1
|
Ruiz-Toquica J, Franco Herrera A, Medina M. Endozoicomonas dominance and Vibrionaceae stability underpin resilience in urban coral Madracis auretenra. PeerJ 2025; 13:e19226. [PMID: 40256745 PMCID: PMC12007501 DOI: 10.7717/peerj.19226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 03/06/2025] [Indexed: 04/22/2025] Open
Abstract
Coral resilience varies across species, with some exhibiting remarkable stability and adaptability, often mediated by their associated microbiomes. Given the species-specific nature of coral-microbiome interactions, investigating the microbiomes of urban-adapted corals provides critical insights into the health, dynamics, and functioning of coral holobionts. In this study, we examined the microbiome of Madracis auretenra, a Caribbean coral from Santa Marta, Colombia, across contrasting environmental conditions. Over two years, we compared the microbiomes of healthy and stressed coral colonies from two distinct reef habitats-urban and protected-using 16S rRNA gene sequencing (V4 region) to assess microbial diversity. Our findings revealed microbial richness and diversity were primarily influenced by seasonal and local factors rather than host-specific traits such as interaction with algae, health status, or microhabitat. These variations were not substantial enough to disrupt the overall microbial community structure, which remained stable across temporal and spatial scales. Dominant taxa included Endozoicomonas, along with Vibrionaceae and Rhodobacteraceae, which form dense ecological interaction networks. Notably, nutrient and oxygen levels emerged as key drivers of microbiome fluctuations, yet Vibrionaceae populations exhibited exceptional temporal stability. These findings highlight the presence of a well-structured and resilient coral microbiome with minimal seasonal variability, even in urban-influenced environments. We propose that the dominance of Endozoicomonas and the stability of Vibrionaceae populations play a pivotal role in maintaining microbiome balance, ultimately contributing to the ecological resilience of M. auretenra in dynamic reef habitats.
Collapse
Affiliation(s)
- Jordan Ruiz-Toquica
- Corporation Center of Excellence in Marine Sciences-CEMarin, Bogota, Colombia
- Academic Area of Environmental and Biological Sciences, Jorge Tadeo Lozano University, Santa Marta, Magdalena, Colombia
| | - Andrés Franco Herrera
- Academic Area of Environmental and Biological Sciences, Jorge Tadeo Lozano University, Santa Marta, Magdalena, Colombia
| | - Mónica Medina
- Department of Biology, The Pennsylvania State University, State College, PA, United States of America
| |
Collapse
|
2
|
Abdelghany S, Simancas-Giraldo SM, Zayed A, Farag MA. How does the coral microbiome mediate its natural host fitness under climate stress conditions? Physiological, molecular, and biochemical mechanisms. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106920. [PMID: 39729906 DOI: 10.1016/j.marenvres.2024.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms. The dynamic behaviour of microbial associates could denote their potential role in coral adaptation to future climate change, with microbiome shifts occurring independently as a response to thermal stress or as a response to host stress response. Associated adaptations include regulation of coral-algal-microbial interactions, expression of heat shock proteins, microbial composition changes, and accumulation of secondary metabolites to aid in sustaining the coral's overall homeostasis under ocean warming scenarios.
Collapse
Affiliation(s)
- Sabrin Abdelghany
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany; National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Susana M Simancas-Giraldo
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Am Alten Hafen, 27568, Bremerhaven, Germany
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), 31527, Tanta, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt.
| |
Collapse
|
3
|
Granit L, Levi R, Lifshitz N, Banc-Prandi G, Zelinger E, Ronen B, Kraut-Cohen J, Naqib A, Green SJ, Fine M, Yarden O. Beneficial and detrimental fungi within the culturable mycobiome of the Red Sea coral Stylophora pistilatta. THE ISME JOURNAL 2025; 19:wraf090. [PMID: 40318223 PMCID: PMC12090049 DOI: 10.1093/ismejo/wraf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/06/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
The presence of fungi in the coral microbiome is increasingly recognized, yet their potential impact on the holobiont's health, particularly under stress conditions, remains underexplored. To address this gap, we isolated over 200 strains (predominantly Ascomycota) from the common scleractinian Red Sea coral, Stylophora pistillata. Using conidia from a rare (Stachybotrys chlorohalonata) and a common (Cladosporium halotolerans) fungal symbiont, we investigated their effects on coral fragments maintained at ambient (25°C) and elevated (33°C) sea temperatures. Inoculation with S. chlorohalonata resulted in significant tissue loss, across both water temperature treatments. Conversely, inoculation with C. halotolerans did not result in visible effects at ambient temperature, but mitigated tissue loss at elevated temperature. This protective effect was accompanied by reduced expression of stress-induced peroxiredoxin-6 and Rad51 host genes, yet not that of Hsp70. Additionally, potential algal symbiont photosynthetic efficiency was higher by over 25% in the elevated temperature treatment, concurrent with higher bacterial diversity, including a marked reduction (>3-fold) in the proliferation of Vibrionaceae in the C. halotolerans-treated coral nubbins. These findings reveal the contrasting impacts of fungal symbionts on coral health, highlighting the dual roles of the mycobiome in influencing holobiont resilience under environmental stress.
