1
|
Redmond EJ, Ronald J, Davis SJ, Ezer D. Stable and dynamic gene expression patterns over diurnal and developmental timescales in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2025; 246:1147-1162. [PMID: 40114416 PMCID: PMC11982781 DOI: 10.1111/nph.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/24/2025] [Indexed: 03/22/2025]
Abstract
Developmental processes are known to be circadian-regulated in plants. For instance, the circadian clock regulates genes involved in the photoperiodic flowering pathway and the initiation of leaf senescence. Furthermore, signals that entrain the circadian clock, such as energy availability, are known to vary in strength over plant development. However, diel oscillations of the Arabidopsis transcriptome have typically been measured in seedlings. We collected RNA sequencing (RNA-seq) data from Arabidopsis leaves over developmental and diel timescales, concurrently: every 4 h d-1, on three separate days after a synchronised vegetative-to-reproductive transition. Gene expression varied more over the developmental timescale than on the diel timescale, including genes related to a key energy sensor: the sucrose nonfermenting-1-related protein kinase complex. Moreover, regulatory targets of core clock genes displayed changes in rhythmicity and amplitude of expression over development. Cell-type-specific expression showed diel patterns that varied in amplitude, but not phase, over development. Some previously identified reverse transcription quantitative polymerase chain reaction housekeeping genes display undesirable levels of variation over both timescales. We identify which common reverse transcription quantitative polymerase chain reaction housekeeping genes are most stable across developmental and diel timescales. In summary, we establish the patterns of circadian transcriptional regulation over plant development, demonstrating how diel patterns of expression change over developmental timescales.
Collapse
Affiliation(s)
- Ethan J. Redmond
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - James Ronald
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - Seth J. Davis
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| | - Daphne Ezer
- Department of BiologyUniversity of YorkWentworth Way, HeslingtonYorkYO10 5DDUK
| |
Collapse
|
2
|
Latini L, Burini G, Mazza V, Grignani G, De Donno R, Bello E, Tricarico E, Malavasi S, Nascetti G, Canestrelli D, Carere C. Early-life environment shapes claw bilateral asymmetry in the European lobster (Homarus gammarus). Biol Open 2025; 14:bio061901. [PMID: 39957502 PMCID: PMC11957455 DOI: 10.1242/bio.061901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/18/2025] Open
Abstract
Developmental plasticity refers to an organism's ability to adjust its development in response to changing environmental conditions, leading to changes in behaviour, physiology, or morphology. This adaptability is crucial for survival and helps organisms to cope with environmental challenges throughout their lives. Understanding the mechanisms underlying developmental plasticity, particularly how environmental and ontogenetic factors shape functional traits, is fundamental for both evolutionary biology and conservation efforts. In this study we investigated the effects of early-life environmental conditions on the development of claw asymmetry in juvenile European lobsters (Homarus gammarus, N=244), a functional trait essential for survival and ecological success. Juveniles were randomly divided between four different rearing conditions characterized by the presence or absence of physical enrichments (e.g. substrate and shelters), which were introduced at different developmental stages in separated groups to assess the timing and nature of their effect. Results revealed that exposure to substrate alone, without additional stimuli, consistently promoted claw asymmetry, regardless of the timing of its introduction, while the 6th developmental stage emerged as the critical period for claw differentiation. By identifying the environmental factors that influence developmental outcomes in lobsters, and the timing of these effects, this study improves our understanding of developmental plasticity and offers valuable insights for optimizing conservation aquaculture and reintroduction strategies.
Collapse
Affiliation(s)
- Lorenzo Latini
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Gioia Burini
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Valeria Mazza
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Giacomo Grignani
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Riccardo De Donno
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Eleonora Bello
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Elena Tricarico
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Stefano Malavasi
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, 30172, Venice, Italy
| | - Giuseppe Nascetti
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Daniele Canestrelli
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Claudio Carere
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| |
Collapse
|
3
|
Buldain J, Vitorino R, Lima T, Avella I, Zuazo Ó, Martínez-Freiría F. Intraspecific venom variation in the Iberian asp viper (Vipera aspis zinnikeri) across natural and intensive agricultural habitats. J Proteomics 2025; 310:105337. [PMID: 39448027 DOI: 10.1016/j.jprot.2024.105337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Snake venom composition varies at different levels. To date, comparative venom studies have seldom taken into account the role of habitat type in the occurrence of snake venom variation. Here we investigated the presence of venom variation across different populations of the Iberian asp viper (Vipera aspis zinnikeri) inhabiting two contrasting habitats: natural vs. intensive agricultural. We used shotgun proteomics to describe the protein composition of the venoms of six adults from two distinct localities. Furthermore, to test whether local conditions and habitat can alter venom composition in this taxon, we compared the SDS-PAGE profiles of 40 adult venoms from six populations, three in natural habitats and three in intensive agricultural environments. The venoms were composed of 21 toxin families, of which five (CTL, PLA2, VEGF, svSP, and svMP) comprised 69-82 % of each proteome. The relative abundances of toxin families varied considerably at inter- and intra-population levels. Linear regression performed on non-metric multidimensional scaling values showed a significant effect of locality of origin and habitat type on the differences detected between individual SDS-PAGE venom profiles. Our results suggest the presence of regional variation in V. a. zinnikeri venom, potentially reinforcing the role of local pressures in shaping snake venom composition. SIGNIFICANCE: This work provides the first proteomic characterization of the venom of the Iberian asp viper, Vipera aspis zinnikeri, obtained by means of shotgun proteomics. The statistical analysis of 40 individual SDS-PAGE venom profiles highlights that venom variation in this taxon can be associated with geographical origin and habitat type of the area where each viper was collected. Our results suggest the presence of regional variation in V. a. zinnikeri venom, reinforcing the role that local pressures may play as drivers of snake venom variation.
Collapse
Affiliation(s)
- Jon Buldain
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Lima
- Department of Medical Sciences and Institute of Biomedicine - iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ignazio Avella
- Animal Venomics Lab, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany; Institute for Insect Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany; LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Natural Product Genomics, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Óscar Zuazo
- Calle La Puebla 1, Santo Domingo de la Calzada, 26250, Spain
| | - Fernando Martínez-Freiría
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| |
Collapse
|
4
|
Stočes D, Šipoš J. Multilevel Analysis of Ground Beetle Responses to Forest Management: Integrating Species Composition, Morphological Traits and Developmental Instability. Ecol Evol 2025; 15:e70793. [PMID: 39844786 PMCID: PMC11751256 DOI: 10.1002/ece3.70793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/24/2025] Open
Abstract
This study evaluates the response of ground beetle (Coleoptera: Carabidae) assemblage to forest management practices by integrating species composition, body traits, wing morphology and developmental instability. Traditional approaches that rely on averaged identity-based descriptors often overlook phenotypic plasticity and functional trait variability, potentially masking species-specific responses to environmental changes. To address this, we applied a three-layered analytical approach to address this gap, utilising ground beetle occurrence and morphological trait data from Podyjí National Park, Czech Republic. The first layer assessed assemblage composition with ecological and dietary preferences across control, ecotone and clearing treatments using multivariate techniques. Building on species-level knowledge, the second layer analysed the interaction between coarse traits, such as wing morphology and fine-scale body traits, including body size (proxied by elytron length), head width and last abdominal sternite, to assess their relationship with the different treatments. These interactions were explored as intraspecific wing plasticity can affect functional interpretations. The third layer focused on fluctuating asymmetry as an intraindividual indicator of developmental instability, examining how ground beetles respond to environmental stressors. Our findings revealed: (i) no significant impact of habitat treatments on the presence of specialist species in the assemblage analysis; (ii) analysis of morphological traits highlights the combined influence of a coarse trait, such as wing morphology, and a fine trait, such as head width, which together contribute to the partitioning of assemblages and help distinguish differences in habitat use; and (iii) FA analysis revealed a significant positive association between the second antennal segment of specialist species and litter while displaying a negative association with Collembola. This multilevel analytical framework not only confirms ecological findings but also advances our approach to habitat and species analysis, offering deeper insights into ecosystem dynamics.
Collapse
Affiliation(s)
- Dominik Stočes
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgronomyMendel University in BrnoBrnoCzech Republic
| | - Jan Šipoš
- Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgronomyMendel University in BrnoBrnoCzech Republic
| |
Collapse
|
5
|
Cai H, Melo D, Des Marais DL. Disentangling variational bias: the roles of development, mutation, and selection. Trends Genet 2025; 41:23-32. [PMID: 39443198 DOI: 10.1016/j.tig.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
The extraordinary diversity and adaptive fit of organisms to their environment depends fundamentally on the availability of variation. While most population genetic frameworks assume that random mutations produce isotropic phenotypic variation, the distribution of variation available to natural selection is more restricted, as the distribution of phenotypic variation is affected by a range of factors in developmental systems. Here, we revisit the concept of developmental bias - the observation that the generation of phenotypic variation is biased due to the structure, character, composition, or dynamics of the developmental system - and argue that a more rigorous investigation into the role of developmental bias in the genotype-to-phenotype map will produce fundamental insights into evolutionary processes, with potentially important consequences on the relation between micro- and macro-evolution. We discuss the hierarchical relationships between different types of variational biases, including mutation bias and developmental bias, and their roles in shaping the realized phenotypic space. Furthermore, we highlight the challenges in studying variational bias and propose potential approaches to identify developmental bias using modern tools.
Collapse
Affiliation(s)
- Haoran Cai
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| | - Diogo Melo
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - David L Des Marais
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.
| |
Collapse
|
6
|
Borisov V, Shkil F. Effects and phenotypic consequences of transient thyrotoxicosis and hypothyroidism at different stages of zebrafish Danio rerio (Teleostei; Cyprinidae) skeleton development. Anat Rec (Hoboken) 2024. [PMID: 39431292 DOI: 10.1002/ar.25592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/21/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
The effects and consequences of changes in thyroid hormones (THs) level are among the actively studied topics in teleost developmental and evolutionary biology. In most of the experimental models used, the altered hormonal status (either hypo- or hyperthyroidism) is a stable characteristic of the developing organism, and the observed phenotypic outcomes are the cumulative consequences of multiple TH-induced developmental changes. Meanwhile, the influence of the transient fluctuations of TH content on skeleton development has been much less studied. Here, we present experimental data on the developmental effects and phenotypic consequences of transient, pharmacologically induced thyrotoxicosis and hypothyroidism at different stages of ossified skeleton patterning in zebrafish. According to the results, the skeleton structures differed in TH sensitivity. Some showed a notable shift in the developmental timing and rate, while other demonstrated little or no response to changes in TH content. The developmental stages also differed in TH sensitivity. We identified a relatively short developmental period, during which changes in TH level significantly increased the developmental instability and plasticity, leading to phenotypic consequences comparable to those in fish with a persistent hypo- or hyperthyroidism. These findings allow this period to be considered as a critical developmental window.
