1
|
Stone NE, Hamond C, Clegg JR, McDonough RF, Bourgeois RM, Ballard R, Thornton NB, Nuttall M, Hertzel H, Anderson T, Whealy RN, Timm S, Roberts AK, Barragán V, Phipatanakul W, Leibler JH, Benson H, Specht A, White R, LeCount K, Furstenau TN, Galloway RL, Hill NJ, Madison JD, Fofanov VY, Pearson T, Sahl JW, Busch JD, Weiner Z, Nally JE, Wagner DM, Rosenbaum MH. Host population dynamics influence Leptospira spp. transmission patterns among Rattus norvegicus in Boston, Massachusetts, US. PLoS Negl Trop Dis 2025; 19:e0012966. [PMID: 40233129 DOI: 10.1371/journal.pntd.0012966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 05/02/2025] [Accepted: 03/05/2025] [Indexed: 04/17/2025] Open
Abstract
Leptospirosis (caused by pathogenic bacteria in the genus Leptospira) is prevalent worldwide but more common in tropical and subtropical regions. Transmission can occur following direct exposure to infected urine from reservoir hosts, or a urine-contaminated environment, which then can serve as an infection source for additional rats and other mammals, including humans. The brown rat, Rattus norvegicus, is an important reservoir of Leptospira spp. in urban settings. We investigated the presence of Leptospira spp. among brown rats in Boston, Massachusetts and hypothesized that rat population dynamics in this urban setting influence the transportation, persistence, and diversity of Leptospira spp. We analyzed DNA from 328 rat kidney samples collected from 17 sites in Boston over a seven-year period (2016-2022); 59 rats representing 12 of 17 sites were positive for Leptospira spp. We used 21 neutral microsatellite loci to genotype 311 rats and utilized the resulting data to investigate genetic connectivity among sampling sites. We generated whole genome sequences for 28 Leptospira spp. isolates obtained from frozen and fresh tissue from some of the 59 positive rat kidneys. When isolates were not obtained, we attempted genomic DNA capture and enrichment, which yielded 14 additional Leptospira spp. genomes from rats. We also generated an enriched Leptospira spp. genome from a 2018 human case in Boston. We found evidence of high genetic structure among rat populations that is likely influenced by major roads and/or other dispersal barriers, resulting in distinct rat population groups within the city; at certain sites these groups persisted for multiple years. We identified multiple distinct phylogenetic clades of L. interrogans among rats that were tightly linked to distinct rat populations. This pattern suggests L. interrogans persists in local rat populations and its transportation is influenced by rat population dynamics. Finally, our genomic analyses of the Leptospira spp. detected in the 2018 human leptospirosis case in Boston suggests a link to rats as the source. These findings will be useful for guiding rat control and human leptospirosis mitigation efforts in this and other similar urban settings.
Collapse
Affiliation(s)
- Nathan E Stone
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Camila Hamond
- National Veterinary Services Laboratories, APHIS, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Joel R Clegg
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Ryelan F McDonough
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Reanna M Bourgeois
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Rebecca Ballard
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Natalie B Thornton
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Marianece Nuttall
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Hannah Hertzel
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Tammy Anderson
- National Veterinary Services Laboratories, APHIS, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Ryann N Whealy
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Skylar Timm
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Alexander K Roberts
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Verónica Barragán
- Universidad San Francisco de Quito, Colegio de Ciencias Biologicas y Ambientales, Quito, Ecuador
| | - Wanda Phipatanakul
- Division of Allergy and Immunology, Boston Children's Hospital, Boston, Massachusetts, United States of America
| | - Jessica H Leibler
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Hayley Benson
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Aubrey Specht
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Ruairi White
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Karen LeCount
- National Veterinary Services Laboratories, APHIS, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Tara N Furstenau
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Renee L Galloway
- Bacterial Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nichola J Hill
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Joseph D Madison
