1
|
Bhatia Z, Kumar S, Seshadri S. Fecal microbiota transplantation as a potential therapeutic approach to improve impaired glucose tolerance via gut microbiota modulation in rat model. J Diabetes Metab Disord 2025; 24:28. [PMID: 39735176 PMCID: PMC11680516 DOI: 10.1007/s40200-024-01518-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/06/2024] [Indexed: 12/31/2024]
Abstract
Objectives To investigate the impact of diet-induced gut microbiota alterations on type 2 diabetes and assess the therapeutic potential of Fecal Microbiota Transplantation (FMT) in restoring a balanced gut microenvironment. Methods To induce type 2 diabetes, rats were fed a high-sugar high-fat diet (HSFD) for 90 days. After diabetes induction, animals were divided into an HSFD control group, a metformin group (100 mg/kg), and an FMT group (100 mg/kg), receiving treatment for an additional 90 days. Fasting blood glucose levels, glucose tolerance, serum markers (HbA1C, free fatty acids, lipopolysaccharides, pro-inflammatory and anti-inflammatory cytokines), and gut microbiota profiles via cecal metagenome sequencing were analyzed post-treatment. Results FMT effectively restored gut microbiota composition to a profile similar to healthy controls, rebalancing the Firmicutes/Bacteroidetes ratio and increasing beneficial taxa, including Prevotella ruminicola, Akkermansia muciniphila, Roseburia, and Faecalibacterium prausnitzii. These microbial shifts corresponded with significant metabolic improvements: FMT reduced inflammatory markers (LPS and FFA), lowered HbA1c, and improved glucose tolerance. Enhanced gut barrier integrity observed in FMT-treated animals likely contributed to reduced endotoxemia and systemic inflammation, distinguishing FMT's metabolic effects from those of metformin. Notably, FMT addressed the dysbiosis associated with HSFD, promoting microbial resilience and mitigating the metabolic disruptions linked to type 2 diabetes. Conclusion These findings underscore the potential of FMT as a targeted therapeutic approach to modulate gut microbiota composition and mitigate metabolic dysregulation induced by high sugar high fat diet.
Collapse
Affiliation(s)
- Zeel Bhatia
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Sunny Kumar
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
2
|
Liu J, Li F, Yang L, Luo S, Deng Y. Gut microbiota and its metabolites regulate insulin resistance: traditional Chinese medicine insights for T2DM. Front Microbiol 2025; 16:1554189. [PMID: 40177494 PMCID: PMC11963813 DOI: 10.3389/fmicb.2025.1554189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
The gut microbiota is closely associated with the onset and development of type 2 diabetes mellitus (T2DM), characterized by insulin resistance (IR) and chronic low-grade inflammation. However, despite the widespread use of first-line antidiabetic drugs, IR in diabetes and its complications continue to rise. The gut microbiota and its metabolic products may promote the development of T2DM by exacerbating IR. Therefore, regulating the gut microbiota has become a promising therapeutic strategy, with particular attention given to probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. This review first examines the relationship between gut microbiota and IR in T2DM, summarizing the research progress of microbiota-based therapies in modulating IR. We then delve into how gut microbiota-related metabolic products contribute to IR. Finally, we summarize the research findings on the role of traditional Chinese medicine in regulating the gut microbiota and its metabolic products to improve IR. In conclusion, the gut microbiota and its metabolic products play a crucial role in the pathophysiological process of T2DM by modulating IR, offering new insights into potential therapeutic strategies for T2DM.
Collapse
Affiliation(s)
- Jing Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Fuxing Li
- Ningxiang Traditional Chinese Medicine Hospital, Changsha, China
| | - Le Yang
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Shengping Luo
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihui Deng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Cheng YY, Yao Q, Miao Y, Guan W. Metformin as a potential antidepressant: Mechanisms and therapeutic insights in depression. Biochem Pharmacol 2025; 233:116773. [PMID: 39894309 DOI: 10.1016/j.bcp.2025.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Depression is one of the most disabling psychiatric disorders, whose pathophysiology has not been fully understood. Increasing numbers of preclinical studies have highlighted that metformin, as the first-line hypoglycaemic agent, has a potential pleiotropic effect on depression. Moreover, there is emerging evidence that metformin shows antidepressant activity and improves depressive symptoms in rodent models of depression. However, the exact role and underlying mechanism of metformin in depression remain unclear and still need to be investigated. Recent studies suggest that metformin not only improves neuronal damage and structural plasticity in the hippocampus but also enhances the antidepressant effect of antidepressants. Therefore, in this review, we summarize the existing evidence for the use of metformin as a psychopharmaceutical and elaborate on the underlying mechanisms of metformin in mitigating the onset and progression of depression, as well as the associated biochemical signaling pathways and targets involved in the pathogenesis of depression. After reviewing several studies, we conclude that metformin helps reduce depressive symptoms by targeting multiple pathways, including the regulation of neurotransmitters, enhanced neurogenesis, anti-inflammatory effects, and changes in gut microbiota. We aim to gain a deeper understanding of the mechanism of action of metformin and provide new insights into its clinical value in the prevention and therapy of depression.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Department of Pharmacology, Nantong Stomatological Hospital, Nantong 226001 Jiangsu, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001 Jiangsu, China
| | - Yang Miao
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng 224000 Jiangsu, China.
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001 Jiangsu, China.
| |
Collapse
|
4
|
Chong S, Lin M, Chong D, Jensen S, Lau NS. A systematic review on gut microbiota in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2025; 15:1486793. [PMID: 39897957 PMCID: PMC11782031 DOI: 10.3389/fendo.2024.1486793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
Aims/hypothesis The gut microbiota play crucial roles in the digestion and degradation of nutrients, synthesis of biological agents, development of the immune system, and maintenance of gastrointestinal integrity. Gut dysbiosis is thought to be associated with type 2 diabetes mellitus (T2DM), one of the world's fastest growing diseases. The aim of this systematic review is to identify differences in the composition and diversity of the gut microbiota in individuals with T2DM. Methods A systematic search was conducted to identify studies reporting on the difference in gut microbiota composition between individuals with T2DM and healthy controls. Relevant studies were evaluated, and their characteristics and results were extracted using a standardized data extraction form. The studies were assessed for risk of bias and their findings were reported narratively. Results 58 observational studies published between 2010 and 2024 were included. Beta diversity was commonly reported to be different between individuals with T2DM and healthy individuals. Genera Lactobacillus, Escherichia-Shigella, Enterococcus, Subdoligranulum and Fusobacteria were found to be positively associated; while Akkermansia, Bifidobacterium, Bacteroides, Roseburia, Faecalibacteirum and Prevotella were found to be negatively associated with T2DM. Conclusions This systematic review demonstrates a strong association between T2DM and gut dysbiosis, as evidenced by differential microbial abundances and altered diversity indices. Among these taxa, Escherichia-Shigella is consistently associated with T2DM, whereas Faecalibacterium prausnitzii appears to offer a protective effect against T2DM. However, the heterogeneity and observational nature of these studies preclude the establishment of causative relationships. Future research should incorporate age, diet and medication-matched controls, and include functional analysis of these gut microbes. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023459937.