Collapse
Affiliation(s)
- Vasily Borisov
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
| | - Fedor Shkil
- A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
- N.K. Koltzov Institute of Developmental Biology, RAS, Moscow, Russia
| |
Collapse
|
7
|
Han Y, Liu L, Lei M, Liu W, Si H, Ji Y, Du Q, Zhu M, Zhang W, Dai Y, Liu J, Zan Y. Divergent Flowering Time Responses to Increasing Temperatures Are Associated With Transcriptome Plasticity and Epigenetic Modification Differences at FLC Promoter Region of Arabidopsis thaliana. Mol Ecol 2024:e17544. [PMID: 39360449 DOI: 10.1111/mec.17544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/02/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Understanding the genetic, and transcriptomic changes that drive the phenotypic plasticity of fitness traits is a central question in evolutionary biology. In this study, we utilised 152 natural Swedish Arabidopsis thaliana accessions with re-sequenced genomes, transcriptomes and methylomes and measured flowering times (FTs) under two temperature conditions (10°C and 16°C) to address this question. We revealed that the northern accessions exhibited advanced flowering in response to decreased temperature, whereas the southern accessions delayed their flowering, indicating a divergent flowering response. This contrast in flowering responses was associated with the isothermality of their native ranges, which potentially enables the northern accessions to complete their life cycle more rapidly in years with shorter growth seasons. At the transcriptome level, we observed extensive rewiring of gene co-expression networks, with the expression of 25 core genes being associated with the mean FT and its plastic variation. Notably, variations in FLC expression sensitivity between northern and southern accessions were found to be associated with the divergence FT response. Further analysis suggests that FLC expression sensitivity is associated with differences in CG, CHG and CHH methylation at the promoter region. Overall, our study revealed the association between transcriptome plasticity and flowering time plasticity among different accessions, providing evidence for its relevance in ecological adaptation. These findings offer deeper insights into the genetics of rapid responses to environmental changes and ecological adaptation.
Collapse
Affiliation(s)
- Yu Han
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Li Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Mengyu Lei
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Wei Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Huan Si
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yan Ji
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qiao Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
| | - Mingjia Zhu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Wenjia Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yifei Dai
- Biostatistics Department, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry of Education & Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Science, Sichuan University, Chengdu, China
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yanjun Zan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
8
|
Redmond EJ, Ronald J, Davis SJ, Ezer D. Single-plant-omics reveals the cascade of transcriptional changes during the vegetative-to-reproductive transition. THE PLANT CELL 2024; 36:4594-4606. [PMID: 39121073 PMCID: PMC11449079 DOI: 10.1093/plcell/koae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/26/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Plants undergo rapid developmental transitions, which occur contemporaneously with gradual changes in physiology. Moreover, individual plants within a population undergo developmental transitions asynchronously. Single-plant-omics has the potential to distinguish between transcriptional events that are associated with these binary and continuous processes. Furthermore, we can use single-plant-omics to order individual plants by their intrinsic biological age, providing a high-resolution transcriptional time series. We performed RNA-seq on leaves from a large population of wild-type Arabidopsis (Arabidopsis thaliana) during the vegetative-to-reproductive transition. Though most transcripts were differentially expressed between bolted and unbolted plants, some regulators were more closely associated with leaf size and biomass. Using a pseudotime inference algorithm, we determined that some senescence-associated processes, such as the reduction in ribosome biogenesis, were evident in the transcriptome before a bolt was visible. Even in this near-isogenic population, some variants are associated with developmental traits. These results support the use of single-plant-omics to uncover rapid transcriptional dynamics by exploiting developmental asynchrony.
Collapse
Affiliation(s)
- Ethan J Redmond
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - James Ronald
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Seth J Davis
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Daphne Ezer
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| |
Collapse
|
9
|
Zakharov VM, Trofimov IE. Developmental noise, entropy, and biological system condition. Biosystems 2024; 244:105310. [PMID: 39154842 DOI: 10.1016/j.biosystems.2024.105310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Developmental noise is considered as a permissible level of entropy, as a compromise between the cost and needed precision of the realization of genetic information. In terms of entropy, noise is a measure of acceptable level of disorder to ensure a reliable system operation. Developmental noise plays a role in the observed phenotypic diversity and is associated with other indicators of the biological system condition. The thermodynamic characteristic of entropy by the energy metabolism also turns out to be related to the developmental noise. Phenotypic variability is largely determined by developmental homeostasis, including both canalization (an ability to form a similar phenotype under different conditions) and developmental stability (a capability for perfect development measured by noise level). It is shown that the change in the noise level, as an expression of the certain entropy level, unlike other forms of phenotypic variability, is a reflection of a change in the system condition. Although the entropy indices of ontogeny and community under certain conditions can change simultaneously, the entropy index at the level of developmental noise proves to be a more unambiguous and universal measure of the disorder of a biological system, compared to biodiversity indices at the community level.
Collapse
Affiliation(s)
- Vladimir M Zakharov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Russia
| | - Ilya E Trofimov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Russia.
| |
Collapse
|
10
|
Moes E, Kuzawa CW, Edgar HJH. Sex-specific effects of environmental temperature during gestation on fluctuating asymmetry in deciduous teeth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24944. [PMID: 38623790 DOI: 10.1002/ajpa.24944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVES External environmental heat exposure during gestation impacts the physiology of human development in utero, but evidence for these impacts has not yet been explored in dentition. We examined deciduous teeth for fluctuating asymmetry (FA), a measure of developmental instability, together with gestational environmental temperature data drawn from historical weather statistics. MATERIALS AND METHODS We measured dental casts from the longitudinal Burlington Growth Study, representing 172 participants (ages 3-6 years) with health records. FA was calculated from crown dimensions and intercuspal distances that develop during gestation. Multiple regression separated by sex (nfemale = 81) examined the effects of mean temperatures in each trimester, controlling for birth year. RESULTS In females, increased temperatures during the first trimester are significantly associated with an increase in FA (p = 0.03), specifically during the second and third prenatal months (p = 0.03). There is no relationship between temperature and FA for either sex in the second or third trimesters, when enamel is formed. DISCUSSION Dental instability may be sensitive to temperature in the first trimester in females during the scaffolding of crown shape and size in the earliest stages of tooth formation. Sexual dimorphism in growth investment strategies may explain the differences in results between males and females. Using enduring dental characteristics, these results advance our understanding of the effects of temperature on fetal physiology within a discrete period.
Collapse
Affiliation(s)
- Emily Moes
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
- Department of Physician Assistant Studies, University of St. Francis, Albuquerque, New Mexico, USA
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Evanston, Illinois, USA
- Institute for Policy Research, Northwestern University, Evanston, Illinois, USA
| | - Heather J H Edgar
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
- Office of the Medical Investigator, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
11
|
Gómez JM, González-Megías A, Armas C, Narbona E, Navarro L, Perfectti F. Selection maintains a nonadaptive floral polyphenism. Evol Lett 2024; 8:610-621. [PMID: 39100232 PMCID: PMC11291621 DOI: 10.1093/evlett/qrae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 08/06/2024] Open
Abstract
Adaptive phenotypic plasticity evolves in response to the contrasting selection pressures that arise when organisms face environmental heterogeneity. Despite its importance for understanding how organisms successfully cope with environmental change, adaptive plasticity is often assumed but rarely demonstrated. We study here the adaptive nature of the extreme seasonal within-individual floral polyphenism exhibited by the crucifer Moricandia arvensis, a Mediterranean species that produces two different types of flowers depending on the season of the year. During spring, this species has large, cross-shaped, lilac flowers, while during summer, it develops small, rounded, white flowers. Although floral polyphenism was associated with increased plant fitness, selection moved floral traits away from their local optimum values during the harsh summer. This result strongly suggests that floral polyphenism is not adaptive in M. arvensis. The main factor selecting against floral polyphenism was pollinators, as they select for the same floral morph in all environments. Despite not being adaptive, floral polyphenism occurs throughout the entire distribution range of M. arvensis and has probably been present since the origin of the species. To solve this paradox, we explored the factors causing floral polyphenism, finding that floral polyphenism was triggered by summer flowering. Summer flowering was beneficial because it led to extra seed production and was favored by adaptive plasticity in leaf functional traits. Taken together, our study reveals a complex scenario in which nonadaptive floral polyphenism has been indirectly maintained over M. arvensis evolutionary history by selection operating to favor summer flowering. Our study provides thus strong evidence that nonadaptive plasticity may evolve as a byproduct of colonizing stressful environments.
Collapse
Affiliation(s)
- José María Gómez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | - Adela González-Megías
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Zoología, Universidad de Granada, Granada, Spain
| | - Cristina Armas
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Eduardo Narbona
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Sevilla, Spain
| | - Luis Navarro
- Departamento de Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, Vigo, Spain
| | - Francisco Perfectti
- Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
- Departamento de Genética, Universidad de Granada, Granada, Spain
| |
Collapse
|
12
|
Hegyi G, Laczi M, Wacha A, Gyarmathy H, Klein Á, Rosivall B, Sarkadi F, Szabó G, Török J. Prediction of individual differences in non-iridescent structural plumage colour from nanostructural periodicity and regularity. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231804. [PMID: 39100180 PMCID: PMC11296197 DOI: 10.1098/rsos.231804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 04/26/2024] [Indexed: 08/06/2024]
Abstract
Non-iridescent structural plumage reflectance is a sexually selected indicator of individual quality in several bird species. However, the structural basis of individual differences remains unclear. In particular, the dominant periodicity of the quasi-ordered feather barb nanostructure is of key importance in colour generation, but no study has successfully traced back reflectance parameters, and particularly hue, to nanostructural periodicity, although this would be key to deciphering the information content of individual variation. We used matrix small-angle X-ray scattering measurements of intact, stacked feather samples from the blue tit crown to estimate the sex-dependence and individual variation of nanostructure and its effects on light reflectance. Measures of nanostructural periodicity successfully predicted brightness, ultraviolet chroma and also hue, with statistically similar effects in the two sexes. However, we also observed a lack of overall effect of the nanostructural inhomogeneity estimate on reflectance chromaticity, sex-dependent accuracy in hue prediction and strong sex-dependence in position estimation error. We suggest that reflectance attributes are modified by other feather structures in a sex-specific manner, and that within-individual variation in nanostructural parameters exists within or among feathers and this confounds the interpretation of structure-reflectance relationships at the plumage area level.