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C., United States of America
| | - Viacheslav Y Fofanov
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Talima Pearson
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Jason W Sahl
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Joseph D Busch
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Zachary Weiner
- Bacterial Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jarlath E Nally
- Infectious Bacterial Diseases Research Unit, ARS, United States Department of Agriculture, Ames, Iowa, United States of America
| | - David M Wagner
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Marieke H Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
2
|
Li L, Chen R, Yan Z, Cai Q, Guan Y, Zhu H. Experimental Infection of Rats with Influenza A Viruses: Implications for Murine Rodents in Influenza A Virus Ecology. Viruses 2025; 17:495. [PMID: 40284938 PMCID: PMC12030792 DOI: 10.3390/v17040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Rattus norvegicus (brown rat), a widely distributed rodent and common biomedical model, is a known reservoir for many zoonotic pathogens but has not been traditionally recognized as a host for influenza A virus (IAV). To evaluate their susceptibility, we intranasally inoculated Sprague-Dawley rats with various IAV subtypes, including H5Nx, H7N9, H9N2, H10N8 and the 2009 pandemic H1N1. All strains productively infected the rats, inducing seroconversion without overt clinical signs. While replication efficiency varied, all viruses caused significant lung injury with a preferential tropism for the upper respiratory tract. Investigation of receptor distribution revealed a predominance of α2,3-linked sialic acid (SA) in the nasal turbinates and trachea, whereas α2,6-linked SA was more abundant in the lungs. Notably, both receptor types coexisted throughout the respiratory tract, aligning with the observed tissue-specific replication patterns and broad viral infectivity. These findings demonstrate that rats are permissive hosts for multiple IAV subtypes, challenging their exclusion from IAV ecology. The asymptomatic yet pathogenic nature of infection, combined with the global synanthropy of rats, underscores their potential role as cryptic reservoirs in viral maintenance and transmission. This study highlights the need for expanded surveillance of rodents in influenza ecology to mitigate zoonotic risks.
Collapse
Affiliation(s)
- Long Li
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
| | - Rirong Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
| | - Zhigang Yan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
| | - Qinglong Cai
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
| | - Yi Guan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Graziosi G, Lupini C, Favera FD, Martini G, Dosa G, Garavini G, Trevisani G, Mannelli A, Catelli E. Potential biosecurity breaches in poultry farms: Presence of free-ranging mammals near laying-hen houses assessed through a camera-trap study. Vet Anim Sci 2024; 26:100393. [PMID: 39290683 PMCID: PMC11403447 DOI: 10.1016/j.vas.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Diligent application and implementation of biosecurity measures stand as the most effective measures to prevent disease transmission through direct or indirect interactions between poultry and free-ranging animals. Among these, free-ranging mammals can be hosts or disseminators of several pathogens relevant to poultry and of public health concern. Moreover, evidence of susceptibility to avian influenza virus infection in non-human mammals has raised questions about their potential role in the virus' epidemiology at the domestic animal-wildlife interface. Given this background, this study aimed to identify mammal species occurring near laying-hen houses and characterize the spatiotemporal patterns of these visits. Seven camera traps were deployed for a year-long period in three commercial poultry farms in a densely populated poultry area in Northern Italy. Various methods, including time series analysis and generalized linear models, were employed to analyze daily mammal visits. A total of 1,867 camera trap nights yielded 567 videos of seven species of wild mammals, and 1,866 videos showed domestic pet species (cats and dogs). Coypus (Myocastor coypus) and cats were the two mammals more frequently observed near poultry houses. For wild mammals, visits significantly increased at night, and slightly decreased during the spring season. Overall, the data hereby provided lay the groundwork for designing novel surveillance and intervention strategies to prevent cross-species disease transmission. Moreover, the utilization of visual evidence depicting free-ranging animals approaching poultry houses could assist health authorities in educating and raising awareness among stakeholders about potential risks of pathogen spillover.
