1
|
Muralidharan A, Gomez GA, Kesavan C, Pourteymoor S, Larkin D, Tambunan W, Sechriest VF, Mohan S. Sex-Specific Effects of THRβ Signaling on Metabolic Responses to High Fat Diet in Mice. Endocrinology 2024; 165:bqae075. [PMID: 38935021 PMCID: PMC11237353 DOI: 10.1210/endocr/bqae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Thyroid hormone (TH) plays a crucial role in regulating the functions of both bone and adipose tissue. Given that TH exerts its cholesterol-lowering effects in hepatic tissue through the TH receptor-β (TRβ), we hypothesized that TRβ agonist therapy using MGL3196 (MGL) would be effective in treating increased adiposity and bone loss in response to a 12-week high-fat diet (HFD) in adult C57BL/6J mice. Transcriptional and serum profiling revealed that HFD-induced leptin promoted weight gain in both males and females, but MGL only suppressed leptin induction and weight gain in males. In vitro studies suggest that estrogen suppresses MGL activity in adipocytes, indicating that estrogen might interfere with MGL-TRβ function. Compared to systemic adiposity, HFD reduced bone mass in male but not female mice. Paradoxically, MGL treatment reversed macroscopic bone mineral density loss in appendicular bones, but micro-CT revealed that MGL exacerbated HFD-induced trabecular bone loss, and reduced bone strength. In studies on the mechanisms for HFD effects on bone, we found that HFD induced Rankl expression in male femurs that was blocked by MGL. By ex vivo assays, we found that RANKL indirectly represses osteoblast lineage allocation of osteoprogenitors by induction of inflammatory cytokines TNFα, IL-1β, and CCL2. Finally, we found that MGL functions in both systemic adiposity and bone by nongenomic TRβ signaling, as HFD-mediated phenotypes were not rescued in TRβ147F knockout mice with normal genomic but defective nongenomic TRβ signaling. Our findings demonstrate that the negative effects of HFD on body fat and bone phenotypes are impacted by MGL in a gender-specific manner.
Collapse
Affiliation(s)
- Aruljothi Muralidharan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Gustavo A Gomez
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Sheila Pourteymoor
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Destiney Larkin
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - William Tambunan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - V Franklin Sechriest
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biochemistry, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
2
|
Heo J, Schifino AG, McFaline‐Figueroa J, Miller DL, Hoffman JR, Noble EE, Greising SM, Call JA. Differential effects of Western diet and traumatic muscle injury on skeletal muscle metabolic regulation in male and female mice. J Cachexia Sarcopenia Muscle 2023; 14:2835-2850. [PMID: 37879629 PMCID: PMC10751418 DOI: 10.1002/jcsm.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND This study was designed to develop an understanding of the pathophysiology of traumatic muscle injury in the context of Western diet (WD; high fat and high sugar) and obesity. The objective was to interrogate the combination of WD and injury on skeletal muscle mass and contractile and metabolic function. METHODS Male and female C57BL/6J mice were randomized into four groups based on a two-factor study design: (1) injury (uninjured vs. volumetric muscle loss [VML]) and (2) diet (WD vs. normal chow [NC]). Electrophysiology was used to test muscle strength and metabolic function in cohorts of uninjured + NC, uninjured + WD, VML + NC and VML + WD at 8 weeks of intervention. RESULTS VML-injured male and female mice both exhibited decrements in muscle mass (-17%, P < 0.001) and muscle strength (-28%, P < 0.001); however, VML + WD females had a 28% greater muscle mass compared to VML + NC females (P = 0.034), a compensatory response not detected in males. VML-injured male and female mice both had lower carbohydrate- and fat-supported muscle mitochondrial respiration (JO2 ) and less electron conductance through the electron transport system (ETS); however, male VML-WD had 48% lower carbohydrate-supported JO2 (P = 0.014) and 47% less carbohydrate-supported electron conductance (P = 0.026) compared to male VML + NC, and this diet-injury phenotype was not present in females. ETS electron conductance starts with complex I and complex II dehydrogenase enzymes at the inner mitochondrial membrane, and male VML + WD had 31% less complex I activity (P = 0.004) and 43% less complex II activity (P = 0.005) compared to male VML + NC. This was a diet-injury phenotype not present in females. Pyruvate dehydrogenase (PDH), β-hydroxyacyl-CoA dehydrogenase, citrate synthase, α-ketoglutarate dehydrogenase and malate dehydrogenase metabolic enzyme activities were evaluated as potential drivers of impaired JO2 in the context of diet and injury. There were notable male and female differential effects in the enzyme activity and post-translational regulation of PDH. PDH enzyme activity was 24% less in VML-injured males, independent of diet (P < 0.001), but PDH enzyme activity was not influenced by injury in females. PDH enzyme activity is inhibited by phosphorylation at serine-293 by PDH kinase 4 (PDK4). In males, there was greater total PDH, phospho-PDHser293 and phospho-PDH-to-total PDH ratio in WD mice compared to NC, independent of injury (P ≤ 0.041). In females, PDK4 was 51% greater in WD compared to NC, independent of injury (P = 0.025), and was complemented by greater phospho-PDHser293 (P = 0.001). CONCLUSIONS Males are more susceptible to muscle metabolic dysfunction in the context of combined WD and traumatic injury compared to females, and this may be due to impaired metabolic enzyme functions.