Collapse
Affiliation(s)
- Gergely Hegyi
- Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest1117, Hungary
- HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, Budapest1117, Hungary
| | - Miklós Laczi
- Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest1117, Hungary
- HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, Budapest1117, Hungary
- The Barn Owl Foundation, Temesvári út 8, Orosztony8744, Hungary
| | - András Wacha
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok körútja 2, Budapest1117, Hungary
| | - Helga Gyarmathy
- Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest1117, Hungary
| | - Ákos Klein
- The Barn Owl Foundation, Temesvári út 8, Orosztony8744, Hungary
| | - Balázs Rosivall
- Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest1117, Hungary
| | - Fanni Sarkadi
- Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest1117, Hungary
| | - Gyula Szabó
- Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest1117, Hungary
- Lendület Ecosystem Services Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Alkotmány út 2-4, Vácrátót2163, Hungary
| | - János Török
- Department of Systematic Zoology and Ecology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest1117, Hungary
- HUN-REN-ELTE-MTM Integrative Ecology Research Group, Pázmány Péter sétány 1/C, Budapest1117, Hungary
| |
Collapse
|
13
|
Yaussy SL. Using craniofacial fluctuating asymmetry to examine the effects of sex, socioeconomic status, and early life experiences on adult age at death in industrial England. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24907. [PMID: 38380869 DOI: 10.1002/ajpa.24907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
OBJECTIVES Historical evidence from 18th- and 19th-century England suggests that industrialization's impacts on health were largely negative, especially among marginalized groups. However, available documentary evidence is often biased toward adult men and rarely sheds light on the experiences of other members of the population, such as women and children. Craniofacial fluctuating asymmetry (FA) can serve as a proxy measurement of developmental instability and stress during development. This study examines the associations among age, sex, socioeconomic status (SES), and FA in skeletal samples from industrial-era England. MATERIALS AND METHODS The sample for this study comes from four industrial-era cemeteries from England (A.D. 1711-1857). Geometric morphometric analyses of three-dimensional landmark coordinate data were used to generate a measure of FA for each individual (Mahalanobis distance). A three-way ANOVA was used to evaluate the impacts of sex, SES, and FA scores on adult age at death (n = 168). RESULTS Significant associations existed between age at death and SES (p = 0.004) and FA scores (p = 0.094). Comparisons of the estimated means indicated that age at death was consistently higher among high SES individuals and individuals with FA scores less than one standard deviation from the mean. CONCLUSIONS This study supports findings from previous studies that have suggested that the differences in resource access and environmental buffering generated by socioeconomic inequality can impact longevity and patterns of mortality among socioeconomic status groups. Likewise, stress in early life-evinced by craniofacial fluctuating asymmetry-can influence observed patterns of longevity in adults decades later.
Collapse
Affiliation(s)
- Samantha L Yaussy
- Department of Sociology and Anthropology, James Madison University, Harrisonburg, Virginia, USA
| |
Collapse
|
14
|
Metcalfe NB. How important is hidden phenotypic plasticity arising from alternative but converging developmental trajectories, and what limits it? J Exp Biol 2024; 227:jeb246010. [PMID: 38449324 PMCID: PMC10949067 DOI: 10.1242/jeb.246010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Developmental plasticity -- the capacity for a genotype to develop into different phenotypes, depending on the environment - is typically viewed from the perspective of the resulting phenotype. Thus, if development is viewed as a trajectory towards a target, then developmental plasticity allows environmentally induced alterations to the target. However, there can also be variations in the trajectory. This is seen with compensatory responses, for instance where growth accelerates after an earlier period of food shortage, or where investment in sexual ornaments is maintained even when resources are limiting. If the compensation is complete, the adult phenotype can appear 'normal' (i.e. the different developmental trajectories converge on the same target). However, alternative trajectories to a common target can have multiple long-term consequences, including altered physiological programming and rates of senescence, possibly owing to trade-offs between allocating resources to the prioritized trait versus to body maintenance. This suggests that plasticity in developmental trajectories towards a common target leads to variation in the resilience and robustness of the adult body. This form of developmental plasticity is far more hidden than plasticity in final adult target, but it may be more common. Here, I discuss the causes, consequences and limitations of these different kinds of plasticity, with a special focus on whether they are likely to be adaptive. I emphasize the need to study plasticity in developmental trajectories, and conclude with suggestions for future research to tease apart the different forms of developmental plasticity and the factors that influence their evolution and expression.
Collapse
Affiliation(s)
- Neil B. Metcalfe
- School of Biodiversity, One Health & Veterinary Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
15
|
Vasey GL, Urza AK, Chambers JC, Pringle EG, Weisberg PJ. Clinal variations in seedling traits and responses to water availability correspond to seed-source environmental gradients in a foundational dryland tree species. ANNALS OF BOTANY 2023; 132:203-216. [PMID: 36905361 PMCID: PMC10583205 DOI: 10.1093/aob/mcad041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND AIMS In dryland ecosystems, conifer species are threatened by more frequent and severe droughts, which can push species beyond their physiological limits. Adequate seedling establishment will be critical for future resilience to global change. We used a common garden glasshouse experiment to determine how seedling functional trait expression and plasticity varied among seed sources in response to a gradient of water availability, focusing on a foundational dryland tree species of the western USA, Pinus monophylla. We hypothesized that the expression of growth-related seedling traits would show patterns consistent with local adaptation, given clinal variation among seed source environments. METHODS We collected P. monophylla seeds from 23 sites distributed across rangewide gradients of aridity and seasonal moisture availability. A total of 3320 seedlings were propagated with four watering treatments representing progressively decreasing water availability. Above- and below-ground growth-related traits of first-year seedlings were measured. Trait values and trait plasticity, here representing the degree of variation among watering treatments, were modelled as a function of watering treatment and environmental conditions at the seed source locations (i.e. water availability, precipitation seasonality). KEY RESULTS We found that, under all treatments, seedlings from more arid climates had larger above- and below-ground biomass compared to seedlings from sites experiencing lower growing-season water limitation, even after accounting for differences in seed size. Additionally, trait plasticity in response to watering treatments was greatest for seedlings from summer-wet sites that experience periodic monsoonal rain events. CONCLUSIONS Our results show that P. monophylla seedlings respond to drought through plasticity in multiple traits, but variation in trait responses suggests that different populations are likely to respond uniquely to changes in local climate. Such trait diversity will probably influence the potential for future seedling recruitment in woodlands that are projected to experience extensive drought-related tree mortality.
Collapse
Affiliation(s)
- Georgia L Vasey
- Department of Natural Resources and Environmental Science, University of Nevada Reno, 1664 N. Virginia Street, Mail Stop 186, Reno, NV 89557, USA
| | - Alexandra K Urza
- USDA Forest Service, Rocky Mountain Research Station, 920 Valley Road, Reno, NV 89512, USA
| | - Jeanne C Chambers
- USDA Forest Service, Rocky Mountain Research Station, 920 Valley Road, Reno, NV 89512, USA
| | - Elizabeth G Pringle
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada Reno, 1664 N. Virginia Street, Mail Stop 0314, Reno, NV 89557, USA
| | - Peter J Weisberg
- Department of Natural Resources and Environmental Science, University of Nevada Reno, 1664 N. Virginia Street, Mail Stop 186, Reno, NV 89557, USA
| |
Collapse
|
16
|
Kovuri P, Yadav A, Sinha H. Role of genetic architecture in phenotypic plasticity. Trends Genet 2023; 39:703-714. [PMID: 37173192 DOI: 10.1016/j.tig.2023.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Phenotypic plasticity, the ability of an organism to display different phenotypes across environments, is widespread in nature. Plasticity aids survival in novel environments. Herein, we review studies from yeast that allow us to start uncovering the genetic architecture of phenotypic plasticity. Genetic variants and their interactions impact the phenotype in different environments, and distinct environments modulate the impact of genetic variants and their interactions on the phenotype. Because of this, certain hidden genetic variation is expressed in specific genetic and environmental backgrounds. A better understanding of the genetic mechanisms of phenotypic plasticity will help to determine short- and long-term responses to selection and how wide variation in disease manifestation occurs in human populations.
Collapse
Affiliation(s)
- Purnima Kovuri
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India
| | - Anupama Yadav
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Himanshu Sinha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India; Centre for Integrative Biology and Systems mEdicine (IBSE), IIT Madras, Chennai, India; Robert Bosch Centre for Data Science and Artificial Intelligence (RBCDSAI), IIT Madras, Chennai, India.
| |
Collapse
|
17
|
Abstract
Evolutionary biology provides a crucial foundation for medicine and behavioral science that has been missing from psychiatry. Its absence helps to explain slow progress; its advent promises major advances. Instead of offering a new kind of treatment, evolutionary psychiatry provides a scientific foundation useful for all kinds of treatment. It expands the search for causes from mechanistic explanations for disease in some individuals to evolutionary explanations for traits that make all members of a species vulnerable to disease. For instance, capacities for symptoms such as pain, cough, anxiety and low mood are universal because they are useful in certain situations. Failing to recognize the utility of anxiety and low mood is at the root of many problems in psychiatry. Determining if an emotion is normal and if it is useful requires understanding an individual's life situation. Conducting a review of social systems, parallel to the review of systems in the rest of medicine, can help achieve that understanding. Coping with substance abuse is advanced by acknowledging how substances available in modern environments hijack chemically mediated learning mechanisms. Understanding why eating spirals out of control in modern environments is aided by recognizing the motivations for caloric restriction and how it arouses famine protection mechanisms that induce binge eating. Finally, explaining the persistence of alleles that cause serious mental disorders requires evolutionary explanations of why some systems are intrinsically vulnerable to failure. The thrill of finding functions for apparent diseases is evolutionary psychiatry's greatest strength and weakness. Recognizing bad feelings as evolved adaptations corrects psychiatry's pervasive mistake of viewing all symptoms as if they were disease manifestations. However, viewing diseases such as panic disorder, melancholia and schizophrenia as if they are adaptations is an equally serious mistake in evolutionary psychiatry. Progress will come from framing and testing specific hypotheses about why natural selection left us vulnerable to mental disorders. The efforts of many people over many years will be needed before we will know if evolutionary biology can provide a new paradigm for understanding and treating mental disorders.
Collapse
Affiliation(s)
- Randolph M Nesse
- Departments of Psychiatry and Psychology, University of Michigan, Ann Arbor, MI, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
18
|
Anthwal N, Urban DJ, Sadier A, Takenaka R, Spiro S, Simmons N, Behringer RR, Cretekos CJ, Rasweiler JJ, Sears KE. Insights into the formation and diversification of a novel chiropteran wing membrane from embryonic development. BMC Biol 2023; 21:101. [PMID: 37143038 PMCID: PMC10161559 DOI: 10.1186/s12915-023-01598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 04/13/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Through the evolution of novel wing structures, bats (Order Chiroptera) became the only mammalian group to achieve powered flight. This achievement preceded the massive adaptive radiation of bats into diverse ecological niches. We investigate some of the developmental processes that underlie the origin and subsequent diversification of one of the novel membranes of the bat wing: the plagiopatagium, which connects the fore- and hind limb in all bat species. RESULTS Our results suggest that the plagiopatagium initially arises through novel outgrowths from the body flank that subsequently merge with the limbs to generate the wing airfoil. Our findings further suggest that this merging process, which is highly conserved across bats, occurs through modulation of the programs controlling the development of the periderm of the epidermal epithelium. Finally, our results suggest that the shape of the plagiopatagium begins to diversify in bats only after this merging has occurred. CONCLUSIONS This study demonstrates how focusing on the evolution of cellular processes can inform an understanding of the developmental factors shaping the evolution of novel, highly adaptive structures.
Collapse
Affiliation(s)
- Neal Anthwal
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - Daniel J Urban
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, USA
- Department of Mammalogy, Division of Vertebrate Biology, American Museum of Natural History, New York, USA
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, USA
| | - Risa Takenaka
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | | | - Nancy Simmons
- Department of Mammalogy, Division of Vertebrate Biology, American Museum of Natural History, New York, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, USA
| | | | - John J Rasweiler
- Department of Obstetrics and Gynecology, State University of New York Downstate Medical Center, New York, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA.