Collapse
Affiliation(s)
- Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Francesco Dalla Favera
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Gabriella Martini
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), Imola, 40026, BO, Italy
| | - Geremia Dosa
- Veterinary Services, Local Health Unit of Imola (A.U.S.L. di Imola), Imola, 40026, BO, Italy
| | - Gloria Garavini
- Veterinary Services of Eurovo Group, Imola, 40026, BO, Italy
| | | | - Alessandro Mannelli
- Department of Veterinary Sciences, University of Torino, Grugliasco, 10095, Torino, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| |
Collapse
|
4
|
Usui T, Uno Y, Tanaka K, Tanikawa T, Yamaguchi T. Susceptibility of Synanthropic Rodents ( Mus musculus, Rattus norvegicus and Rattus rattus) to H5N1 Subtype High Pathogenicity Avian Influenza Viruses. Pathogens 2024; 13:764. [PMID: 39338955 PMCID: PMC11434905 DOI: 10.3390/pathogens13090764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Synanthropic wild rodents associated with agricultural operations may represent a risk path for transmission of high pathogenicity avian influenza viruses (HPAIVs) from wild birds to poultry birds. However, their susceptibility to HPAIVs remains unclear. In the present study, house mice (Mus musculus), brown rats (Rattus norvegicus), and black rats (Rattus rattus) were experimentally exposed to H5N1 subtype HPAIVs to evaluate their vulnerability to infection. After intranasal inoculation with HA clade 2.2 and 2.3.2.1 H5N1 subtype HPAIVs, wild rodents did not show any clinical signs and survived for 10- and 12-day observation periods. Viruses were isolated from oral swabs for several days after inoculation, while little or no virus was detected in their feces or rectal swabs. In euthanized animals at 3 days post-inoculation, HPAIVs were primarily detected in respiratory tract tissues such as the nasal turbinates, trachea, and lungs. Serum HI antibodies were detected in HA clade 2.2 HPAIV-inoculated rodents. These results strongly suggest that synanthropic wild rodents are susceptible to infection of avian-origin H5N1 subtype HPAIVs and contribute to the virus ecosystem as replication-competent hosts. Detection of infectious viruses in oral swabs indicates that wild rodents exposed to HPAIVs could contaminate food, water, and the environment in poultry houses and play roles in the introduction and spread of HPAIVs in farms.
Collapse
Affiliation(s)
- Tatsufumi Usui
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-0853, Japan; (T.U.)
| | - Yukiko Uno
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-0853, Japan; (T.U.)
| | - Kazuyuki Tanaka
- Technical Research Laboratory, IKARI SHODOKU Co., Ltd., Chiba 275-0024, Japan; (K.T.); (T.T.)
| | - Tsutomu Tanikawa
- Technical Research Laboratory, IKARI SHODOKU Co., Ltd., Chiba 275-0024, Japan; (K.T.); (T.T.)
| | - Tsuyoshi Yamaguchi
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori 680-0853, Japan; (T.U.)
| |
Collapse
|
5
|
Stone NE, Hamond C, Clegg J, McDonough RF, Bourgeois RM, Ballard R, Thornton NB, Nuttall M, Hertzel H, Anderson T, Whealy RN, Timm S, Roberts AK, Barragán V, Phipatanakul W, Leibler JH, Benson H, Specht A, White R, LeCount K, Furstenau TN, Galloway RL, Hill NJ, Madison JD, Fofanov VY, Pearson T, Sahl JW, Busch JD, Weiner Z, Nally JE, Wagner DM, Rosenbaum MH. Host population structure and rare dispersal events drive leptospirosis transmission patterns among Rattus norvegicus in Boston, Massachusetts, US. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598639. [PMID: 38915728 PMCID: PMC11195238 DOI: 10.1101/2024.06.12.598639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Leptospirosis (caused by pathogenic bacteria in the genus Leptospira ) is prevalent worldwide but more common in tropical and subtropical regions. Transmission can occur following direct exposure to infected urine from reservoir hosts, such as rats, or a urine-contaminated environment, which then can serve as an infection source for additional rats and other mammals, including humans. The brown rat, Rattus norvegicus , is an important reservoir of leptospirosis in urban settings. We investigated leptospirosis among brown rats in Boston, Massachusetts and hypothesized that rat dispersal in this urban setting influences the movement, persistence, and diversity of Leptospira . We analyzed DNA from 328 rat kidney samples collected from 17 sites in Boston over a seven-year period (2016-2022); 59 rats representing 12 of 17 sites were positive for Leptospira . We used 21 neutral microsatellite loci to genotype 311 rats and utilized the resulting data to investigate genetic connectivity among sampling sites. We generated whole genome sequences for 28 Leptospira isolates obtained from frozen and fresh tissue from some of the 59 Leptospira -positive rat kidneys. When isolates were not obtained, we attempted Leptospira genomic DNA capture and enrichment, which yielded 14 additional Leptospira genomes from rats. We also generated an enriched Leptospira genome from a 2018 human case in Boston. We found evidence of high genetic structure and limited dispersal among rat populations that is likely influenced by major roads and/or other unknown dispersal barriers, resulting in distinct rat population groups within the city; at certain sites these groups persisted for multiple years. We identified multiple distinct phylogenetic clades of L. interrogans among rats, with specific clades tightly linked to distinct rat populations. This pattern suggests L. interrogans persists in local rat populations and movement of leptospirosis in this urban rat community is driven by rat dispersal. Finally, our genomic analyses of the 2018 human leptospirosis case in Boston suggests a link to rats as the source. These findings will be useful for guiding rat control and human leptospirosis mitigation efforts in this and other urban settings.