Collapse
Affiliation(s)
- Junwon Heo
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - Albino G. Schifino
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
- Department of KinesiologyUniversity of GeorgiaAthensGAUSA
| | - Jennifer McFaline‐Figueroa
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - David L. Miller
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - Jessica R. Hoffman
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| | - Emily E. Noble
- Department of Nutritional ScienceUniversity of GeorgiaAthensGAUSA
| | | | - Jarrod A. Call
- Department of Physiology and PharmacologyUniversity of GeorgiaAthensGAUSA
- Regenerative Bioscience CenterUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
3
|
Hasan MS, Wang Y, Feugang JM, Zhou H, Liao SF. RNA sequencing analysis revealed differentially expressed genes and their functional annotation in porcine longissimus dorsi muscle affected by dietary lysine restriction. Front Vet Sci 2023; 10:1233292. [PMID: 38026666 PMCID: PMC10668494 DOI: 10.3389/fvets.2023.1233292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
The objective of this study was to investigate the effects of dietary lysine restriction on the global gene expression profile of skeletal muscle in growing pigs. Twelve crossbred (Yorkshire × Landrace) barrows (initial BW 22.6 ± 2.04 kg) were randomly assigned to two dietary treatments (LDD: a lysine-deficient diet; LAD: a lysine-adequate diet) according to a completely randomized experiment design (n = 6). After feeding for 8 weeks, skeletal muscle was sampled from the longissimus dorsi of individual pigs. The muscle total RNA was isolated and cDNA libraries were prepared for RNA sequencing (RNA-Seq) analysis. The RNA-Seq data obtained was then analyzed using the CLC Genomics Workbench to identify differentially expressed genes (DEGs). A total of 80 genes (padj ≤ 0.05) were differentially expressed in the longissimus dorsi muscle of the pigs fed LDD vs. LAD, of which 46 genes were downregulated and 34 genes were upregulated. Gene Ontology (GO) analysis of the DEGs (padj ≤ 0.05) for functional annotation identified those GO terms that are mostly associated with the molecular functions of structural molecules and metabolic enzymes (e.g., oxidoreductase and endopeptidase), biological process of acute-phase response, and amino acid metabolism including synthesis and degradation in the extracellular matrix region. Collectively, the results of this study have provided some novel insight regarding the molecular mechanisms of muscle growth that are associated with dietary lysine supply.
Collapse
Affiliation(s)
- Md. Shamimul Hasan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Ying Wang
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
4
|
Pélissier L, Bagot S, Miles-Chan JL, Pereira B, Boirie Y, Duclos M, Dulloo A, Isacco L, Thivel D. Is dieting a risk for higher weight gain in normal-weight individual? A systematic review and meta-analysis. Br J Nutr 2023; 130:1190-1212. [PMID: 36645258 DOI: 10.1017/s0007114523000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
While there is an increasing prevalence of dieting in the overall population, weight loss (WL) practices could be a risk factor for weight gain (WG) in normal-weight (NW) individuals. The aim of the present work was to systematically review all the studies implicating diet restriction and body weight (BW) evolution in NW people. The literature search was registered in PROSPERO (CRD42021281442) and was performed in three databases from April 2021 to June 2022 for articles involving healthy NW adults. From a total of 1487 records initially identified, eighteen were selected in the systematic review. Of the eight dieting interventional studies, only one found a higher BW after weight recovery, but 75 % of them highlighted metabolic adaptations in response to WL favouring weight regain and persisting during/after BW recovery. Eight of the ten observational studies showed a relationship between dieting and major later WG, while the meta-analysis of observational studies results indicated that 'dieters' have a higher BW than 'non-dieters'. However, considering the high methodological heterogeneity and the publication bias of the studies, this result should be taken with caution. Moreover, the term 'diet' was poorly described, and we observed a large heterogeneity of the methods used to assess dieting status. Present results suggest that dieting could be a major risk factor for WG in the long term in NW individuals. There is, however, a real need for prospective randomised controlled studies, specifically assessing the relationship between WL induced by diet and subsequent weight in this population.
Collapse
Affiliation(s)
- Léna Pélissier
- Clermont Auvergne University, UPR 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), CRNH Auvergne, Clermont-Ferrand, France
| | - Sarah Bagot
- Clermont Auvergne University, UPR 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), CRNH Auvergne, Clermont-Ferrand, France
| | - Jennifer Lynn Miles-Chan
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Bruno Pereira
- Unit of Biostatistics (DRCI), Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Yves Boirie
- Department of Human Nutrition, Clermont-Ferrand University Hospital, G. Montpied Hospital, Clermont-Ferrand, France
| | - Martine Duclos
- Observatoire National de l'Activité Physique et de la Sédentarité (ONAPS), Faculty of Medicine, Clermont Auvergne University, Clermont-Ferrand, France
- University Hospital (CHU) Clermont-Ferrand, Hospital G. Montpied, Department of Sport Medicine and Functional Explorations, Clermont-Ferrand, France
- International Research Chair Health in Motion, Clermont Auvergne University Foundation, Clermont-Ferrand, France
| | - Abdul Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laurie Isacco
- Clermont Auvergne University, UPR 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), CRNH Auvergne, Clermont-Ferrand, France
| | - David Thivel
- Clermont Auvergne University, UPR 3533, Laboratory of the Metabolic Adaptations to Exercise under Physiological and Pathological Conditions (AME2P), CRNH Auvergne, Clermont-Ferrand, France
- Observatoire National de l'Activité Physique et de la Sédentarité (ONAPS), Faculty of Medicine, Clermont Auvergne University, Clermont-Ferrand, France
- International Research Chair Health in Motion, Clermont Auvergne University Foundation, Clermont-Ferrand, France
| |
Collapse
|
5
|
Dulloo AG. Peripheral thyroid hormone deiodination: Entry points to elucidate mechanisms of metabolic adaptation during weight regain. Obesity (Silver Spring) 2023; 31:1179-1182. [PMID: 37140404 DOI: 10.1002/oby.23721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/26/2022] [Indexed: 05/05/2023]
Abstract
The concept of dual-adaptive thermogenesis underlying metabolic adaptation to prolonged energy deficit posits that there are two control systems that govern energy sparing: a rapid-reacting system to energy deficit and a slow-reacting system to fat store depletion. The latter control system, referred to as the "adipose-specific" control of thermogenesis, contributes to accelerating fat store replenishment (catch-up fat) during weight regain. The case is put forward here that, whereas adaptive thermogenesis during weight loss results primarily from central suppression of the sympathetic nervous system and hypothalamic-pituitary-thyroid axis, during weight regain it operates primarily through peripheral tissue resistance to the actions of this neurohormonal network. Emerging evidence that altered deiodination of thyroid hormones within the skeletal muscle and liver is a key determinant of such peripheral resistance therefore offers entry points toward elucidating the molecular mechanisms that underlie the adipose-specific control of thermogenesis and unraveling tissue-specific targets to counter obesity recidivism.
