharm 2025; 674:125463. [PMID: 40081431 DOI: 10.1016/j.ijpharm.2025.125463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Hormone-related cancers, also known as hormone-sensitive or hormone-dependent cancers, rely on hormones such as estrogen, testosterone, and progesterone for growth. These malignancies, including breast, pituitary, thyroid, ovarian, uterine, cervical, and prostate cancers, often exhibit accelerated progression in response to hormonal signaling. Small interfering RNA (siRNA) has emerged as a groundbreaking gene suppression therapy since the FDA approval of its first product in 2018. With over 200 ongoing clinical trials, siRNA is being actively explored as a targeted treatment for hormone-related cancers. Its ability to silence specific oncogenes offers significant advantages over conventional therapies, which are often associated with toxicity, resistance, and non-specific targeting. However, challenges in siRNA delivery remain a major barrier to its clinical translation, limiting its ability to reach target cells effectively. This review evaluates the potential of siRNA in hormone-related cancers, addressing the shortcomings of traditional treatments while examining novel strategies to enhance siRNA delivery and overcome tumor microenvironment obstacles. Notably, no existing literature comprehensively consolidates siRNA-based therapies for these cancers, emphasizing the importance of this manuscript in bridging current knowledge gaps and advancing the translational application of siRNA therapeutics.
Collapse
Affiliation(s)
- Sayani Saha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Reetika Tandon
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Jhansi Sanku
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Anchala Kumari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India.
| |
Collapse
|
3
|
Aneed IK, Luaibi NM, Abdulqader SN. Investigating the clinical significance of immune and thyroid biomarkers in women with breast cancer and Hashimoto's thyroiditis. Reprod Biol 2025; 25:101011. [PMID: 40222067 DOI: 10.1016/j.repbio.2025.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/15/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025]
Abstract
Breast cancer with Hashimoto's thyroiditis (BC-HT) presents a unique immuno-thyroid interplay that remains poorly understood. This study investigates the relationships between thyroid function markers (TSH, T3, T4), immune markers (CD33, CD44), and thyroid autoantibodies (Anti-TPO, Anti-Tg) in BC-HT patients and healthy controls. Normality testing confirmed non-parametric data distribution, necessitating Mann-Whitney U tests for group comparisons. BC-HT patients exhibited significantly elevated TSH, CD33, Anti-TPO, and Anti-Tg levels, alongside reduced T3 and T4, compared to controls, indicating thyroid dysfunction. Spearman's correlation analysis revealed strong negative correlations between TSH and T3/T4 in controls, which were lost in BC-HT, suggesting disruption of normal thyroid feedback mechanisms. Additionally, CD33 and CD44 correlations with thyroid hormones were evident in controls but absent in BC-HT, highlighting altered immune-thyroid interactions. ROC analysis demonstrated high diagnostic performance for TSH, Anti-Tg, and Anti-TPO, with sensitivities exceeding 0.75, whereas CD33 and CD44 showed limited diagnostic utility. These findings suggest a distinct immuno-thyroid dysregulation in BC-HT patients and highlight the potential of thyroid-specific markers for disease stratification. Future research should focus on longitudinal studies and mechanistic investigations to further delineate the role of immune markers in breast cancer pathophysiology within the context of thyroid autoimmunity.
Collapse
Affiliation(s)
- Israa Khalaf Aneed
- Department of Biology, Mustansiriyah University, College of Science, Baghdad, Iraq.
| | | | - Sajid Nader Abdulqader
- National center for medical laboratories, Medical City, Ministry of Health, Baghdad, Iraq
| |
Collapse
|
4
|
Sarmento-Cabral A, Fuentes-Fayos AC, Ordoñez FM, León-González AJ, Martínez-Fuentes AJ, Gahete MD, Luque RM. From pituitary cells to prostate gland in health and disease: direct and indirect endocrine connections. Rev Endocr Metab Disord 2025; 26:187-203. [PMID: 39910005 PMCID: PMC11920336 DOI: 10.1007/s11154-025-09948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The prostate gland is an endocrine-sensitive organ responding to multiple stimuli. Its development and function are regulated by multiple hormones (i.e. steroids such as androgens, estrogens and glucocorticoids) but also by other key hormonal systems such as those comprised by insulin-like growth factor 1 and insulin, which are sourced by different tissues [e.g. testicles/adrenal-gland/adipose-tissue/liver/pancreas, etc.). Particularly important for the endocrine control of prostatic pathophysiology and anatomy are hormones produced and/or secreted by different cell types of the pituitary gland [growth-hormone, luteinizing-hormone, follicle-stimulating hormone, and prolactin, oxytocin, arginine-vasopressin and melanocyte-stimulating hormone], which affect prostate gland function either directly or indirectly under physiological and pathophysiological conditions [e.g. metabolic dysregulation (e.g. obesity), and prostate transformations (e.g. prostate cancer)]. This review summarizes the impact of all pituitary hormone types on prostate gland under these diverse conditions including in vivo and in vitro studies.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Fernando Mata Ordoñez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Faculty of Health Sciences, Alfonso X el Sabio University, Villanueva de la Cañada, 28691, Spain
| | - Antonio J León-González
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain.
| |
Collapse
|
5
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025:10.1007/s12020-025-04161-7. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
6
|
Li S, Oliva P, Zhang L, Goodrich JA, McConnell R, Conti DV, Chatzi L, Aung M. Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-024-00742-2. [PMID: 39789195 DOI: 10.1038/s41370-024-00742-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Exposure to per- and polyfluoroalkyl substances (PFAS) has been linked with various cancers. Assessment of PFAS in drinking water and cancers can help inform biomonitoring and prevention efforts. OBJECTIVE To screen for incident cancer (2016-2021) and assess associations with PFAS contamination in drinking water in the US. METHODS We obtained county-level age-adjusted cancer incidence (2016-2021) from the Surveillance, Epidemiology, and End Results (SEER) Program. Data on PFAS levels in public drinking water systems were obtained from the Third (UCMR3; 2013-2015) and Fifth (UCMR5; 2023-2024) Unregulated Contaminant Monitoring Rule. UCMR3 measured PFOS, PFOA, PFNA, PFHxS, PFHpA, and PFBS. UCMR5 expanded measurements to include PFBA, PFHxA, PFPeA, and PFPeS. We created indicators of PFAS detection and, for UCMR5, concentrations above Maximum Contaminant Levels (MCLs). MCLs for PFOA and PFOS are 4 ng/L, and for PFNA and PFHxS are 10 ng/L. We used Poisson regression models to assess associations between PFAS detection or MCL violation and cancer incidence, adjusting for potential confounders. We estimated the number of attributable cancer cases. RESULTS PFAS in drinking water was associated with increased cancer incidence in the digestive, endocrine, oral cavity/pharynx, and respiratory systems. Incidence rate ratios (IRRs) ranged from 1.02 to 1.33. The strongest association was observed between PFBS and oral cavity/pharynx cancers (IRR: 1.33 [1.04, 1.71]). Among males, PFAS was associated with cancers in the urinary, brain, leukemia, and soft tissues. Among females, PFAS was associated with cancers in the thyroid, oral cavity/pharynx, and soft tissue. PFAS in drinking water is estimated to contribute to 4626 [95% CI: 1,377, 8046] incident cancer cases per year based on UCMR3 data and 6864 [95% CI: 991, 12,804] based on UCMR5. IMPACT STATEMENT The ecological study examined the associations between PFAS in drinking water measured in two waves (2013-2015 and 2023-2024) and cancer incidence between 2016 and 2021. We found that PFAS in drinking water was associated with cancers in the organ system including the oral cavity/pharynx, lung, digestive system, brain, urinary system, soft tissue, and thyroid. Some cancers have not been widely studied for their associations with PFAS. We also observed sex differences in the associations between PFAS and cancer risks. This is the first ecological study that examined PFAS exposure in drinking water and various cancer risks.
Collapse
Affiliation(s)
- Shiwen Li
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Paulina Oliva
- Department of Economics, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Lu Zhang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jesse A Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David V Conti
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lida Chatzi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Max Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2025; 22:9-22. [PMID: 39420154 PMCID: PMC7616774 DOI: 10.1038/s41575-024-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Campos Haedo MN, Díaz Albuja JA, Camarero S, Cayrol F, Sterle HA, Debernardi MM, Perona M, Saban M, Ernst G, Mendez J, Paulazo MA, Juvenal GJ, Díaz Flaqué MC, Cremaschi GA, Rosemblit C. PKCα Activation via the Thyroid Hormone Membrane Receptor Is Key to Thyroid Cancer Growth. Int J Mol Sci 2024; 25:12158. [PMID: 39596225 PMCID: PMC11594262 DOI: 10.3390/ijms252212158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Thyroid carcinoma (TC) is the most common endocrine neoplasia, with its incidence increasing in the last 40 years worldwide. The determination of genetic and/or protein markers for thyroid carcinoma could increase diagnostic precision. Accumulated evidence shows that Protein kinase C alpha (PKCα) contributes to tumorigenesis and therapy resistance in cancer. However, the role of PKCα in TC remains poorly studied. Our group and others have demonstrated that PKCs can mediate the proliferative effects of thyroid hormones (THs) through their membrane receptor, the integrin αvβ3, in several cancer types. We found that PKCα is overexpressed in TC cell lines, and it also appeared as the predominant expressed isoform in public databases of TC patients. PKCα-depleted cells significantly reduced THs-induced proliferation, mediated by the integrin αvβ3 receptor, through AKT and Erk activation. In databases of TC patients, higher PKCα expression was associated with lower overall survival. Further analyses showed a positive correlation between PKCα and genes from the MAPK and PI3K-Akt pathways. Finally, immunohistochemical analysis showed abnormal upregulation of PKCα in human thyroid tumors. Our findings establish a potential role for PKCα in the control of hormone-induced proliferation that can be explored as a therapeutic and/or diagnostic target for TC.
Collapse
Affiliation(s)
- Mateo N. Campos Haedo
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Johanna A. Díaz Albuja
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Sandra Camarero
- Histopathology Service, Hospital de Pediatría Garrahan, Buenos Aires C1245AAM, Argentina;
| | - Florencia Cayrol
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Helena A. Sterle
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - María M. Debernardi
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Marina Perona
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1650KNA, Argentina; (M.P.); (G.J.J.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Melina Saban
- Endocrinology Service, Hospital Británico de Buenos Aires, Buenos Aires C1280AEB, Argentina;
| | - Glenda Ernst
- Scientific Committee, Hospital Británico de Buenos Aires, Buenos Aires C1280AEB, Argentina;
| | - Julián Mendez
- Histopathology Service, Hospital Británico de Buenos Aires, Buenos Aires C1280AEB, Argentina;
| | - María A. Paulazo
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Guillermo J. Juvenal
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires B1650KNA, Argentina; (M.P.); (G.J.J.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - María C. Díaz Flaqué
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Graciela A. Cremaschi
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| | - Cinthia Rosemblit
- Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Buenos Aires C1107AFB, Argentina; (M.N.C.H.); (J.A.D.A.); (F.C.); (H.A.S.); (M.M.D.); (M.A.P.); (M.C.D.F.)
| |
Collapse
|
9
|
Dong L, Zhang N, Chen J, Dong P, Mao N, Li H, Wang A. Triiodothyronine (T3) suppresses hepatic tumorigenesis and development by inhibiting the phosphorylation of ERK. Mol Carcinog 2024; 63:1988-2000. [PMID: 39031486 DOI: 10.1002/mc.23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/04/2024] [Accepted: 06/25/2024] [Indexed: 07/22/2024]
Abstract
The effect of triiodothyronine (T3) on the phosphorylation of ERK and the occurrence and development of hepatocellular carcinoma (HCC) is controversial and remains to be clarified. In the present study, both in vitro (hepatoma cell lines) and in vivo (wild-type mice [WT] and mouse models of HCC [HrasG12Vand KrasG12Dtransgenic mice (Hras-Tg and Kras-Tg)]) systems were used to investigate the effect of T3 on p-ERK and hepatocarcinogenesis. The results showed that, in vitro, T3 treatment elevated the levels of p-ERK in hepatoma cells within 30 min. However, p-ERK levels returned to normal after 1 h with no significant effects on cellular proliferation or apoptosis. Interestingly, in vivo, T3 induced early rapid and transient activation of ERK and later persistent downregulation of p-ERK in liver tissues of WT. In Hras-Tg, liver weight, liver/body weight ratio, hepatic tumor numbers and sizes were significantly reduced withT3treatment compared with the untreated group. Furthermore, the levels of albumin, HrasG12V, and p-ERK in hepatic precancerous and tumor tissues were all significantly downregulated with T3 treatment; however, the levels of endogenous Hras were not affected. In WT, T3 also induced downregulation of Albumin in liver tissues, but without influence on the expression of endogenous Hras and p-MEK. Especially, the inhibitory effect of T3 on p-ERK and hepatic tumorigenesis and development without influence on the levels of KrasG12D and p-MEK was further confirmed in Kras-Tg. In conclusion, T3 suppresses hepatic tumorigenesis and development by independently and substantially inhibiting the phosphorylation of ERK in vivo.