- Department of Molecular, Cell, and Developmental Biology, UCLA, Los Angeles, USA.
| |
Collapse
|
19
|
Quindazzi MJ, Gaffney LP, Polard E, Bohlender N, Duguid W, Juanes F. Otolith mineralogy affects otolith shape asymmetry: a comparison of hatchery and natural origin Coho salmon (Oncorhynchus kisutch). JOURNAL OF FISH BIOLOGY 2023; 102:870-882. [PMID: 36651303 DOI: 10.1111/jfb.15329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Many aspects of natural and hatchery origin salmonid genetics, physiology, behaviour, anatomy and life histories have been compared due to the concerns about what effects domestication and hatchery rearing conditions have on fitness. Genetic and environmental stressors associated with hatchery rearing could cause greater developmental instability (DI), and therefore a higher degree of fluctuating asymmetry (FA) in various bilaterally paired characters, such as otoliths. Nonetheless, to appropriately infer the effects of DI on otolith asymmetry, otolith mineralogy must be accounted for. Vateritic otoliths differ substantially from aragonitic otoliths in terms of mass and shape and can artificially inflate any measurement of FA if not properly accounted for. In this study, measurements of otolith asymmetry between hatchery and natural origin Coho salmon Oncorhynchus kisutch from three different river systems were compared to assess the overall differences in asymmetry when the calcium carbonate polymorph accounted for 59.3% of otoliths from hatchery origin O. kisutch was vateritic compared to 11.7% of otoliths from natural origin O. kisutch. Otolith mineralogy, rather than origin, was the most significant factor influencing the differences in asymmetry for each shape metric. When only aragonitic otoliths were compared, there was no difference in absolute asymmetry between hatchery and natural origin O. kisutch. The authors recommend other researchers to assess otolith mineralogy when conducting studies regarding otolith morphometrics and otolith FA.
Collapse
Affiliation(s)
- Micah J Quindazzi
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
| | - Leigh P Gaffney
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Emma Polard
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Nick Bohlender
- Department of Fisheries and Oceans Canada, Campbell River, British Columbia, Canada
| | - Will Duguid
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
- Pacific Salmon Foundation, Vancouver, British Columbia, Canada
| | - Francis Juanes
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
20
|
Baraldi S, Rigato E, Fusco G. Growth Regulation in the Larvae of the Lepidopteran Pieris brassicae: A Field Study. INSECTS 2023; 14:insects14020167. [PMID: 36835736 PMCID: PMC9965483 DOI: 10.3390/insects14020167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/06/2023]
Abstract
Size and shape are important determinants of fitness in most living beings. Accordingly, the capacity of the organism to regulate size and shape during growth, containing the effects of developmental disturbances of different origin, is considered a key feature of the developmental system. In a recent study, through a geometric morphometric analysis on a laboratory-reared sample of the lepidopteran Pieris brassicae, we found evidence of regulatory mechanisms able to restrain size and shape variation, including bilateral fluctuating asymmetry, during larval development. However, the efficacy of the regulatory mechanism under greater environmental variation remains to be explored. Here, based on a field-reared sample of the same species, by adopting identical measurements of size and shape variation, we found that the regulatory mechanisms for containing the effects of developmental disturbances during larval growth in P. brassicae are also effective under more natural environmental conditions. This study may contribute to better characterization of the mechanisms of developmental stability and canalization and their combined effects in the developmental interactions between the organism and its environment.
Collapse
|
21
|
Martinez-Leiva L, Landeira JM, Fatira E, Díaz-Pérez J, Hernández-León S, Roo J, Tuset VM. Energetic Implications of Morphological Changes between Fish Larval and Juvenile Stages Using Geometric Morphometrics of Body Shape. Animals (Basel) 2023; 13:370. [PMID: 36766259 PMCID: PMC9913231 DOI: 10.3390/ani13030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The fish body shape is a key factor that influences multiple traits such as swimming, foraging, mating, migrations, and predator avoidance. The present study describes the body morphological changes and the growth trajectories during the transformation from 24 to 54 days post-hatching in the golden grey mullet, Chelon auratus, using geometric morphometric analysis (GMA). The results revealed a decrease in morphological variability (i.e., morphological disparity) with the somatic growth. The main changes affected head size, elongation, and widening of the body. Given that this variability could affect the metabolism, some individuals with different morphologies and in different ontogenetic developmental stages were selected to estimate their potential respiration rate using the Electron Transport System (ETS) analysis. Differences were detected depending on the developmental stage, and being significantly smaller after 54 days post-hatching. Finally, a multivariate linear regression indicated that the specific ETS activity was partially related to the fish length and body shape. Thus, our findings emphasized the relevance of larval morphological variability for understanding the physiological processes that occur during the development.
Collapse
Affiliation(s)
- Lorena Martinez-Leiva
- Unidad Asociada ULPGC-CSIC, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35214 Telde, Canary Islands, Spain
| | - José M. Landeira
- Unidad Asociada ULPGC-CSIC, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35214 Telde, Canary Islands, Spain
| | - Effrosyni Fatira
- Unidad Asociada ULPGC-CSIC, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35214 Telde, Canary Islands, Spain
| | - Javier Díaz-Pérez
- Unidad Asociada ULPGC-CSIC, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35214 Telde, Canary Islands, Spain
| | - Santiago Hernández-León
- Unidad Asociada ULPGC-CSIC, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35214 Telde, Canary Islands, Spain
| | - Javier Roo
- Instituto Universitario ECOAQUA, Universidad de Las Palmas de Gran Canaria, 35214 Telde, Canary Islands, Spain
| | - Víctor M. Tuset
- Unidad Asociada ULPGC-CSIC, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35214 Telde, Canary Islands, Spain
| |
Collapse
|
22
|
Trindade S, De Niz M, Costa-Sequeira M, Bizarra-Rebelo T, Bento F, Dejung M, Narciso MV, López-Escobar L, Ferreira J, Butter F, Bringaud F, Gjini E, Figueiredo LM. Slow growing behavior in African trypanosomes during adipose tissue colonization. Nat Commun 2022; 13:7548. [PMID: 36481558 PMCID: PMC9732351 DOI: 10.1038/s41467-022-34622-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 12/13/2022] Open
Abstract
When Trypanosoma brucei parasites, the causative agent of sleeping sickness, colonize the adipose tissue, they rewire gene expression. Whether this adaptation affects population behavior and disease treatment remained unknown. By using a mathematical model, we estimate that the population of adipose tissue forms (ATFs) proliferates slower than blood parasites. Analysis of the ATFs proteome, measurement of protein synthesis and proliferation rates confirm that the ATFs divide on average every 12 h, instead of 6 h in the blood. Importantly, the population of ATFs is heterogeneous with parasites doubling times ranging between 5 h and 35 h. Slow-proliferating parasites remain capable of reverting to the fast proliferation profile in blood conditions. Intravital imaging shows that ATFs are refractory to drug treatment. We propose that in adipose tissue, a subpopulation of T. brucei parasites acquire a slow growing behavior, which contributes to disease chronicity and treatment failure.
Collapse
Affiliation(s)
- Sandra Trindade
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Mariana Costa-Sequeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Tiago Bizarra-Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Fábio Bento
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
- Institute of Molecular Biology, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology, 55128, Mainz, Germany
| | - Marta Valido Narciso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Lara López-Escobar
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - João Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal
| | - Falk Butter
- Institute of Molecular Biology, 55128, Mainz, Germany
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS, UMR-5234, Bordeaux, France
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), Université de Bordeaux, CNRS, UMR-5536, Bordeaux, France
| | - Erida Gjini
- Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisbon, Portugal.
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisbon, Portugal.
| |
Collapse
|
23
|
Escobedo-Morales LA, León-Paniagua L, Martínez-Meyer E, Mandujano S. Reevaluation of the status of the Central American brocket deer Mazama temama (Artiodactyla: Cervidae) subspecies based on morphological and environmental evidence. J Mammal 2022. [DOI: 10.1093/jmammal/gyac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
The Central American brocket deer (Mazama temama) is widespread across the Mesoamerican forests, yet it remains largely unknown. Three subspecies are recognized currently within M. temama using pelage coloration as the primary diagnostic character. However, it remains unclear if there is any pattern of morphological variation throughout its distribution. We compared two models of morphological subdivision, namely the traditional subspecies and another based on biogeographic provinces via 2D geometric morphometrics and ecological niche modeling. The second model presented a better fit to the observed variation in cranial shape and size. We found divergence in skull size between individuals from Mexico and Guatemala (northern group) relative to specimens from Honduras, Nicaragua, Costa Rica, and Panama (southern group), the latter being 8% larger than the northern group. Centroid size showed a significant correlation with geographic distance suggesting an isolation-by-distance pattern. Low geographical overlap between the two clusters suggests niche conservatism. Late Pleistocene dispersal from South to Central America and differences in available resources with subsequent isolation due to climatic barriers therefore may have promoted differentiation in size albeit without extensive changes in shape. In this context, the Motagua-Polochic-Jolotán fault system probably plays a key role in promoting morphological differentiation by climatic isolation. Finally, we suggest that M. t. temama (Kerr, 1792) and M. t. reperticia Goldman, 1913 should remain as valid names for the two morphological and ecologically differentiated groups detected here.
Collapse
Affiliation(s)
- Luis A Escobedo-Morales
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México , Edificio D, Primer piso, Circuito de Posgrados, Apartado Postal 70-153, Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Livia León-Paniagua
- Museo de Zoología “Alfonso L. Herrera,” Facultad de Ciencias, Universidad Nacional Autónoma de México , Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Enrique Martínez-Meyer
- Instituto de Biología, Universidad Nacional Autónoma de México , Circuito Exterior s/n, Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Salvador Mandujano
- Red de Biología y Conservación de Vertebrados, Instituto de Ecología , A.C., Carretera antigua a Coatepec 351, Colonia El Haya, Xalapa 91070 , Mexico
| |
Collapse
|
24
|
Jaric I, Voelkl B, Clerc M, Schmid MW, Novak J, Rosso M, Rufener R, von Kortzfleisch VT, Richter SH, Buettner M, Bleich A, Amrein I, Wolfer DP, Touma C, Sunagawa S, Würbel H. The rearing environment persistently modulates mouse phenotypes from the molecular to the behavioural level. PLoS Biol 2022; 20:e3001837. [PMID: 36269766 PMCID: PMC9629646 DOI: 10.1371/journal.pbio.3001837] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/02/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
The phenotype of an organism results from its genotype and the influence of the environment throughout development. Even when using animals of the same genotype, independent studies may test animals of different phenotypes, resulting in poor replicability due to genotype-by-environment interactions. Thus, genetically defined strains of mice may respond differently to experimental treatments depending on their rearing environment. However, the extent of such phenotypic plasticity and its implications for the replicability of research findings have remained unknown. Here, we examined the extent to which common environmental differences between animal facilities modulate the phenotype of genetically homogeneous (inbred) mice. We conducted a comprehensive multicentre study, whereby inbred C57BL/6J mice from a single breeding cohort were allocated to and reared in 5 different animal facilities throughout early life and adolescence, before being transported to a single test laboratory. We found persistent effects of the rearing facility on the composition and heterogeneity of the gut microbial community. These effects were paralleled by persistent differences in body weight and in the behavioural phenotype of the mice. Furthermore, we show that environmental variation among animal facilities is strong enough to influence epigenetic patterns in neurons at the level of chromatin organisation. We detected changes in chromatin organisation in the regulatory regions of genes involved in nucleosome assembly, neuronal differentiation, synaptic plasticity, and regulation of behaviour. Our findings demonstrate that common environmental differences between animal facilities may produce facility-specific phenotypes, from the molecular to the behavioural level. Furthermore, they highlight an important limitation of inferences from single-laboratory studies and thus argue that study designs should take environmental background into account to increase the robustness and replicability of findings. The phenotype of an organism results not only from its genotype but also the influence of its environment throughout development. This study shows that common environmental differences between animal facilities can induce substantial variation in the phenotype of mice, thereby highlighting an important limitation of inferences from single-laboratory studies in animal research.