Collapse
|
6
|
Robinson SJ, Pearl DL, Himsworth CG, Weese JS, Lindsay LR, Dibernardo A, Huynh C, Hill JE, Fernando C, Jardine CM. Environmental and sociodemographic factors associated with zoonotic pathogen occurrence in Norway rats (Rattus norvegicus) from Windsor, Ontario. Zoonoses Public Health 2024; 71:416-428. [PMID: 38419369 DOI: 10.1111/zph.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/21/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
AIMS Rat-associated zoonotic pathogen transmission at the human-wildlife interface is a public health concern in urban environments where Norway rats (Rattus norvegicus) thrive on abundant anthropogenic resources and live in close contact with humans and other animal species. To identify potential factors influencing zoonotic pathogen occurrence in rats, we investigated associations between environmental and sociodemographic factors and Leptospira interrogans and Bartonella spp. infections in rats from Windsor, Ontario, Canada, while controlling for the potential confounding effects of animal characteristics (i.e., sexual maturity and body condition). METHODS AND RESULTS Between November 2018 and June 2021, 252 rats were submitted by collaborating pest control professionals. Kidney and spleen samples were collected for L. interrogans and Bartonella spp. PCR and sequencing, respectively. Of the rats tested by PCR, 12.7% (32/252) were positive for L. interrogans and 16.3% (37/227) were positive for Bartonella species. Associations between infection status and environmental and sociodemographic variables of interest were assessed via mixed multivariable logistic regression models with a random intercept for social group and fixed effects to control for sexual maturity and body condition in each model. The odds of L. interrogans infection were significantly higher in rats from areas with high building density (odds ratio [OR]: 3.76; 95% CI: 1.31-10.79; p = 0.014), high human population density (OR: 3.31; 95% CI: 1.20-9.11; p = 0.021), high proportion of buildings built in 1960 or before (OR: 11.21; 95% CI: 2.06-60.89; p = 0.005), and a moderate number of reports of uncollected garbage compared to a low number of reports (OR: 4.88; 95% CI: 1.01-23.63; p = 0.049). A negative association was observed between median household income and Bartonella spp. infection in rats (OR: 0.26; 95% CI: 0.08-0.89; p = 0.031). CONCLUSIONS Due to the complexity of the ecology of rat-associated zoonoses, consideration of environmental and sociodemographic factors is of critical importance to better understand the nuances of host-pathogen systems and inform how urban rat surveillance and intervention efforts should be distributed within cities.