Collapse
Affiliation(s)
- Lili Dong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Penghui Dong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Nan Mao
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Elsayed AA, Barghash SM, El-Kattan AM, Wassif IM, Osman WA, Ateya AI. Analysis of potential genes, immunological and antioxidant profiles associated with trypanosomiasis susceptibility in dromedary camels. Vet Parasitol 2024; 331:110264. [PMID: 39059159 DOI: 10.1016/j.vetpar.2024.110264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Trypanosomiasis is associated with tissue damage and may trigger an immunological response. These tissue lesions are linked to metabolic issues and oxidative stress. The current study aimed to investigate the immunological, antioxidant, and metabolic changes that may be connected to camel trypanosomiasis. Blood samples were collected from 54 camels and allocated into two groups: The control group (35 camels) and the infected group (19 camels). The genes TLR2, TLR5, IL-17, MARCHF3, RASGRP1, EPS15L1, PPIE, ASB16, CMPK2, LPCAT1, FPGT, GPHN, TNNI3K, DIO3, keap1, and OXSR1 were significantly up-regulated in trypanosomiasis camels. However, down-regulation was observed for the genes Nrf2, PRDX6, and NDUFS5. PCR-DNA sequencing was used to identify nucleotide sequence polymorphisms in the immune (TLR2, TLR5, IL-17, MARCHF3, RASGRP1, and EPS15L1), metabolic (PPIE, ASB16, CMPK2, LPCAT1, FPGT, GPHN, TNNI3K, and DIO3), and antioxidant (Nrf2, Keap1, PRDX6, NDUFS5, and OXSR1) genes between healthy and trypanosomiasis-affected camels. Exploring the serum profile also showed a significant (P ˂ 0.05) increase in Hp, SAA, Cp, IL-1β, IL-6, IL 10, TNF-α, and MDA, with significant (P ˂ 0.05) reduction in the serum levels of CAT, SOD, GSH, T3, and T4 in diseased camels compared with healthy ones. Our findings confirm the significance of nucleotide variations, gene expression patterns, and the biochemical profile of the investigated markers as indicators for the susceptibility of trypanosomiasis in dromedary camels and may be utilized to create management strategies.
Collapse
Affiliation(s)
- Ahmed A Elsayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Safaa M Barghash
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Adel M El-Kattan
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Islam M Wassif
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Wafaa A Osman
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ahmed I Ateya
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
11
|
Hantusch B, Kenner L, Stanulović VS, Hoogenkamp M, Brown G. Targeting Androgen, Thyroid Hormone, and Vitamin A and D Receptors to Treat Prostate Cancer. Int J Mol Sci 2024; 25:9245. [PMID: 39273194 PMCID: PMC11394715 DOI: 10.3390/ijms25179245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The nuclear hormone family of receptors regulates gene expression. The androgen receptor (AR), upon ligand binding and homodimerization, shuttles from the cytosol into the nucleus to activate gene expression. Thyroid hormone receptors (TRs), retinoic acid receptors (RARs), and the vitamin D receptor (VDR) are present in the nucleus bound to chromatin as a heterodimer with the retinoid X receptors (RXRs) and repress gene expression. Ligand binding leads to transcription activation. The hormonal ligands for these receptors play crucial roles to ensure the proper conduct of very many tissues and exert effects on prostate cancer (PCa) cells. Androgens support PCa proliferation and androgen deprivation alone or with chemotherapy is the standard therapy for PCa. RARγ activation and 3,5,3'-triiodo-L-thyronine (T3) stimulation of TRβ support the growth of PCa cells. Ligand stimulation of VDR drives growth arrest, differentiation, and apoptosis of PCa cells. Often these receptors are explored as separate avenues to find treatments for PCa and other cancers. However, there is accumulating evidence to support receptor interactions and crosstalk of regulatory events whereby a better understanding might lead to new combinatorial treatments.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, 1010 Vienna, Austria;
- Comprehensive Cancer Center, Medical University Vienna, 1090 Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Christian Doppler Laboratory for Applied Metabolomics, Medical University Vienna, 1090 Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), 8010 Graz, Austria
| | - Vesna S. Stanulović
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Maarten Hoogenkamp
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (V.S.S.); (M.H.)
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Yang Q, Dong R, Yan H, Xu R, Xue Y, Yin Y, Zhao Z, Wang Z. Impaired sensitivity to thyroid hormone correlates to all-cause mortality in euthyroid individuals with chronic kidney disease. BMC Public Health 2024; 24:2134. [PMID: 39107720 PMCID: PMC11305014 DOI: 10.1186/s12889-024-19660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND This study aimed to investigate the association between central sensitivity to thyroid hormones and all-cause mortality in euthyroid patients with chronic kidney disease (CKD). METHODS Data on thyroid function indicators and all-cause mortality for CKD patients were extracted from the NHANES database (2007-2012). Central sensitivities to thyroid hormones were mainly evaluated by Thyroid Feedback Quantile-based Index (TFQI). The Kaplan-Meier method, Cox proportional hazards regression model and subgroup analysis were performed to explore the potential associations between thyroid hormone sensitivity and all-cause mortality. RESULTS A total of 1303 euthyroid CKD patients were enrolled in this study. After a median follow-up of 115 months, 503 participants died. The Kaplan-Meier analysis demonstrated significant variations in survival rates among different levels of TFQI (P = 0.0015). Cox regression analysis showed that increased levels of TFQI were independent risk factors for all-cause mortality after adjusting for multiple confounding factors (HR = 1.40, 95% CI 1.10-1.79, P = 0.007). Subgroup analysis did not reveal any significant variation in the association between TFQI and all-cause mortality between the subgroups assessed (P for interaction > 0.05). CONCLUSION Our study suggests that impaired thyroid hormone sensitivity might be linked to increased mortality in euthyroid CKD patients. Further research is needed to confirm and explore this association.
Collapse
Affiliation(s)
- Qichao Yang
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, China
| | - Ru Dong
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, China
| | - Han Yan
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, China
| | - Ruijun Xu
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, China
| | - Yi Xue
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, China
| | - Yong Yin
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, 213017, Jiangsu, China
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, China
| | - Zhiyong Zhao
- Department of Endocrinology, Affiliated Wujin Hospital of Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Department of Endocrinology, Wujin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, China.
| | - Zhaoxiang Wang
- Department of Endocrinology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| |
Collapse
|
13
|
Giolito MV, Bodoirat S, La Rosa T, Reslinger M, Guardia GDA, Mourtada J, Claret L, Joung A, Galante PAF, Penalva LOF, Plateroti M. Impact of the thyroid hormone T3 and its nuclear receptor TRα1 on colon cancer stem cell phenotypes and response to chemotherapies. Cell Death Dis 2024; 15:306. [PMID: 38693105 PMCID: PMC11063186 DOI: 10.1038/s41419-024-06690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
Colorectal cancers (CRCs) are highly heterogeneous and show a hierarchical organization, with cancer stem cells (CSCs) responsible for tumor development, maintenance, and drug resistance. Our previous studies showed the importance of thyroid hormone-dependent signaling on intestinal tumor development and progression through action on stem cells. These results have a translational value, given that the thyroid hormone nuclear receptor TRα1 is upregulated in human CRCs, including in the molecular subtypes associated with CSC features. We used an established spheroid model generated from the human colon adenocarcinoma cell line Caco2 to study the effects of T3 and TRα1 on spheroid formation, growth, and response to conventional chemotherapies. Our results show that T3 treatment and/or increased TRα1 expression in spheroids impaired the response to FOLFIRI and conferred a survival advantage. This was achieved by stimulating drug detoxification pathways and increasing ALDH1A1-expressing cells, including CSCs, within spheroids. These results suggest that clinical evaluation of the thyroid axis and assessing TRα1 levels in CRCs could help to select optimal therapeutic regimens for patients with CRC. Proposed mechanism of action of T3/TRα1 in colon cancer spheroids. In the control condition, TRα1 participates in maintaining homeostatic cell conditions. The presence of T3 in the culture medium activates TRα1 action on target genes, including the drug efflux pumps ABCG2 and ABCB1. In the case of chemotherapy FOLFIRI, the increased expression of ABC transcripts and proteins induced by T3 treatment is responsible for the augmented efflux of 5-FU and Irinotecan from the cancer cells. Taken together, these mechanisms contribute to the decreased efficacy of the chemotherapy and allow cells to escape the treatment. Created with BioRender.com .
Collapse
MESH Headings
- Humans
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/pathology
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Thyroid Hormone Receptors alpha/metabolism
- Thyroid Hormone Receptors alpha/genetics
- Caco-2 Cells
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/pathology
- Colonic Neoplasms/genetics
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Triiodothyronine/pharmacology
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Camptothecin/pharmacology
- Camptothecin/analogs & derivatives
- Camptothecin/therapeutic use
- Phenotype
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aldehyde Dehydrogenase 1 Family/metabolism
- Aldehyde Dehydrogenase 1 Family/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Retinal Dehydrogenase/metabolism
- Retinal Dehydrogenase/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/genetics
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), UCLouvain, Avenue Hippocrate 57, B1.57.04, B-1200, Brussels, Belgium
| | - Serguei Bodoirat
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
| | - Theo La Rosa
- Stem-Cell and Brain Research Institute, U1208 INSERM, USC1361 INRA, 69675, Bron, France
| | - Mathieu Reslinger
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Université de Strasbourg, CNRS, INSERM, IGBMC UMR 7104-UMR-S 1258, Illkirch, France
| | | | - Jana Mourtada
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
| | - Leo Claret
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Université de Strasbourg, CNRS, INSERM, IGBMC UMR 7104-UMR-S 1258, Illkirch, France
| | - Alain Joung
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France
- Laboratoire de Biologie Tumorale, Institut de Cancérologie Strasbourg Europe, Strasbourg, France
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michelina Plateroti
- Université de Strasbourg, INSERM, IRFAC/UMR-S1113, FMTS, 67200, Strasbourg, France.