Collapse
Affiliation(s)
- Lior Granit
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel
| | - Rotem Levi
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel
| | - Nofar Lifshitz
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel
| | - Guilhem Banc-Prandi
- Laboratory for Biological Geochemistry, School of Architecture Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Einat Zelinger
- Centre for Scientific Imaging, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Britt Ronen
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Judith Kraut-Cohen
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Ankur Naqib
- Rush Research Bioinformatics Core Facility, Rush University, Chicago, IL 60612, United States
| | - Stefan J Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL 60642, United States
| | - Maoz Fine
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- The Interuniversity Institute for Marine Sciences, Eilat 8810302, Israel
| |
Collapse
|
4
|
Gantt SE, Kemp KM, Colin PL, Hoadley KD, LaJeunesse TC, Warner ME, Kemp DW. Influence of reef habitat on coral microbial associations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70051. [PMID: 39517101 PMCID: PMC11549029 DOI: 10.1111/1758-2229.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Corals have complex symbiotic associations that can be influenced by the environment. We compare symbiotic dinoflagellate (family: Symbiodiniaceae) associations and the microbiome of five scleractinian coral species from three different reef habitats in Palau, Micronesia. Although pH and temperature corresponded with specific host-Symbiodiniaceae associations common to the nearshore and offshore habitats, bacterial community dissimilarity analyses indicated minimal influence of these factors on microbial community membership for the corals Coelastrea aspera, Psammocora digitata, and Pachyseris rugosa. However, coral colonies sampled close to human development exhibited greater differences in microbial community diversity compared to the nearshore habitat for the coral species Coelastrea aspera, Montipora foliosa, and Pocillopora acuta, and the offshore habitat for Coelastrea aspera, while also showing less consistency in Symbiodiniaceae associations. These findings indicate the influence that habitat location has on the bacterial and Symbiodiniaceae communities comprising the coral holobiont and provide important considerations for the conservation of coral reef communities, especially for island nations with increasing human populations and development.
Collapse
Affiliation(s)
- Shelby E. Gantt
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Keri M. Kemp
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Kenneth D. Hoadley
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
- Dauphin Island Sea LabDauphin IslandAlabamaUSA
| | - Todd C. LaJeunesse
- Department of BiologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Dustin W. Kemp
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
5
|
Arriaga-Piñón ZP, Aguayo-Leyva JE, Álvarez-Filip L, Banaszak AT, Aguirre-Macedo ML, Paz-García DA, García-Maldonado JQ. Microbiomes of three coral species in the Mexican Caribbean and their shifts associated with the Stony Coral Tissue Loss Disease. PLoS One 2024; 19:e0304925. [PMID: 39186575 PMCID: PMC11346732 DOI: 10.1371/journal.pone.0304925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Stony Coral Tissue Loss Disease (SCTLD) has caused widespread coral mortality in the Caribbean Region. However, how the disease presence alters the microbiome community, their structure, composition, and metabolic functionality is still poorly understood. In this study, we characterized the microbial communities of the tissues of apparently healthy and diseased SCTLD colonies of the species Siderastrea siderea, Orbicella faveolata, and Montastraea cavernosa to explore putative changes related to the presence of SCTLD. Gammaproteobacteria, Alphaproteobacteria, and Bacteroidia were the best represented classes in the healthy tissues of all coral species, and alpha diversity did not show significant differences among the species. The microbial community structure between coral species was significantly different (PERMANOVA: F = 3.46, p = 0.001), and enriched genera were detected for each species: Vibrio and Photobacterium in S. siderea, Spirochaeta2 and Marivivens in O. faveolata and SAR202_clade and Nitrospira in M. cavernosa. Evidence of SCTLD in the microbial communities was more substantial in S. siderea, where differences in alpha diversity, beta diversity, and functional profiles were observed. In O. faveolata, differences were detected only in the community structure, while M. cavernosa samples showed no significant difference. Several microbial groups were found to have enriched abundances in tissue from SCTLD lesions from S. siderea and O. faveolata, but no dominant bacterial group was detected. Our results contribute to understanding microbial diversity associated with three scleractinian coral species and the shifts in their microbiomes associated with SCTLD in the Mexican Caribbean.
Collapse
Affiliation(s)
- Zita P. Arriaga-Piñón
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - J. Eduardo Aguayo-Leyva
- Laboratorio de Genética para la Conservación. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., México
| | - Lorenzo Álvarez-Filip
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Ma. Leopoldina Aguirre-Macedo
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - David A. Paz-García
- Laboratorio de Genética para la Conservación. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., México
| | - José Q. García-Maldonado
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
6
|
Hamamoto K, Mizuyama M, Nishijima M, Maeda A, Gibu K, Poliseno A, Iguchi A, Reimer JD. Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. ENVIRONMENTAL MICROBIOME 2024; 19:54. [PMID: 39080706 PMCID: PMC11290285 DOI: 10.1186/s40793-024-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions. RESULTS The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation. CONCLUSION Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.
Collapse
Affiliation(s)
- Kohei Hamamoto
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Masaru Mizuyama
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
- Department of Health Informatics, Faculty of Human Health Sciences, Meio University, Nago, Okinawa, 905-8585, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Ayumi Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
7
|
Ju H, Zhang J, Zou Y, Xie F, Tang X, Zhang S, Li J. Bacteria undergo significant shifts while archaea maintain stability in Pocillopora damicornis under sustained heat stress. ENVIRONMENTAL RESEARCH 2024; 250:118469. [PMID: 38354884 DOI: 10.1016/j.envres.2024.118469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/16/2024]
Abstract
Global warming reportedly poses a critical risk to coral reef ecosystems. Bacteria and archaea are crucial components of the coral holobiont. The response of archaea associated with warming is less well understood than that of the bacterial community in corals. Also, there have been few studies on the dynamics of the microbial community in the coral holobiont under long-term heat stress. In order to track the dynamic alternations in the microbial communities within the heat-stressed coral holobiont, three-week heat-stress monitoring was carried out on the coral Pocillopora damicornis. The findings demonstrate that the corals were stressed at 32 °C, and showed a gradual decrease in Symbiodiniaceae density with increasing duration of heat stress. The archaeal community in the coral holobiont remained relatively unaltered by the increasing temperature, whereas the bacterial community was considerably altered. Sustained heat stress exacerbated the dissimilarities among parallel samples of the bacterial community, confirming the Anna Karenina Principle in animal microbiomes. Heat stress leads to more complex and unstable microbial networks, characterized by an increased average degree and decreased modularity, respectively. With the extension of heat stress duration, the relative abundances of the gene (nifH) and genus (Tistlia) associated with nitrogen fixation increased in coral samples, as well as the potential pathogenic bacteria (Flavobacteriales) and opportunistic bacteria (Bacteroides). Hence, our findings suggest that coral hosts might recruit nitrogen-fixing bacteria during the initial stages of suffering heat stress. An environment that is conducive to the colonization and development of opportunistic and pathogenic bacteria when the coral host becomes more susceptible as heat stress duration increases.