Collapse
Affiliation(s)
- Sarah J Robinson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Chelsea G Himsworth
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - J Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - L Robbin Lindsay
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Antonia Dibernardo
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Chris Huynh
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Champika Fernando
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Claire M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Zhuang Z, Qian L, Lu J, Zhang X, Mahmood A, Cui L, Wang H, Wang X, Yang S, Ji L, Shan T, Shen Q, Zhang W. Comparison of viral communities in the blood, feces and various tissues of wild brown rats ( Rattus norvegicus). Heliyon 2023; 9:e17222. [PMID: 37389044 PMCID: PMC10300334 DOI: 10.1016/j.heliyon.2023.e17222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/01/2023] Open
Abstract
Viral diseases caused by new outbreaks of viral infections pose a serious threat to human health. Wild brown rats (Rattus norvegicus), considered one of the world's largest and most widely distributed rodents, are host to various zoonotic pathogens. To further understand the composition of the virus community in wild brown rats and explore new types of potentially pathogenic viruses, viral metagenomics was conducted to investigate blood, feces, and various tissues of wild brown rats captured from Zhenjiang, China. Results indicated that the composition of the virus community in different samples showed significant differences. In blood and tissue samples, members of the Parvoviridae and Anelloviridae form the main body of the virus community. Picornaviridae, Picobirnaviridae, and Astroviridae made up a large proportion of fecal samples. Several novel genome sequences from members of different families, including Anelloviridae, Parvoviridae, and CRESS DNA viruses, were detected in both blood and other samples, suggesting that they have the potential to spread across organs to cause viremia. These viruses included not only strains closely related to human viruses, but also a potential recombinant virus. Multiple dual-segment picornaviruses were obtained from fecal samples, as well as virus sequences from the Astroviridae and Picornaviridae. Phylogenetic analysis showed that these viruses belonged to different genera, with multiple viruses clustered with other animal viruses. Whether they have pathogenicity and the ability to spread across species needs further study.
Collapse
Affiliation(s)
- Zi Zhuang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Lingling Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Juan Lu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Xiaodan Zhang
- Department of Clinical Laboratory, Zhenjiang Center for Disease Prevention and Control, Zhenjiang, 212002, China
| | - Asif Mahmood
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Lei Cui
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 200062, China
| | - Huiying Wang
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaochun Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Shixing Yang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Likai Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tongling Shan
- Department of Swine Infectious Disease, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Quan Shen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Wen Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
8
|
Bacterial and viral rodent-borne infections on poultry farms. An attempt at a systematic review. J Vet Res 2023; 67:1-10. [PMID: 37008769 PMCID: PMC10062035 DOI: 10.2478/jvetres-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
Abstract
Introduction
Rodents are quite common at livestock production sites. Their adaptability, high reproductive capacity and omnivorousness make them apt to become a source of disease transmission to humans and animals. Rodents can serve as mechanical vectors or active shedders of many bacteria and viruses, and their transmission can occur through direct contact, or indirectly through contaminated food and water or by the arthropods which parasitise infected rodents. This review paper summarises how rodents spread infectious diseases in poultry production.
Material and Methods
The aim of this review was to use PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) principles to meta-analyse the available data on this topic. Three databases – PubMed, Web of Science and Scopus – and grey literature were searched for papers published from inception to July 2022 using the established keywords.
Results
An initial search identified 2,999 articles that met the criteria established by the keywords. This number remained after removing 597 articles that were repeated in some databases. The articles were searched for any mention of specific bacterial and viral pathogens.
Conclusion
The importance of rodents in the spread of bacterial diseases in poultry has been established, and the vast majority of such diseases involved Salmonella, Campylobacter, Escherichia coli, Staphylococcus (MRSA), Pasteurella, Erysipelothrix or Yersinia infections. Rodents also play a role in the transmission of viruses such as avian influenza virus, avian paramyxovirus 1, avian gammacoronavirus or infectious bursal disease virus, but knowledge of these pathogens is very limited and requires further research to expand it.