- Université de Strasbourg, CNRS, INSERM, IGBMC UMR 7104-UMR-S 1258, Illkirch, France.
| |
Collapse
|
14
|
Chen Y, Dong H, Qu B, Ma X, Lu L. Protective effect of higher free thyroxine levels within the reference range on biliary tract cancer risk: a multivariable mendelian randomization and mediation analysis. Front Endocrinol (Lausanne) 2024; 15:1379607. [PMID: 38686204 PMCID: PMC11056546 DOI: 10.3389/fendo.2024.1379607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background Hepatobiliary cancer (HBC), including hepatocellular carcinoma (HCC) and biliary tract cancer (BTC), is currently one of the malignant tumors that mainly cause human death. Many HBCs are diagnosed in the late stage, which increases the disease burden, indicating that effective prevention strategies and identification of risk factors are urgent. Many studies have reported the role of thyroid hormones on HBC. Our research aims to assess the causal effects and investigate the mediation effects between thyroid function and HBC. Methods Utilizing the Mendelian randomization (MR) approach, the study employs single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) to explore causal links between thyroid function [free thyroxine (FT4), thyroid stimulating hormone (TSH), hyperthyroidism and hypothyroidism] and HBC. Data were sourced from the ThyroidOmic consortium and FinnGen consortium. The analysis included univariable and multivariable MR analysis, followed by mediation analysis. Results The study found a significant causal association between high FT4 levels and the reduced risk of BTC, but not HCC. However, TSH, hyperthyroidism and hypothyroidism had no causal associations with the risk of HBC. Notably, we also demonstrated that only higher FT4 levels with the reference range (FT4-RR) could reduce the risk of BTC because this protective effect no longer existed under the conditions of hyperthyroidism or hypothyroidism. Finally, we found that the protective effect of FT4-RR on BTC was mediated partially by decreasing the risk of metabolic syndrome (MetS) and reducing the waist circumference (WC). Conclusion The findings suggest that higher FT4-RR may have a protective effect against BTC, which is partially mediated by decreased risk of MetS and a reduction in WC. This study highlights the potential role of FT4 in the pathogenesis of BTC and underscores that MetS and WC may play mediation effects as two mediators in this process.
Collapse
Affiliation(s)
- Yuxian Chen
- College of Medicine, Qingdao University, Qingdao, China
| | - Hao Dong
- College of Medicine, Qingdao University, Qingdao, China
| | - Baozhen Qu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xuezhen Ma
- Department of Oncology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - LinLin Lu
- Qingdao Cancer Prevention and Treatment Research Institute, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| |
Collapse
|
15
|
Kim MS, Lee JW, Hyun MK, Song YS. Risk of Subsequent Primary Cancers in Thyroid Cancer Survivors according to the Dose of Levothyroxine: A Nationwide Cohort Study. Endocrinol Metab (Seoul) 2024; 39:288-299. [PMID: 38437824 PMCID: PMC11066454 DOI: 10.3803/enm.2023.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGRUOUND Current research has not investigated the effect of thyroid-stimulating hormone suppression therapy with levothyroxine on the risk for developing subsequent primary cancers (SPCs). This study aimed to investigate the association between levothyroxine dosage and the risk for SPCs in thyroid cancer patients. METHODS We conducted a nationwide population-based retrospective cohort study form Korean National Health Insurance database. This cohort included 342,920 thyroid cancer patients between 2004 and 2018. Patients were divided into the non-levothyroxine and the levothyroxine groups, the latter consisting of four dosage subgroups according to quartiles. Cox proportional hazard models were performed to evaluate the risk for SPCs by adjusting for variables including cumulative doses of radioactive iodine (RAI) therapy. RESULTS A total of 17,410 SPC cases were observed over a median 7.3 years of follow-up. The high-dose levothyroxine subgroups (Q3 and Q4) had a higher risk for SPC (adjusted hazard ratio [HR], 1.14 and 1.27; 95% confidence interval [CI], 1.05-1.24 and 1.17- 1.37; respectively) compared to the non-levothyroxine group. In particular, the adjusted HR of stomach (1.31), colorectal (1.60), liver and biliary tract (1.95), and pancreatic (2.48) cancers were increased in the Q4 subgroup. We consistently observed a positive association between high levothyroxine dosage per body weight and risk of SPCs, even after adjusting for various confounding variables. Moreover, similar results were identified in the stratified analyses according to thyroidectomy type and RAI therapy, as well as in a subgroup analysis of patients with good adherence. CONCLUSION High-dose levothyroxine use was associated with increased risk of SPCs among thyroid cancer patients regardless of RAI therapy.
Collapse
Affiliation(s)
- Min-Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Jang Won Lee
- Department of Preventive Medicine, College of Korean Medicine, Dongguk University, Gyeongju, Korea
| | - Min Kyung Hyun
- Department of Preventive Medicine, College of Korean Medicine, Dongguk University, Gyeongju, Korea
| | - Young Shin Song
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Abdel-Samed SA, Hozyen WG, Shaaban SM, Hasona NA. Biochemical Significance of miR-155 and miR-375 as Diagnostic Biomarkers and Their Correlation with the NF-κβ/TNF-α Axis in Breast Cancer. Indian J Clin Biochem 2024; 39:226-232. [PMID: 38577133 PMCID: PMC10987425 DOI: 10.1007/s12291-022-01101-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022]
Abstract
Serum microRNAs (miRs) have recently been proposed as potential cancer biomarkers for early detection. Thyroid hormones play a crucial role in human health, and their alterations are linked to a range of diseases, such as breast cancer. The relationship between NF-κβ, TNF-α, and non-coding RNAs is an urgent need for clinical trials. This study aimed to investigate serum expression folds of miR-155 and miR-375 and their correlations with NF-κβ and TNF-α in breast cancer patients. The current study was conducted on 183 unrelated female participants. Serum levels of free T3 and T4, as well as expression folds of miR-155 and miR-375, were significantly higher in patients with fibroadenoma and breast cancer, despite TSH being significantly lower. Additionally, the signaling of TNF-alpha and NF-κβ were found to be significantly upregulated in the serum of patients with breast cancer. Up-regulation of miR-155 and miR-375 expression may be diagnostic biomarkers of breast cancer, pointing to the role of NF-κβ and TNF-α expression in miR-155 and miR-375 expression as therapeutic targets of breast cancer in the future.
Collapse
Affiliation(s)
- Sahar A. Abdel-Samed
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62511 Egypt
| | - Walaa G. Hozyen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62511 Egypt
| | - Saeed M. Shaaban
- Department of Oncology, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Nabil A. Hasona
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Salah Salim St., Beni-Suef, 62511 Egypt
| |
Collapse
|
17
|
Uyulgan S, Köse SN, Kıpçak A, Başkan Y, Dağlar G, Karagonlar ZF, Yandım C. Thyroid hormone T3 augments the cytotoxicity of sorafenib in Huh7 hepatocellular carcinoma cells by suppressing AKT expression. J Cancer Res Ther 2024; 20:755-762. [PMID: 39023579 DOI: 10.4103/jcrt.jcrt_2106_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND OBJECTIVES Hepatocellular carcinoma (HCC) is a primary cancer that poorly responds to treatment. Molecular cancer studies led to the development of kinase inhibitors, among which sorafenib stands out as a multi-kinase inhibitor approved by FDA for first line use in HCC patients. However, the efficiency of sorafenib was shown to be counteracted by numerous subcellular pathways involving the effector kinase AKT, causing resistance and limiting its survival benefit. On the way of breaking such resistance mechanisms and increase the efficiency of sorafenib, deeper understanding of hepatocellular physiology is essential. Thyroid hormones were shown to be metabolized in liver and inevitably affect the molecular behaviour of hepatocytes. Interestingly, thyroid hormone T3 was also demonstrated to be potentially influential in liver regeneration and treatment with this hormone reportedly led to a decrease in HCC tumor growths. In this study, we aimed to uncover the impact of T3 hormone on the cytotoxic response to sorafenib in HCC in vitro. MATERIALS AND METHODS We pre-treated the HCC cell line Huh-7 with T3 prior to sorafenib exposure both in 2D and 3D culture. We checked cell viability with MTT assay in 2D culture and measured the sizes of 3D spheroids with bright-field microscopy followed by a surface analysis with ImageJ. We also performed scratch assay to measure cell migration as well as western blot and qPCR to uncover affected pathways. RESULTS We observed an additive effect to sorafenib's cytotoxicity both in 2D and 3D culture. Cell migration assay also confirmed our finding and pointed out a benefit of T3 hormone in HCC cell migration. Western blot experiments showed that T3 exerts its additive effect by suppressing AKT expression upon sorafenib treatment both at protein and gene expression levels. CONCLUSION Our results open a promising new avenue in increasing sorafenib's cytotoxicity where thyroid hormone T3 is utilized to modulate AKT expression to combat resistance, and warrant further studies in the field.
Collapse
Affiliation(s)
- Sude Uyulgan
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, İzmir, Turkey
- İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340, İnciraltı, İzmir, Turkey
- İzmir International Biomedicine and Genome Institute (iBG-İzmir), Dokuz Eylül University, 35340, İnciraltı, İzmir, Turkey
| | - Sıla Naz Köse
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, İzmir, Turkey
| | - Arda Kıpçak
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, İzmir, Turkey
- Present Adress: Department of Psychology, University of Virginia, Charlottesville, VA, 22903 USA
| | - Yağmur Başkan
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, İzmir, Turkey
| | - Gökçe Dağlar
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, İzmir, Turkey
| | - Zeynep Fırtına Karagonlar
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, İzmir, Turkey
| | - Cihangir Yandım
- İzmir University of Economics, Faculty of Engineering, Department of Genetics and Bioengineering, 35330, Balçova, İzmir, Turkey
- İzmir Biomedicine and Genome Center (IBG), Dokuz Eylül University Health Campus, 35340, İnciraltı, İzmir, Turkey
| |
Collapse
|
18
|
Varzaru VB, Eftenoiu AE, Vlad DC, Vlad CS, Moatar AE, Popescu R, Cobec IM. The Influence of Tumor-Specific Markers in Breast Cancer on Other Blood Parameters. Life (Basel) 2024; 14:458. [PMID: 38672729 PMCID: PMC11051489 DOI: 10.3390/life14040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/17/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed cancer among women, responsible for the highest number of cancer-related deaths worldwide. There is limited data available related to serum tumor markers in breast cancer and other blood parameters or other glandular laboratory parameters. This study aims to evaluate the correlation of tumor-specific markers for breast cancer with other blood parameters and how these correlations could impact clinical management. MATERIAL AND METHOD This retrospective study represents a data analysis from 1 January 2020 to 31 May 2023, in the County Hospital of Timisoara, Romania. We reviewed all the cases where, in the laboratory analyses, the serum tumor specific biomarkers for breast cancer were analyzed. RESULTS A statistical analysis was performed in order to identify a possible relationship between CA 15-3 and the various biomarkers and blood parameters included in the present study. Values were classified according to reference ranges. The tests revealed no statistically significant associations between CA 15-3 values and the levels of CA125 (χ2(1) = 1.852, p = 0.174), CEA (χ2(1) = 1.139, p = 0.286), AFP (Fisher's exact test, p = 0.341), fT4 (Fisher's exact test, p = 0.310), TSH (Fisher's exact test, p = 0.177), or PTH (Fisher's exact test, p = 0.650). CONCLUSION The findings indicate a lack of strong correlation between CA 15-3 and CA125, CEA, AFP, thyroid function markers, or PTH within this cohort.