Collapse
Affiliation(s)
- Abdul G Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Shemery AM, Zendlo M, Kowalski J, Gorrell E, Everett S, Wagner JG, Davis AE, Koch LG, Britton SL, Mul JD, Novak CM. Reduced contextually induced muscle thermogenesis in rats with calorie restriction and lower aerobic fitness but not monogenic obesity. Temperature (Austin) 2023; 10:379-393. [PMID: 37554387 PMCID: PMC10405760 DOI: 10.1080/23328940.2023.2171669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/29/2023] Open
Abstract
We have previously identified predator odor as a potent stimulus activating thermogenesis in skeletal muscle in rats. As this may prove relevant for energy balance and weight loss, the current study investigated whether skeletal muscle thermogenesis was altered with negative energy balance, obesity propensity seen in association with low intrinsic aerobic fitness, and monogenic obesity. First, weight loss subsequent to 3 wk of 50% calorie restriction suppressed the muscle thermogenic response to predator odor. Next, we compared rats bred based on artificial selection for intrinsic aerobic fitness - high- and low-capacity runners (HCR, LCR) - that display robust leanness and obesity propensity, respectively. Aerobically fit HCR showed enhanced predator odor-induced muscle thermogenesis relative to the less-fit LCR. This contrasted with the profound monogenic obesity displayed by rats homozygous for a loss of function mutation in Melanocortin 4 receptor (Mc4rK3a,4X/K314X rats), which showed no discernable deficit in thermogenesis. Taken together, these data imply that body size or obesity per se are not associated with deficient muscle thermogenesis. Rather, the physiological phenotype associated with polygenic obesity propensity may encompass pleiotropic mechanisms in the thermogenic pathway. Adaptive thermogenesis associated with weight loss also likely alters muscle thermogenic mechanisms.
Collapse
Affiliation(s)
| | - Meredith Zendlo
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Jesse Kowalski
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Erin Gorrell
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Scott Everett
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Jacob G. Wagner
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Ashley E. Davis
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Lauren G. Koch
- Department of Physiology and Pharmacology, the University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Steven L. Britton
- Department of Anesthesiology, and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Joram D. Mul
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Colleen M. Novak
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
7
|
Gut microbiota-bile acid crosstalk contributes to the rebound weight gain after calorie restriction in mice. Nat Commun 2022; 13:2060. [PMID: 35440584 PMCID: PMC9018700 DOI: 10.1038/s41467-022-29589-7] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Calorie restriction (CR) and fasting are common approaches to weight reduction, but the maintenance is difficult after resuming food consumption. Meanwhile, the gut microbiome associated with energy harvest alters dramatically in response to nutrient deprivation. Here, we reported that CR and high-fat diet (HFD) both remodeled the gut microbiota with similar microbial composition, Parabacteroides distasonis was most significantly decreased after CR or HFD. CR altered microbiota and reprogramed metabolism, resulting in a distinct serum bile acid profile characterized by depleting the proportion of non-12α-hydroxylated bile acids, ursodeoxycholic acid and lithocholic acid. Downregulation of UCP1 expression in brown adipose tissue and decreased serum GLP-1 were observed in the weight-rebound mice. Moreover, treatment with Parabacteroides distasonis or non-12α-hydroxylated bile acids ameliorated weight regain via increased thermogenesis. Our results highlighted the gut microbiota-bile acid crosstalk in rebound weight gain and Parabacteroides distasonis as a potential probiotic to prevent rapid post-CR weight gain. Caloric restriction is a common approach to weight reduction, however, weight regain is common. Here the authors report that caloric restriction reduces the abundance of Parabacteroides distasonis in the gut and alters serum bile acid (BA) profile, which contribute to weight regain in mice.
Collapse
|
8
|
Sawicka-Gutaj N, Erampamoorthy A, Zybek-Kocik A, Kyriacou A, Zgorzalewicz-Stachowiak M, Czarnywojtek A, Ruchała M. The Role of Thyroid Hormones on Skeletal Muscle Thermogenesis. Metabolites 2022; 12:metabo12040336. [PMID: 35448523 PMCID: PMC9032586 DOI: 10.3390/metabo12040336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays obesity becomes a significant global problem. Hence, recently more and more attention has been paid to substances present in the body that have a significant impact on metabolic processes and thermogenesis, in the context of their potential use in the prevention and treatment of obesity. It is well known that the relationship between thyroid hormones and obesity is multilayered, however recently, more and more information about the possible relation between thyroid hormones and muscle metabolism has been published. The aim of this review is to present the most updated information on the physiological impact of thyroid hormones on muscle tissue, as well as pathological changes related to the occurrence of various types of thyroid disorders, including hypothyroidism, hyperthyroidism and sick euthyroid syndrome. However, the data in humans still remains insufficient, and further studies are needed to fully explore the thyroid-muscle cross-talk.
Collapse
Affiliation(s)
- Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.E.); (A.Z.-K.); (M.R.)