Collapse
Affiliation(s)
- Ivana Jaric
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| | - Bernhard Voelkl
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Melanie Clerc
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | | | - Janja Novak
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Marianna Rosso
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden
| | | | - S. Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | - Manuela Buettner
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Irmgard Amrein
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - David P. Wolfer
- Institute of Anatomy, Division of Functional Neuroanatomy, University of Zürich, Zürich, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Chadi Touma
- Department of Behavioural Biology, Osnabrück University, Osnabrück, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Hanno Würbel
- Animal Welfare Division, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail: (IJ); (HW)
| |
Collapse
|
25
|
Mother–Fetus Immune Cross-Talk Coordinates “Extrinsic”/“Intrinsic” Embryo Gene Expression Noise and Growth Stability. Int J Mol Sci 2022; 23:ijms232012467. [PMID: 36293324 PMCID: PMC9604428 DOI: 10.3390/ijms232012467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Developmental instability (DI) is thought to be inversely related to a capacity of an organism to buffer its development against random genetic and environmental perturbations. DI is represented by a trait’s inter- and intra-individual variabilities. The inter-individual variability (inversely referred to as canalization) indicates the capability of organisms to reproduce a trait from individual to individual. The intra-individual variability reflects an organism’s capability to stabilize a trait internally under the same conditions, and, for symmetric traits, it is expressed as fluctuating asymmetry (FA). When representing a trait as a random variable conditioned on environmental fluctuations, it is clear that, in statistical terms, the DI partitions into “extrinsic” (canalization) and “intrinsic” (FA) components of a trait’s variance/noise. We established a simple statistical framework to dissect both parts of a symmetric trait variance/noise using a PCA (principal component analysis) projection of the left/right measurements on eigenvectors followed by GAMLSS (generalized additive models for location scale and shape) modeling of eigenvalues. The first eigenvalue represents “extrinsic” and the second—“intrinsic” DI components. We applied this framework to investigate the impact of mother–fetus major histocompatibility complex (MHC)-mediated immune cross-talk on gene expression noise and developmental stability. We showed that “intrinsic” gene noise for the entire transcriptional landscape could be estimated from a small subset of randomly selected genes. Using a diagnostic set of genes, we found that allogeneic MHC combinations tended to decrease “extrinsic” and “intrinsic” gene noise in C57BL/6J embryos developing in the surrogate NOD-SCID and BALB/c mothers. The “intrinsic” gene noise was negatively correlated with growth (embryonic mass) and the levels of placental growth factor (PLGF), but not vascular endothelial growth factor (VEGF). However, it was positively associated with phenotypic growth instability and noise in PLGF. In mammals, the mother–fetus MHC interaction plays a significant role in development, contributing to the fitness of the offspring. Our results demonstrate that a positive impact of distant MHC combinations on embryonic growth could be mediated by the reduction of “intrinsic” gene noise followed by the developmental stabilization of growth.
Collapse
|
26
|
Rohner PT, Hu Y, Moczek AP. Developmental bias in the evolution and plasticity of beetle horn shape. Proc Biol Sci 2022; 289:20221441. [PMID: 36168764 PMCID: PMC9515630 DOI: 10.1098/rspb.2022.1441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
The degree to which developmental systems bias the phenotypic effects of environmental and genetic variation, and how these biases affect evolution, is subject to much debate. Here, we assess whether developmental variability in beetle horn shape aligns with the phenotypic effects of plasticity and evolutionary divergence, yielding three salient results. First, we find that most pathways previously shown to regulate horn length also affect shape. Second, we find that the phenotypic effects of manipulating divergent developmental pathways are correlated with each other as well as multivariate fluctuating asymmetry-a measure of developmental variability. Third, these effects further aligned with thermal plasticity, population differences and macroevolutionary divergence between sister taxa and more distantly related species. Collectively, our results support the hypothesis that changes in horn shape-whether brought about by environmentally plastic responses, functional manipulations or evolutionary divergences-converge along 'developmental lines of least resistance', i.e. are biased by the developmental system underpinning horn shape.
Collapse
Affiliation(s)
- Patrick T. Rohner
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| | - Yonggang Hu
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, People's Republic of China
| | - Armin P. Moczek
- Department of Biology, Indiana University Bloomington, Bloomington, IN 47405, USA
| |
Collapse
|
27
|
Schneider HM. Characterization, costs, cues and future perspectives of phenotypic plasticity. ANNALS OF BOTANY 2022; 130:131-148. [PMID: 35771883 PMCID: PMC9445595 DOI: 10.1093/aob/mcac087] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/28/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Plastic responses of plants to the environment are ubiquitous. Phenotypic plasticity occurs in many forms and at many biological scales, and its adaptive value depends on the specific environment and interactions with other plant traits and organisms. Even though plasticity is the norm rather than the exception, its complex nature has been a challenge in characterizing the expression of plasticity, its adaptive value for fitness and the environmental cues that regulate its expression. SCOPE This review discusses the characterization and costs of plasticity and approaches, considerations, and promising research directions in studying plasticity. Phenotypic plasticity is genetically controlled and heritable; however, little is known about how organisms perceive, interpret and respond to environmental cues, and the genes and pathways associated with plasticity. Not every genotype is plastic for every trait, and plasticity is not infinite, suggesting trade-offs, costs and limits to expression of plasticity. The timing, specificity and duration of plasticity are critical to their adaptive value for plant fitness. CONCLUSIONS There are many research opportunities to advance our understanding of plant phenotypic plasticity. New methodology and technological breakthroughs enable the study of phenotypic responses across biological scales and in multiple environments. Understanding the mechanisms of plasticity and how the expression of specific phenotypes influences fitness in many environmental ranges would benefit many areas of plant science ranging from basic research to applied breeding for crop improvement.
Collapse
|
28
|
Farrera A. Formal models for the study of the relationship between fluctuating asymmetry and fitness in humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:73-84. [PMID: 36790746 PMCID: PMC9540978 DOI: 10.1002/ajpa.24588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To evaluate three of the main verbal models that have been proposed to explain the relationship between fluctuating asymmetry and fitness in humans: the "good genes," the "good development," and the "growth" hypotheses. MATERIALS AND METHODS A formal model was generated for each verbal model following three steps. First, based on the literature, a theoretical causal model and the theoretical object of inquiry were outlined. Second, an empirical causal model and the targets of inference were defined using observational data of facial asymmetries and life-history traits related to fitness. Third, generalized linear models and causal inference were used as the estimation strategy. RESULTS The results suggest that the theoretical and empirical assumptions of the "good genes" hypothesis should be reformulated. The results were compatible with most of the empirical assumptions of "the good development" hypothesis but suggest that further discussion of its theoretical assumptions is needed. The results were less informative about the "growth" hypothesis, both theoretically and empirically. There was a positive association between facial fluctuating asymmetry and the number of offspring that was not compatible with any of the empirical causal models evaluated. CONCLUSIONS Although the three hypotheses focus on different aspects of the link between asymmetry and fitness, their overlap opens the possibility of a unified theory on the subject. The results of this study make explicit which assumptions need to be updated and discussed, facilitating the advancement of this area of research. Overall, this study elucidates the potential benefit of using formal models for theory revision and development.
Collapse
Affiliation(s)
- Arodi Farrera
- Mathematical Modeling of Social Systems Department, Institute for Research on Applied Mathematics and Systems, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
29
|
Vitek NS, McDaniel SF, Bloch JI. Microevolutionary variation in molar morphology of Onychomys leucogaster decoupled from genetic structure. Evolution 2022; 76:2032-2048. [PMID: 35872621 DOI: 10.1111/evo.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 01/22/2023]
Abstract
In neutral models of quantitative trait evolution, both genetic and phenotypic divergence scale as random walks, producing a correlation between the two measures. However, complexity in the genotype-phenotype map may alter the correlation between genotypic and phenotypic divergence, even when both are evolving neutrally or nearly so. Understanding this correlation between phenotypic and genetic variation is critical for accurately interpreting the fossil record. This study compares the geographic structure and scaling of morphological variation of the shape of the first lower molar of 77 individuals of the northern grasshopper mouse Onychomys leucogaster to genome-wide SNP variation in the same sample. We found strong genetic structure but weak or absent morphological structure indicating that the scaling of each type of variation is decoupled from one another. Low PST values relative to FST values are consistent with a lack of morphological divergence in contrast to genetic divergence between groups. This lack of phenotypic structure and the presence of notable within-sample phenotypic variance are consistent with uniform selection or constraints on molar shape across a wide geographic and environmental range. Over time, this kind of decoupling may result in patterns of phenotypic stasis masking underlying genetic patterns.
Collapse
Affiliation(s)
- Natasha S Vitek
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611.,Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794
| | - Stuart F McDaniel
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Jonathan I Bloch
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
30
|
How Geography and Climate Shaped the Genomic Diversity of Italian Local Cattle and Sheep Breeds. Animals (Basel) 2022; 12:ani12172198. [PMID: 36077919 PMCID: PMC9454691 DOI: 10.3390/ani12172198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary In this paper, we study the inter-relationships among geography, climate, and genetics in Italian local cattle and sheep breeds. In terms of genetic diversity, geography (latitude and longitude) appears to play a larger role in sheep (26.4%) than that in cattle (13.8%). Once geography is accounted for, 10.1% of cattle genomic diversity and 13.3% of that of sheep are attributable to climatic effects. Stronger geographic effects in sheep can be related to a combination of higher predomestication genetic variability together with biological and productive specializations. The climate alone seems to have had less impact on the current genetic diversity in both species even if climate and geography are greatly confounded. Results confirm that both species are the result of complex evolutionary histories triggered by interactions between human needs and environmental conditions. Abstract Understanding the relationships among geography, climate, and genetics is increasingly important for animal farming and breeding. In this study, we examine these inter-relationships in the context of local cattle and sheep breeds distributed along the Italian territory. To this aim, we used redundancy analysis on genomic data from previous projects combined with geographical coordinates and corresponding climatic data. The effect of geographic factors (latitude and longitude) was more important in sheep (26.4%) than that in cattle (13.8%). Once geography had been partialled out of analysis, 10.1% of cattle genomic diversity and 13.3% of that of sheep could be ascribed to climatic effects. Stronger geographic effects in sheep can be related to a combination of higher pre-domestication genetic variability together with biological and productive specificities. Climate alone seems to have had less impact on current genetic diversity in both species, even if climate and geography are greatly confounded. Results confirm that both species are the result of complex evolutionary histories triggered by interactions between human needs and environmental conditions.