Collapse
Affiliation(s)
- Huimin Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yiyang Zou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Feiyang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiaoyu Tang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Pogoreutz C, Ziegler M. Frenemies on the reef? Resolving the coral-Endozoicomonas association. Trends Microbiol 2024; 32:422-434. [PMID: 38216372 DOI: 10.1016/j.tim.2023.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/14/2024]
Abstract
Stony corals are poster child holobionts due to their intimate association with diverse microorganisms from all domains of life. We are only beginning to understand the diverse functions of most of these microbial associates, including potential main contributors to holobiont health and resilience. Among these, bacteria of the elusive genus Endozoicomonas are widely perceived as beneficial symbionts based on their genomic potential and their high prevalence and ubiquitous presence in coral tissues. Simultaneously, evidence of pathogenic and parasitic Endozoicomonas lineages in other marine animals is emerging. Synthesizing the current knowledge on the association of Endozoicomonas with marine holobionts, we challenge the perception of a purely mutualistic coral-Endozoicomonas relationship and propose directions to elucidate its role along the symbiotic spectrum.
Collapse
Affiliation(s)
- Claudia Pogoreutz
- EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France.
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392, Giessen, Germany.
| |
Collapse
|
9
|
Bringhurst B, Greenwold M, Kellner K, Seal JN. Symbiosis, dysbiosis and the impact of horizontal exchange on bacterial microbiomes in higher fungus-gardening ants. Sci Rep 2024; 14:3231. [PMID: 38332146 PMCID: PMC10853281 DOI: 10.1038/s41598-024-53218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in our understanding of symbiotic stability have demonstrated that microorganisms are key to understanding the homeostasis of obligate symbioses. Fungus-gardening ants are excellent model systems for exploring how microorganisms may be involved in symbiotic homeostasis as the host and symbionts are macroscopic and can be easily experimentally manipulated. Their coevolutionary history has been well-studied; examinations of which have depicted broad clade-to-clade specificity between the ants and fungus. Few studies hitherto have addressed the roles of microbiomes in stabilizing these associations. Here, we quantified changes in microbiome structure as a result of experimentally induced horizontal exchange of symbionts. This was done by performing cross-fostering experiments forcing ants to grow novel fungi and comparing known temporally unstable (undergoing dysbiosis) and stable combinations. We found that fungus-gardening ants alter their unstable, novel garden microbiomes into configurations like those found in native gardens. Patterns of dysbiosis/symbiosis appear to be predictable in that two related species with similar specificity patterns also show similar patterns of microbial change, whereas a species with more relaxed specificity does not show such microbiome change or restructuring when growing different fungi. It appears that clade-to-clade specificity patterns are the outcomes of community-level interactions that promote stability or cause symbiotic collapse.
Collapse
Affiliation(s)
- Blake Bringhurst
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH, 43212, USA
| | - Matthew Greenwold
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Katrin Kellner
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Jon N Seal
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA.
| |
Collapse
|
10
|
Zou Y, Ip JCH, Xie JY, Yeung YH, Wei L, Guo Z, Zhang Y, Qiu JW. Dynamic changes in bacterial communities in three species of corals during the 2017 bleaching event in subtropical Hong Kong waters. MARINE POLLUTION BULLETIN 2024; 199:116002. [PMID: 38181470 DOI: 10.1016/j.marpolbul.2023.116002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Bacteria play important roles in coral health, yet little is known about the dynamics of coral-associated bacterial communities during coral bleaching. Here, we reported the dynamic changes of bacterial communities in three scleractinian corals (Montipora peltiformis, Pavona decussata and Platygyra carnosa) during and after bleaching through amplicon sequencing. Our results revealed that the bacterial composition and dominant bacteria varied among the three coral species. The higher susceptibility of M. peltiformis to bleaching corresponded to a lower bacterial community diversity, and the dominant Synechococcus shifted in abundance during the bleaching and coral recovery phases. The resilient P. decussata and P. carnosa had higher bacterial diversity and a more similar bacterial composition between the healthy and bleached conditions. Overall, our study reveals the dynamic changes in coral-associated microbial diversity under different conditions, contributing to explaining the differential susceptibility of corals to extreme climate conditions.
Collapse
Affiliation(s)
- Ying Zou
- School of Life and Health Sciences, Hainan University, Haikou, China
| | | | - James Y Xie
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yip Hung Yeung
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lu Wei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Zhiqiang Guo
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Yanjie Zhang
- School of Life and Health Sciences, Hainan University, Haikou, China.