- Correspondence: ; Tel.: +48-607-093-970
| | - Abikasinee Erampamoorthy
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.E.); (A.Z.-K.); (M.R.)
| | - Ariadna Zybek-Kocik
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.E.); (A.Z.-K.); (M.R.)
| | - Angelos Kyriacou
- CEDM, Centre of Endocrinology, Diabetes and Metabolism, Limassol 3075, Cyprus;
- Department of Diabetes, Endocrinology & Obesity Medicine, Salford Royal NHS Foundation & University Teaching Trust, Salford M6 8HD, UK
- Medical School, European University of Cyprus, Nicosia 2404, Cyprus
| | - Małgorzata Zgorzalewicz-Stachowiak
- Laboratory of Medical Electrodiagnostics, Department of Health Prophylaxis, University of Medical Sciences, 6 Święcickiego St., 60-781 Poznan, Poland;
| | - Agata Czarnywojtek
- Department of Pharmacology, Poznan University of Medical Sciences, 61-701 Poznań, Poland;
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (A.E.); (A.Z.-K.); (M.R.)
| |
Collapse
|
9
|
Wang D, Jiang DM, Yu RR, Zhang LL, Liu YZ, Chen JX, Chen HC, Liu YP. The Effect of Aerobic Exercise on the Oxidative Capacity of Skeletal Muscle Mitochondria in Mice with Impaired Glucose Tolerance. J Diabetes Res 2022; 2022:3780156. [PMID: 35712028 PMCID: PMC9197611 DOI: 10.1155/2022/3780156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
METHODS Male C57BL/6J mice were randomly divided into six different experimental groups (8 animals/group): (1) normal group (NOR), (2) normal control group (NC), (3) normal + exercise group (NE), (4) IGT group (IGT), (5) IGT control group (IC), and (6) IGT+ exercise group (IE).The exercise group received aerobic exercise for 8 weeks. After the intervention, a blood glucose meter was used to detect the level of glucose tolerance in the mouse's abdominal cavity; a biochemical kit was used to detect serum lipid metabolism indicators, malondialdehyde, and superoxide dismutase levels; the ELISA method was used to detect serum insulin and mouse gastrocnemius homogenate LDH, PDH, SDH, and CCO levels. Western blot method was used to detect the protein expression levels of NOX4, PGC-1α, and Mfn2 in the gastrocnemius muscle of mice. RESULTS (1) Mice with high-fat diet for 30 weeks showed impaired glucose tolerance, insulin resistance, and lipid metabolism disorders. The level of LDH, PDH, SDH, and CCO in the gastrocnemius homogenate of mice was reduced. The expressions of NOX4 protein were significantly upregulated, while the expressions of PGC-1α and Mfn2 proteins were significantly downregulated. (2) 8-week aerobic exercise improved the disorders of glucose and lipid metabolism in IGT mice and increased homogenized LDH, PDH, SDH, and CCO levels, and the expressions of NOX4, PGC-1α, and Mfn2 proteins in the gastrocnemius muscle of mice were reversed. It is speculated that aerobic exercise can accelerate energy metabolism. CONCLUSION (1) C57BL/6 mice were fed high fat for 30 weeks and successfully constructed a mouse model of reduced diabetes; the mice with reduced diabetes have impaired glucose tolerance, insulin resistance, and lipid metabolism disorders; (2) 8 weeks of aerobic exercise improve glucose tolerance, reduce glucose tolerance in mice, reduce insulin resistance, improve lipid metabolism disorders, and reduce oxidative stress; (3) 8-week aerobic exercise reduces skeletal muscle NOX4 expression and increases glucose tolerance; reduces the expression of LDH, PDH, SDH, and CCO in mouse skeletal muscle; increases the expression level of mitochondrial fusion protein 2 and PGC-1α; improves glucose tolerance; reduces energy metabolism of mouse skeletal muscle; reduces oxidative stress; and reduces insulin resistance. It is speculated that aerobic exercise can accelerate energy metabolism. This process may involve two aspects: firstly, increase the expression level of oxidative metabolism enzymes and promote the tricarboxylic acid cycle; secondly, increase the expression of Mfn2 and accelerate mitochondria fission or fusion to regulate energy metabolism, thereby reducing oxidative stress and insulin resistance.
Collapse
Affiliation(s)
- Dan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Dong-Mou Jiang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Rong-Rong Yu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Lin-Lin Zhang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Yan-Zhong Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Jia-Xin Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Hai-Chun Chen
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| | - Yi-Ping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
- Key Laboratory of Kinesiological Evaluation General Administration of Sport of China, Fujian Province, China
| |
Collapse
|
10
|
Rolfs Z, Frey BL, Shi X, Kawai Y, Smith LM, Welham NV. An atlas of protein turnover rates in mouse tissues. Nat Commun 2021; 12:6778. [PMID: 34836951 PMCID: PMC8626426 DOI: 10.1038/s41467-021-26842-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/25/2021] [Indexed: 01/25/2023] Open
Abstract
Protein turnover is critical to cellular physiology as well as to the growth and maintenance of tissues. The unique synthesis and degradation rates of each protein help to define tissue phenotype, and knowledge of tissue- and protein-specific half-lives is directly relevant to protein-related drug development as well as the administration of medical therapies. Using stable isotope labeling and mass spectrometry, we determine the in vivo turnover rates of thousands of proteins-including those of the extracellular matrix-in a set of biologically important mouse tissues. We additionally develop a data visualization platform, named ApplE Turnover, that enables facile searching for any protein of interest in a tissue of interest and then displays its half-life, confidence interval, and supporting measurements. This extensive dataset and the corresponding visualization software provide a reference to guide future studies of mammalian protein turnover in response to physiologic perturbation, disease, or therapeutic intervention.