Collapse
Affiliation(s)
- Serena Chong
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mike Lin
- Department of Endocrinology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Garvan Institute of Research, Sydney, NSW, Australia
| | - Deborah Chong
- Animal Health Laboratory, Department of Natural Resources and Environment Tasmania, Tasmania, TAS, Australia
| | - Slade Jensen
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- Infectious Disease and Microbiology, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine Antibiotic Resistance and Mobile Elements Groups, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Namson S. Lau
- South West Sydney Limb Preservation and Wound Research, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- South West Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Liverpool Diabetes Collaboration, Ingham Institute of Applied Medical Research, Sydney, NSW, Australia
| |
Collapse
|
5
|
Yalçın Buğdaycı A, Akarca Dizakar SÖ, Demirel MA, Ömeroğlu S, Akar F, Uludağ MO. Investigation of the relationship between inflammation and microbiota in the intestinal tissue of female and male rats fed with fructose: Modulatory role of metformin. Daru 2024; 32:515-535. [PMID: 38884844 PMCID: PMC11554967 DOI: 10.1007/s40199-024-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/12/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND It has been reported that High-Fructose (HF) consumption, considered one of the etiological factors of Metabolic Syndrome (MetS), causes changes in the gut microbiota and metabolic disorders. There is limited knowledge on the effects of metformin in HF-induced intestinal irregularities in male and female rats with MetS. OBJECTIVES In this study, we investigated the sex-dependent effects of metformin treatment on the gut microbiota, intestinal Tight Junction (TJ) proteins, and inflammation parameters in HF-induced MetS. METHODS Fructose was given to the male and female rats as a 20% solution in drinking water for 15 weeks. Metformin (200 mg/kg) was administered by gastric tube once a day during the final seven weeks. Biochemical, histopathological, immunohistochemical, and bioinformatics analyses were performed. Differences were considered statistically significant at p < 0.05. RESULTS The metformin treatment in fructose-fed rats promoted glucose, insulin, Homeostasis Model Assessment of Insulin Resistance Index (HOMA-IR), and Triglyceride (TG) values in both sexes. The inflammation score was significantly decreased with metformin treatment in fructose-fed male and female rats (p < 0.05). Moreover, metformin treatment significantly decreased Interleukin-1 Beta (IL-1β) and Tumor Necrosis Factor-Alpha (TNF-α) in ileum tissue from fructose-fed males (p < 0.05). Intestinal immunoreactivity of Occludin and Claudin-1 was increased with metformin treatment in fructose-fed female rats. HF and metformin treatment changed the gut microbial composition. Firmicutes/Bacteroidetes (F/B) ratio increased with HF in females. In the disease group, Bifidobacterium pseudolongum; in the treatment group, Lactobacillus helveticus and Lactobacillus reuteri are the prominent species in both sexes. When the male and female groups were compared, Akkermansia muciniphila was prominent in the male treatment group. CONCLUSION In conclusion, metformin treatment promoted biochemical parameters in both sexes of fructose-fed rats. Metformin showed a sex-dependent effect on inflammation parameters, permeability factors, and gut microbiota. Metformin has partly modulatory effects on fructose-induced intestinal changes.
Collapse
Affiliation(s)
| | | | - Mürşide Ayşe Demirel
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Gazi University, Ankara, Turkey
| | - Suna Ömeroğlu
- Faculty of Medicine, Department of Histology and Embryology, Gazi University, Ankara, Turkey
| | - Fatma Akar
- Faculty of Pharmacy, Department of Pharmacology, Gazi University, Ankara, Turkey
| | - Mecit Orhan Uludağ
- Faculty of Pharmacy, Department of Clinical Pharmacy, Near East University, TRNC, Lefkosa, Turkey
| |
Collapse
|
6
|
Anwardeen NR, Naja K, Elrayess MA. Advancements in precision medicine: multi-omics approach for tailored metformin treatment in type 2 diabetes. Front Pharmacol 2024; 15:1506767. [PMID: 39669200 PMCID: PMC11634602 DOI: 10.3389/fphar.2024.1506767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Metformin has become the frontline treatment in addressing the significant global health challenge of type 2 diabetes due to its proven effectiveness in lowering blood glucose levels. However, the reality is that many patients struggle to achieve their glycemic targets with the medication and the cause behind this variability has not been investigated thoroughly. While genetic factors account for only about a third of this response variability, the potential influence of metabolomics and the gut microbiome on drug efficacy opens new avenues for investigation. This review explores the different molecular signatures to uncover how the complex interplay between genetics, metabolic profiles, and gut microbiota can shape individual responses to metformin. By highlighting the insights from recent studies and identifying knowledge gaps regarding metformin-microbiota interplay, we aim to highlight the path toward more personalized and effective diabetes management strategies and moving beyond the one-size-fits-all approach.
Collapse
Affiliation(s)
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Liu E, Ji X, Zhou K. Akkermansia muciniphila for the Prevention of Type 2 Diabetes and Obesity: A Meta-Analysis of Animal Studies. Nutrients 2024; 16:3440. [PMID: 39458436 PMCID: PMC11510203 DOI: 10.3390/nu16203440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND More than half of the states in the U.S. report that over 30% of adults are obese. Obesity increases the risk of many chronic diseases, including type 2 diabetes, hypertension, and cardiovascular disease, and can even reduce one's lifespan. Similarly, the prevalence of type 2 diabetes follows a comparable trend. As a result, researchers are striving to find solutions to reduce obesity rates, with a particular focus on gut health, which has been previously linked to both obesity and type 2 diabetes. Recent studies suggest that Akkermansia muciniphila (Akk) may have a positive probiotic effect on preventing the onset of type 2 diabetes and obesity. METHODS We conducted a quantitative meta-analysis of 15 qualified animal studies investigating the effects of Akk administration as a probiotic. RESULTS The statistical analyses showed that Akk administration significantly reduced body weight gain by 10.4% and fasting blood glucose by 21.2%, while also significantly improving glucose tolerance by 22.1% and increasing blood insulin levels by 26.9%. However, our analysis revealed substantial heterogeneity between the control and experimental groups across all subgroups. CONCLUSIONS Overall, Akk appears to be effective at reducing the onset of type 2 diabetes and diet-induced obesity. Long-term studies with larger sample sizes are needed to confirm these beneficial effects, as the current animal studies were of short duration (less than 20 weeks).