Collapse
|
31
|
Developmental instability, fluctuating asymmetry, and human psychological science. Emerg Top Life Sci 2022; 6:311-322. [PMID: 35994000 DOI: 10.1042/etls20220025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Developmental instability (DI) is an individual's inability to produce a specific developmental outcome under a given set of conditions, generally thought to result from random perturbations experienced during development. Fluctuating asymmetry (FA) - asymmetry on bilateral features that, on average, are symmetrical (or asymmetry deviating from that arising from design) - has been used to measure DI. Dating to half a century ago, and accelerating in the past three decades, psychological researchers have examined associations between FA (typically measured on bodily or facial features) and a host of outcomes of interest, including psychological disorders, cognitive ability, attractiveness, and sexual behavior. A decade ago, a meta-analysis on findings from nearly 100 studies extracted several conclusions. On average, small but statistically reliable associations between FA and traits of interest exist. Though modest, these associations are expected to greatly underestimate the strength of associations with underlying DI. Despite the massive sample size across studies, we still lack a good handle on which traits are most strongly affected by DI. A major methodological implication of the meta-analysis is that most studies have been, individually, woefully underpowered to detect associations. Though offering some intriguing findings, much research is the past decade too has been underpowered; hence, the newer literature is also likely noisy. Several large-scale studies are exceptions. Future progress depends on additional large-scale studies and researchers' sensitivity to power issues. As well, theoretical assumptions and conceptualizations of DI and FA driving psychological research may need revision to explain empirical patterns.
Collapse
|
32
|
Barabasz-Krasny B, Możdżeń K, Tatoj A, Rożek K, Zandi P, Schnug E, Stachurska-Swakoń A. Ecophysiological Parameters of Medicinal Plant Filipendula vulgaris in Diverse Habitat Conditions. BIOLOGY 2022; 11:biology11081198. [PMID: 36009829 PMCID: PMC9405296 DOI: 10.3390/biology11081198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/14/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
This study attempts to determine which of the habitats occupied by Filipendula vulgaris creates better conditions for its growth and development. Selected physiological parameters—PSII activity, chlorophyll content, electrolyte leakage, hydrogen peroxide content as well as biomass, the occurrence of mycorrhiza, and soil characteristics—were investigated. Grassland soils had a higher content of macronutrients and a lower concentration of heavy metals. The degree of colonization of F. vulgaris by AMF (Arum type) oscillated around high values in both types of stands. Plants growing on xerothermic grasslands achieved much better fluorescence parameters than those collected from meadows. Similar results were obtained from the analysis of chlorophyll content. The destabilization degree of cell membranes was significantly higher in plants collected in meadows than in grasslands. Biomass analysis showed higher values of these parameters in grassland plants. In the case of the parameters of fluorescence emission, plants growing on grasslands achieved significantly lower values than plants collected from meadows. The analyses carried out showed that better conditions for growth and physiological activity of F. vulgaris are probably associated with grasslands on a calcareous substrate.
Collapse
Affiliation(s)
- Beata Barabasz-Krasny
- Department of Botany, Institute of Biology, Pedagogical University of Krakow, 30-084 Cracow, Poland
| | | | - Agnieszka Tatoj
- Department of Botany, Institute of Biology, Pedagogical University of Krakow, 30-084 Cracow, Poland
| | - Katarzyna Rożek
- Institute of Botany, Jagiellonian University, 30-387 Cracow, Poland
| | - Peiman Zandi
- Department of Botany, Institute of Biology, Pedagogical University of Krakow, 30-084 Cracow, Poland
- International Faculty of Applied Technology, Yibin University, Yibin 644000, China
- Correspondence:
| | - Ewald Schnug
- Department of Life Sciences, Institute for Plant Biology, Technical University of Braunschweig, 38-106 Braunschweig, Germany
| | | |
Collapse
|
33
|
Shape asymmetry - what's new? Emerg Top Life Sci 2022; 6:285-294. [PMID: 35758318 DOI: 10.1042/etls20210273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Studies of shape asymmetry have become increasingly abundant as the methods of geometric morphometrics have gained widespread use. Most of these studies have focussed on fluctuating asymmetry and have largely obtained similar results as more traditional analyses of asymmetry in distance measurements, but several notable differences have also emerged. A key difference is that shape analyses provide information on the patterns, not just the amount of variation, and therefore tend to be more sensitive. Such analyses have shown that apparently symmetric structures in animals consistently show directional asymmetry for shape, but not for size. Furthermore, the long-standing prediction that phenotypic plasticity in response to environmental heterogeneity can contribute to fluctuating asymmetry has been confirmed for the first time for the shape of flower parts (but not for size). Finally, shape analyses in structures with complex symmetry, such as many flowers, can distinguish multiple types of directional asymmetry, generated by distinct direction-giving factors, which combine to the single component observable in bilaterally symmetric structures. While analyses of shape asymmetry are broadly compatible with traditional analyses of asymmetry, they incorporate more detailed morphological information, particularly for structures with complex symmetry, and therefore can reveal subtle biological effects that would otherwise not be apparent. This makes them a promising tool for a wide range of studies in the basic and applied life sciences.
Collapse
|
34
|
Evolvability in the Cephalothoracic Structural Complexity of Aegla araucaniensis (Crustacea: Decapoda) Determined by a Developmental System with Low Covariational Constraint. BIOLOGY 2022; 11:biology11070958. [PMID: 36101339 PMCID: PMC9311601 DOI: 10.3390/biology11070958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary The origin of complex morphological structures is explained mainly by direct pathways fusing adjacent modules, while the independent effect of parallel pathways acting on different areas of a morphogenetic field is less well-known. The palimpsest model that explains the cephalothoracic structural complexity of decapod crustaceans is composed of two hox-regulatory parallel pathways that tagmatize the anterior metameres early, followed by a direct pathway that fuses the tagmata forming the developmental modules. The cephalothoracic geometry of Aegla araucaniensis shows a marked sexual dimorphism; its adaptive causes also promote dimorphic variations in the evolvability of developmental modularity. We found areas of instability in the variance of the asymmetry in both developmental modules. The direct pathway presents intermediate levels of canalization in the covariation of the developmental modules, although significantly higher in males. This low restrictive potential promotes expressions of gonadic modularity in females and agonistic modularity in males, which differ significantly from developmental modularity. The cephalothoracic palimpsest model of decapods allows studying modularity in an explicit evo–devo context. Abstract The integration of complex structures is proportional to the intensity of the structural fusion; its consequences are better known than the covariational effects under less restrictive mechanisms. The synthesis of a palimpsest model based on two early parallel pathways and a later direct pathway explains the cephalothoracic complexity of decapod crustaceans. Using this model, we tested the evolvability of the developmental modularity in Aegla araucaniensis, an anomuran crab with an evident adaptive sexual dimorphism. The asymmetric patterns found on the landmark configurations suggest independent perturbations of the parallel pathways in each module and a stable asymmetry variance near the fusion by canalization of the direct pathway, which was more intense in males. The greater covariational flexibility imposed by the parallel pathways promotes the expression of gonadic modularity that favors the reproductive output in females and agonistic modularity that contributes to mating success in males. Under these divergent expressions of evolvability, the smaller difference between developmental modularity and agonistic modularity in males suggests higher levels of canalization due to a relatively more intense structural fusion. We conclude that: (1) the cephalothorax of A. araucaniensis is an evolvable structure, where parallel pathways promote sexual disruptions in the expressions of functional modularity, which are more restricted in males, and (2) the cephalothoracic palimpsest of decapods has empirical advantages in studying the developmental causes of evolution of complex structures.
Collapse
|
35
|
High Sucrose Ingestion during a Critical Period of Vessel Development Promotes the Synthetic Phenotype of Vascular Smooth Muscle Cells and Modifies Vascular Contractility Leading to Hypertension in Adult Rats. Int J Hypertens 2022; 2022:2298329. [PMID: 35774422 PMCID: PMC9239805 DOI: 10.1155/2022/2298329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiometabolic diseases, including hypertension, may result from exposure to high sugar diets during critical periods of development. Here, we studied the effect of sucrose ingestion during a critical period (CP) between postnatal days 12 and 28 of the rat on blood pressure, aortic histology, vascular smooth muscle phenotype, expression of metalloproteinases 2 and 9, and vascular contractility in adult rats and compared it with those of adult rats that received sucrose for 6 months and developed metabolic syndrome (MS). Blood pressure increased to a similar level in CP and MS rats. The diameter of lumen, media, and adventitia of aortas from CP rats was decreased. Muscle fibers were discontinuous. There was a decrease in the expression of alpha-actin in CP and MS rat aortas, suggesting a change to the secretory phenotype in vascular smooth muscle. Metalloproteinases 2 and 9 were decreased in CP and MS rats, suggesting that phenotype remains in an altered steady stationary state with little interchange of the vessel matrix. Aortic contraction to norepinephrine did not change, but aortic relaxation was diminished in CP and MS aortas. In conclusion, high sugar diets during the CP increase predisposition to hypertension in adults.
Collapse
|
36
|
Budečević S, Manitašević Jovanović S, Vuleta A, Tucić B, Klingenberg CP. Directional asymmetry and direction-giving factors: Lessons from flowers with complex symmetry. Evol Dev 2022; 24:92-108. [PMID: 35708164 PMCID: PMC9542681 DOI: 10.1111/ede.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/06/2022] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Directional asymmetry is a systematic difference between the left and right sides for structures with bilateral symmetry or a systematic differentiation among repeated parts for complex symmetry. This study explores factors that produce directional asymmetry in the flower of Iris pumila, a structure with complex symmetry that makes it possible to investigate multiple such factors simultaneously. The shapes and sizes of three types of floral organs, the falls, standards, and style branches, were quantified using the methods of geometric morphometrics. For each flower, this study recorded the compass orientations of floral organs as well as their anatomical orientations relative to the two spathes subtending each flower. To characterize directional asymmetry at the whole-flower level, differences in the average sizes and shapes according to compass orientation and relative orientation were computed, and the left-right asymmetry was also evaluated for each individual organ. No size or shape differences within flowers were found in relation to anatomical position; this may relate to the terminal position of flowers in Iris pumila, suggesting that there may be no adaxial-abaxial polarity, which is very prominent in many other taxa. There was clear directional asymmetry of shape in relation to compass orientation, presumably driven by a consistent environmental gradient such as solar irradiance. There was also clear directional asymmetry between left and right halves of every floral organ, most likely related to the arrangement of organs in the bud. These findings indicate that different factors are acting to produce directional asymmetry at different levels. In conventional analyses not recording flower orientations, these effects would be impossible to disentangle from each other and would probably be included as part of fluctuating asymmetry.