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
11
|
Vompe AD, Epstein HE, Speare KE, Schmeltzer ER, Adam TC, Burkepile DE, Sharpton TJ, Vega Thurber R. Microbiome ecological memory and responses to repeated marine heatwaves clarify variation in coral bleaching and mortality. GLOBAL CHANGE BIOLOGY 2024; 30:e17088. [PMID: 38273492 DOI: 10.1111/gcb.17088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
Microbiomes are essential features of holobionts, providing their hosts with key metabolic and functional traits like resistance to environmental disturbances and diseases. In scleractinian corals, questions remain about the microbiome's role in resistance and resilience to factors contributing to the ongoing global coral decline and whether microbes serve as a form of holobiont ecological memory. To test if and how coral microbiomes affect host health outcomes during repeated disturbances, we conducted a large-scale (32 exclosures, 200 colonies, and 3 coral species sampled) and long-term (28 months, 2018-2020) manipulative experiment on the forereef of Mo'orea, French Polynesia. In 2019 and 2020, this reef experienced the two most severe marine heatwaves on record for the site. Our experiment and these events afforded us the opportunity to test microbiome dynamics and roles in the context of coral bleaching and mortality resulting from these successive and severe heatwaves. We report unique microbiome responses to repeated heatwaves in Acropora retusa, Porites lobata, and Pocillopora spp., which included: microbiome acclimatization in A. retusa, and both microbiome resilience to the first marine heatwave and microbiome resistance to the second marine heatwave in Pocillopora spp. Moreover, observed microbiome dynamics significantly correlated with coral species-specific phenotypes. For example, bleaching and mortality in A. retusa both significantly increased with greater microbiome beta dispersion and greater Shannon Diversity, while P. lobata colonies had different microbiomes across mortality prevalence. Compositional microbiome changes, such as changes to proportions of differentially abundant putatively beneficial to putatively detrimental taxa to coral health outcomes during repeated heat stress, also correlated with host mortality, with higher proportions of detrimental taxa yielding higher mortality in A. retusa. This study reveals evidence for coral species-specific microbial responses to repeated heatwaves and, importantly, suggests that host-dependent microbiome dynamics may provide a form of holobiont ecological memory to repeated heat stress.
Collapse
Affiliation(s)
- Alex D Vompe
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Hannah E Epstein
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
- School of Life Sciences, University of Essex, Colchester, Essex, UK
| | - Kelly E Speare
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona, USA
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Emily R Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Thomas C Adam
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Deron E Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
- Department of Statistics, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
12
|
Montaño-Salazar S, Quintanilla E, Sánchez JA. Microbial shifts associated to ENSO-derived thermal anomalies reveal coral acclimation at holobiont level. Sci Rep 2023; 13:22049. [PMID: 38087002 PMCID: PMC10716379 DOI: 10.1038/s41598-023-49049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/04/2023] [Indexed: 12/18/2023] Open
Abstract
The coral microbiome conforms a proxy to study effects of changing environmental conditions. However, scarce information exists regarding microbiome dynamics and host acclimation in response to environmental changes associated to global-scale disturbances. We assessed El Niño Southern Oscillation (ENSO)-derived thermal anomalies shifts in the bacterial microbiome of Pacifigorgia cairnsi (Gorgoniidae: Octocorallia) from the remote island of Malpelo in the Tropical Eastern Pacific. Malpelo is a hot spot of biodiversity and lacks direct coastal anthropogenic impacts. We evaluated the community composition and predicted functional profiles of the microbiome during 2015, 2017 and 2018, including different phases of ENSO cycle. The bacterial community diversity and composition between the warming and cooling phase were similar, but differed from the neutral phase. Relative abundances of different microbiome core members such as Endozoicomonas and Mycoplasma mainly drove these differences. An acclimated coral holobiont is suggested not just to warm but also to cold stress by embracing similar microbiome shifts and functional redundancy that allow maintaining coral's viability under thermal stress. Responses of the microbiome of unperturbed sea fans such as P. cairnsi in Malpelo could be acting as an extended phenotype facilitating the acclimation at the holobiont level.
Collapse
Affiliation(s)
- Sandra Montaño-Salazar
- Division of Microbial Ecology, Department for Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Elena Quintanilla
- Department of Soil and Water Sciences, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32610, USA.
| | - Juan A Sánchez
- Laboratory of Marine Molecular Biology (BIOMMAR), Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
13
|
Hochart C, Paoli L, Ruscheweyh HJ, Salazar G, Boissin E, Romac S, Poulain J, Bourdin G, Iwankow G, Moulin C, Ziegler M, Porro B, Armstrong EJ, Hume BCC, Aury JM, Pogoreutz C, Paz-García DA, Nugues MM, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Gilson E, Lombard F, Pesant S, Reynaud S, Thomas OP, Troublé R, Wincker P, Zoccola D, Allemand D, Planes S, Thurber RV, Voolstra CR, Sunagawa S, Galand PE. Ecology of Endozoicomonadaceae in three coral genera across the Pacific Ocean. Nat Commun 2023; 14:3037. [PMID: 37264015 DOI: 10.1038/s41467-023-38502-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean. The analysis of 2447 metabarcoding and 270 metagenomic samples reveals that each coral genus harbored a distinct new species of Endozoicomonadaceae. These species are composed of nine lineages that have distinct biogeographic patterns. The most common one, found in Pocillopora, appears to be a globally distributed symbiont with distinct metabolic capabilities, including the synthesis of amino acids and vitamins not produced by the host. The other lineages are structured partly by the host genetic lineage in Pocillopora and mainly by the geographic location in Porites. Millepora is more rarely associated to Endozoicomonadaceae. Our results show that different coral genera exhibit distinct strategies of host-Endozoicomonadaceae associations that are defined at the bacteria lineage level.
Collapse
Affiliation(s)
- Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur Mer, France
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | | | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32 (IFZ), 35392, Giessen, Germany
| | - Barbara Porro
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
| | - Eric J Armstrong
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | - Claudia Pogoreutz
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, 23096, México
| | - Maggy M Nugues
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Colomban de Vargas
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Didier Forcioli
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
| | - Paola Furla
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
| | - Eric Gilson
- CNRS, INSERM, Institute for Research on Cancer and Aging (IRCAN), Université Côte d'Azur, Nice, France
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Department of Medical Genetics, CHU Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, 06230, Villefranche-sur-Mer, France
- Institut Universitaire de France, 75231, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, 8 rue de Prague, 75012, Paris, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | - Didier Zoccola
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Denis Allemand
- Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco (LIA ROPSE), Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, Cedex, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France
| | | | | | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, 8093, Zürich, Switzerland
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, 66650, Banyuls sur Mer, France.