Collapse
Affiliation(s)
- Ethan Liu
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| | - Xiangming Ji
- Department of Nutritional Sciences, The College of Health and Human Development, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kequan Zhou
- Department of Nutrition and Food Science, Wayne State University, Detroit, MI 48202, USA;
| |
Collapse
|
8
|
Barrientos-Ávalos JR, Morel-Cerda EC, Félix-Téllez FA, Vidrio-Huerta BE, Aceves-Ayala AR, Flores-Rendón ÁR, Velarde-Ruiz Velasco JA. Gastrointestinal adverse effects of old and new antidiabetics: How do we deal with them in real life? REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2024; 89:521-532. [PMID: 39455403 DOI: 10.1016/j.rgmxen.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/15/2024] [Indexed: 10/28/2024]
Abstract
Diabetes is a public health problem with an estimated worldwide prevalence of 10% and a prevalence of 12% in Mexico. The costs resulting from this chronic-degenerative disease are significant. Treatment for diabetes involves different medication groups, some of which can cause significant gastrointestinal adverse effects, such as dyspepsia, nausea, vomiting, bloating, diarrhea, and constipation. The medications most frequently associated with said adverse effects are metformin, acarbose, and GLP-1 agonists. Gastrointestinal adverse effects negatively impact the quality of life and management of patients with diabetes. The factors of visceral neuropathy, acute dysglycemia, dysbiosis, and intestinal bacterial overgrowth contribute to the gastrointestinal symptoms in patients with diabetes, making it necessary to consider multiple etiologic factors in the presence of gastrointestinal symptoms, and not exclusively attribute them to the use of antidiabetics. Personalized treatment, considering gastrointestinal comorbidity and the type of drug utilized, is essential for mitigating the adverse effects and improving the quality of life in patients with diabetes. The aim of the present narrative review was to describe the gastrointestinal adverse effects of the antidiabetic drugs, their pathophysiologic mechanisms, and the corresponding therapeutic measures.
Collapse
Affiliation(s)
- J R Barrientos-Ávalos
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Servicio de Endocrinología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - E C Morel-Cerda
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - F A Félix-Téllez
- Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - B E Vidrio-Huerta
- Servicio de Endocrinología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - A R Aceves-Ayala
- Servicio de Endocrinología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico
| | - Á R Flores-Rendón
- Instituto de Seguridad y Servicios Sociales de los Trabajadores del Gobierno y Municipios del Estado de Baja California, Hospital Mexicali, Mexicali, Baja California, Mexico
| | - J A Velarde-Ruiz Velasco
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico; Servicio de Gastroenterología, Hospital Civil de Guadalajara Fray Antonio Alcalde, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
9
|
Barrientos-Ávalos J, Morel-Cerda E, Félix-Téllez F, Vidrio-Huerta B, Aceves-Ayala A, Flores-Rendón Á, Velarde-Ruiz Velasco J. Efectos adversos gastrointestinales de viejos y nuevos antidiabéticos: ¿cómo los enfrentamos en la vida real? REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2024; 89:521-532. [DOI: 10.1016/j.rgmx.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Que L, Qian Z, Xiang X, Ding Y, Huang K, Bai Y, Zhao H, He Q. Evaluation of Acarbose Bioequivalence in Healthy Chinese Populations Using Novel Pharmacodynamic End Points. Clin Pharmacol Drug Dev 2024; 13:233-239. [PMID: 38197734 DOI: 10.1002/cpdd.1362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Acarbose is a widely used α-glucosidase inhibitor for the management of postprandial hyperglycemia in patients with type 2 diabetes mellitus. Recent pilot studies on acarbose bioequivalence (BE) have successfully identified additional pharmacodynamic (PD) parameters as valid end points. Nevertheless, there was a scarcity of published pivotal studies using novel PD parameters. The purpose of the study is to investigate the acarbose BE using the new PD parameters. The study was conducted with an open, randomized, 2-period crossover design. A total of 64 healthy Chinese volunteers received either the reference (R) or test (T) acarbose at a dose of 2×50 mg orally, followed by a 1-week washout period. After sucrose treatment (baseline) and sucrose/acarbose co-administration, serum glucose, and insulin concentrations were assessed. The rectifying approach yielded geometric mean ratios of 102.9% for maximum serum glucose concentration with deduction of glucose concentration at 0 hour and 105.3% for the area under the serum glucose concentration-time curve profile 0-2 hours after coadministration of sucrose and acarbose with deduction of baseline (AUC0-2 h,r ). The 90% confidence intervals of maximum serum glucose concentration with deduction of glucose concentration at 0 hour and the area under the serum glucose concentration-time curve profile 0-2 hours after coadministration of sucrose and acarbose with deduction of baseline all fell within the acceptance limits. The incidence of adverse events after the T or R drug was comparable, and healthy subjects were well tolerated. The findings of our investigation clearly show that the PD parameters of the rectifying method exhibit enhanced suitability and sensitivity when assessing acarbose BE in healthy participants. The T and R drugs were bioequivalent using the novel PD parameters, and both drugs demonstrated good safety and tolerability.
Collapse
Affiliation(s)
- Linling Que
- Drug Clinical Trial Institution, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhenzhong Qian
- Drug Clinical Trial Institution, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xuemei Xiang
- Drug Clinical Trial Institution, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ying Ding
- Drug Clinical Trial Institution, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Kai Huang
- Drug Clinical Trial Institution, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yichuan Bai
- Beijing Bokangjian Gene Technology Co., Ltd, Beijing, China
| | - Huanan Zhao
- Beijing Bokangjian Gene Technology Co., Ltd, Beijing, China
| | - Qing He
- Drug Clinical Trial Institution, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
11
|
Kim HY, Jung YS, Park W, Choi YJ, Kim JY. Can medication-related osteonecrosis of the jaw be attributed to specific microorganisms through oral microbiota analyses? A preliminary study. BMC Oral Health 2024; 24:160. [PMID: 38302952 PMCID: PMC10832156 DOI: 10.1186/s12903-024-03945-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Medication-related osteonecrosis of the jaw (MRONJ) can cause significant pain and loss of aesthetics and function if not treated properly. However, diagnosis still relies on detailed intraoral examinations and imaging. Prognosis varies even among patients with similar stages or conditions of MRONJ, emphasizing the need for a deeper understanding of its complex mechanisms. Thus, this study aimed to identify the oral microbiota of patients with MRONJ. METHODS This single-center prospective cohort study included patients with confirmed MRONJ who visited the Department of Oral and Maxillofacial Surgery at Yonsei University Dental Hospital between 2021 and 2022. Oral swab samples were collected from the affected and unaffected sides of each patient. The composition and enumeration of the microbial communities were analyzed, and the diversity was compared to verify ecological changes in the groups using a next-generation sequencing-based 16S metagenomic analysis. A statistical analysis was performed using Wilcoxon signed-rank test with SPSS version 22, and values of P less than 0.05 were considered statistically significant. RESULTS The final study sample included 12 patients. The mean age was 82.67 ± 5.73 (range, 72-90) years. Changes in microbial composition were observed at different taxonomic levels (phylum, genus, and species). The identified microorganisms were commonly associated with periodontitis, gingival disease, and endodontic infection, suggesting a multifactorial etiology of MRONJ. CONCLUSIONS Although this study is based on a small number of cases, it shows that MRONJ is not caused by a specific microorganism but can rather be caused by a variety of factors. By addressing these findings in large-scale studies, the significance of oral microbiome in pathogenesis can be further elucidated and can facilitate the development of effective therapeutic interventions for patients with MRONJ.