Collapse
Affiliation(s)
- Vlad Bogdan Varzaru
- Doctoral School, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Anca-Elena Eftenoiu
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy Bucharest, 050474 Bucharest, Romania
| | - Daliborca Cristina Vlad
- Department of Pharmacology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Emergency County Clinical Hospital Pius Brinzeu Timisoara, 300723 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Pharmacology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Aurica Elisabeta Moatar
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Internal Medicine-Cardiology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| | - Roxana Popescu
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Emergency County Clinical Hospital Pius Brinzeu Timisoara, 300723 Timisoara, Romania
| | - Ionut Marcel Cobec
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| |
Collapse
|
19
|
Asbaghi O, Shimi G, Davoodi SH, Pourvali K, Eslamian G, Zand H. Thyroid Hormones Imbalances and Risk of Colorectal Cancer: a Meta-analysis. J Gastrointest Cancer 2024; 55:105-117. [PMID: 37898961 DOI: 10.1007/s12029-023-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE No conclusive information is available about the association between hypothyroidism or hyperthyroidism and risk of colorectal cancer (CRC). We therefore aimed to summarize the findings of observational studies on the relation between hypothyroidism or hyperthyroidism and risk of CRC. METHODS A literature search was conducted using relevant keywords in online databases for appropriate publications through July 2023. Random effects model was used to calculate combined effect sizes (ESs) and 95% confidence intervals (CIs) to investigate relationship between hypothyroidism or hyperthyroidism and CRC risk. RESULTS Totally, we included 13 studies in the current systematic review and meta-analysis, with a total sample size of 33,557,450 individuals and 25,363 cases of CRC. Pooling 13 effect sizes revealed no significant association between hypothyroidism and risk of CRC (combined effect size: 1.13, 95% CI 0.87-1.48, P = 0.343). There was also no significant association between hyperthyroidism and risk of CRC (combined effect size: 1.09, 95% CI 0.75-1.57, P = 0.638). Additionally, there were significant associations between hypothyroidism and risk of CRC in the Far Eastern studies, between hyperthyroidism and risk of CRC in the Middle East, along with small sample size studies. CONCLUSIONS This meta-analysis did not reveal any association between hypothyroidism or hyperthyroidism and risk of CRC. TRIAL REGISTRATION PROSPERO CRD42022331089.
Collapse
Affiliation(s)
- Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Sayed Hossein Davoodi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Ghazaleh Eslamian
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 1981619573, Tehran, Iran.
| |
Collapse
|
20
|
Vargas-Uricoechea H. Autoimmune Thyroid Disease and Differentiated Thyroid Carcinoma: A Review of the Mechanisms That Explain an Intriguing and Exciting Relationship. World J Oncol 2024; 15:14-27. [PMID: 38274715 PMCID: PMC10807914 DOI: 10.14740/wjon1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/24/2023] [Indexed: 01/27/2024] Open
Abstract
Autoimmune thyroid disease is a complex and highly frequent disease, where a wide variety of genetic, epigenetic and environmental factors (among others) come together and interact, and is characterized by the presence of two clinical outcomes: hypothyroidism (in Hashimoto's thyroiditis) and hyperthyroidism (in Graves-Basedow disease). For its part, differentiated thyroid carcinoma (mainly papillary carcinoma) is the most common type of cancer affecting the thyroid (and one of the most prevalent worldwide). An important co-occurrence between autoimmune thyroid disease and differentiated thyroid carcinoma has been documented. In this article, studies that have evaluated possible associations and relationships between autoimmune thyroid disease and differentiated thyroid cancer are systematically described and summarized. To date, the underlying mechanism that explains this association is inflammation; however, the characteristics and designs of the studies evaluated do not yet allow a causal relationship between the two entities to be established. These aspects have made it difficult to establish "causality" in the continuum of the pathogenesis between both conditions.
Collapse
Affiliation(s)
- Hernando Vargas-Uricoechea
- Metabolic Diseases Study Group, Department of Internal Medicine, Universidad del Cauca, Popayan, Colombia.
| |
Collapse
|
21
|
Leung JH, Wang SY, Leung HWC, Yu TS, Chan ALF. Hypothyroidism and hyperthyroidism related to gynecologic cancers: a nationwide population-based cohort study. Sci Rep 2024; 14:1892. [PMID: 38253698 PMCID: PMC10803809 DOI: 10.1038/s41598-023-50439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The purpose of this study was to assess the risks of hyperthyroidism and hypothyroidism related to gynecological cancers. Population-based retrospective cohort study. We conducted a cohort study using the Taiwan National Health Insurance Research Database to explore hyperthyroidism and hypothyroidism associated with site-specific gynecologic cancers in women from January 1, 2000 to December 31, 2018. The examined gynecologic cancers included endometrial (EC), uterine corpus cancer (UC), and ovarian cancer (OC). The incidence and hazard ratios were quantified using Cox proportional hazards models. The incidence of developing gynecological (Gyn) cancers in the hyperthyroid and hypothyroid women was 0.29 and 0.44 per 1000 person-years, which was 0.86 fold lower and 1.13 fold higher than that in the comparison cohort (p < 0.001). Compared with patients aged 20-40 years, patients in older age groups had a lower and higher risk of developing Gyn cancers (for hyperthyroid, 40-65 years: adjusted hazard ratio (aHR) = 0.82; > 65 years: aHR = 0.94; for hypothyroid, adjusted hazard ratio (aHR) = 1.26; > 65 years: aHR = 1.38). Compared with the non-hypothyroid women and non-hyperthyroid women beyond 6 years of follow-up, hypothyroid and hyperthyroid women showed decreased risk of Gyn cancers. Medication treatment for hyperthyroid and hypothyroid disease did not showed significant association in subgroup analyses (aHR = 0.99 and 0.80, respectively). Our results show that women with hyperthyroidism have a significantly reduced risk of gynecological cancers, whereas women with hypothyroidism have a slightly increased risk of gynecological cancers suggesting an association between thyroid function level and risk of gynecological cancers.
Collapse
Affiliation(s)
- John Hang Leung
- Department of Obstetrics and Gynecology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, No. 539, Zhongxiao Road, East Dist., Chiayi, 60002, Taiwan
| | - Shyh-Yau Wang
- Department of Radiology, An-Nan Hospital, China Medical University, No. 66, Sec. 2, Changhe Rd., Annan Dist., Tainan, Taiwan
| | - Henry W C Leung
- Department of Radiation Oncology, An-Nan Hospital, China Medical University, No. 66, Sec. 2, Changhe Rd., Annan Dist., Tainan, Taiwan.
| | - Teng-Shun Yu
- Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, No. 2, Yude Road, North District, Taichung, 40447, Taiwan
| | - Agnes L F Chan
- Department of Pharmacy, An-Nan Hospital, China Medical University, No. 66, Sec. 2, Changhe Rd., Annan Dist., Tainan, 709, Taiwan.
| |
Collapse
|
22
|
Garajová I, Comandatore A, Boyd L, Ali M, Gelsomino F, de Lorenzo S, Pedrazzi G, Spallanzani A, Martinelli G, Balsano R, Leonardi F, Palmeri M, Kazemier G, Di Franco G, Guadagni S, Furbetta N, Gentiluomo M, Ramacciotti N, Di Candio G, Giovannetti E, Morelli L. Association of hypothyroidism with survival in pancreatic cancer: retrospective cohort study. BJS Open 2024; 8:zrad119. [PMID: 38195161 PMCID: PMC10776351 DOI: 10.1093/bjsopen/zrad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Annalisa Comandatore
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Lenka Boyd
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Mahsoem Ali
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Fabio Gelsomino
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | | | - Giuseppe Pedrazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Spallanzani
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Giulio Martinelli
- Department of Oncology and Hematology, University Hospital of Modena, Modena, Italy
| | - Rita Balsano
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Matteo Palmeri
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Geert Kazemier
- Department of Surgery, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Gregorio Di Franco
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Simone Guadagni
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Niccolò Furbetta
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Niccolò Ramacciotti
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giulio Di Candio
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, San Giuliano Terme, PI, Pisa, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
23
|
Ma Z, Song P, Ji D, Zheng M, Qiu G, Liu Z, Wang B. Thyroid hormones as biomarkers of lung cancer: a retrospective study. Ann Med 2023; 55:2196088. [PMID: 37014291 PMCID: PMC10075513 DOI: 10.1080/07853890.2023.2196088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/15/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Thyroid hormones are key regulators of several physiological processes, including differentiation, embryonic development, proliferation, and metabolism. Several prospective studies have shown a relationship between hyperthyroidism and cancer incidence; however, since the association between thyroid hormone levels and lung cancer remains controversial, this study aimed to determine the correlation between the same. METHODS We retrospectively analyzed 289 patients, who were diagnosed with lung cancer at the Huzhou Central Hospital between January 2016 and January 2021, and 238 healthy subjects. The baseline clinical data of two groups were collected. The concentrations of thyroid hormones, tumor CEA, CYF, SCC, and NSE in both the lung cancer patient and healthy volunteer groups were analyzed. Student's t-test or Mann-Whitney test was used to compare continuous variables. A chi-square test was adopted to estimate the relationship between serum thyroid hormones level and clinical characteristics of lung cancer cases. ROC curve analyses were used to determine the characteristics of thyroid hormones for recognizing lung cancer. RESULTS The results showed that serum thyroid stimulating hormone (TSH), total thyroxine, total triiodothyronine, and free triiodothyronine (FT3) levels were significantly decreased, while free thyroxine (FT4) levels were increased in patients with lung cancer. In addition, FT3 was identified as a potential diagnostic biomarker of stage I-IV lung cancer with the area under the curve values of 0.807. What's more, FT3 and FT4 were used in combination with CEA and were identified as potential diagnostic biomarkers of stage 0 lung cancer (Tis) with the area under the curve values of 0.774. CONCLUSIONS Our study highlights the possibility of using thyroid hormones as innovative diagnostic markers for lung cancer.
Collapse
Affiliation(s)
- Zhenchao Ma
- Department of Radiation Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People’s Republic of China
| | - Pengtang Song
- Department of Pathology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People’s Republic of China
| | - Dongxiang Ji
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People’s Republic of China
| | - Mingjia Zheng
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People’s Republic of China
| | - Guoqing Qiu
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People’s Republic of China
| | - Zhicong Liu
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People’s Republic of China
| | - Bin Wang
- Department of Respiratory Medicine, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou, People’s Republic of China
| |
Collapse
|
24
|
Alkhalaileh H, Wei R, Lee JKY, Jones J, Li J. Relationship between TSH and free thyroxine in outpatient cancer patient population. Endocrine 2023; 82:319-325. [PMID: 37286745 DOI: 10.1007/s12020-023-03399-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND The inverse log-linear relationship between Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) is well established and reliably used for evaluation of hypothalamus-pituitary-thyroid (HPT) axis function. However, there are limited data regarding oncologic states in the TSH-FT4 relationship. The purpose of this study was to evaluate thyroid pituitary hypothalamic feedback regulation by the inverse log TSH and FT4 relationship in the cancer patient population at the Ohio State University Comprehensive Cancer Center (OSUCCC-James). METHODS This retrospective study analyzed the correlation between TSH and FT4 results from 18846 outpatient subjects collected in August 2019-November 2021 at the Department of Family Medicine (OSU Wexner Medical Center), Department of Oncology (OSUCCC-James). Patients with diagnoses related to cancers were included in the oncology group. Patients with diagnoses not related to cancers were included in the non-oncology group. Patients of the Department of Endocrinology, Department of Cardiology, Department of Obstetrics & Gynecology and Department of Hematology were excluded from this study. Time of collection for TSH and FT4 was from 7am to 7 pm. Data were analyzed by morning (7am-12pm) and afternoon (12pm-7pm). Spearman correlation and non-linear fit were used for data analysis. Sex differences were analyzed as well in each group. RESULTS Overall, an inverse correlation was observed between TSH and FT4 in both groups (non-oncology and oncology) regardless of sample collection time and sex differences. Further analysis by linear model in log TSH and FT4 showed a significant inverse fit in males compared with females in the group of oncology, both in the afternoon (p < 0.05). Data were further analyzed by ranges of FT4, as lower or higher (pathophysiology) or within (physiology) the reference interval of FT4. There was no statistical significance between the non-oncology and oncology groups, but relatively good correlation in non-oncology group in either physiologic or pathophysiologic FT4 levels and sample collection time. Interestingly, the best correlation between TSH and FT4 was found in the non-oncology group at pathophysiologic FT4 concentrations (abnormally high). In addition, at pathophysiologic FT4 concentrations (abnormally low), the oncology group demonstrated a significant TSH response in the morning than in the afternoon (p < 0.05). CONCLUSIONS Though overall the TSH-FT4 curves showed an inverse relationship, there are variations of TSH-FT4 relationship for collection times when considering FT4 in physiologic or pathophysiologic states. The results advance understanding of TSH response, which is beneficial for the interpretation of thyroid disease. We recommend re-evaluation for interpretation of pituitary hypothalamic axis by TSH results when FT4 is abnormally high in oncology patients or low in non-oncology patients, due to poor predictability and the potential for misdiagnosis. A better understanding of the complex nature of the TSH-FT4 relationship may need further study with better defining subclinical states of cancer patients.