Collapse
Affiliation(s)
- Sanja Budečević
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Sanja Manitašević Jovanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Vuleta
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka Tucić
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
37
|
Eckert S, Herden J, Stift M, Durka W, van Kleunen M, Joshi J. Traces of Genetic but Not Epigenetic Adaptation in the Invasive Goldenrod Solidago canadensis Despite the Absence of Population Structure. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.856453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological invasions may result from multiple introductions, which might compensate for reduced gene pools caused by bottleneck events, but could also dilute adaptive processes. A previous common-garden experiment showed heritable latitudinal clines in fitness-related traits in the invasive goldenrod Solidago canadensis in Central Europe. These latitudinal clines remained stable even in plants chemically treated with zebularine to reduce epigenetic variation. However, despite the heritability of traits investigated, genetic isolation-by-distance was non-significant. Utilizing the same specimens, we applied a molecular analysis of (epi)genetic differentiation with standard and methylation-sensitive (MSAP) AFLPs. We tested whether this variation was spatially structured among populations and whether zebularine had altered epigenetic variation. Additionally, we used genome scans to mine for putative outlier loci susceptible to selection processes in the invaded range. Despite the absence of isolation-by-distance, we found spatial genetic neighborhoods among populations and two AFLP clusters differentiating northern and southern Solidago populations. Genetic and epigenetic diversity were significantly correlated, but not linked to phenotypic variation. Hence, no spatial epigenetic patterns were detected along the latitudinal gradient sampled. Applying genome-scan approaches (BAYESCAN, BAYESCENV, RDA, and LFMM), we found 51 genetic and epigenetic loci putatively responding to selection. One of these genetic loci was significantly more frequent in populations at the northern range. Also, one epigenetic locus was more frequent in populations in the southern range, but this pattern was lost under zebularine treatment. Our results point to some genetic, but not epigenetic adaptation processes along a large-scale latitudinal gradient of S. canadensis in its invasive range.
Collapse
|
38
|
Hegyi G, Laczi M, Herényi M, Markó G, Nagy G, Rosivall B, Szász E, Török J. Functional integration of multiple sexual ornaments: signal coherence and sexual selection. Am Nat 2022; 200:486-505. [DOI: 10.1086/720620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
39
|
Krimech A, Helamieh M, Wulf M, Krohn I, Riebesell U, Cherifi O, Mandi L, Kerner M. Differences in adaptation to light and temperature extremes of Chlorella sorokiniana strains isolated from a wastewater lagoon. BIORESOURCE TECHNOLOGY 2022; 350:126931. [PMID: 35247554 DOI: 10.1016/j.biortech.2022.126931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Presently, two Chlorella sorokiniana strains sampled during summer (CS-S) and winter (CS-W) from a maturation pond and isolated by dominance were studied on their behavior on temperature and light extremes in batch experiments. Although both strains showed no differences in their tolerance of temperatures up to 45 °C, the growth rates, pigment contents and fatty acid compositions in response to PAR at 700 and 1,500 µmol m-2sec-1 differed. CS-W was less affected by photoinhibition and maintained constantly high growth rates. High radiation resulted in both strains in an equivalent decrease of chlorophyll a and accessory pigments indicating that the latter did not function as a light filter. PUFAS (18:3 and 16:3) increased in CS-W at high radiation by > 60% and decreased in CS-S by 8 %. Results indicate that CS-W is highly favorable for mass cultivation particularly in outdoors, in which diurnal variations of solar radiation occur.
Collapse
Affiliation(s)
- Aafaf Krimech
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Cadi Ayyad University, Marrakech, Morocco
| | - Mark Helamieh
- SSC Strategic Science Consult GmbH, Hamburg, Germany
| | - Melina Wulf
- SSC Strategic Science Consult GmbH, Hamburg, Germany
| | - Ines Krohn
- Universität Hamburg, Institute of Plant Science and Microbiology, Department of Microbiology and Biotechnology, Hamburg, Germany
| | - Ulf Riebesell
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Biological Oceanography, Kiel, Germany
| | - Ouafa Cherifi
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Cadi Ayyad University, Marrakech, Morocco
| | - Laila Mandi
- National Center for Studies and Research on Water and Energy, Cadi Ayyad University, Marrakech, Morocco; Laboratory of Water, Biodiversity, and Climate Change, Cadi Ayyad University, Marrakech, Morocco
| | - Martin Kerner
- SSC Strategic Science Consult GmbH, Hamburg, Germany.
| |
Collapse
|
40
|
Rossi A, Kontarakis Z. Beyond Mendelian Inheritance: Genetic Buffering and Phenotype Variability. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:79-87. [PMID: 36939776 PMCID: PMC9590499 DOI: 10.1007/s43657-021-00030-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/18/2023]
Abstract
Understanding the way genes work amongst individuals and across generations to shape form and function is a common theme for many genetic studies. The recent advances in genetics, genome engineering and DNA sequencing reinforced the notion that genes are not the only players that determine a phenotype. Due to physiological or pathological fluctuations in gene expression, even genetically identical cells can behave and manifest different phenotypes under the same conditions. Here, we discuss mechanisms that can influence or even disrupt the axis between genotype and phenotype; the role of modifier genes, the general concept of genetic redundancy, genetic compensation, the recently described transcriptional adaptation, environmental stressors, and phenotypic plasticity. We furthermore highlight the usage of induced pluripotent stem cells (iPSCs), the generation of isogenic lines through genome engineering, and sequencing technologies can help extract new genetic and epigenetic mechanisms from what is hitherto considered 'noise'.
Collapse
Affiliation(s)
- Andrea Rossi
- Genome Engineering and Model Development Lab (GEMD), IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Laboratory (GEML), Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich of ETH Zurich, University of Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
41
|
Fiore MC, Marchese A, Mauceri A, Digangi I, Scialabba A. Diversity Assessment and DNA-Based Fingerprinting of Sicilian Hazelnut ( Corylus avellana L.) Germplasm. PLANTS (BASEL, SWITZERLAND) 2022; 11:631. [PMID: 35270101 PMCID: PMC8912283 DOI: 10.3390/plants11050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022]
Abstract
The characterization of plant genetic resources is a precondition for genetic improvement and germplasm management. The increasing use of molecular markers for DNA-based genotype signature is crucial for variety identification and traceability in the food supply chain. We collected 75 Sicilian hazelnut accessions from private and public field collections, including widely grown varieties from the Nebrodi Mountains in north east Sicily (Italy). The germplasm was fingerprinted through nine standardized microsatellites (SSR) for hazelnut identification to evaluate the genetic diversity of the collected accessions, validating SSR discrimination power. We identified cases of homonymy and synonymy among acquisitions and the unique profiles. The genetic relationships illustrated by hierarchical clustering, structure, and discriminant analyses revealed a clear distinction between local and commercial varieties. The comparative genetic analysis also showed that the Nebrodi genotypes are significantly different from the Northern Italian, Iberian, and Turkish genotypes. These results highlight the need and urgency to preserve Nebrodi germplasm as a useful and valuable source for traits of interest employable for breeding. Our study demonstrates the usefulness of molecular marker analysis to select a reference germplasm collection of Sicilian hazelnut varieties and to implement certified plants' production in the supply chain.
Collapse
Affiliation(s)
- Maria Carola Fiore
- Council for Agricultural Research and Economics—Research Centre for Plant Protection and Certification, S.S. 113 km 245,500, 90011 Bagheria, Italy
| | - Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze—Ed. 4, 90128 Palermo, Italy;
| | - Antonio Mauceri
- Department Agraria, University Mediterranea of Reggio Calabria, Loc. Feo di Vito snc, 89065 Reggio Calabria, Italy;
| | - Ignazio Digangi
- Living Plants Germplasm Bank of Nebrodi, Contrada Pirato, 98060 Ucria, Italy;
| | - Anna Scialabba
- Department of Biological, Chemical and Pharmaceutical Science and Technologies (STEBICEF), University of Palermo, Via Archirafi 38, 90123 Palermo, Italy;
| |
Collapse
|
42
|
Coulibaly M, Bodjrenou G, Akohoue F, Agoyi EE, Merinosy Francisco FM, Agossou COA, Sawadogo M, Achigan-Dako EG. Profiling Cultivars Development in Kersting's Groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet] for Improved Yield, Higher Nutrient Content, and Adaptation to Current and Future Climates. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2021.759575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kersting's groundnut [Macrotyloma geocarpum (Harms.) Maréchal and Baudet], Fabaceae, is an important source of protein and essential amino acids. As a grain legume species, it also contributes to improving soil fertility through symbiotic nitrogen fixation. However, the crop is characterized by a relatively low yield (≤500 kg/ha), and limited progress has been made so far, toward the development of high-yielding cultivars that can enhance and sustain its productivity. Recently, there was an increased interest in alleviating the burdens related to Kersting's groundnut (KG) cultivation through the development of improved varieties. Preliminary investigations assembled germplasms from various producing countries. In-depth ethnobotanical studies and insightful investigation on the reproductive biology of the species were undertaken alongside morphological, biochemical, and molecular characterizations. Those studies revealed a narrow genetic base for KG. In addition, the self-pollinating nature of its flowers prevents cross-hybridization and represents a major barrier limiting the broadening of the genetic basis. Therefore, the development of a research pipeline to address the bottlenecks specific to KG is a prerequisite for the successful expansion of the crop. In this paper, we offer an overview of the current state of research on KG and pinpoint the knowledge gaps; we defined and discussed the main steps of breeding for KG' cultivars development; this included (i) developing an integrated genebank, inclusive germplasm, and seed system management; (ii) assessing end-users preferences and possibility for industrial exploitation of the crop; (iii) identifying biotic and abiotic stressors and the genetic control of responsive traits to those factors; (iv) overcoming the cross-pollination challenges in KG to propel the development of hybrids; (v) developing new approaches to create variability and setting adequate cultivars and breeding approaches; (vi) karyotyping and draft genome analysis to accelerate cultivars development and increase genetic gains; and (vii) evaluating the adaptability and stability of cultivars across various ecological regions.
Collapse
|
43
|
Jojić V, Čabrilo B, Bjelić-Čabrilo O, Jovanović VM, Budinski I, Vujošević M, Blagojević J. Canalization and developmental stability of the yellow-necked mouse (Apodemus flavicollis) mandible and cranium related to age and nematode parasitism. Front Zool 2021; 18:55. [PMID: 34689812 PMCID: PMC8543932 DOI: 10.1186/s12983-021-00439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammalian mandible and cranium are well-established model systems for studying canalization and developmental stability (DS) as two elements of developmental homeostasis. Nematode infections are usually acquired in early life and increase in intensity with age, while canalization and DS of rodent skulls could vary through late postnatal ontogeny. We aimed to estimate magnitudes and describe patterns of mandibular and cranial canalization and DS related to age and parasite intensity (diversity) in adult yellow-necked mice (Apodemus flavicollis). RESULTS We found the absence of age-related changes in the levels of canalization for mandibular and cranial size and DS for mandibular size. However, individual measures of mandibular and cranial shape variance increased, while individual measures of mandibular shape fluctuating asymmetry (FA) decreased with age. We detected mandibular and cranial shape changes during postnatal ontogeny, but revealed no age-related dynamics of their covariance structure among and within individuals. Categories regarding parasitism differed in the level of canalization for cranial size and the level of DS for cranial shape. We observed differences in age-related dynamics of the level of canalization between non-parasitized and parasitized animals, as well as between yellow-necked mice parasitized by different number of nematode species. Likewise, individual measures of mandibular and cranial shape FA decreased with age for the mandible in the less parasitized category and increased for the cranium in the most parasitized category. CONCLUSIONS Our age-related results partly agree with previous findings. However, no rodent study so far has explored age-related changes in the magnitude of FA for mandibular size or mandibular and cranial FA covariance structure. This is the first study dealing with the nematode parasitism-related canalization and DS in rodents. We showed that nematode parasitism does not affect mandibular and cranial shape variation and covariance structure among and within individuals. However, parasite intensity (diversity) is related to ontogenetic dynamics of the levels of canalization and DS. Overall, additional studies on animals from natural populations are required before drawing some general conclusions.