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 75000, Paris, France.
| |
Collapse
|
14
|
Howe-Kerr LI, Grupstra CGB, Rabbitt KM, Conetta D, Coy SR, Klinges JG, Maher RL, McConnell KM, Meiling SS, Messyasz A, Schmeltzer ER, Seabrook S, Sims JA, Veglia AJ, Thurber AR, Thurber RLV, Correa AMS. Viruses of a key coral symbiont exhibit temperature-driven productivity across a reefscape. ISME COMMUNICATIONS 2023; 3:27. [PMID: 37009785 PMCID: PMC10068613 DOI: 10.1038/s43705-023-00227-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Viruses can affect coral health by infecting their symbiotic dinoflagellate partners (Symbiodiniaceae). Yet, viral dynamics in coral colonies exposed to environmental stress have not been studied at the reef scale, particularly within individual viral lineages. We sequenced the viral major capsid protein (mcp) gene of positive-sense single-stranded RNA viruses known to infect symbiotic dinoflagellates ('dinoRNAVs') to analyze their dynamics in the reef-building coral, Porites lobata. We repeatedly sampled 54 colonies harboring Cladocopium C15 dinoflagellates, across three environmentally distinct reef zones (fringing reef, back reef, and forereef) around the island of Moorea, French Polynesia over a 3-year period and spanning a reef-wide thermal stress event. By the end of the sampling period, 28% (5/18) of corals in the fringing reef experienced partial mortality versus 78% (14/18) of corals in the forereef. Over 90% (50/54) of colonies had detectable dinoRNAV infections. Reef zone influenced the composition and richness of viral mcp amino acid types ('aminotypes'), with the fringing reef containing the highest aminotype richness. The reef-wide thermal stress event significantly increased aminotype dispersion, and this pattern was strongest in the colonies that experienced partial mortality. These findings demonstrate that dinoRNAV infections respond to environmental fluctuations experienced in situ on reefs. Further, viral productivity will likely increase as ocean temperatures continue to rise, potentially impacting the foundational symbiosis underpinning coral reef ecosystems.
Collapse
Affiliation(s)
| | - Carsten G B Grupstra
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Kristen M Rabbitt
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA, USA
| | - Dennis Conetta
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Samantha R Coy
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Oceanography, Texas A & M University, College Station, TX, USA
| | - J Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, USA
| | - Rebecca L Maher
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | | | - Sonora S Meiling
- University of the Virgin Islands, St. Thomas, US Virgin Islands, USA
| | - Adriana Messyasz
- Rutgers School of Environmental and Biological Sciences, New Brunswick, NJ, USA
| | | | - Sarah Seabrook
- Oregon State University, Corvallis, OR, USA
- National Institute of Water and Atmospheric Research, Wellington, New Zealand
| | - Jordan A Sims
- Department of BioSciences, Rice University, Houston, TX, USA
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Alex J Veglia
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | | | | |
Collapse
|
15
|
Klinges JG, Patel SH, Duke WC, Muller EM, Vega Thurber RL. Microbiomes of a disease-resistant genotype of Acropora cervicornis are resistant to acute, but not chronic, nutrient enrichment. Sci Rep 2023; 13:3617. [PMID: 36869057 PMCID: PMC9984465 DOI: 10.1038/s41598-023-30615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Chronically high levels of inorganic nutrients have been documented in Florida's coral reefs and are linked to increased prevalence and severity of coral bleaching and disease. Naturally disease-resistant genotypes of the staghorn coral Acropora cervicornis are rare, and it is unknown whether prolonged exposure to acute or chronic high nutrient levels will reduce the disease tolerance of these genotypes. Recently, the relative abundance of the bacterial genus Aquarickettsia was identified as a significant indicator of disease susceptibility in A. cervicornis, and the abundance of this bacterial species was previously found to increase under chronic and acute nutrient enrichment. We therefore examined the impact of common constituents of nutrient pollution (phosphate, nitrate, and ammonium) on microbial community structure in a disease-resistant genotype with naturally low abundances of Aquarickettsia. We found that although this putative parasite responded positively to nutrient enrichment in a disease-resistant host, relative abundances remained low (< 0.5%). Further, while microbial diversity was not altered significantly after 3 weeks of nutrient enrichment, 6 weeks of enrichment was sufficient to shift microbiome diversity and composition. Coral growth rates were also reduced by 6 weeks of nitrate treatment compared to untreated conditions. Together these data suggest that the microbiomes of disease-resistant A. cervicornis may be initially resistant to shifts in microbial community structure, but succumb to compositional and diversity alterations after more sustained environmental pressure. As the maintenance of disease-resistant genotypes is critical for coral population management and restoration, a complete understanding of how these genotypes respond to environmental stressors is necessary to predict their longevity.
Collapse
Affiliation(s)
- J Grace Klinges
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA.