Collapse
Affiliation(s)
| | - Ruhan Wei
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jason K Y Lee
- Department of Clinical Laboratory, University Hospital, the Ohio State University, Columbus, OH, USA
| | - JoAnna Jones
- Department of Pathology, the Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Jieli Li
- Department of Pathology, the Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
25
|
Perez-Mockus G, Cocconi L, Alexandre C, Aerne B, Salbreux G, Vincent JP. The Drosophila ecdysone receptor promotes or suppresses proliferation according to ligand level. Dev Cell 2023; 58:2128-2139.e4. [PMID: 37769663 PMCID: PMC7615657 DOI: 10.1016/j.devcel.2023.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/20/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023]
Abstract
The steroid hormone 20-hydroxy-ecdysone (20E) promotes proliferation in Drosophila wing precursors at low titer but triggers proliferation arrest at high doses. Remarkably, wing precursors proliferate normally in the complete absence of the 20E receptor, suggesting that low-level 20E promotes proliferation by overriding the default anti-proliferative activity of the receptor. By contrast, 20E needs its receptor to arrest proliferation. Dose-response RNA sequencing (RNA-seq) analysis of ex vivo cultured wing precursors identifies genes that are quantitatively activated by 20E across the physiological range, likely comprising positive modulators of proliferation and other genes that are only activated at high doses. We suggest that some of these "high-threshold" genes dominantly suppress the activity of the pro-proliferation genes. We then show mathematically and with synthetic reporters that combinations of basic regulatory elements can recapitulate the behavior of both types of target genes. Thus, a relatively simple genetic circuit can account for the bimodal activity of this hormone.
Collapse
Affiliation(s)
| | - Luca Cocconi
- The Francis Crick Institute, London NW1 1AT, UK.
| | | | | | - Guillaume Salbreux
- The Francis Crick Institute, London NW1 1AT, UK; Department of Genetics and Evolution, University of Geneva, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland.
| | | |
Collapse
|
26
|
Peppa M, Manta A, Mavroeidi I, Nastos C, Pikoulis E, Syrigos K, Bamias A. Dietary Approach of Patients with Hormone-Related Cancer Based on the Glycemic Index and Glycemic Load Estimates. Nutrients 2023; 15:3810. [PMID: 37686842 PMCID: PMC10490329 DOI: 10.3390/nu15173810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Hormone-related cancers, namely breast, endometrial, cervical, prostate, testicular, and thyroid, constitute a specific group of cancers dependent on hormone levels that play an essential role in cancer growth. In addition to the traditional risk factors, diet seems to be an important environmental factor that partially explains the steadily increased prevalence of this group of cancer. The composition of food, the dietary patterns, the endocrine-disrupting chemicals, and the way of food processing and preparation related to dietary advanced glycation end-product formation are all related to cancer. However, it remains unclear which specific dietary components mediate this relationship. Carbohydrates seem to be a risk factor for cancer in general and hormone-related cancers, in particular, with a difference between simple and complex carbohydrates. Glycemic index and glycemic load estimates reflect the effect of dietary carbohydrates on postprandial glucose concentrations. Several studies have investigated the relationship between the dietary glycemic index and glycemic load estimates with the natural course of cancer and, more specifically, hormone-related cancers. High glycemic index and glycemic load diets are associated with cancer development and worse prognosis, partially explained by the adverse effects on insulin metabolism, causing hyperinsulinemia and insulin resistance, and also by inflammation and oxidative stress induction. Herein, we review the existing data on the effect of diets focusing on the glycemic index and glycemic load estimates on hormone-related cancers.
Collapse
Affiliation(s)
- Melpomeni Peppa
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Aspasia Manta
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Ioanna Mavroeidi
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (A.M.); (I.M.)
| | - Constantinos Nastos
- 3rd Department of Surgery, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Emmanouil Pikoulis
- 3rd Department of Surgery, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece; (C.N.); (E.P.)
| | - Konstantinos Syrigos
- 3rd Department of Internal Medicine, Sotiria Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Aristotelis Bamias
- 2nd Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece;
| |
Collapse
|
27
|
Erzurumlu Y, Muhammed MT. Triiodothyronine positively regulates endoplasmic reticulum-associated degradation (ERAD) and promotes androgenic signaling in androgen-dependent prostate cancer cells. Cell Signal 2023:110745. [PMID: 37271348 DOI: 10.1016/j.cellsig.2023.110745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Thyroid hormones (THs) play crucial roles in numerous physiological processes of nearly all mammalian tissues, including differentiation and metabolism. Deterioration of TH signaling has been associated with several pathologies, including cancer. The effect of highly active triiodothyronine (T3) has been investigated in many in vivo and in vitro cancer models. However, the role of T3 on cancerous prostate tissue is controversial. Recent studies have focused on the characterization of the supportive roles of the endoplasmic reticulum-associated degradation (ERAD) and unfolded protein response (UPR) signaling in prostate cancer (PCa) and investigating new hormonal regulation patterns, including estrogen, progesterone and 1,25(OH)2D3. Additionally, androgenic signaling controlled by androgens, which are critical in PCa progression, has been shown to be regulated by other steroid hormones. While the effects of T3 on ERAD and UPR are unknown today, the impact on androgenic signaling is still not understood in PCa. Therefore, we aimed to investigate the molecular action of T3 on the ERAD mechanism and UPR signaling in PCa cells and also extensively examined the effect of T3 on androgenic signaling. Our data strongly indicated that T3 tightly regulates ERAD and UPR signaling in androgen-dependent PCa cells. We also found that T3 stimulates androgenic signaling by upregulating AR mRNA and protein levels and enhancing its nuclear translocation. Additionally, advanced computational studies supported the ligand binding effect of T3 on AR protein. Our data suggest that targeting thyroidal signaling should be considered in therapeutic approaches to be developed for prostate malignancy in addition to other steroidal regulations.
Collapse
Affiliation(s)
- Yalcin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260, Turkey.
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suleyman Demirel University, 32260 Isparta, Turkey.
| |
Collapse
|
28
|
Sun J, Liu J, Wu TT, Gu ZY, Zhang XW. Sensitivity to thyroid hormone indices are associated with papillary thyroid carcinoma in Chinese patients with thyroid nodules. BMC Endocr Disord 2023; 23:126. [PMID: 37264363 DOI: 10.1186/s12902-023-01381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND The association between thyroid hormone sensitivity and thyroid cancer is unknown, and we aimed to investigate the association between sensitivity to thyroid hormone indices and papillary thyroid carcinoma (PTC) in Chinese patients with thyroid nodules (TNs). METHODS A total of 1,998 patients undergoing thyroid surgery due to TNs from Nanjing Drum Tower Hospital were included in this study. We evaluated central sensitivity to thyroid hormones, such as thyroid stimulating hormone index (TSHI), TSH T4 resistance index (TT4RI), thyroid feedback quantile-based index (TFQI), and parametric thyroid feedback quantile-based Index (PTFQI). Peripheral sensitivity to thyroid hormone was evaluated by FT3 to FT4 ratio. Multivariate logistic regression analysis was performed to evaluate the association between sensitivity to thyroid hormone indices and PTC risk. RESULTS The results showed that central indices of thyroid hormone sensitivity, including TSHI, TT4RI, TFQI, and PTFQI, were positively associated with PTC risk. For each SD increase in TSHI, TT4RI, TFQI, and PTFQI, the odds ratios (OR, 95% CI) of PTC were 1.31 (1.18-1.46), 1.01 (1.01-1.02), 1.94 (1.45-2.60), and 1.82 (1.41-2.34), respectively. On the other hand, the association between peripheral sensitivity to thyroid hormone and PTC was significantly negative. For each SD increase in FT3/FT4 ratio, the OR (95% CI) of PTC was 0.18 (0.03-0.96), and a negative correlation was found between FT3/FT4 ratio and TNM staging of PTC. CONCLUSIONS Sensitivity to thyroid hormone indices could be used as new indicators for predicting PTC in Chinese patients with TNs. Future researches are still needed to confirm our findings.
Collapse
Affiliation(s)
- Jie Sun
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Jie Liu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Ting-Ting Wu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Zhi-Yuan Gu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Xiao-Wen Zhang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| |
Collapse
|
29
|
Torabinejad S, Miro C, Barone B, Imbimbo C, Crocetto F, Dentice M. The androgen-thyroid hormone crosstalk in prostate cancer and the clinical implications. Eur Thyroid J 2023; 12:e220228. [PMID: 36930264 PMCID: PMC10160561 DOI: 10.1530/etj-22-0228] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/18/2023] Open
Abstract
There is increasing evidence that thyroid hormones (THs) work in an integrative fashion with androgen receptors (ARs) to regulate gonadal differentiation and reproductive function. Studies reveal that THs have interactions with the AR promoter region and increase AR expression. THs also have a role in the regulation of enzymes involved in the biosynthesis of androgens, such as 5α-reductase, which is essential in the conversion of testosterone into its active form, 5α-dihydrotestosterone. Additionally, the presence of androgen response elements in the promoter regions of TH-related genes, such as deiodinases and TH receptor isoforms, has been identified in some vertebrates, indicating a mutual interaction between THs and ARs. Since the androgen signaling pathway, mediated by ARs, plays a key role in the formation and progression of prostate cancer (PCa), the existence of crosstalk between THs and ARs supports the epidemiologic and experimental evidence indicating a relationship between the high incidence of PCa and hyperthyroidism. This article aims to review the role of androgen-TH crosstalk in PCa and its implication in clinical management. As life expectancy is growing these days, it can increase the number of patients with PCa and the critical relevance of the disease. In order to gain better knowledge about PCa and to improve clinical management, it is essential to get better insight into the key factors related to the formation and progression of this cancer.
Collapse
Affiliation(s)
- Sepehr Torabinejad
- Department of Clinical Medicine and Surgery, University of Naples ’Federico II’, Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples ’Federico II’, Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II
| | - Ciro Imbimbo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples ’Federico II’, Naples, Italy
- CEINGE – Biotecnologie Avanzate Scarl, Naples, Italy
| |
Collapse
|
30
|
Cayrol F, Sterle HA, Montesinos MDM. Editorial: Thyroid hormone actions in cancer. Front Endocrinol (Lausanne) 2023; 14:1219871. [PMID: 37305045 PMCID: PMC10248576 DOI: 10.3389/fendo.2023.1219871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Florencia Cayrol
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas (BIOMED)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Helena Andrea Sterle
- Laboratorio de Neuroinmunomodulación y Oncología Molecular, Instituto de Investigaciones Biomédicas (BIOMED)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Maria Del Mar Montesinos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología - Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
31
|
Gagliardi F, Baldini E, Lori E, Cardarelli S, Pironi D, Lauro A, Tripodi D, Palumbo P, D’Armiento E, Cavallaro G, Polistena A, D’Orazi V, Sibio S, Fallahi P, Antonelli A, D’Andrea V, Ulisse S, Sorrenti S. Insights on the Association between Thyroid Diseases and Colorectal Cancer. J Clin Med 2023; 12:2234. [PMID: 36983233 PMCID: PMC10056144 DOI: 10.3390/jcm12062234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Benign and malignant thyroid diseases (TDs) have been associated with the occurrence of extrathyroidal malignancies (EMs), including colorectal cancers (CRCs). Such associations have generated a major interest, as their characterization may provide useful clues regarding diseases' etiology and/or progression, with the possible identification of shared congenital and environmental elements. On the other hand, elucidation of the underlying molecular mechanism(s) could lead to an improved and tailored clinical management of these patients and stimulate an increased surveillance of TD patients at higher threat of developing EMs. Here, we will examine the epidemiological, clinical, and molecular findings connecting TD and CRC, with the aim to identify possible molecular mechanism(s) responsible for such diseases' relationship.