Collapse
Affiliation(s)
- Heon-Young Kim
- Department of Oral and Maxillofacial Surgery, Ewha Womans University Medical Centre, Seoul, Republic of Korea
| | - Young-Soo Jung
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wonse Park
- Department of Advanced General Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea
| | - Yoon Jeong Choi
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea
- Department of Orthodontics, The Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jun-Young Kim
- Department of Oral and Maxillofacial Surgery, Yonsei University College of Dentistry, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Crudele L, Gadaleta RM, Cariello M, Moschetta A. Gut microbiota in the pathogenesis and therapeutic approaches of diabetes. EBioMedicine 2023; 97:104821. [PMID: 37804567 PMCID: PMC10570704 DOI: 10.1016/j.ebiom.2023.104821] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
The gut-liver axis plays a prominent role in the pathogenesis and therapy of metabolic diseases such as diabetes. The intestinal specific origin of several hormones that guide both inter- and post-prandial metabolism of carbohydrates and lipids, drives the attention of scientists and clinicians on the gut as a major site to intervene with novel diagnostic or prognostic markers. The role of intestinal ecology in the metabolic syndrome was postulated when gut microbiota was directly connected with inflammation, hyperinsulinemia, and diabetes. There have been several discoveries with the role of gut microbiota and gut-liver axis in diabetes. Also, there are several trials ongoing on the therapeutic efficacy of probiotic administration in diabetes and its complications. Here we point to the metabolic action of microbiota and discuss the actual state of the art on gut microbiota as a novel prognostic biomarker with a putative therapeutic role in diabetes.
Collapse
Affiliation(s)
- Lucilla Crudele
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy; INBB National Institute for Biostructure and Biosystems, Viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| |
Collapse
|
13
|
Hendricks SA, Vella CA, New DD, Aunjum A, Antush M, Geidl R, Andrews KR, Balemba OB. High-Resolution Taxonomic Characterization Reveals Novel Human Microbial Strains with Potential as Risk Factors and Probiotics for Prediabetes and Type 2 Diabetes. Microorganisms 2023; 11:758. [PMID: 36985331 PMCID: PMC10051885 DOI: 10.3390/microorganisms11030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Alterations in the composition of the gut microbiota is thought to play a key role in causing type 2 diabetes, yet is not fully understood, especially at the strain level. Here, we used long-read DNA sequencing technology of 16S-ITS-23S rRNA genes for high-resolution characterization of gut microbiota in the development of type 2 diabetes. Gut microbiota composition was characterized from fecal DNA from 47 participants divided into 4 cohorts based on glycemic control: normal glycemic control (healthy; n = 21), reversed prediabetes (prediabetes/healthy; n = 8), prediabetes (n = 8), or type 2 diabetes (n = 10). A total of 46 taxa were found to be possibly related to progression from healthy state to type 2 diabetes. Bacteroides coprophilus DSM 18228, Bifidobacterium pseudocatenulatum DSM 20438, and Bifidobacterium adolescentis ATCC 15703 could confer resistance to glucose intolerance. On the other hand, Odoribacter laneus YIT 12061 may be pathogenic as it was found to be more abundant in type 2 diabetes participants than other cohorts. This research increases our understanding of the structural modulation of gut microbiota in the pathogenesis of type 2 diabetes and highlights gut microbiota strains, with the potential for targeted opportunistic pathogen control or consideration for probiotic prophylaxis and treatment.
Collapse
Affiliation(s)
- Sarah A. Hendricks
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Chantal A. Vella
- Department of Movement Sciences, University of Idaho, Moscow, ID 83843, USA
- WWAMI Medical Education Program, University of Idaho, Moscow, ID 83843, USA
| | - Daniel D. New
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Afiya Aunjum
- Department of Movement Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Maximilian Antush
- Department of Movement Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Rayme Geidl
- WWAMI Medical Education Program, University of Idaho, Moscow, ID 83843, USA
| | - Kimberly R. Andrews
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID 83843, USA
| | - Onesmo B. Balemba
- WWAMI Medical Education Program, University of Idaho, Moscow, ID 83843, USA
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| |
Collapse
|
14
|
Jia L, Huang S, Sun B, Shang Y, Zhu C. Pharmacomicrobiomics and type 2 diabetes mellitus: A novel perspective towards possible treatment. Front Endocrinol (Lausanne) 2023; 14:1149256. [PMID: 37033254 PMCID: PMC10076675 DOI: 10.3389/fendo.2023.1149256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), a major driver of mortality worldwide, is more likely to develop other cardiometabolic risk factors, ultimately leading to diabetes-related mortality. Although a set of measures including lifestyle intervention and antidiabetic drugs have been proposed to manage T2DM, problems associated with potential side-effects and drug resistance are still unresolved. Pharmacomicrobiomics is an emerging field that investigates the interactions between the gut microbiome and drug response variability or drug toxicity. In recent years, increasing evidence supports that the gut microbiome, as the second genome, can serve as an attractive target for improving drug efficacy and safety by manipulating its composition. In this review, we outline the different composition of gut microbiome in T2DM and highlight how these microbiomes actually play a vital role in its development. Furthermore, we also investigate current state-of-the-art knowledge on pharmacomicrobiomics and microbiome's role in modulating the response to antidiabetic drugs, as well as provide innovative potential personalized treatments, including approaches for predicting response to treatment and for modulating the microbiome to improve drug efficacy or reduce drug toxicity.
Collapse
Affiliation(s)
- Liyang Jia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shiqiong Huang
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Boyu Sun
- Department of Pharmacy, The Third People’s Hospital of Qingdao, Qingdao, China
| | - Yongguang Shang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Yongguang Shang, ; Chunsheng Zhu,
| | - Chunsheng Zhu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yongguang Shang, ; Chunsheng Zhu,
| |
Collapse
|
15
|
Drake AM, Coughlan MT, Christophersen CT, Snelson M. Resistant Starch as a Dietary Intervention to Limit the Progression of Diabetic Kidney Disease. Nutrients 2022; 14:4547. [PMID: 36364808 PMCID: PMC9656781 DOI: 10.3390/nu14214547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 08/15/2023] Open
Abstract
Diabetes is the leading cause of kidney disease, and as the number of individuals with diabetes increases there is a concomitant increase in the prevalence of diabetic kidney disease (DKD). Diabetes contributes to the development of DKD through a number of pathways, including inflammation, oxidative stress, and the gut-kidney axis, which may be amenable to dietary therapy. Resistant starch (RS) is a dietary fibre that alters the gut microbial consortium, leading to an increase in the microbial production of short chain fatty acids. Evidence from animal and human studies indicate that short chain fatty acids are able to attenuate inflammatory and oxidative stress pathways, which may mitigate the progression of DKD. In this review, we evaluate and summarise the evidence from both preclinical models of DKD and clinical trials that have utilised RS as a dietary therapy to limit the progression of DKD.