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA.
| | - Shalvi H Patel
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - William C Duke
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Erinn M Muller
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL, 33042, USA
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL, 34236, USA
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
16
|
Kanisan DP, Quek ZBR, Oh RM, Afiq-Rosli L, Lee JN, Huang D, Wainwright BJ. Diversity and Distribution of Microbial Communities Associated with Reef Corals of the Malay Peninsula. MICROBIAL ECOLOGY 2023; 85:37-48. [PMID: 35043221 DOI: 10.1007/s00248-022-01958-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Coral-associated bacteria play critical roles in the regulation of coral health and function. Environmental perturbations that alter the bacterial community structure can render the coral holobiont more susceptible and less resilient to disease. Understanding the natural variation of the coral microbiome across space and host species provides a baseline that can be used to distinguish shifts in community structure. Using a 16S rRNA gene metabarcoding approach, this study examines bacterial community structure across three scleractinian coral hosts. Our results show that corals of three regions-eastern and western Peninsular Malaysia and Singapore-host distinct bacterial communities; despite these differences, we were able to identify a core microbiome shared across all three species. This core microbiome was also present in samples previously collected in Thailand, suggesting that these core microbes play an important role in promoting and maintaining host health. For example, several have been identified as dimethylsulfoniopropionate (DMSP) metabolizers that have roles in sulfur cycling and the suppression of bacterial pathogens. Pachyseris speciosa has the most variable microbiome, followed by Porites lutea, with the composition of the Diploastrea heliopora microbiome the least variable throughout all locations. Microbial taxa associated with each region or site are likely shaped by local environmental conditions. Taken together, host identity is a major driver of differences in microbial community structure, while environmental heterogeneity shapes communities at finer scales.
Collapse
Affiliation(s)
- Dhivya P Kanisan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Yale-NUS College, National University of Singapore, 16 College Avenue West, 138527, Singapore
| | - Ren Min Oh
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Jen Nie Lee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Malaysia
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
- Centre for Nature-Based Climate Solutions, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, 138527, Singapore.
| |
Collapse
|
17
|
Predicting shifts in demography of Orbicella franksi following simulated disturbance and restoration. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Microbiome Restructuring: Dominant Coral Bacterium Endozoicomonas Species Respond Differentially to Environmental Changes. mSystems 2022; 7:e0035922. [PMID: 35703535 PMCID: PMC9426584 DOI: 10.1128/msystems.00359-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteria in the coral microbiome play a crucial role in determining coral health and fitness, and the coral host often restructures its microbiome composition in response to external factors. An important but often neglected factor determining this microbiome restructuring is the ability of microbiome members to respond to changes in the environment. To address this issue, we examined how the microbiome structure of Acropora muricata corals changed over 9 months following a reciprocal transplant experiment. Using a combination of metabarcoding, genomics, and comparative genomics approaches, we found that coral colonies separated by a small distance harbored different dominant Endozoicomonas-related phylotypes belonging to two different species, including a novel species, “Candidatus Endozoicomonas penghunesis” 4G, whose chromosome-level (complete) genome was also sequenced in this study. Furthermore, the two dominant Endozoicomonas species had different potentials to scavenge reactive oxygen species, suggesting potential differences in responding to the environment. Differential capabilities of dominant members of the microbiome to respond to environmental change can (i) provide distinct advantages or disadvantages to coral hosts when subjected to changing environmental conditions and (ii) have positive or negative implications for future reefs. IMPORTANCE The coral microbiome has been known to play a crucial role in host health. In recent years, we have known that the coral microbiome changes in response to external stressors and that coral hosts structure their microbiome in a host-specific manner. However, an important internal factor, the ability of microbiome members to respond to change, has been often neglected. In this study, we combine metabarcoding, culturing, and genomics to delineate the differential ability of two dominant Endozoicomonas species, including a novel “Ca. Endozoicomonas penghunesis” 4G, to respond to change in the environment following a reciprocal transplant experiment.
Collapse
|
19
|
Haydon TD, Suggett DJ, Siboni N, Kahlke T, Camp EF, Seymour JR. Temporal Variation in the Microbiome of Tropical and Temperate Octocorals. MICROBIAL ECOLOGY 2022; 83:1073-1087. [PMID: 34331071 DOI: 10.1007/s00248-021-01823-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Bacterial members of the coral holobiont play an important role in determining coral fitness. However, most knowledge of the coral microbiome has come from reef-building scleractinian corals, with far less known about the nature and importance of the microbiome of octocorals (subclass Octocorallia), which contribute significantly to reef biodiversity and functional complexity. We examined the diversity and structure of the bacterial component of octocoral microbiomes over summer and winter, with a focus on two temperate (Erythropodium hicksoni, Capnella gaboensis; Sydney Harbour) and two tropical (Sinularia sp., Sarcophyton sp.; Heron Island) species common to reefs in eastern Australia. Bacterial communities associated with these octocorals were also compared to common temperate (Plesiastrea versipora) and tropical (Acropora aspera) hard corals from the same reefs. Using 16S rRNA amplicon sequencing, bacterial diversity was found to be heterogeneous among octocorals, but we observed changes in composition between summer and winter for some species (C. gaboensis and Sinularia sp.), but not for others (E. hicksoni and Sarcophyton sp.). Bacterial community structure differed significantly between all octocoral species within both the temperate and tropical environments. However, on a seasonal basis, those differences were less pronounced. The microbiomes of C. gaboensis and Sinularia sp. were dominated by bacteria belonging to the genus Endozoicomonas, which were a key conserved feature of their core microbiomes. In contrast to previous studies, our analysis revealed that Endozoicomonas phylotypes are shared across different octocoral species, inhabiting different environments. Together, our data demonstrates that octocorals harbour a broad diversity of bacterial partners, some of which comprise 'core microbiomes' that potentially impart important functional roles to their hosts.