Collapse
Affiliation(s)
| | - Enke Baldini
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Eleonora Lori
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Silvia Cardarelli
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Daniele Pironi
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Augusto Lauro
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Domenico Tripodi
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | | | - Eleonora D’Armiento
- Department of Internal Medicine and Medical Specialties, “Sapienza” University of Rome, 00161 Rome, Italy
| | | | - Andrea Polistena
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Valerio D’Orazi
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Simone Sibio
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Poupak Fallahi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Alessandro Antonelli
- Department of Surgical, Medical and Molecular Pathology and of Critical Area, University of Pisa, 56126 Pisa, Italy
| | - Vito D’Andrea
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Salvatore Ulisse
- Department of Surgery, “Sapienza” University of Rome, 00161 Rome, Italy
| | | |
Collapse
|
32
|
Nappi A, Miro C, Pezone A, Tramontano A, Di Cicco E, Sagliocchi S, Cicatiello AG, Murolo M, Torabinejad S, Abbotto E, Caiazzo G, Raia M, Stornaiuolo M, Antonini D, Fabbrocini G, Salvatore D, Avvedimento VE, Dentice M. Loss of p53 activates thyroid hormone via type 2 deiodinase and enhances DNA damage. Nat Commun 2023; 14:1244. [PMID: 36871014 PMCID: PMC9985592 DOI: 10.1038/s41467-023-36755-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The Thyroid Hormone (TH) activating enzyme, type 2 Deiodinase (D2), is functionally required to elevate the TH concentration during cancer progression to advanced stages. However, the mechanisms regulating D2 expression in cancer still remain poorly understood. Here, we show that the cell stress sensor and tumor suppressor p53 silences D2 expression, thereby lowering the intracellular THs availability. Conversely, even partial loss of p53 elevates D2/TH resulting in stimulation and increased fitness of tumor cells by boosting a significant transcriptional program leading to modulation of genes involved in DNA damage and repair and redox signaling. In vivo genetic deletion of D2 significantly reduces cancer progression and suggests that targeting THs may represent a general tool reducing invasiveness in p53-mutated neoplasms.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Caterina Miro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Antonio Pezone
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Alfonso Tramontano
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Emery Di Cicco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Serena Sagliocchi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | | | - Melania Murolo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Sepehr Torabinejad
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Elena Abbotto
- Department of Experimental Medicine, University of Genoa, 16132, Genoa, Italy
| | - Giuseppina Caiazzo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Maddalena Raia
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples "Federico II", 80149, Naples, Italy
| | - Dario Antonini
- Department of Biology, University of Naples "Federico II", 80126, Naples, Italy
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Domenico Salvatore
- CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy.,Department of Public Health, University of Naples "Federico II", 80131, Naples, Italy
| | - Vittorio Enrico Avvedimento
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE, Biotecnologie Avanzate S.c.a.r.l., 80131, Naples, Italy.
| |
Collapse
|
33
|
Rhenium(I)-tricarbonyl complexes with methimazole and its selenium analogue: Syntheses, characterization and cell toxicity. J Inorg Biochem 2023; 240:112092. [PMID: 36549168 DOI: 10.1016/j.jinorgbio.2022.112092] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
This study explores the effect of a thione/selone ligand on the cell toxicity (in vitro) and light activity of diimine Re(CO)3+ complexes. Six rhenium(I) complexes with general formula fac-[Re(CO)3(N,N')X]+ were prepared, where X = 2-mercapto-1-methylimidazole (methimazole; MMI), and 1-methylimidazole-2-selone (MSeI); N,N' = 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen) and 2,9-dimethyl-1,10-phenanthroline (dmphen). Their triflate salts were characterized using single-crystal X-ray diffraction, 1H, 13C and 2D NMR, UV-vis and vibrational spectroscopy. Their cytotoxic properties were tested, showing significant cytotoxicity (IC50 = 8.0-55 μM) towards the human breast cancer cell line MDA-MB-231. The half-inhibitory concentration (IC50) for fac-[Re(CO)3(dmphen)(MMI)]+, the most toxic complex in this series (8.0 ± 0.2 μM), was comparable to that of the corresponding aqua complex fac-[Re(CO)3(dmphen)(H2O)]+ with IC50 = 6.0 ± 0.1 μM. The fac-[Re(CO)3(bpy)(MMI/MSeI)]+ complexes were somewhat less toxic towards the human embryonic kidney cell line HEK-293 T after 48 h of exposure. The stability of the complexes upon irradiation was monitored using UV-vis spectroscopy, with no CO released when exposed to UV-A light (λ = 365 nm).
Collapse
|
34
|
Henyoh AMS, Allodji RS, de Vathaire F, Boutron-Ruault MC, Journy NMY, Tran TVT. Multi-Morbidity and Risk of Breast Cancer among Women in the UK Biobank Cohort. Cancers (Basel) 2023; 15:1165. [PMID: 36831509 PMCID: PMC9953793 DOI: 10.3390/cancers15041165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
(Multi-)Morbidity shares common biological mechanisms or risk factors with breast cancer. This study aimed to investigate the association between the number of morbidities and patterns of morbidity and the risk of female breast cancer. Among 239,436 women (40-69 years) enrolled in the UK Biobank cohort who had no cancer history at baseline, we identified 35 self-reported chronic diseases at baseline. We assigned individuals into morbidity patterns using agglomerative hierarchical clustering analysis. We fitted Cox models to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for breast cancer risk. In total, 58.4% of women had at least one morbidity, and the prevalence of multi-morbidity was 25.8%. During a median 7-year follow-up, there was no association between breast cancer risk (5326 cases) and either the number of morbidities or the identified clinically relevant morbidity patterns: no-predominant morbidity (reference), psychiatric morbidities (HR = 1.04, 95%CI 0.94-1.16), respiratory/immunological morbidities (HR = 0.98, 95%CI 0.90-1.07), cardiovascular/metabolic morbidities (HR = 0.93, 95%CI 0.81-1.06), and unspecific morbidities (HR = 0.98, 95%CI 0.89-1.07), overall. Among women younger than 50 years of age only, however, there was a significant association with psychiatric morbidity patterns compared to the no-predominant morbidity pattern (HR = 1.25, 95%CI 1.02-1.52). The other associations did not vary when stratifying by age at baseline and adherence to mammography recommendations. In conclusion, multi-morbidity was not a key factor to help identify patients at an increased risk of breast cancer.
Collapse
Affiliation(s)
- Afi Mawulawoe Sylvie Henyoh
- Radiation Epidemiology Group, Center for Research in Epidemiology and Population Health, INSERM U1018, Paris Sud-Paris Saclay University, Gustave Roussy, 94800 Villejuif, France
| | - Rodrigue S. Allodji
- Radiation Epidemiology Group, Center for Research in Epidemiology and Population Health, INSERM U1018, Paris Sud-Paris Saclay University, Gustave Roussy, 94800 Villejuif, France
| | - Florent de Vathaire
- Radiation Epidemiology Group, Center for Research in Epidemiology and Population Health, INSERM U1018, Paris Sud-Paris Saclay University, Gustave Roussy, 94800 Villejuif, France
| | - Marie-Christine Boutron-Ruault
- Health across Generations Team, Center for Research in Epidemiology and Population Health, INSERM U1018, Paris Sud-Paris Saclay University, Gustave Roussy, 94800 Villejuif, France
| | - Neige M. Y. Journy
- Radiation Epidemiology Group, Center for Research in Epidemiology and Population Health, INSERM U1018, Paris Sud-Paris Saclay University, Gustave Roussy, 94800 Villejuif, France
| | - Thi-Van-Trinh Tran
- Radiation Epidemiology Group, Center for Research in Epidemiology and Population Health, INSERM U1018, Paris Sud-Paris Saclay University, Gustave Roussy, 94800 Villejuif, France
| |
Collapse
|
35
|
Tang J, Ma S, Hu X, Lin M, Li G, Yu Y, An T. Handwipes as indicators to assess organophosphate flame retardants exposure and thyroid hormone effects in e-waste dismantlers. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130248. [PMID: 36327841 DOI: 10.1016/j.jhazmat.2022.130248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dermal exposure is increasingly recognized as an important pathway for organic pollutant exposure. However, data on dermal exposure are limited, particularly with respect to the health effects. This study evaluated association between organophosphorus flame retardants (OPFRs) in handwipes and internal body burden on workers and adult residents in an electronic waste (e-waste) dismantling area. The impact of dermal exposure to OPFRs on thyroid hormones (THs) served as a biomarker for early effects. Triphenyl phosphate (TPhP) was the most detected compound in handwipes, with median levels of 1180, 200, and 24.0 ng in people identified as e-waste bakers, e-waste dismantlers, and adult residents. Among e-waste dismantlers, TPhP levels in handwipes were positively correlated with paired serum TPhP and urinary diphenyl phosphate (DPhP) levels. In multiple linear regression models controlling for sex, age and smoking, TPhP levels in handwipes of e-waste dismantlers were significantly negatively correlated with three THs used to evaluate thyroid function: serum reverse 3,3',5-triiodo-L-thyronine (rT3), 3,3'-diiodo-L-thyronine (3,3'-T2), and 3,5-diiodo-L-thyronine (3,5-T2). These findings suggest that handwipes can act as non-invasive exposure indicators to assess body burden of dermal exposure to TPhP and health effects on THs of e-waste dismantlers. This study highlights importance of OPFR effect on human THs through dermal exposure.
Collapse
Affiliation(s)
- Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xin Hu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
36
|
Arif A, Alameri AA, Tariq UB, Ansari SA, Sakr HI, Qasim MT, Aljoborae FFM, Ramírez-Coronel AA, Jabbar HS, Gabr GA, Mirzaei R, Karampoor S. The functions and molecular mechanisms of Tribbles homolog 3 (TRIB3) implicated in the pathophysiology of cancer. Int Immunopharmacol 2023; 114:109581. [PMID: 36527874 DOI: 10.1016/j.intimp.2022.109581] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Currently, cancer ranks as the second leading cause of death worldwide, and at the same time, the burden of cancer continues to increase. The underlying molecular pathways involved in the initiation and development of cancer are the subject of considerable research worldwide. Further understanding of these pathways may lead to new cancer treatments. Growing data suggest that Tribble's homolog 3 (TRIB3) is essential in oncogenesis in many types of cancer. The mammalian tribbles family's proteins regulate various cellular and physiological functions, such as the cell cycle, stress response, signal transduction, propagation, development, differentiation, immunity, inflammatory processes, and metabolism. To exert their activities, Tribbles proteins must alter key signaling pathways, including the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K)/AKT pathways. Recent evidence supports that TRIB3 dysregulation has been linked to various diseases, including tumor development and chemoresistance. It has been speculated that TRIB3 may either promote or inhibit the onset and development of cancer. However, it is still unclear how TRIB3 performs this dual function in cancer. In this review, we present and discuss the most recent data on the role of TRIB3 in cancer pathophysiology and chemoresistance. Furthermore, we describe in detail the molecular mechanism TRIB3 regulates in cancer.