Collapse
|
9
|
Gerbig GR, Piontkivska H, Smith TC, White R, Mukherjee J, Benson H, Rosenbaum M, Leibler JH. Genetic characterization of Staphylococcus aureus isolated from Norway rats in Boston, Massachusetts. Vet Med Sci 2023; 9:272-281. [PMID: 36524786 PMCID: PMC9856981 DOI: 10.1002/vms3.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite the importance of domesticated animals in the generation and transmission of antibiotic-resistant Staphylococcus aureus, the role of wild animals, specifically rodents, in the ecology of S. aureus remains unclear. We recovered and genotyped S. aureus isolates from wild Norway rats (Rattus norvegicus) in Boston, Massachusetts to examine genetic relationships between common human and animal S. aureus isolates in a large US metropolitan area. METHODS We collected and necropsied 63 rats from June 2016 to June 2017. Nasal, foot pad, fur, and fecal swabs were collected. Staphylococcus aureus was isolated using culture-based methods and polymerase chain reaction confirmation. S. aureus isolates were spa typed, tested for antibiotic susceptibility, and whole genome sequenced. Assembled sequences were uploaded to the Comprehensive Antibiotic Resistance Database to identify antibiotic resistance elements. A phylogenetic tree was constructed using the neighbor-joining method with the maximum composite likelihood distance in MEGA7. RESULTS We recovered 164 Gram-positive bacterial isolates from Norway rats. Nineteen isolates from eight individual rats were confirmed as S. aureus (prevalence: 12.9% (8/63)). All S. aureus isolates were methicillin-susceptible S. aureus (MSSA), pvl-negative, and resistant to penicillin. Two isolates displayed resistance to erythromycin. Four different S. aureus spa types were detected (t933, t10751, t18202, and t189). Thirteen unique antibiotic resistance elements were identified, and all isolates shared genes mepR, mgrA, arlR, and S. aureus norA. Phylogenetic analysis if the 19 S. aureus isolates revealed they were genetically similar to four clades of S. aureus with similar resistance gene profiles isolated from both human- and animal-derived S. aureus, as well as formed a distinct phylogenetic cluster composed only of rat isolates. CONCLUSIONS Wild rodents may serve as a reservoir or vector of antibiotic resistance genes in the urban environment with relevance for human and animal health.
Collapse
Affiliation(s)
| | | | - Tara C. Smith
- College of Public HealthKent State UniversityKentOhioUSA
| | - Ruairi White
- Department of Infectious Disease and Global Health, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachussetsUSA
| | - Jean Mukherjee
- Department of Infectious Disease and Global Health, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachussetsUSA
| | - Hayley Benson
- Department of Infectious Disease and Global Health, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachussetsUSA
| | - Marieke Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary MedicineTufts UniversityNorth GraftonMassachussetsUSA
| | - Jessica H. Leibler
- Department of Environmental HealthBoston University School of Public HealthBostonMassachusettsUSA
| |
Collapse
|
10
|
Camp JV, Desvars-Larrive A, Nowotny N, Walzer C. Monitoring Urban Zoonotic Virus Activity: Are City Rats a Promising Surveillance Tool for Emerging Viruses? Viruses 2022; 14:v14071516. [PMID: 35891496 PMCID: PMC9316102 DOI: 10.3390/v14071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Urban environments represent unique ecosystems where dense human populations may come into contact with wildlife species, some of which are established or potential reservoirs for zoonotic pathogens that cause human diseases. Finding practical ways to monitor the presence and/or abundance of zoonotic pathogens is important to estimate the risk of spillover to humans in cities. As brown rats (Rattus norvegicus) are ubiquitous in urban habitats, and are hosts of several zoonotic viruses, we conducted longitudinal sampling of brown rats in Vienna, Austria, a large population center in Central Europe. We investigated rat tissues for the presence of several zoonotic viruses, including flaviviruses, hantaviruses, coronaviruses, poxviruses, hepatitis E virus, encephalomyocarditis virus, and influenza A virus. Although we found no evidence of active infections (all were negative for viral nucleic acids) among 96 rats captured between 2016 and 2018, our study supports the findings of others, suggesting that monitoring urban rats may be an efficient way to estimate the activity of zoonotic viruses in urban environments.