Collapse
Affiliation(s)
- Trent D Haydon
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - David J Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Nachshon Siboni
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Emma F Camp
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Justin R Seymour
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
20
|
Maire J, Buerger P, Chan WY, Deore P, Dungan AM, Nitschke MR, van Oppen MJH. Effects of Ocean Warming on the Underexplored Members of the Coral Microbiome. Integr Comp Biol 2022; 62:1700-1709. [PMID: 35259253 PMCID: PMC9801979 DOI: 10.1093/icb/icac005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 01/05/2023] Open
Abstract
The climate crisis is one of the most significant threats to marine ecosystems. It is leading to severe increases in sea surface temperatures and in the frequency and magnitude of marine heatwaves. These changing conditions are directly impacting coral reef ecosystems, which are among the most biodiverse ecosystems on Earth. Coral-associated symbionts are particularly affected because summer heatwaves cause coral bleaching-the loss of endosymbiotic microalgae (Symbiodiniaceae) from coral tissues, leading to coral starvation and death. Coral-associated Symbiodiniaceae and bacteria have been extensively studied in the context of climate change, especially in terms of community diversity and dynamics. However, data on other microorganisms and their response to climate change are scarce. Here, we review current knowledge on how increasing temperatures affect understudied coral-associated microorganisms such as archaea, fungi, viruses, and protists other than Symbiodiniaceae, as well as microbe-microbe interactions. We show that the coral-microbe symbiosis equilibrium is at risk under current and predicted future climate change and argue that coral reef conservation initiatives should include microbe-focused approaches.
Collapse
Affiliation(s)
| | - Patrick Buerger
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Pranali Deore
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashley M Dungan
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Madeleine J H van Oppen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia,Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
21
|
Baker LJ, Reich HG, Kitchen SA, Grace Klinges J, Koch HR, Baums IB, Muller EM, Thurber RV. The coral symbiont Candidatus Aquarickettsia is variably abundant in threatened Caribbean acroporids and transmitted horizontally. THE ISME JOURNAL 2022; 16:400-411. [PMID: 34363004 PMCID: PMC8776821 DOI: 10.1038/s41396-021-01077-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
The symbiont "Candidatus Aquarickettsia rohweri" infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid ("Ac. prolifera"). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral's algal symbiont (Symbiodinium "fitti"). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.
Collapse
Affiliation(s)
- Lydia J Baker
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| | - Hannah G Reich
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sheila A Kitchen
- Division of Biology and Biological Engineering, California Institute of Science and Technology, Pasadena, CA, USA
| | - J Grace Klinges
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Hanna R Koch
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | - Iliana B Baums
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Erinn M Muller
- Coral Restoration Program, Mote Marine Laboratory, Summerland Key, FL, USA
| | | |
Collapse
|
22
|
Kriefall NG, Kanke MR, Aglyamova GV, Davies SW. Reef environments shape microbial partners in a highly connected coral population. Proc Biol Sci 2022; 289:20212459. [PMID: 35042418 PMCID: PMC8767194 DOI: 10.1098/rspb.2021.2459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 01/28/2023] Open
Abstract
Evidence is mounting that composition of microorganisms within a host can play an essential role in total holobiont health. In corals, for instance, studies have identified algal and bacterial taxa that can significantly influence coral host function and these communities depend on environmental context. However, few studies have linked host genetics to algal and microbial partners across environments within a single coral population. Here, using 2b-RAD sequencing of corals and metabarcoding of their associated algal (ITS2) and bacterial (16S) communities, we show evidence that reef zones (locales that differ in proximity to shore and other environmental characteristics) structure algal and bacterial communities at different scales in a highly connected coral population (Acropora hyacinthus) in French Polynesia. Fore reef (FR) algal communities in Mo'orea were more diverse than back reef (BR) communities, suggesting that these BR conditions constrain diversity. Interestingly, in FR corals, host genetic diversity correlated with bacterial diversity, which could imply genotype by genotype interactions between these holobiont members. Our results illuminate that local reef conditions play an important role in shaping unique host-microbial partner combinations, which may have fitness consequences for dispersive coral populations arriving in novel environments.
Collapse
Affiliation(s)
| | - M. R. Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - G. V. Aglyamova
- Department of Integrative Biology, the University of Texas at Austin, Austin, TX, USA
| | - S. W. Davies
- Biology Department, Boston University, Boston, MA, USA
| |
Collapse
|
23
|
Klinges JG, Patel SH, Duke WC, Muller EM, Vega Thurber RL. OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6528370. [PMID: 35157069 PMCID: PMC8902694 DOI: 10.1093/femsec/fiac013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Nutrient pollution is linked to coral disease susceptibility and severity, but the mechanism behind this effect remains underexplored. A recently identified bacterial species, ‘Ca. Aquarickettsia rohweri,’ is hypothesized to parasitize the Caribbean staghorn coral, Acropora cervicornis, leading to reduced coral growth and increased disease susceptibility. Aquarickettsia rohweri is hypothesized to assimilate host metabolites and ATP and was previously demonstrated to be highly nutrient-responsive. As nutrient enrichment is a pervasive issue in the Caribbean, this study examined the effects of common nutrient pollutants (nitrate, ammonium, and phosphate) on a disease-susceptible genotype of A. cervicornis. Microbial diversity was found to decline over the course of the experiment in phosphate-, nitrate-, and combined-treated samples, and quantitative PCR indicated that Aquarickettsia abundance increased significantly across all treatments. Only treatments amended with phosphate, however, exhibited a significant shift in Aquarickettsia abundance relative to other taxa. Furthermore, corals exposed to phosphate had significantly lower linear extension than untreated or nitrate-treated corals after 3 weeks of nutrient exposure. Together these data suggest that while experimental tank conditions, with an elevated nutrient regime associated with coastal waters, increased total bacterial abundance, only the addition of phosphate significantly altered the ratios of Aquarickettsia compared to other members of the microbiome.