Collapse
Affiliation(s)
- Anam Arif
- Department of Government DHQ hospital Narowal, Gujranwala medical college, Gujranwala, Pakistan
| | - Ameer A Alameri
- Department of Chemistry, College of Science, University of Babylon, Babylon, Iraq
| | | | - Shakeel Ahmed Ansari
- Department of Biochemistry, Batterjee Medical College for Science and Technology, Jeddah, Saudi Arabia
| | - Hader Ibrahim Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Egypt; Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Fadhil F M Aljoborae
- Department of Anesthesia Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Paul D, Nedelcu AM. The underexplored links between cancer and the internal body climate: Implications for cancer prevention and treatment. Front Oncol 2022; 12:1040034. [PMID: 36620608 PMCID: PMC9815514 DOI: 10.3389/fonc.2022.1040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In order to effectively manage and cure cancer we should move beyond the general view of cancer as a random process of genetic alterations leading to uncontrolled cell proliferation or simply a predictable evolutionary process involving selection for traits that increase cell fitness. In our view, cancer is a systemic disease that involves multiple interactions not only among cells within tumors or between tumors and surrounding tissues but also with the entire organism and its internal "milieu". We define the internal body climate as an emergent property resulting from spatial and temporal interactions among internal components themselves and with the external environment. The body climate itself can either prevent, promote or support cancer initiation and progression (top-down effect; i.e., body climate-induced effects on cancer), as well as be perturbed by cancer (bottom-up effect; i.e., cancer-induced body climate changes) to further favor cancer progression and spread. This positive feedback loop can move the system towards a "cancerized" organism and ultimately results in its demise. In our view, cancer not only affects the entire system; it is a reflection of an imbalance of the entire system. This model provides an integrated framework to study all aspects of cancer as a systemic disease, and also highlights unexplored links that can be altered to both prevent body climate changes that favor cancer initiation, progression and dissemination as well as manipulate or restore the body internal climate to hinder the success of cancer inception, progression and metastasis or improve therapy outcomes. To do so, we need to (i) identify cancer-relevant factors that affect specific climate components, (ii) develop 'body climate biomarkers', (iii) define 'body climate scores', and (iv) develop strategies to prevent climate changes, stop or slow the changes, or even revert the changes (climate restoration).
Collapse
Affiliation(s)
- Doru Paul
- Weill Cornell Medicine, New York, NY, United States
| | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
38
|
Tasnim S, Wilson SG, Walsh JP, Nyholt DR. Cross-Trait Genetic Analyses Indicate Pleiotropy and Complex Causal Relationships between Headache and Thyroid Function Traits. Genes (Basel) 2022; 14:16. [PMID: 36672757 PMCID: PMC9858525 DOI: 10.3390/genes14010016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/17/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Epidemiological studies have reported a comorbid relationship between headache and thyroid traits; however, little is known about the shared genetics and causality that contributes to this association. We investigated the genetic overlap and associations between headache and thyroid function traits using genome-wide association study (GWAS) data. We found a significant genetic correlation (rg) with headache and hypothyroidism (rg = 0.09, p = 2.00 × 10−4), free thyroxine (fT4) (rg = 0.08, p = 5.50 × 10−3), and hyperthyroidism (rg = −0.14, p = 1.80 × 10−3), a near significant genetic correlation with secondary hypothyroidism (rg = 0.20, p = 5.24 × 10−2), but not with thyroid stimulating hormone (TSH). Pairwise-GWAS analysis revealed six, 14, four and five shared (pleiotropic) loci with headache and hypothyroidism, hyperthyroidism, secondary hypothyroidism, and fT4, respectively. Cross-trait GWAS meta-analysis identified novel genome-wide significant loci for headache: five with hypothyroidism, three with secondary hypothyroidism, 12 with TSH, and nine with fT4. Of the genes at these loci, six (FAF1, TMX2-CTNND1, AARSD1, PLCD3, ZNF652, and C20orf203; headache-TSH) and six (HMGB1P45, RPL30P1, ZNF462, TMX2-CTNND1, ITPK1, SECISBP2L; headache-fT4) were significant in our gene-based analysis (pFisher’s combined p-value < 2.09 × 10−6). Our causal analysis suggested a positive causal relationship between headache and secondary hypothyroidism (p = 3.64 × 10−4). The results also suggest a positive causal relationship between hypothyroidism and headache (p = 2.45 × 10−3) and a negative causal relationship between hyperthyroidism and headache (p = 1.16 × 10−13). These findings suggest a strong evidence base for a genetic correlation and complex causal relationships between headache and thyroid traits.
Collapse
Affiliation(s)
- Sana Tasnim
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Scott G. Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Medical School, University of Western Australia, Nedlands, WA 6009, Australia
| | - Dale R. Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, and Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
39
|
Kim Y, Koh JS, Woo SD, Lee SI, Kang DH, Park D, Chung C, Kwon IS, Lee JE. The Tri-iodothyronine (T3) Level Is a Prognostic Factor for Patients With Advanced NSCLC: Receiving Immune Checkpoint Inhibitors and Is Associated With Liver Metastasis. Clin Med Insights Oncol 2022; 16:11795549221139522. [PMID: 36532699 PMCID: PMC9751177 DOI: 10.1177/11795549221139522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/01/2022] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Endocrine hormones influence tumor progression and the response to treatment. Despite the importance of immune checkpoint inhibitors (ICIs) as treatments for advanced non-small cell lung cancer (NSCLC), few studies have explored the effects of hormone levels in NSCLC patients on the effectiveness of ICI therapies. We thus investigated the effects of baseline blood markers in patients with advanced NSCLC on ICI treatments. METHODS Patients with advanced NSCLC who received programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors at Chungnam National University Hospital between December 2016 and November 2020 and who lacked any history of thyroid gland-related diseases were analyzed retrospectively. We collected clinical information and baseline laboratory data, including the levels of endocrine hormones, cytokines, complete blood counts (CBCs), and peripheral blood chemistry panels. We explored the relationships of hormone levels with clinical outcomes (overall survival [OS], progression-free survival [PFS], and best response), liver metastasis, and blood markers using the Kaplan-Meier method, Cox's proportional hazards regression, and logistic regression. RESULTS A total of 113 patients were enrolled. A shorter PFS was independently associated with liver metastasis, higher cortisol levels, and lower hemoglobin (Hb) levels; a shorter OS was associated with liver metastasis, lower tri-iodothyronine (T3) levels, higher lactate dehydrogenase (LDH) levels, and lower albumin levels. Patients with low T3 levels exhibited a shorter PFS and OS, and a poorer best response. Patients with low T3 levels tended to have higher disease progression rates, lower levels of adrenocorticotropic hormone (ACTH), C-peptide, albumin, Hb, and neutrophil-to-lymphocyte ratio, and higher levels of interleukin (IL)-6, white blood cells, platelets, compared with those with normal T3 levels. We found a significant association between a low T3 level and liver metastasis. CONCLUSIONS We found the baseline T3 level was associated with both prognosis and the response to ICIs in patients with advanced NSCLC, probably reflecting impaired liver function and systemic inflammation induced by the interaction of T3 with other biomarkers, such as IL-6, ACTH, cortisol, C-peptide, Hb, LDH, and albumin.
Collapse
Affiliation(s)
- Yoonjoo Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong Suk Koh
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seong-Dae Woo
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Song-I Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Da Hyun Kang
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dongil Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - In-Sun Kwon
- Clinical Trials Center, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jeong Eun Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
40
|
V Deligiorgi M, T Trafalis D. Refining personalized diagnosis, treatment and exploitation of hypothyroidism related to solid nonthyroid cancer. Per Med 2022; 20:87-105. [DOI: 10.2217/pme-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Hypothyroidism in the setting of cancer is a puzzling entity due to the dual role of the thyroid hormones (TH) in cancer – promoting versus inhibitory – and the complexity of the hypothyroidism itself. The present review provides a comprehensive overview of the personalized approach to hypothyroidism in patients with solid nonthyroid cancer, focusing on current challenges, unmet needs and future perspectives. Major electronic databases were searched from January 2011 until March 2022. The milestones of the refinement of such a personalized approach are prompt diagnosis, proper TH replacement and development of interventions and/or pharmaceutical agents to exploit hypothyroidism or, on the contrary, TH replacement as an anticancer strategy. Further elucidation of the dual role of TH in cancer – especially of the interference of TH signaling with the hallmarks of cancer – is anticipated to inform decision-making and optimize patient selection.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology – Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine, Building 16, 1st Floor, 75 Mikras Asias, Goudi, Athens, 11527, Greece
| | - Dimitrios T Trafalis
- Department of Pharmacology – Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine, Building 16, 1st Floor, 75 Mikras Asias, Goudi, Athens, 11527, Greece
| |
Collapse
|
41
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
42
|
Waissengrin B, Zahavi T, Salmon-Divon M, Goldberg A, Wolf I, Rubinek T, Winkler T, Farkash O, Grinshpun A, Zubkov A, Khatib M, Shachar S, Keren N, Carmi-Levy I, Ben-David U, Sonnenblick A. The effect of non-oncology drugs on clinical and genomic risk in early luminal breast cancer. ESMO Open 2022; 7:100648. [PMID: 36462463 PMCID: PMC9808449 DOI: 10.1016/j.esmoop.2022.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND An effect of non-oncology medications on cancer outcome has been proposed. In this study, we aimed to systematically examine the impact of commonly prescribed non-oncology drugs on clinical risk and on the genomic risk [based on the Oncotype DX recurrence score (RS)] in early breast cancer (BC). EXPERIMENTAL DESIGN We collected data on clinical risk (stage and grade), genomic risk (Oncotype DX RS), and on non-oncology medications administered to 1423 patients with estrogen receptor-positive human epidermal growth factor receptor 2-negative BC during the month of their surgery. The influence of various medications on clinical and genomic risks was evaluated by statistical analysis. RESULTS Out of the multiple drugs we examined, levothyroxine was significantly associated with a high Oncotype DX RS (mean 24.78; P < 0.0001) and metformin with a low Oncotype DX RS (mean 14.87; P < 0.01) compared with patients not receiving other non-oncology drugs (mean 18.7). By contrast, there were no differences in the clinical risk between patients receiving metformin, levothyroxine, or no other non-oncology drugs. Notably, there was no association between the consumption of levothyroxine and metformin and proliferation marker (Ki67) levels, but both drugs were significantly associated with progesterone-related features, suggesting that they influence genomic risk through estrogen-dependent signaling. CONCLUSIONS The results of this study indicate a significant impact of metformin and levothyroxine on clinical decisions in luminal BC, with potential impact on the clinical course of these patients.
Collapse
Affiliation(s)
- B. Waissengrin
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv,Sackler School of Medicine, Tel Aviv University, Tel Aviv
| | - T. Zahavi
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel
| | - M. Salmon-Divon
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel
| | - A. Goldberg
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel
| | - I. Wolf
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv,Sackler School of Medicine, Tel Aviv University, Tel Aviv
| | - T. Rubinek
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv,Sackler School of Medicine, Tel Aviv University, Tel Aviv
| | - T. Winkler
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - O. Farkash
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv
| | - A. Grinshpun
- Breast Oncology Center, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, USA
| | - A. Zubkov
- Pathology Department, Pathology Institute, Tel Aviv Medical Center, Tel Aviv
| | - M. Khatib
- Division of General Surgery, Tel Aviv Medical Center, Tel Aviv
| | - S.S. Shachar
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv,Sackler School of Medicine, Tel Aviv University, Tel Aviv
| | - N. Keren
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv,Sackler School of Medicine, Tel Aviv University, Tel Aviv
| | | | - U. Ben-David
- Sackler School of Medicine, Tel Aviv University, Tel Aviv
| | - A. Sonnenblick
- The Oncology Division, Tel Aviv Sourasky Medical Center, Tel Aviv,Sackler School of Medicine, Tel Aviv University, Tel Aviv,Correspondence to: Dr Amir Sonnenblik, MD, Tel Aviv Sourasky Medical Center, 6 Waizman Street, Tel Aviv 64239, Israel; Tel: +972-3-6972446
| |
Collapse
|
43
|
Wu L, Xu S, Yang B, Yang J, Yee C, Cirillo N. The Hypothalamic-Pituitary-Thyroid Axis Equivalent in Normal and Cancerous Oral Tissues: A Scoping Review. Int J Mol Sci 2022; 23:14096. [PMID: 36430573 PMCID: PMC9695915 DOI: 10.3390/ijms232214096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis is crucial in regulating thyroid hormone levels that contribute to the development and homeostasis of the human body. Current literature supports the presence of a local HPT axis equivalent within keratinocytes of the skin, with thyroid hormones playing a potential role in cancer progression. However, this remains to be seen within oral tissue cells. An electronic search of Scopus and PubMed/Medline databases was conducted to identify all original publications that reported data on the production or effects of HPT axis components in normal or malignant cells of the oral cavity. The search identified 221 studies, of which 14 were eligible. Eight studies were retrospective analyses of clinical samples, one study involved both in vivo and in vitro experiments, and the remaining five studies were conducted in vitro using cell lines. The search identified evidence of effects of HPT components on oral cancer cells. However, there were limited data for the production of HPT axis components by oral tissues. We conclude that a possible role of the local HPT axis equivalent in the oral mucosa may not be established at present. The gaps in knowledge identified in this scoping review, particularly regarding the production of HPT components by oral tissues, warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC 3053, Australia
| |
Collapse
|
44
|
Sorafenib tosylate loaded superparamagnetic nanoparticles: Development, optimization and cytotoxicity analysis on HepG2 human hepatocellular carcinoma cell line. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Shimi G, Pourvali K, Ghorbani A, Nooshin S, Zare Karizi S, Iranirad R, Zand H. Alterations of DNA methylation and expression of genes related to thyroid hormone metabolism in colon epithelium of obese patients. BMC Med Genomics 2022; 15:229. [PMID: 36320063 PMCID: PMC9628115 DOI: 10.1186/s12920-022-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Colorectal cancer is common among obese individuals. The purpose of the current study was to determine changes in DNA methylation status and mRNA expression of thyroid hormone receptor beta (THRB), as a tumor suppressor, and thyroid hormone inactivating enzyme, type 3 deiodinase (DIO3) genes, in human epithelial colon tissues of healthy obese individuals.