Collapse
Affiliation(s)
- Anna M. Drake
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Melinda T. Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
- Baker Heart & Diabetes Institute, Melbourne 3004, Australia
| | - Claus T. Christophersen
- School of Medical and Health Sciences, Edith Cowan University, Joondalup 6027, Australia
- WA Human Microbiome Collaboration Centre, School of Molecular Life Sciences, Curtin University, Bentley 6102, Australia
| | - Matthew Snelson
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School, Monash University, Melbourne 3004, Australia
| |
Collapse
|
16
|
Wang L, Wang S, Zhang Q, He C, Fu C, Wei Q. The role of the gut microbiota in health and cardiovascular diseases. MOLECULAR BIOMEDICINE 2022; 3:30. [PMID: 36219347 PMCID: PMC9554112 DOI: 10.1186/s43556-022-00091-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota is critical to human health, such as digesting nutrients, forming the intestinal epithelial barrier, regulating immune function, producing vitamins and hormones, and producing metabolites to interact with the host. Meanwhile, increasing evidence indicates that the gut microbiota has a strong correlation with the occurrence, progression and treatment of cardiovascular diseases (CVDs). In patients with CVDs and corresponding risk factors, the composition and ratio of gut microbiota have significant differences compared with their healthy counterparts. Therefore, gut microbiota dysbiosis, gut microbiota-generated metabolites, and the related signaling pathway may serve as explanations for some of the mechanisms about the occurrence and development of CVDs. Several studies have also demonstrated that many traditional and latest therapeutic treatments of CVDs are associated with the gut microbiota and its generated metabolites and related signaling pathways. Given that information, we summarized the latest advances in the current research regarding the effect of gut microbiota on health, the main cardiovascular risk factors, and CVDs, highlighted the roles and mechanisms of several metabolites, and introduced corresponding promising treatments for CVDs regarding the gut microbiota. Therefore, this review mainly focuses on exploring the role of gut microbiota related metabolites and their therapeutic potential in CVDs, which may eventually provide better solutions in the development of therapeutic treatment as well as the prevention of CVDs.
Collapse
Affiliation(s)
- Lu Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Shiqi Wang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Qing Zhang
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chengqi He
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| | - Chenying Fu
- grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,grid.412901.f0000 0004 1770 1022Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Quan Wei
- grid.412901.f0000 0004 1770 1022Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China ,Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
17
|
Zhang X, Ren H, Zhao C, Shi Z, Qiu L, Yang F, Zhou X, Han X, Wu K, Zhong H, Li Y, Li J, Ji L. Metagenomic analysis reveals crosstalk between gut microbiota and glucose-lowering drugs targeting the gastrointestinal tract in Chinese patients with type 2 diabetes: a 6 month, two-arm randomised trial. Diabetologia 2022; 65:1613-1626. [PMID: 35930018 PMCID: PMC9477956 DOI: 10.1007/s00125-022-05768-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
AIMS/HYPOTHESIS The use of oral glucose-lowering drugs, particularly those designed to target the gut ecosystem, is often observed in association with altered gut microbial composition or functional capacity in individuals with type 2 diabetes. The gut microbiota, in turn, plays crucial roles in the modulation of drug efficacy. We aimed to assess the impacts of acarbose and vildagliptin on human gut microbiota and the relationships between pre-treatment gut microbiota and therapeutic responses. METHODS This was a randomised, open-labelled, two-arm trial in treatment-naive type 2 diabetes patients conducted in Beijing between December 2016 and December 2017. One hundred participants with overweight/obesity and newly diagnosed type 2 diabetes were recruited from the Pinggu Hospital and randomly assigned to the acarbose (n=50) or vildagliptin (n=50) group using sealed envelopes. The treatment period was 6 months. Blood, faecal samples and visceral fat data from computed tomography images were collected before and after treatments to measure therapeutic outcomes and gut microbiota. Metagenomic datasets from a previous type 2 diabetes cohort receiving acarbose or glipizide for 3 months were downloaded and processed. Statistical analyses were applied to identify the treatment-related changes in clinical variables, gut microbiota and associations. RESULTS Ninety-two participants were analysed. After 6 months of acarbose (n=44) or vildagliptin (n=48) monotherapy, both groups achieved significant reductions in HbA1c (from 60 to 46 mmol/mol [from 7.65% to 6.40%] in the acarbose group and from 59 to 44 mmol/mol [from 7.55% to 6.20%] in the vildagliptin group) and visceral fat areas (all adjusted p values for pre-post comparisons <0.05). Both arms showed drug-specific and shared changes in relative abundances of multiple gut microbial species and pathways, especially the common reductions in Bacteroidetes species. Three months and 6 months of acarbose-induced changes in microbial composition were highly similar in type 2 diabetes patients from the two independent studies. Vildagliptin treatment significantly enhanced fasting active glucagon-like peptide-1 (GLP-1) levels. Baseline gut microbiota, rather than baseline GLP-1 levels, were strongly associated with GLP-1 response to vildagliptin, and to a lesser extent with GLP-1 response to acarbose. CONCLUSIONS/INTERPRETATION This study reveals common microbial responses in type 2 diabetes patients treated with two glucose-lowering drugs targeting the gut differently and acceptable performance of baseline gut microbiota in classifying individuals with different GLP-1 responses to vildagliptin. Our findings highlight bidirectional interactions between gut microbiota and glucose-lowering drugs. TRIAL REGISTRATION ClinicalTrials.gov NCT02999841 FUNDING: National Key Research and Development Project: 2016YFC1304901.
Collapse
Affiliation(s)
- Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Huahui Ren
- BGI-Shenzhen, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cuiling Zhao
- Department of Endocrinology, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China
| | | | - Li Qiu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | | | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI-Shenzhen, Shenzhen, China
| | | | - Yufeng Li
- Department of Endocrinology, Beijing Friendship Hospital Pinggu Campus, Capital Medical University, Beijing, China.
| | - Junhua Li
- BGI-Shenzhen, Shenzhen, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen, China.
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Centre, Beijing, China.
| |
Collapse
|
18
|
Liu W, Luo Z, Zhou J, Sun B. Gut Microbiota and Antidiabetic Drugs: Perspectives of Personalized Treatment in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol 2022; 12:853771. [PMID: 35711668 PMCID: PMC9194476 DOI: 10.3389/fcimb.2022.853771] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
Alterations in the composition and function of the gut microbiota have been reported in patients with type 2 diabetes mellitus (T2DM). Emerging studies show that prescribed antidiabetic drugs distort the gut microbiota signature associated with T2DM. Even more importantly, accumulated evidence provides support for the notion that gut microbiota, in turn, mediates the efficacy and safety of antidiabetic drugs. In this review, we highlight the current state-of-the-art knowledge on the crosstalk and interactions between gut microbiota and antidiabetic drugs, including metformin, α-glucosidase inhibitors, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, sodium-glucose cotransporter 2 inhibitors, traditional Chinese medicines and other antidiabetic drugs, as well as address corresponding microbial-based therapeutics, aiming to provide novel preventative strategies and personalized therapeutic targets in T2DM.