Collapse
Affiliation(s)
- Zach Rolfs
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Brian L. Frey
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Xudong Shi
- grid.14003.360000 0001 2167 3675Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA
| | - Yoshitaka Kawai
- grid.14003.360000 0001 2167 3675Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA ,grid.258799.80000 0004 0372 2033Present Address: Department of Otolaryngology–Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
| | - Lloyd M. Smith
- grid.14003.360000 0001 2167 3675Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Nathan V. Welham
- grid.14003.360000 0001 2167 3675Division of Otolaryngology–Head and Neck Surgery, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792 USA
| |
Collapse
|
11
|
César H, Sertorio MN, de Souza EA, Jamar G, Santamarina A, Jucá A, Casagrande BP, Pisani LP. Parental high-fat high-sugar diet programming and hypothalamus adipose tissue axis in male Wistar rats. Eur J Nutr 2021; 61:523-537. [PMID: 34657184 DOI: 10.1007/s00394-021-02690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/28/2021] [Indexed: 01/04/2023]
Abstract
PURPOSE Maternal nutrition during early development and paternal nutrition pre-conception can programme offspring health status. Hypothalamus adipose axis is a target of developmental programming, and paternal and maternal high-fat, high-sugar diet (HFS) may be an important factor that predisposes offspring to develop obesity later in life. This study aims to investigate Wistar rats' maternal and paternal HFS differential contribution on the development, adiposity, and hypothalamic inflammation in male offspring from weaning until adulthood. METHODS Male progenitors were fed a control diet (CD) or HFS for 10 weeks before mating. After mating, dams were fed CD or HFS only during pregnancy and lactation. Forming the following male offspring groups: CD-maternal and paternal CD; MH-maternal HFS and paternal CD; PH-maternal CD and paternal HFS; PMH-maternal and paternal HFS. After weaning, male offspring were fed CD until adulthood. RESULTS Maternal HFS diet increased weight, visceral adiposity, and serum total cholesterol levels, and decreased hypothalamic weight in weanling male rats. In adult male offspring, maternal HFS increased weight, glucose levels, and hypothalamic NFκBp65. Paternal HFS diet lowered hypothalamic insulin receptor levels in weanling offspring and glucose and insulin levels in adult offspring. The combined effects of maternal and paternal HFS diets increased triacylglycerol, leptin levels, and hypothalamic inflammation in weanling rats, and increased visceral adiposity in adulthood. CONCLUSION Male offspring intake of CD diet after weaning reversed part of the effects of parental HFS diet during the perinatal period. However, maternal and paternal HFS diet affected adiposity and hypothalamic inflammation, which remained until adulthood.
Collapse
Affiliation(s)
- Helena César
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Federal de São Paulo-UNIFESP, Santos, SP, Brazil
| | | | - Esther Alves de Souza
- Programa de Pós-Graduação em Nutrição, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Giovana Jamar
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Aline Santamarina
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Andrea Jucá
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Breno Picin Casagrande
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil
| | - Luciana Pellegrini Pisani
- Departamento de Biociências, Universidade Federal de São Paulo, Silva Jardim, 136. Laboratório 311, 3° andar, Vila Mathias, Santos, SP, 11015-020, Brazil.
| |
Collapse
|
12
|
Abstract
Almost 2 billion adults in the world are overweight, and more than half of them are classified as obese, while nearly one-third of children globally experience poor growth and development. Given the vast amount of knowledge that has been gleaned from decades of research on growth and development, a number of questions remain as to why the world is now in the midst of a global epidemic of obesity accompanied by the "double burden of malnutrition," where overweight coexists with underweight and micronutrient deficiencies. This challenge to the human condition can be attributed to nutritional and environmental exposures during pregnancy that may program a fetus to have a higher risk of chronic diseases in adulthood. To explore this concept, frequently called the developmental origins of health and disease (DOHaD), this review considers a host of factors and physiological mechanisms that drive a fetus or child toward a higher risk of obesity, fatty liver disease, hypertension, and/or type 2 diabetes (T2D). To that end, this review explores the epidemiology of DOHaD with discussions focused on adaptations to human energetics, placental development, dysmetabolism, and key environmental exposures that act to promote chronic diseases in adulthood. These areas are complementary and additive in understanding how providing the best conditions for optimal growth can create the best possible conditions for lifelong health. Moreover, understanding both physiological as well as epigenetic and molecular mechanisms for DOHaD is vital to most fully address the global issues of obesity and other chronic diseases.
Collapse
Affiliation(s)
- Daniel J Hoffman
- Department of Nutritional Sciences, Program in International Nutrition, and Center for Childhood Nutrition Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Theresa L Powell
- Department of Pediatrics and Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| | - Daniel B Hardy
- Department of Biostatistics and Epidemiology, School of Public Health and Division of Exposure Science and Epidemiology, Rutgers Environmental and Occupational Health Sciences Institute, Rutgers, the State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
13
|
Dulloo AG. Physiology of weight regain: Lessons from the classic Minnesota Starvation Experiment on human body composition regulation. Obes Rev 2021; 22 Suppl 2:e13189. [PMID: 33543573 DOI: 10.1111/obr.13189] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Since its publication in 1950, the Biology of Human Starvation, which describes the classic longitudinal Minnesota Experiment of semistarvation and refeeding in healthy young men, has been the undisputed source of scientific reference about the impact of long-term food deprivation on human physiology and behavior. It has been a guide in developing famine and refugee relief programs for international agencies, in exploring the effects of food deprivation on the cognitive and social functioning of those with anorexia nervosa and bulimia nervosa, and in gaining insights into metabolic adaptations that undermine obesity therapy and cachexia rehabilitation. In more recent decades, the application of a systems approach to the analysis of its data on longitudinal changes in body composition, basal metabolic rate, and food intake during the 24 weeks of semistarvation and 20 weeks of refeeding has provided rare insights into the multitude of control systems that govern the regulation of body composition during weight regain. These have underscored an internal (autoregulatory) control of lean-fat partitioning (highly sensitive to initial adiposity), which operates during weight loss and weight regain and revealed the existence of feedback loops between changes in body composition and the control of food intake and adaptive thermogenesis for the purpose of accelerating the recovery of fat mass and fat-free mass. This paper highlights the general features and design of this grueling experiment of simulated famine that has allowed the unmasking of fundamental control systems in human body composition autoregulation. The integration of its outcomes constitutes the "famine reactions" that drive the normal physiology of weight regain and obesity relapse and provides a mechanistic "autoregulation-based" explanation of how dieting and weight cycling, transition to sedentarity, or developmental programming may predispose to obesity. It also provides a system physiology framework for research toward elucidating proteinstatic and adipostatic mechanisms that control hunger-appetite and adaptive thermogenesis, with major implications for a better understanding (and management) of cachexia, obesity, and cardiometabolic diseases.