Collapse
Affiliation(s)
- Vida Jojić
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Borislav Čabrilo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Olivera Bjelić-Čabrilo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Vladimir M Jovanović
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.,Bioinformatics Solution Center, Freie Universität Berlin, Berlin, Germany.,Human Biology and Primate Evolution, Freie Universität Berlin, Berlin, Germany
| | - Ivana Budinski
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mladen Vujošević
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Blagojević
- Department of Genetic Research, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
44
|
Phenotypic variability and developmental instability in rodents from different agricultural farming systems: organic vs. conventional. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Assessment of the Orbital and Auricular Asymmetry in Italian and Sudanese Children: A Three-Dimensional Study. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The evaluation of the symmetry of orbital and ear soft tissues is important for aesthetic and reconstructive surgery. However, little information is available for these facial regions, especially in children. We analyzed the orbital and auricular symmetry in 418 Italian and 206 Sudanese subadult males divided into three age groups (8–11, 12–15, and 16–19 years old). Orbital and auricular height and width were measured for calculating fluctuating and directional asymmetry indices. Differences in asymmetry indices according to ethnicity and age group were assessed through the two-way ANOVA test (p < 0.01), while differences in the prevalence of right or left asymmetry according to ethnicity were assessed through the chi-square test. On average, directional asymmetry indices ranged from −2.1% to 1.1%, while fluctuating asymmetry indices ranged between 2.9% and 5.4%, corresponding to a small effect size and to 1.06–2.34 mm actual dimensions. Sudanese subjects showed a greater asymmetry for all the indices except for the fluctuating asymmetry of orbital height (p < 0.01). The directional asymmetry of auricular width increased with age. A prevalent right-side asymmetry was found for all the orbital indices (p < 0.001) in both populations, although significantly more prevalent in Sudanese individuals (over 83% for both measures), while auricular measures showed a prevalent left asymmetry exclusively in the Sudanese but with lower percentages. Aside from the limited effect size, the results proved the ethnic variability of asymmetry of orbital and auricle regions in children and suggest the need to collect more population data.
Collapse
|
46
|
George SB, Navarro E, Kawano D. Infrequent Fluctuations in Temperature and Salinity May Enhance Feeding in Pisaster ochraceus (Asteroidea) but Not in Dendraster excentricus (Echinoidea) Larvae. THE BIOLOGICAL BULLETIN 2021; 241:77-91. [PMID: 34436965 DOI: 10.1086/716054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractIn recent years, low-salinity events characterized by high temperatures (18-23 °C) and low-salinity waters (20‰-22‰) have increased during late spring and summer, when many marine invertebrate larvae are developing. The present study examines the effects of low-salinity events on particle ingestion for larvae of two echinoderm species, the sea star Pisaster ochraceus and the sand dollar Dendraster excentricus. Larvae were exposed to high temperatures and low salinities for 24 hours, followed by feeding on the alga Isochrysis galbana in high or low salinity for another 10 minutes. Exposing Pisaster larvae to high temperatures and low salinities, followed by feeding in low salinity, did not impair ingestion rates. In fact, these larvae ingested particles at similar and sometimes higher rates than those in the controls. In sharp contrast, a 24-hour exposure to a high temperature and low salinity, followed by continued exposure to low salinity to feed, led to a decrease in the number of particles ingested by 8-arm Dendraster larvae. Larvae of both species captured very few particles when returned to 30‰ after a low-salinity event, indicating that continuous interruption of larval feeding by low-salinity events during development could be deleterious. Sand dollar larvae may have responded negatively to low-salinity events in our experiments because they are found in protected bays, where they may seldom experience these events.
Collapse
|
47
|
Zhu T, De Lima CFF, De Smet I. The Heat is On: How Crop Growth, Development and Yield Respond to High Temperature. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab308. [PMID: 34185832 DOI: 10.1093/jxb/erab308] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Plants are exposed to a wide range of temperatures during their life cycle and need to continuously adapt. These adaptations need to deal with temperature changes on a daily and seasonal level and with temperatures affected by climate change. Increasing global temperatures negatively impact crop performance, and several physiological, biochemical, morphological and developmental responses to increased temperature have been described that allow plants to mitigate this. In this review, we assess various growth, development, and yield-related responses of crops to extreme and moderate high temperature, focusing on knowledge gained from both monocot (e.g. wheat, barley, maize, rice) and dicot crops (e.g. soybean and tomato) and incorporating information from model plants (e.g. Arabidopsis and Brachypodium). This revealed common and different responses between dicot and monocot crops, and defined different temperature thresholds depending on the species, growth stage and organ.
Collapse
Affiliation(s)
- Tingting Zhu
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Cassio Flavio Fonseca De Lima
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
48
|
Paul KS, Stojanowski CM, Hughes T, Brook A, Townsend GC. The genetic architecture of anterior tooth morphology in a longitudinal sample of Australian twins and families. Arch Oral Biol 2021; 129:105168. [PMID: 34174590 DOI: 10.1016/j.archoralbio.2021.105168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study presents a quantitative genetic analysis of human anterior dental morphology in a longitudinal sample of known genealogy. The primary aim of this work is to generate a suite of genetic correlations within and between deciduous and permanent characters to access patterns of integration across the diphyodont dental complex. DESIGN Data were recorded from casted tooth crowns representing participants of a long-term Australian twin and family study (deciduous n = 290, permanent n = 339). Morphological trait expression was observed and scored following Arizona State University Dental Anthropology System standards. Bivariate genetic correlations were estimated using maximum likelihood variance decomposition models in SOLAR v.8.1.1. RESULTS Genetic correlation estimates indicate high levels of integration between antimeres but low to moderate levels among traits within a tooth row. Only 9% of deciduous model comparisons were significant, while pleiotropy was indicated for one third of permanent trait pairs. Canine characters stood out as strongly integrated, especially in the deciduous dentition. For homologous characters across dentitions (e.g., deciduous i1 shoveling and permanent I1 shoveling), ∼70% of model comparisons yielded significant genetic correlations. CONCLUSIONS Patterns of genetic correlation suggest a morphological canine module that spans the primary and secondary dentition. Results also point to the existence of a genetic mechanism conserving morphology across the diphyodont dental complex, such that paired deciduous and permanent traits are more strongly integrated than characters within individual tooth rows/teeth.
Collapse
Affiliation(s)
- Kathleen S Paul
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, United States.
| | - Christopher M Stojanowski
- Center for Bioarchaeological Research, School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, United States
| | - Toby Hughes
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Alan Brook
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia; Barts and the London Dental Institute, Queen Mary University of London, London, E1, UK
| | - Grant C Townsend
- Adelaide Dental School, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
49
|
Peluffo AE, Hamdani M, Vargas‐Valderrama A, David JR, Mallard F, Graner F, Courtier‐Orgogozo V. A morphological trait involved in reproductive isolation between Drosophila sister species is sensitive to temperature. Ecol Evol 2021; 11:7492-7506. [PMID: 34188829 PMCID: PMC8216934 DOI: 10.1002/ece3.7580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
Male genitalia are usually extremely divergent between closely related species, but relatively constant within one species. Here we examine the effect of temperature on the shape of the ventral branches, a male genital structure involved in reproductive isolation, in the sister species Drosophila santomea and Drosophila yakuba. We designed a semi-automatic measurement machine learning pipeline that can reliably identify curvatures and landmarks based on manually digitized contours of the ventral branches. With this method, we observed that temperature does not affect ventral branches in D. yakuba but that in D. santomea ventral branches tend to morph into a D. yakuba-like shape at lower temperature. We found that male genitalia structures involved in reproductive isolation can be relatively variable within one species and can resemble the shape of closely related species' genitalia through plasticity to temperature. Our results suggest that reproductive isolation mechanisms can be dependent on the environmental context.
Collapse
Affiliation(s)
| | | | | | - Jean R. David
- Institut Systématique Evolution Biodiversité (ISYEB)CNRSMNHNSorbonne UniversitéEPHEParisFrance
- Laboratoire Evolution, Génomes, Comportement, Biodiversité (EGCE)CNRSIRDUniv. Paris‐sudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - François Mallard
- Institut de Biologie de l’École Normale SupérieureCNRS UMR 8197PSL Research UniversityParisFrance
| | - François Graner
- Matière et Systèmes ComplexesCNRS UMR 7057Univ. de ParisParisFrance
| | | |
Collapse
|
50
|
Martini A, Huysseune A, Witten PE, Boglione C. Plasticity of the skeleton and skeletal deformities in zebrafish (Danio rerio) linked to rearing density. JOURNAL OF FISH BIOLOGY 2021; 98:971-986. [PMID: 32010967 DOI: 10.1111/jfb.14272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The teleost zebrafish (Danio rerio), an established model for human skeletal diseases, is reared under controlled conditions with defined parameters for temperature and photoperiod. Studies aimed at defining the proper rearing density have been performed with regard to behavioural and physiological stress response, sex ratio and reproduction. Studies concerning the effect of rearing density on the skeletal phenotype are lacking. This study analyses the response of the skeleton to different rearing densities and describes the skeletal deformities. Wild-type zebrafish were reared up to 30 dpf (days post-fertilization) in a common environment. From 30 to 90 dpf, animals were reared at three different densities: high density (HD), 32 fish l-1 ; medium density (MD), 8 fish l-1 and low density (LD), 2 fish l-1 . Animals at 30 and 90 dpf were collected and whole-mount stained with Alizarin red S to visualize mineralized tissues. The entire skeleton was analysed for meristic counts and 172 types of deformities. The results showed that the rearing density significantly influenced the specimens' average standard length, which decreased with the increase in the rearing density. Differences in meristic counts among the three groups were not observed. Rearing density-independent malformations affected the ribs, neural arches and the spines of the abdominal region, as well as vertebrae of the caudal complex. The HD group showed the highest number of deformities per specimen, the highest number of observed types of deformities and, together with the MD group, the highest frequency of specimens affected by severe deformities. In particular, the HD group showed deformities affecting arches, spines and vertebral centra in the caudal region of the vertebral column. This study provides evidence of an effect of the rearing density on the development of different skeletal phenotypes.
Collapse
Affiliation(s)
- Arianna Martini
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Laboratory of Evolutionary Developmental Biology, Department of Biology, Gent University, Gent, Belgium
| | - Ann Huysseune
- Laboratory of Evolutionary Developmental Biology, Department of Biology, Gent University, Gent, Belgium
| | - P Eckhard Witten
- Laboratory of Evolutionary Developmental Biology, Department of Biology, Gent University, Gent, Belgium
| | - Clara Boglione
- Laboratory of Experimental Ecology and Aquaculture, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|