Collapse
Affiliation(s)
- Wenhui Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Zhiying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jiecan Zhou
- Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Bao Sun,
| |
Collapse
|
19
|
Robeson MS, Manna K, Randolph C, Byrum S, Hakkak R. Short-Term Metformin Treatment Enriches Bacteroides dorei in an Obese Liver Steatosis Zucker Rat Model. Front Microbiol 2022; 13:834776. [PMID: 35432282 PMCID: PMC9006818 DOI: 10.3389/fmicb.2022.834776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is the leading cause of health-related diseases in the United States and World. Previously, we reported that obesity can change gut microbiota using the Zucker rat model. Metformin is an oral anti-hyperglycemic agent approved by the FDA to treat type 2 diabetes (T2D) in adults and children older than 10 years of age. The correlation of short-term metformin treatment and specific alterations to the gut microbiota in obese models is less known. Short-term metformin has been shown to reduce liver steatosis. Here we investigate the effects of short-term metformin treatment on population of gut microbiota profile in an obese rat model. Five week old obese (n = 12) female Zucker rats after 1 week of acclimation, received AIN-93 G diet for 8 weeks and then rats were randomly assigned into two groups (6 rats/group): (1) obese without metformin (ObC), or (2) obese with metformin (ObMet). Metformin was mixed with AIN-93G diet at 1,000 mg/kg of diet. Rats were weighed twice per week. All rats were sacrificed at the end of metformin treatment at 10 weeks and fecal samples were collected and kept at -80°C. Total microbial DNA was collected directly from the fecal samples used for shotgun-metagenomics sequencing and subsequently analyzed using MetaPlAn and HUMAnN. After stringent data filtering and quality control we found significant differences (p = 0.0007) in beta diversity (Aitchison distances) between the ObC vs. ObMet groups. Supervised and unsupervised analysis of the log-ratios Bacteroides dorei and B. massiliensis vs. all other Bacteroides spp., revealed that B. dorei and B. massiliensis were enriched in the ObMet group, while the remaining Bacteroides spp. where enriched in the ObC group (p = 0.002). The contributional diversity of pathways is also significantly associated by treatment group (p = 0.008). In summary, in the obese Zucker rat model, short-term metformin treatment changes the gut microbiota profile, particularly altering the composition Bacteroides spp. between ObC and ObMet.
Collapse
Affiliation(s)
- Michael S. Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kanishka Manna
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Stephanie Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Reza Hakkak
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
20
|
Russell AAM, Sutherland BA, Landowski LM, Macleod M, Howells DW. What has preclinical systematic review ever done for us? BMJ OPEN SCIENCE 2022; 6:e100219. [PMID: 35360370 PMCID: PMC8921935 DOI: 10.1136/bmjos-2021-100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
Systematic review and meta-analysis are a gift to the modern researcher, delivering a crystallised understanding of the existing research data in any given space. This can include whether candidate drugs are likely to work or not and which are better than others, whether our models of disease have predictive value and how this might be improved and also how these all interact with disease pathophysiology.Grappling with the literature needed for such analyses is becoming increasingly difficult as the number of publications grows. However, narrowing the focus of a review to reduce workload runs the risk of diminishing the generalisability of conclusions drawn from such increasingly specific analyses.Moreover, at the same time as we gain greater insight into our topic, we also discover more about the flaws that undermine much scientific research. Systematic review and meta-analysis have also shown that the quality of much preclinical research is inadequate. Systematic review has helped reveal the extent of selection bias, performance bias, detection bias, attrition bias and low statistical power, raising questions about the validity of many preclinical research studies. This is perhaps the greatest virtue of systematic review and meta-analysis, the knowledge generated ultimately helps shed light on the limitations of existing research practice, and in doing so, helps bring reform and rigour to research across the sciences.In this commentary, we explore the lessons that we have identified through the lens of preclinical systematic review and meta-analysis.
Collapse
Affiliation(s)
- Ash Allanna Mark Russell
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Lila M Landowski
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Malcolm Macleod
- Centre for Clinical Brain Sciences, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | - David W Howells
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
21
|
McMurdie PJ, Stoeva MK, Justice N, Nemchek M, Sieber CMK, Tyagi S, Gines J, Skennerton CT, Souza M, Kolterman O, Eid J. Increased circulating butyrate and ursodeoxycholate during probiotic intervention in humans with type 2 diabetes. BMC Microbiol 2022; 22:19. [PMID: 34996347 PMCID: PMC8742391 DOI: 10.1186/s12866-021-02415-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Background An increasing body of evidence implicates the resident gut microbiota as playing a critical role in type 2 diabetes (T2D) pathogenesis. We previously reported significant improvement in postprandial glucose control in human participants with T2D following 12-week administration of a 5-strain novel probiotic formulation (‘WBF-011’) in a double-blind, randomized, placebo controlled setting (NCT03893422). While the clinical endpoints were encouraging, additional exploratory measurements were needed in order to link the motivating mechanistic hypothesis - increased short-chain fatty acids - with markers of disease. Results Here we report targeted and untargeted metabolomic measurements on fasting plasma (n = 104) collected at baseline and end of intervention. Butyrate and ursodeoxycholate increased among participants randomized to WBF-011, along with compelling trends between butyrate and glycated haemoglobin (HbA1c). In vitro monoculture experiments demonstrated that the formulation’s C. butyricum strain efficiently synthesizes ursodeoxycholate from the primary bile acid chenodeoxycholate during butyrogenic growth. Untargeted metabolomics also revealed coordinated decreases in intermediates of fatty acid oxidation and bilirubin, potential secondary signatures for metabolic improvement. Finally, improvement in HbA1c was limited almost entirely to participants not using sulfonylurea drugs. We show that these drugs can inhibit growth of formulation strains in vitro. Conclusion To our knowledge, this is the first description of an increase in circulating butyrate or ursodeoxycholate following a probiotic intervention in humans with T2D, adding support for the possibility of a targeted microbiome-based approach to assist in the management of T2D. The efficient synthesis of UDCA by C. butyricum is also likely of interest to investigators of its use as a probiotic in other disease settings. The potential for inhibitory interaction between sulfonylurea drugs and gut microbiota should be considered carefully in the design of future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02415-8.