Collapse
Affiliation(s)
- Abdul G Dulloo
- Faculty of Science and Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Heo JW, No MH, Cho J, Choi Y, Cho EJ, Park DH, Kim TW, Kim CJ, Seo DY, Han J, Jang YC, Jung SJ, Kang JH, Kwak HB. Moderate aerobic exercise training ameliorates impairment of mitochondrial function and dynamics in skeletal muscle of high-fat diet-induced obese mice. FASEB J 2021; 35:e21340. [PMID: 33455027 DOI: 10.1096/fj.202002394r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/10/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
The purpose of this study is to determine whether moderate aerobic exercise training improves high-fat diet-induced alterations in mitochondrial function and structure in the skeletal muscle. Male 4-week-old C57BL/6 mice were randomly divided into four groups: control (CON), control plus exercise (CON + EX), high-fat diet (HFD), and high-fat diet plus exercise (HFD + EX). After obesity was induced by 20 weeks of 60% HFD, treadmill exercise training was performed at 13-16 m/min, 40-50 min/day, and 6 days/week for 12 weeks. Mitochondrial structure, function, and dynamics, and mitophagy were analyzed in the skeletal muscle fibers from the red gastrocnemius. Exercise training increased mitochondrial number and area and reduced high-fat diet-induced obesity and hyperglycemia. In addition, exercise training attenuated mitochondrial dysfunction in the permeabilized myofibers, indicating that HFD-induced decrease of mitochondrial O2 respiration and Ca2+ retention capacity and increase of mitochondrial H2 O2 emission were attenuated in the HFD + EX group compared to the HFD group. Exercise also ameliorated HFD-induced imbalance of mitochondrial fusion and fission, demonstrating that HFD-induced decrease in fusion protein levels was elevated, and increase in fission protein levels was reduced in the HFD + EX groups compared with the HFD group. Moreover, dysregulation of mitophagy induced by HFD was mitigated in the HFD + EX group, indicating a decrease in PINK1 protein level. Our findings demonstrated that moderate aerobic exercise training mitigated obesity-induced insulin resistance by improving mitochondrial function, and reversed obesity-induced mitochondrial structural damage by improving mitochondrial dynamics and mitophagy, suggesting that moderate aerobic exercise training may play a therapeutic role in protecting the skeletal muscle against mitochondrial impairments and insulin resistance induced by obesity.
Collapse
Affiliation(s)
- Jun-Won Heo
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea
| | - Mi-Hyun No
- Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Jinkyung Cho
- Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea
| | - Youngju Choi
- Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea
| | - Eun-Jeong Cho
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea
| | - Dong-Ho Park
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Tae-Woon Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Yun Seo
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Jin Han
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Republic of Korea
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea.,Department of Pharmacology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea.,Institute of Sports & Arts Convergence, Inha University, Incheon, Republic of Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| |
Collapse
|
15
|
Castelán F, Cuevas-Romero E, Martínez-Gómez M. The Expression of Hormone Receptors as a Gateway toward Understanding Endocrine Actions in Female Pelvic Floor Muscles. Endocr Metab Immune Disord Drug Targets 2021; 20:305-320. [PMID: 32216732 DOI: 10.2174/1871530319666191009154751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/06/2019] [Accepted: 07/19/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To provide an overview of the hormone actions and receptors expressed in the female pelvic floor muscles, relevant for understanding the pelvic floor disorders. METHODS We performed a literature review focused on the expression of hormone receptors mainly in the pelvic floor muscles of women and female rats and rabbits. RESULTS The impairment of the pelvic floor muscles can lead to the onset of pelvic floor dysfunctions, including stress urinary incontinence in women. Hormone milieu is associated with the structure and function alterations of pelvic floor muscles, a notion supported by the fact that these muscles express different hormone receptors. Nuclear receptors, such as steroid receptors, are up till now the most investigated. The present review accounts for the limited studies conducted to elucidate the expression of hormone receptors in pelvic floor muscles in females. CONCLUSION Hormone receptor expression is the cornerstone in some hormone-based therapies, which require further detailed studies on the distribution of receptors in particular pelvic floor muscles, as well as their association with muscle effectors, involved in the alterations relevant for understanding pelvic floor disorders.