Collapse
Affiliation(s)
- J Grace Klinges
- Corresponding author: Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL 33042, USA. Tel: +(941) 504-3801; E-mail:
| | - Shalvi H Patel
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA
| | - William C Duke
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA
| | - Erinn M Muller
- Mote Marine Laboratory International Center for Coral Reef Research and Restoration, 24244 Overseas Hwy, Summerland Key, FL 33042, USA
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Rebecca L Vega Thurber
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR 97331, USA
| |
Collapse
|
24
|
Chapron L, Galand PE, Pruski AM, Peru E, Vétion G, Robin S, Lartaud F. Resilience of cold-water coral holobionts to thermal stress. Proc Biol Sci 2021; 288:20212117. [PMID: 34905712 PMCID: PMC8670956 DOI: 10.1098/rspb.2021.2117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Cold-water corals are threatened by global warming, especially in the Mediterranean Sea where they live close to their upper known thermal limit (i.e. 13°C), yet their response to rising temperatures is not well known. Here, temperature effects on Lophelia pertusa and Madrepora oculata holobionts (i.e. the host and its associated microbiome) were investigated. We found that at warmer seawater temperature (+2°C), L. pertusa showed a modification of its microbiome prior to a change in behaviour, leading to lower energy reserves and skeletal growth, whereas M. oculata was more resilient. At extreme temperature (+4°C), both species quickly lost their specific bacterial signature followed by lower physiological activity prior to death. In addition, our results showing the holobionts' negative response to colder temperatures (-3°C), suggest that Mediterranean corals live close to their thermal optimum. The species-specific response to temperature change highlights that global warming may affect dramatically the main deep-sea reef-builders, which would alter the associated biodiversity and related ecosystem services.
Collapse
Affiliation(s)
- Leila Chapron
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Pierre E. Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Audrey M. Pruski
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Gilles Vétion
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Sarah Robin
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| |
Collapse
|
25
|
Nutrient Enrichment Predominantly Affects Low Diversity Microbiomes in a Marine Trophic Symbiosis between Algal Farming Fish and Corals. Microorganisms 2021; 9:microorganisms9091873. [PMID: 34576770 PMCID: PMC8471015 DOI: 10.3390/microorganisms9091873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
While studies show that nutrient pollution shifts reef trophic interactions between fish, macroalgae, and corals, we know less about how the microbiomes associated with these organisms react to such disturbances. To investigate how microbiome dynamics are affected during nutrient pollution, we exposed replicate Porites lobata corals colonized by the fish Stegastes nigricans, which farm an algal matrix on the coral, to a pulse of nutrient enrichment over a two-month period and examined the microbiome of each partner using 16S amplicon analysis. We found 51 amplicon sequence variants (ASVs) shared among the three hosts. Coral microbiomes had the lowest diversity with over 98% of the microbiome dominated by a single genus, Endozoicomonas. Fish and algal matrix microbiomes were ~20 to 70× more diverse and had higher evenness compared to the corals. The addition of nutrients significantly increased species richness and community variability between samples of coral microbiomes but not the fish or algal matrix microbiomes, demonstrating that coral microbiomes are less resistant to nutrient pollution than their trophic partners. Furthermore, the 51 common ASVs within the 3 hosts indicate microbes that may be shared or transmitted between these closely associated organisms, including Vibrionaceae bacteria, many of which can be pathogenic to corals.
Collapse
|
26
|
Ezzat L, Merolla S, Clements CS, Munsterman KS, Landfield K, Stensrud C, Schmeltzer ER, Burkepile DE, Vega Thurber R. Thermal Stress Interacts With Surgeonfish Feces to Increase Coral Susceptibility to Dysbiosis and Reduce Tissue Regeneration. Front Microbiol 2021; 12:620458. [PMID: 33841351 PMCID: PMC8027513 DOI: 10.3389/fmicb.2021.620458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/28/2021] [Indexed: 01/04/2023] Open
Abstract
Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surface temperatures have direct effects on coral microbiomes by promoting growth and virulence of opportunists and putative pathogens, thereby altering host immunity and health. However, interactions between these biotic and abiotic factors have yet to be evaluated. Here, we used a factorial experiment to investigate the combined effects of fecal pellet deposition by the widely distributed surgeonfish Ctenochaetus striatus and elevated sea surface temperatures on microbiomes associated with the reef-building coral Porites lobata. Our results showed that regardless of temperature, exposure of P. lobata to C. striatus feces increased alpha diversity, dispersion, and lead to a shift in microbial community composition – all indicative of microbial dysbiosis. Although elevated temperature did not result in significant changes in alpha and beta diversity, we noted an increasing number of differentially abundant taxa in corals exposed to both feces and thermal stress within the first 48h of the experiment. These included opportunistic microbial lineages and taxa closely related to potential coral pathogens (i.e., Vibrio vulnificus, Photobacterium rosenbergii). Some of these taxa were absent in controls but present in surgeonfish feces under both temperature regimes, suggesting mechanisms of microbial transmission and/or enrichment from fish feces to corals. Importantly, the impact to coral microbiomes by fish feces under higher temperatures appeared to inhibit wound healing in corals, as percentages of tissue recovery at the site of feces deposition were lower at 30°C compared to 26°C. Lower percentages of tissue recovery were associated with greater relative abundance of several bacterial lineages, with some of them found in surgeonfish feces (i.e., Rhodobacteraceae, Bdellovibrionaceae, Crocinitomicaceae). Our findings suggest that fish feces interact with elevated sea surface temperatures to favor microbial opportunism and enhance dysbiosis susceptibility in P. lobata. As the frequency and duration of thermal stress related events increase, the ability of coral microbiomes to recover from biotic stressors such as deposition of fish feces may be greatly affected, ultimately compromising coral health and resilience.
Collapse
Affiliation(s)
- Leïla Ezzat
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sarah Merolla
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Cody S Clements
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Katrina S Munsterman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Kaitlyn Landfield
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Colton Stensrud
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Emily R Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|