Collapse
Affiliation(s)
- Paul J McMurdie
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA.
| | - Magdalena K Stoeva
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Nicholas Justice
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Madeleine Nemchek
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | | | - Surabhi Tyagi
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Jessica Gines
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | | | - Michael Souza
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Orville Kolterman
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - John Eid
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| |
Collapse
|
22
|
Dzięgielewska-Gęsiak S, Fatyga E, Piłot M, Wierzgoń A, Muc-Wierzgoń M. Are There Differences in Gut Microbiome in Patients with Type 2 Diabetes Treated by Metformin or Metformin and Insulin? Diabetes Metab Syndr Obes 2022; 15:3589-3599. [PMID: 36426212 PMCID: PMC9680967 DOI: 10.2147/dmso.s377856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Recently, gut microbiota has been described as being involved in the health and diseases of the host, and together with diet and drugs may influence metabolic health. Yet, there is still no answer which type of treatment plays the most important role in the interplay of gut microbiota and type of treatment for type 2 diabetes (T2DM). An attempt was made to answer the question of which factors have the most significant impact on the intestinal microbiome in the context of metformin or metformin+insulin use in treatment of the patients with T2DM. Thus the aim of the study was to compare the gut microbiome profiles of patients with T2DM and two of the most traditional treatment methods. METHODS T2DM patients treated by metformin (Met) and metformin+insulin (Met+Ins), with the treatment duration of 5-10 years were enrolled. Biochemically blood glucose and glycated hemoglobin (HbA1c), lipids and kidney function were investigated and the quantitative and qualitative examination of the fecal intestinal flora were performed through the next-generation sequencing. RESULTS There were no significant differences in the study of the gut microbiome: the dominant bacterial phyla were Firmicutes and Verrucomicrobia, while Bacteroidetes and Proteobacteria shared smaller proportions in both groups. However, the group Met+Ins had worse metabolic control in terms of blood glucose and HbA1c in comparison with the Met group. CONCLUSION As there are no differences in gut microbiome in T2DM patients treated with metformin only or metformin plus insulin, adding insulin in the treatment of T2DM may delay late diabetic complications development.
Collapse
Affiliation(s)
- Sylwia Dzięgielewska-Gęsiak
- Department of Internal Medicine Prevention, Medical University of Silesia in Katowice, Katowice, Poland
- Correspondence: Sylwia Dzięgielewska-Gęsiak, Department of Internal Preventive Medicine, Medical University of Silesia in Katowice, 41-902 Bytom, Piekarska 18 st, Katowice, Poland, Tel/Fax +48/32/39-76-527, Email
| | - Edyta Fatyga
- Department of Internal Medicine Prevention, Medical University of Silesia in Katowice, Katowice, Poland
| | - Magdalena Piłot
- Department of Internal Medicine Prevention, Medical University of Silesia in Katowice, Katowice, Poland
| | - Aleksander Wierzgoń
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Medicine Prevention, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
23
|
Huang PJ, Wei JCC, Liu YT, Lin CH, Lin CC, Chen HH. Association between α-glucosidase inhibitor use and psoriatic disease risk in patients with type 2 diabetes mellitus: A population-based cohort study. Int J Clin Pract 2021; 75:e14819. [PMID: 34490702 DOI: 10.1111/ijcp.14819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS To investigate the association between the use of alpha-glucosidase inhibitors (AGIs) and the risk of psoriatic disease (ie, psoriasis and psoriatic arthritis) in patients with type 2 diabetes mellitus (T2DM) treated with metformin. METHODS Using the 1999-2013 Taiwanese Longitudinal Cohort of Diabetes Patients Database, we identified patients with T2DM who initiated hypoglycaemic treatment between 2003 and 2012. After excluding patients with a history of psoriatic disease (International Classification of Disease, Ninth Revision, Clinical Modification codes 696.0-1) before T2DM diagnosis, patients who received antidiabetic treatment for <90 days, and patients aged <20 or >100 years, we identified 1390 patients who received metformin+AGIs (AGI exposure group) and 47 514 patients who received metformin only (comparison group). We matched the two groups at a 1:10 ratio by age, sex, and index date of T2DM drug use. The association between AGI use and psoriatic disease risk was analysed using a Cox proportional hazard mode; time-dependent covariates for factors were reported in terms of hazard ratios (HRs) with 95% confidence intervals (CIs) after age, sex, T2DM duration, and comorbidities were controlled for. RESULTS After adjusting the AGI exposure and comparison groups for potential confounders, we found that psoriatic disease risk was associated with metformin+AGI use when AGI was discontinued for 30 days (HR, 8.77; 95% CI, 1.58-48.5) and when a high AGI dose was administered; furthermore, the risk declined during AGI discontinuation. CONCLUSIONS This population-based study reports that AGI use and interruption of AGI use may be associated with increased psoriatic disease risk in treated patients with T2DM.
Collapse
Affiliation(s)
- Pei-Ju Huang
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Yen-Tze Liu
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
- Department of Holistic Wellness, Mingdao University, Changhua, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Healthcare Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Science and Rong Hsing Research Centre for Translational Medicine, Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Hsin-Hua Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, Taiwan
- Institute of Biomedical Science and Rong Hsing Research Centre for Translational Medicine, Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Public Health and Community Medicine Research Centre, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Tseng CH. The Relationship between Diabetes Mellitus and Gastric Cancer and the Potential Benefits of Metformin: An Extensive Review of the Literature. Biomolecules 2021; 11:biom11071022. [PMID: 34356646 PMCID: PMC8301937 DOI: 10.3390/biom11071022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this review is to summarize the findings of published research that investigated the relationship between diabetes mellitus and gastric cancer (GCa) and the potential benefits of metformin on GCa. Related literature has been extensively reviewed, and findings from studies investigating the relationship between diabetes mellitus and GCa suggest that hyperglycemia, hyperinsulinemia and insulin resistance are closely related to the development of GCa. Although not supported by all, most observational studies suggest an increased risk of GCa in patients with type 2 diabetes mellitus, especially in women and in Asian populations. Incidence of second primary malignancy diagnosed after GCa is significantly higher in diabetes patients. Diabetes patients with GCa may have more complications after gastrectomy or chemotherapy and they may have a poorer prognosis than patients with GCa but without diabetes mellitus. However, glycemic control may improve in the diabetes patients with GCa after receiving gastrectomy, especially after procedures that bypass the duodenum and proximal jejunum, such as Roux-en-Y gastric bypass or Billroth II reconstruction. The potential links between diabetes mellitus and GCa may involve the interactions with shared risk factors (e.g., obesity, hyperglycemia, hyperinsulinemia, insulin resistance, high salt intake, smoking, etc.), Helicobacter pylori (HP) infection, medications (e.g., insulin, metformin, statins, aspirin, proton pump inhibitors, antibiotics, etc.) and comorbidities (e.g., hypertension, dyslipidemia, vascular complications, heart failure, renal failure, etc.). With regards to the potential benefits of metformin on GCa, results of most observational studies suggest a reduced risk of GCa associated with metformin use in patients with T2DM, which can be supported by evidence derived from many in vitro and animal studies. Metformin use may also reduce the risk of HP infection, an important risk factor of GCa. In patients with GCa, metformin users may have improved survival and reduced recurrence. More studies are required to clarify the pathological subtypes/anatomical sites of GCa associated with type 2 diabetes mellitus or prevented by metformin, to confirm whether GCa risk can also be increased in patients with type 1 diabetes mellitus and to explore the possible role of gastric microbiota in the development of GCa.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan; ; Tel.: +886-2-2388-3578
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10051, Taiwan
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan 350, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
25
|
Habitual Dietary Intake Affects the Altered Pattern of Gut Microbiome by Acarbose in Patients with Type 2 Diabetes. Nutrients 2021; 13:nu13062107. [PMID: 34205413 PMCID: PMC8235473 DOI: 10.3390/nu13062107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this research was to reveal the characteristics of gut microbiome altered by acarbose intervention in Japanese patients with type 2 diabetes (T2D) and its possible association with habitual dietary intake. Eighteen patients with T2D were administered acarbose for four weeks. The abundances of two major phyla, namely Actinobacteria and Bacteroidetes, were reciprocally changed accompanied by the acarbose intervention. There were also significant changes in the abundances of ten genera, including the greater abundance of Bifidobacterium, Eubacterium, and Lactobacillus and the lower abundance of Bacteroides in the group after the intervention than that before the intervention. Hierarchical clustering of habitual dietary intake was performed based on the pattern of changes in the gut microbiota and were classified into distinct three clusters. Cluster I consisted of sucrose, cluster II mainly included fat intake, and cluster III mainly included carbohydrate intake. Moreover, the amount of change in Faecalibacterium was positively correlated with the intake of rice, but negatively correlated with the intake of bread. The intake of potato was negatively correlated with the amount of change in Akkermansia and Subdoligranulum. Acarbose altered the composition of gut microbiome in Japanese patients with T2D, which might be linked to the habitual dietary intake.