Collapse
Affiliation(s)
- Francisco Castelán
- Department of Cellular Biology and Physiology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico.,Tlaxcala Center for Behavioral Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Estela Cuevas-Romero
- Tlaxcala Center for Behavioral Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Margarita Martínez-Gómez
- Department of Cellular Biology and Physiology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico.,Tlaxcala Center for Behavioral Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
16
|
Di Munno C, Busiello RA, Calonne J, Salzano AM, Miles-Chan J, Scaloni A, Ceccarelli M, de Lange P, Lombardi A, Senese R, Cioffi F, Visser TJ, Peeters RP, Dulloo AG, Silvestri E. Adaptive Thermogenesis Driving Catch-Up Fat Is Associated With Increased Muscle Type 3 and Decreased Hepatic Type 1 Iodothyronine Deiodinase Activities: A Functional and Proteomic Study. Front Endocrinol (Lausanne) 2021; 12:631176. [PMID: 33746903 PMCID: PMC7971177 DOI: 10.3389/fendo.2021.631176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Refeeding after caloric restriction induces weight regain and a disproportionate recovering of fat mass rather than lean mass (catch-up fat) that, in humans, associates with higher risks to develop chronic dysmetabolism. Studies in a well-established rat model of semistarvation-refeeding have reported that catch-up fat associates with hyperinsulinemia, glucose redistribution from skeletal muscle to white adipose tissue and suppressed adaptive thermogenesis sustaining a high efficiency for fat deposition. The skeletal muscle of catch-up fat animals exhibits reduced insulin-stimulated glucose utilization, mitochondrial dysfunction, delayed in vivo contraction-relaxation kinetics, increased proportion of slow fibers and altered local thyroid hormone metabolism, with suggestions of a role for iodothyronine deiodinases. To obtain novel insights into the skeletal muscle response during catch-up fat in this rat model, the functional proteomes of tibialis anterior and soleus muscles, harvested after 2 weeks of caloric restriction and 1 week of refeeding, were studied. Furthermore, to assess the implication of thyroid hormone metabolism in catch-up fat, circulatory thyroid hormones as well as liver type 1 (D1) and liver and skeletal muscle type 3 (D3) iodothyronine deiodinase activities were evaluated. The proteomic profiling of both skeletal muscles indicated catch-up fat-induced alterations, reflecting metabolic and contractile adjustments in soleus muscle and changes in glucose utilization and oxidative stress in tibialis anterior muscle. In response to caloric restriction, D3 activity increased in both liver and skeletal muscle, and persisted only in skeletal muscle upon refeeding. In parallel, liver D1 activity decreased during caloric restriction, and persisted during catch-up fat at a time-point when circulating levels of T4, T3 and rT3 were all restored to those of controls. Thus, during catch-up fat, a local hypothyroidism may occur in liver and skeletal muscle despite systemic euthyroidism. The resulting reduced tissue thyroid hormone bioavailability, likely D1- and D3-dependent in liver and skeletal muscle, respectively, may be part of the adaptive thermogenesis sustaining catch-up fat. These results open new perspectives in understanding the metabolic processes associated with the high efficiency of body fat recovery after caloric restriction, revealing new implications for iodothyronine deiodinases as putative biological brakes contributing in suppressed thermogenesis driving catch-up fat during weight regain.
Collapse
Affiliation(s)
- Celia Di Munno
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | | | - Julie Calonne
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Anna Maria Salzano
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Jennifer Miles-Chan
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, Naples, Italy
| | - Michele Ceccarelli
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | | | - Rosalba Senese
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Federica Cioffi
- Department of Science and Technologies, University of Sannio, Benevento, Italy
| | - Theo J. Visser
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Robin P. Peeters
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Erasmus MC, Rotterdam, Netherlands
| | - Abdul G. Dulloo
- Department of Medicine, Physiology, University of Fribourg, Fribourg, Switzerland
| | - Elena Silvestri
- Department of Science and Technologies, University of Sannio, Benevento, Italy
- *Correspondence: Elena Silvestri,
| |
Collapse
|
17
|
Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin Nutr 2020; 39:2368-2388. [DOI: 10.1016/j.clnu.2019.11.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
|
18
|
Kutlu Kaya C, Gümrükçü S, Saraç AS, Kök FN. A multifunctional long-term release system for treatment of hypothyroidism. J Biomed Mater Res A 2019; 108:760-759. [PMID: 31788940 DOI: 10.1002/jbm.a.36855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 11/07/2022]
Abstract
Hypothyroidism is an autoimmune disease associated with underactive thyroid gland. In this study, a dual effect polymeric system was designed to release Cepharanthine (CEP) to block T cell activation and Selenium (Se) to decrease the anti-thyroid peroxidase (TPOAb) concentration in order to treat hypothyroidism. For this purpose, poly(ethylene-vinyl acetate) (PEVA) and polyethylene glycol (PEG) nanoparticles (NPs) including CEP were synthesized by emulsion solvent evaporation method and they were loaded to polyurethane (PU)/PEG-PUSe-PEG block copolymer blends which were fabricated by particulate leaching technique as porous sponges. Fourier-Transform Infrared (FTIR), Raman, and Nuclear Magnetic Resonance (NMR) analysis showed successful synthesis of PEG-PUSe-PEG block copolymer. A long-term zero-order release profile was obtained for CEP. Se release rate from matrices showed an oxidative stress-mediated release which can be used to adjust Se amount. According to MTS results conducted by NIH 3T3 fibroblasts, both NPs and matrices have no adverse effect on cell viability. Fluorescence microscopy and SEM images confirm the MTS results. The dual release system has potential to be effectively used in long-term treatment of hypothyroidism by addressing both auto-immune response and hormone regulation.