Methods Colon biopsies were analyzed by methylation sensitive-high resolution melting (MS-HRM) to investigate promoter methylation of DIO3 and THRB, and by quantitative real-time polymerase chain reaction to assay expression of DIO3 and THRB mRNA on eighteen obese and twenty-one normal-weight healthy men.
Results There was no significant difference in mean methylation levels at the THRB promoter region between the two groups. Nevertheless, obesity decreased THRB expression levels, significantly (P < 0.05; fold change: 0.19). Furthermore, obesity attenuated DNA methylation (P < 0.001) and enhanced mRNA expression of DIO3 (P < 0.05; fold change: 3). Conclusions Our findings suggest that obesity may alter expression of THRB and DIO3 genes through epigenetic mechanism. Alterations of THRB and DIO3 expressions may predispose colon epithelium of obese patients to neoplastic transformation.
Collapse
Affiliation(s)
- Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Katayoun Pourvali
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Sajad Nooshin
- MSc Molecular Genetics, Islamic Azad University, Pishva-Varamin, Iran
| | - Shohreh Zare Karizi
- Department of Genetics, Islamic Azad University, Varamin-Pishva Branch, Varamin, Iran
| | - Reza Iranirad
- Sasan Alborz Biomedical Research Center, Masoud Gastroenterology and Hepatology Clinic, Tehran, 14117-13135, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran.
| |
Collapse
|
46
|
Baterdene O, Miura K, Ueno W, Watanabe S, Tsukui M, Nomoto H, Goka R, Maeda H, Yamamoto H, Morimoto N. A successful case of transarterial chemoembolization for hyperprogressive disease induced by immunotherapy in a patient with unresectable hepatocellular carcinoma. Clin J Gastroenterol 2022; 15:1101-1107. [DOI: 10.1007/s12328-022-01697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022]
|
47
|
Xu F, Shi J, Qin X, Zheng Z, Chen M, Lin Z, Ye J, Li M. Hormone-Glutamine Metabolism: A Critical Regulatory Axis in Endocrine-Related Cancers. Int J Mol Sci 2022; 23:ijms231710086. [PMID: 36077501 PMCID: PMC9456462 DOI: 10.3390/ijms231710086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The endocrine-related cancers and hormones are undoubtedly highly interconnected. How hormones support or repress tumor induction and progression has been extensively profiled. Furthermore, advances in understanding the role of glutamine metabolism in mediating tumorigenesis and development, coupled with these in-depth studies on hormone (e.g., estrogen, progesterone, androgen, prostaglandin, thyroid hormone, and insulin) regulation of glutamine metabolism, have led us to think about the relationship between these three factors, which remains to be elucidated. Accordingly, in this review, we present an updated overview of glutamine metabolism traits and its influence on endocrine oncology, as well as its upstream hormonal regulation. More importantly, this hormone/glutamine metabolism axis may help in the discovery of novel therapeutic strategies for endocrine-related cancer.
Collapse
Affiliation(s)
- Fengyuan Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jialu Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Xueyun Qin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zimeng Zheng
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Min Chen
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
| | - Zhi Lin
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200010, China
| | - Jiangfeng Ye
- Institute for Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138632, Singapore
| | - Mingqing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, China
- NHC Key Lab. of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai 201203, China
- Correspondence:
| |
Collapse
|
48
|
Klubo-Gwiezdzinska J. Thyroid Hormones Enhance the Growth of Estrogen Receptor-Positive Breast Cancers. CLINICAL THYROIDOLOGY 2022; 34:286-289. [PMID: 36937987 PMCID: PMC10022397 DOI: 10.1089/ct.2022;34.286-289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
BACKGROUND Thyroid disorders have been associated with breast cancer. In fact, breast cancer is the most common secondary malignancy in female patients with thyroid cancer (1). Moreover, hyperthyroidism is associated with an 11% increased risk of breast cancer in women (2). Importantly, up to 30% of patients with breast cancer are treated with thyroid hormone replacement therapy (THRT) for overt or subclinical hypothyroidism (3). These observations, coupled with the preclinical data showing growth stimulatory effects of thyroid hormones (THs) in various cancer models (4), formed the rationale for the study by Wahdan-Alaswad et al. aimed at investigating the role of THRT on the outcome of patients with nonmetastatic breast cancer (3). METHODS The authors conducted an observational study analyzing the association between THRT, disease-free survival (DFS), and disease-specific survival (DSS) in two cohorts of patients with nonmetastatic breast cancer. The first cohort consistent of 820 patients followed for a median of 10 years and treated for breast cancer between 1962 and1993, with THRT implemented in 69 patients. The second cohort included 160 patients treated more recently (between 2006 and 2009) and followed for a median of 8.8 years, with 50 patients exposed to THRT. The data on the age, tumor size, presence or absence of steroid (estrogen and/or progesterone) receptors (SR+/SR-), and treatment regimen were incorporated in the multivariate model analyzing the association between DFS/DSS and THRT at 5 and 10 years. To better understand the results of the observational cohort study, the authors performed functional in vitro and in vivo experiments to investigate the molecular mechanisms underlying TH effects on breast cancer cells and to test the interactions between estrogen receptors (ERs) and TH receptors (THRs). RESULTS In patients with SR+ breast cancer, THRT was associated with a significantly increased risk of recurrence (DFS RR, 2.9; P<0.001) and death (DSS RR, 3.4; P<0.001), independent of age, tumor size and grade, while THRT in patients with SR- breast cancer was not associated with worse outcomes. Moreover, patients with SR+ breast cancer undergoing therapy with aromatase inhibitor combined with THRT were characterized by a shorter DFS (P<0.042) and a higher 10-year recurrence rate of 14%, as compared with 2% in patient treated with the aromatase inhibitor alone.The functional in vitro and in vivo studies revealed growth stimulatory effects of monotherapy with TH or estrogens that were further potentiated with combination therapy in ER+ breast cancer cell lines and mice xenografts. The RNA-Seq analysis revealed that combination therapy was associated with a significant activation of the cell cycle, mismatch repair, homologous recombination, and DNA replication signaling, as well as induced thyroid-specific genes and estrogen-mediated signatures. These effects were abrogated by the knockdown or inhibition of ER and/or THRa, suggesting that cross-talk and nuclear colocalization of ERs and THRs are major drivers of pro-oncogenic signaling in the ER+ breast cancer model. CONCLUSIONS The study reveals clinically significant associations between THRT and worse outcomes in patients with nonmetastatic SR+ breast cancer that are likely driven by interactions between the nuclear ERs and THRs, leading to upregulation of pro-oncogenic signaling. These results suggest that overuse of THRT in patients with hypothyroidism and concurrent breast cancer should be avoided.
Collapse
Affiliation(s)
- Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
49
|
Halada S, Casado-Medrano V, Baran JA, Lee J, Chinmay P, Bauer AJ, Franco AT. Hormonal Crosstalk Between Thyroid and Breast Cancer. Endocrinology 2022; 163:6588704. [PMID: 35587175 PMCID: PMC9653009 DOI: 10.1210/endocr/bqac075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/09/2022]
Abstract
Differentiated thyroid cancer and breast cancer account for a significant portion of endocrine-related malignancies and predominately affect women. As hormonally responsive tissues, the breast and thyroid share endocrine signaling. Breast cells are responsive to thyroid hormone signaling and are affected by altered thyroid hormone levels. Thyroid cells are responsive to sex hormones, particularly estrogen, and undergo protumorigenic processes upon estrogen stimulation. Thyroid and sex hormones also display significant transcriptional crosstalk that influences oncogenesis and treatment sensitivity. Obesity-related adipocyte alterations-adipocyte estrogen production, inflammation, feeding hormone dysregulation, and metabolic syndromes-promote hormonal alterations in breast and thyroid tissues. Environmental toxicants disrupt endocrine systems, including breast and thyroid homeostasis, and influence pathologic processes in both organs through hormone mimetic action. In this brief review, we discuss the hormonal connections between the breast and thyroid and perspectives on hormonal therapies for breast and thyroid cancer. Future research efforts should acknowledge and further explore the hormonal crosstalk of these tissues in an effort to further understand the prevalence of thyroid and breast cancer in women and to identify potential therapeutic options.
Collapse
Affiliation(s)
- Stephen Halada
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria Casado-Medrano
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julia A Baran
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joshua Lee
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Poojita Chinmay
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew J Bauer
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aime T Franco
- Correspondence: Aime T. Franco, Ph.D., Pediatric Thyroid Center Translational Laboratory, The University of Pennsylvania and Children’s Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Deligiorgi MV, Trafalis DT. The continuum of care of anticancer treatment-induced hypothyroidism in patients with solid non thyroid tumors: time for an intimate collaboration between oncologists and endocrinologists. Expert Rev Clin Pharmacol 2022; 15:531-549. [PMID: 35757870 DOI: 10.1080/17512433.2022.2093714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hypothyroidism is a common adverse event of various anticancer treatment modalities, constituting a notable paradigm of the integration of the endocrine perspective into precision oncology. AREAS COVERED The present narrative review provides a comprehensive and updated overview of anticancer treatment-induced hypothyroidism in patients with solid non-thyroid tumors. A study search was conducted on the following electronic databases: PubMed, Google Scholar, Scopus.com, ClinicalTrials.gov, and European Union Clinical Trials Register from 2011 until August 2021. EXPERT OPINION In patients with solid non-thyroid tumors, hypothyroidism is a common adverse event of radiotherapy, high dose interleukin 2 (HD IL-2), interferon alpha (IFN-α), bexarotene, immune checkpoint inhibitors (ICPi), and tyrosine kinase inhibitors (TKIs), while chemotherapy may induce hypothyroidism more often than initially considered. The path forward for the management of anticancer treatment-induced hypothyroidism in patients with solid non-thyroid tumors is an integrated approach grounded on 5 pillars: prevention, vigilance, diagnosis, treatment and monitoring. Current challenges concerning anticancer treatment-induced hypothyroidism await counteraction, namely awareness of the growing list of related anticancer treatments, identification of predictive factors, counteraction of diagnostic pitfalls, tuning of thyroid hormone replacement, and elucidation of its prognostic significance. Close collaboration of oncologists with endocrinologists will provide optimal patient care.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology - Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - Dimitrios T Trafalis
- Department of Pharmacology - Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| |
Collapse
|