Collapse
|
26
|
Gawlik-Kotelnicka O, Strzelecki D. Probiotics as a Treatment for "Metabolic Depression"? A Rationale for Future Studies. Pharmaceuticals (Basel) 2021; 14:ph14040384. [PMID: 33924064 PMCID: PMC8074252 DOI: 10.3390/ph14040384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
Depression and metabolic diseases often coexist, having several features in common, e.g., chronic low-grade inflammation and intestinal dysbiosis. Different microbiota interventions have been proposed to be used as a treatment for these disorders. In the paper, we review the efficacy of probiotics in depressive disorders, obesity, metabolic syndrome and its liver equivalent based on the published experimental studies, clinical trials and meta-analyses. Probiotics seem to be effective in reducing depressive symptoms when administered in addition to antidepressants. Additionally, probiotics intake may ameliorate some of the clinical components of metabolic diseases. However, standardized methodology regarding probiotics use in clinical trials has not been established yet. In this narrative review, we discuss current knowledge on the recently used methodology with its strengths and limitations and propose criteria that may be implemented to create a new study of the effectiveness of probiotics in depressive disorders comorbid with metabolic abnormalities. We put across our choice on type of study population, probiotics genus, strains, dosages and formulations, intervention period, as well as primary and secondary outcome measures.
Collapse
|
27
|
Hung WW, Peng P, Tsai YC, Jhou PS, Chang CC, Hsieh CC, Su YC, Dai CY, Hung WC. Gut microbiota compositions and metabolic functions in type 2 diabetes differ with glycemic durability to metformin monotherapy. Diabetes Res Clin Pract 2021; 174:108731. [PMID: 33676995 DOI: 10.1016/j.diabres.2021.108731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
AIMS The metabolic derangements in type 2 diabetes have been attributed to compositional changes in the gut microbiota. Metformin, the first-line treatment for type 2 diabetes, has been found to modulate the gut microbiota. However, no literature has reported the associations between the composition of the gut microbiota and glycemic durability to metformin monotherapy. METHODS A total of 375 patients with type 2 diabetes were recruited, among which 14 and 11 patients were eligible as the metformin durable group and nondurable group, respectively. Fecal samples were collected to analyze the gut microbiota by Illumina sequencing of the 16S rRNA gene, and PICRUSt2 was adopted to infer microbial functional differences. RESULTS Although the two groups had similar biochemical profiles and microbial metabolites, the pattern of microbiota clustering was different. The intra-group diversity was significantly reduced in the durable group. For the microbial metabolic pathways, the biosynthesis of thiamine and lipopolysaccharide was dominant in the durable group. CONCLUSIONS There were different compositions of gut microbiota with unique microbial metabolic pathways between type 2 diabetes with and without glycemic durability to metformin monotherapy. Microbial salvage by increasing thiamine biosynthesis might be beneficial for the metformin durable group to maintain optimal glycemic control.
Collapse
Affiliation(s)
- Wei-Wen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po Peng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chun Tsai
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of General Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Syuan Jhou
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chen-Chia Chang
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of General Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yong-Chao Su
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yen Dai
- Division of Hepatobiliary, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chun Hung
- Department of Microbiology and Immunology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
28
|
Gawlik-Kotelnicka O, Skowrońska A, Margulska A, Czarnecka-Chrebelska KH, Łoniewski I, Skonieczna-Żydecka K, Strzelecki D. The Influence of Probiotic Supplementation on Depressive Symptoms, Inflammation, and Oxidative Stress Parameters and Fecal Microbiota in Patients with Depression Depending on Metabolic Syndrome Comorbidity-PRO-DEMET Randomized Study Protocol. J Clin Med 2021; 10:jcm10071342. [PMID: 33804999 PMCID: PMC8036404 DOI: 10.3390/jcm10071342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022] Open
Abstract
There is a huge need to search for new treatment options and potential biomarkers of therapeutic response to antidepressant treatment. Depression and metabolic syndrome often coexist, while a pathophysiological overlap, including microbiota changes, may play a role. The paper presents a study protocol that aims to assess the effect of probiotic supplementation on symptoms of depression, anxiety and stress, metabolic parameters, inflammatory and oxidative stress markers, as well as fecal microbiota in adult patients with depressive disorders depending on the co-occurrence of metabolic syndrome. The trial will be a four-arm, parallel-group, prospective, randomized, double-blind, controlled design that will include 200 participants and will last 20 weeks (ClinicalTrials.gov identifier: NCT04756544). The probiotic preparation will contain Lactobacillus helveticus Rosell®-52, Bifidobacterium longum Rosell®-175. We will assess the level of depression, anxiety and stress, quality of life, blood pressure, body mass index and waist circumference, white blood cells count, serum levels of C-reactive protein, high-density lipoprotein (HDL) cholesterol, triglycerides, fasting glucose, fecal microbiota composition and the level of some fecal microbiota metabolites, as well as serum inflammatory markers and oxidative stress parameters. The proposed trial may establish a safe and easy-to-use adjunctive treatment option in a subpopulation of depressive patients only partially responsive to pharmacologic therapy.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
- Correspondence:
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
| | - Aleksandra Margulska
- Admission Department, Central Teaching Hospital of Medical University of Lodz, 92-216 Lodz, Poland;
| | | | - Igor Łoniewski
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (I.Ł.); (K.S.-Ż.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (A.S.); (D.S.)
| |
Collapse
|