Collapse
Affiliation(s)
- Jeremy V. Camp
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| | - Amélie Desvars-Larrive
- Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Complexity Science Hub Vienna, 1080 Vienna, Austria
- VetFarm, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Chris Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria;
- Wildlife Conservation Society, Global Conservation Program, Bronx, NY 10460, USA
| |
Collapse
|
11
|
He W, Gao Y, Wen Y, Ke X, Ou Z, Li Y, He H, Chen Q. Detection of Virus-Related Sequences Associated With Potential Etiologies of Hepatitis in Liver Tissue Samples From Rats, Mice, Shrews, and Bats. Front Microbiol 2021; 12:653873. [PMID: 34177835 PMCID: PMC8221242 DOI: 10.3389/fmicb.2021.653873] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatitis is a major global health concern. However, the etiology of 10-20% hepatitis cases remains unclear. Some hepatitis-associated viruses, like the hepatitis E virus, are zoonotic pathogens. Rats, shrews, and bats are reservoirs for many zoonotic pathogens. Therefore, understanding the virome in the liver of these animals is important for the investigation of the etiologies of hepatitis and monitoring the emerging zoonotic viruses. In this study, viral metagenomics and PCR methods were used to investigate viral communities in rats, mice, house shrews, and bats livers. Viral metagenomic analysis showed a diverse set of sequences in liver samples, comprising: sequences related to herpesviruses, orthomyxoviruses, anelloviruses, hepeviruses, hepadnaviruses, flaviviruses, parvoviruses, and picornaviruses. Using PCR methods, we first detected hepatovirus sequences in Hipposideros larvatus (3.85%). We also reported the first detection of Zika virus-related sequences in rats and house shrews. Sequences related to influenza A virus and herpesviruses were detected in liver. Higher detection rates of pegivirus sequences were found in liver tissue and serum samples from rats (7.85% and 15.79%, respectively) than from house shrews. Torque teno virus sequences had higher detection rates in the serum samples of rats and house shrews (52.72% and 5.26%, respectively) than in the liver. Near-full length genomes of pegivirus and torque teno virus were amplified. This study is the first to compare the viral communities in the liver of bats, rats, mice, and house shrews. Its findings expand our understanding of the virome in the liver of these animals and provide an insight into hepatitis-related viruses.
Collapse
Affiliation(s)
- Wenqiao He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuhan Gao
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yuqi Wen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Xuemei Ke
- Xiamen Center for Disease Control and Prevention, Xiamen, China
| | - Zejin Ou
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Yongzhi Li
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Huan He
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| | - Qing Chen
- Department of Epidemiology, School of Public Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Root JJ, Shriner SA. Avian Influenza A Virus Associations in Wild, Terrestrial Mammals: A Review of Potential Synanthropic Vectors to Poultry Facilities. Viruses 2020; 12:E1352. [PMID: 33256041 PMCID: PMC7761170 DOI: 10.3390/v12121352] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
The potential role of wild mammals in the epidemiology of influenza A viruses (IAVs) at the farm-side level has gained increasing consideration over the past two decades. In some instances, select mammals may be more likely to visit riparian areas (both close and distant to farms) as well as poultry farms, as compared to traditional reservoir hosts, such as waterfowl. Of significance, many mammalian species can successfully replicate and shed multiple avian IAVs to high titers without prior virus adaptation and often can shed virus in greater quantities than synanthropic avian species. Within this review, we summarize and discuss the potential risks that synanthropic mammals could pose by trafficking IAVs to poultry operations based on current and historic literature.
Collapse
Affiliation(s)
- J. Jeffrey Root
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, Fort Collins, CO 80521, USA;
| | | |
Collapse
|
13
|
Abstract
During recent years, serological evidence has shown that a number of peridomestic mammals (e.g., those commonly found in or around human structures) are naturally exposed to influenza A viruses (IAVs). In addition, experimental studies have demonstrated that many of these species can successfully replicate several different IAVs, including IAVs of high consequence to public or agricultural health. The replication of some IAVs within this group of mammals could have implications for biosecurity associated with poultry production and live bird markets in some regions of the world. Given this evidence, the need for further study and understanding of the role that peridomestic mammals may play in IAV dynamics is increasingly being recognized. This chapter will provide a general overview on IAV associations in peridomestic mammals, especially as they pertain to avian IAVs, and provide some general views and guidelines for sampling these species in various situations.
Collapse
|
14
|
Experimental infections of Norway rats with avian-derived low-pathogenic influenza A viruses. Arch Virol 2019; 164:1831-1836. [PMID: 30976905 DOI: 10.1007/s00705-019-04225-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 12/27/2022]
|