Collapse
Affiliation(s)
- Ceren Kutlu Kaya
- NanoScience & Nanoengineering Program, Istanbul Technical University, Istanbul, Turkey
| | - Selin Gümrükçü
- Chemistry Department, Istanbul Technical University, Istanbul, Turkey
| | - Abdulkadir Sezai Saraç
- NanoScience & Nanoengineering Program, Istanbul Technical University, Istanbul, Turkey.,Polymer Science and Technology, Istanbul Technical University, Istanbul, Turkey
| | - Fatma Neşe Kök
- NanoScience & Nanoengineering Program, Istanbul Technical University, Istanbul, Turkey.,Molecular Biology & Genetics Department, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
19
|
Jegatheesan P, Ramani D, Lhuillier M, El-Hafaia N, Ramassamy R, Aboubacar M, Nakib S, Chen H, Garbay C, Neveux N, Loï C, Cynober L, de Bandt JP. Is N-Carbamoyl Putrescine, the Decarboxylation Derivative of Citrulline, a Regulator of Muscle Protein Metabolism in Rats? Nutrients 2019; 11:nu11112637. [PMID: 31684160 PMCID: PMC6893778 DOI: 10.3390/nu11112637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/26/2019] [Accepted: 10/28/2019] [Indexed: 11/16/2022] Open
Abstract
N-carbamoyl putrescine (NCP), the decarboxylation derivative of citrulline, metabolically related to polyamines, may exert biological effects in mammals. The aim of this study was (i) to evaluate the nutritional properties of NCP in healthy rats and (ii) to determine the effect of NCP administration on muscle metabolism in malnourished old rats. The nutritional properties of NCP were first evaluated in 20 8-week-old male rats randomized to receive for two weeks a standard diet either alone (C group) or supplemented with NCP, 5 or 50 mg/kg/d. In a second study, 29 malnourished 18-month-old male rats were studied either before or after a 4-day refeeding with a standard diet either alone (REN group) or supplemented with NCP, 1 or 10 mg/kg/d. NCP had no effect on weight gain and body composition in either of the two studies. In healthy rats, muscle protein content was significantly increased in the soleus with NCP 5 mg/kg/d. A decrease in plasma glutamine and kidney spermine was observed at the 50 mg/kg/d dose; otherwise, no significant changes in plasma chemistry and tissue polyamines were observed. In malnutrition-induced sarcopenic old rats, refeeding with NCP 10 mg/kg/d was associated with higher tibialis weight and a trend for increased protein content in extensor digitorum longus (EDL). While the muscle protein synthesis rate was similar between groups, ribosomal protein S6 kinase was increased in tibialis and higher in the EDL in NCP-treated rats. The muscle RING-finger protein-1 expression was decreased in tibialis and urinary 3-methyl-histidine to creatinine ratio slightly lower with the supply of NCP. However, this initial period of refeeding was also associated with elevated fasted plasma triglycerides and glucose, significant in NCP groups, suggesting glucose intolerance and possibly insulin resistance. NCP was well-tolerated in healthy young-adults and in malnourished old rats. In healthy adults, NCP at 5 mg/kg/d induced a significant increase in protein content in the soleus, a type I fiber-rich muscle. In malnourished old rats, NCP supply during refeeding, may help to preserve lean mass by limiting protein breakdown; however, these effects may be limited in our model by a possible immediate refeeding-associated glucose intolerance.
Collapse
Affiliation(s)
| | - David Ramani
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| | - Mickael Lhuillier
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Naouel El-Hafaia
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Radji Ramassamy
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Mohamed Aboubacar
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Samir Nakib
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| | - Huixiong Chen
- Laboratory of Pharmacologic and Toxicologic Chemistry and Biochemistry, UMR 8601 CNRS, Paris Descartes University, 75270 Paris, France.
| | - Christiane Garbay
- Laboratory of Pharmacologic and Toxicologic Chemistry and Biochemistry, UMR 8601 CNRS, Paris Descartes University, 75270 Paris, France.
| | - Nathalie Neveux
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| | - Cécile Loï
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
| | - Luc Cynober
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| | - Jean-Pascal de Bandt
- EA4466, Faculty of Pharmacy, Paris Descartes University, 75270 Paris, France.
- Clinical Chemistry Department, Hôpital Cochin, AP-HP, 75679 Paris, France.
| |
Collapse
|
20
|
Calonne J, Arsenijevic D, Scerri I, Miles-Chan JL, Montani JP, Dulloo AG. Low 24-hour core body temperature as a thrifty metabolic trait driving catch-up fat during weight regain after caloric restriction. Am J Physiol Endocrinol Metab 2019; 317:E699-E709. [PMID: 31430205 DOI: 10.1152/ajpendo.00092.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The recovery of body weight after substantial weight loss or growth retardation is often characterized by a disproportionately higher rate of fat mass vs. lean mass recovery, with this phenomenon of "preferential catch-up fat" being contributed by energy conservation (thrifty) metabolism. To test the hypothesis that a low core body temperature (Tc) constitutes a thrifty metabolic trait underlying the high metabolic efficiency driving catch-up fat, the Anipill system, with telemetry capsules implanted in the peritoneal cavity, was used for continuous monitoring of Tc for several weeks in a validated rat model of semistarvation-refeeding in which catch-up fat is driven solely by suppressed thermogenesis. In animals housed at 22°C, 24-h Tc was reduced in response to semistarvation (-0.77°C, P < 0.001) and remained significantly lower than in control animals during the catch-up fat phase of refeeding (-0.27°C on average, P < 0.001), the lower Tc during refeeding being more pronounced during the light phase than during the dark phase of the 24-h cycle (-0.30°C vs. -0.23°C, P < 0.01) and with no between-group differences in locomotor activity. A lower 24-h Tc in animals showing catch-up fat was also observed when the housing temperature was raised to 29°C (i.e., at thermoneutrality). The reduced energy cost of homeothermy in response to caloric restriction persists during weight recovery and constitutes a thrifty metabolic trait that contributes to the high metabolic efficiency that underlies the rapid restoration of the body's fat stores during weight regain, with implications for obesity relapse after therapeutic slimming and the pathophysiology of catch-up growth.
Collapse
Affiliation(s)
- Julie Calonne
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Denis Arsenijevic
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Isabelle Scerri
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jennifer L Miles-Chan
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Jean-Pierre Montani
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Abdul G Dulloo
- Department of Endocrinology, Metabolism and Cardiovascular System, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|