1
|
Jackson KJL, Kos JT, Lees W, Gibson WS, Smith ML, Peres A, Yaari G, Corcoran M, Busse CE, Ohlin M, Watson CT, Collins AM. A BALB/c IGHV Reference Set, Defined by Haplotype Analysis of Long-Read VDJ-C Sequences From F1 (BALB/c x C57BL/6) Mice. Front Immunol 2022; 13:888555. [PMID: 35720344 PMCID: PMC9205180 DOI: 10.3389/fimmu.2022.888555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
The immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/c x C57BL/6) hybrid animals. Strain variations were identified in the Ighm and Ighg2b genes, and analysis of VDJ rearrangements led to the inference of 278 germline IGHV alleles. 169 alleles are not present in the C57BL/6 genome reference sequence. To establish a set of expressed BALB/c IGHV germline gene sequences, we computationally retrieved IGHV haplotypes from the IgM dataset. Haplotyping led to the confirmation of 162 BALB/c IGHV gene sequences. A musIGHV398 pseudogene variant also appears to be present in the BALB/cByJ substrain, while a functional musIGHV398 gene is highly expressed in the BALB/cJ substrain. Only four of the BALB/c alleles were also observed in the C57BL/6 haplotype. The full set of inferred BALB/c sequences has been used to establish a BALB/c IGHV reference set, hosted at https://ogrdb.airr-community.org. We assessed whether assemblies from the Mouse Genome Project (MGP) are suitable for the determination of the genes of the IGH loci. Only 37 (43.5%) of the 85 confirmed IMGT-named BALB/c IGHV and 33 (42.9%) of the 77 confirmed non-IMGT IGHV were found in a search of the MGP BALB/cJ genome assembly. This suggests that current MGP assemblies are unsuitable for the comprehensive documentation of germline IGHVs and more efforts will be needed to establish strain-specific reference sets.
Collapse
Affiliation(s)
| | - Justin T. Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - William Lees
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, United Kingdom
| | - William S. Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Melissa Laird Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Christian E. Busse
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, United States
| | - Andrew M. Collins
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
2
|
Khass M, Levinson M, Schelonka RL, Kapoor P, Burrows PD, Schroeder HW. Preimmune Control of the Variance of TCR CDR-B3: Insights Gained From Germline Replacement of a TCR Dβ Gene Segment With an Ig D H Gene Segment. Front Immunol 2020; 11:2079. [PMID: 33042119 PMCID: PMC7518465 DOI: 10.3389/fimmu.2020.02079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/30/2020] [Indexed: 12/03/2022] Open
Abstract
We have previously shown that the sequence of the immunoglobulin diversity gene segment (D H ) helps dictate the structure and composition of complementarity determining region 3 of the immunoglobulin heavy chain (CDR-H3). In order to test the role of germline D sequence on the diversity of the preimmune TCRβ repertoire of T cells, we generated a mouse with a mutant TCRβ DJC locus wherein the Dβ2-Jβ2 gene segment cluster was deleted and the remaining diversity gene segment, Dβ1 (IMGT:TRDB1), was replaced with DSP2.3 (IMGT:IGHD2-02), a commonly used B cell immunoglobulin D H gene segment. Crystallographic studies have shown that the length and thus structure of TCR CDR-B3 places amino acids at the tip of CDR-B3 in a position to directly interact with peptide bound to an MHC molecule. The length distribution of complementarity determining region 3 of the T cell receptor beta chain (CDR-B3) has been proposed to be restricted largely by MHC-specific selection, disfavoring CDR-B3 that are too long or too short. Here we show that the mechanism of control of CDR-B3 length depends on the Dβ sequence, which in turn dictates exonucleolytic nibbling. By contrast, the extent of N addition and the variance of created CDR3 lengths are regulated by the cell of origin, the thymocyte. We found that the sequence of the D and control of N addition collaborate to bias the distribution of CDR-B3 lengths in the pre-immune TCR repertoire and to focus the diversity provided by N addition and the sequence of the D on that portion of CDR-B3 that is most likely to interact with the peptide that is bound to the presenting MHC.
Collapse
Affiliation(s)
- Mohamed Khass
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
- Division of Genetic Engineering and Biotechnology, National Research Center, Cairo, Egypt
| | - Michael Levinson
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert L. Schelonka
- Division of Neonatology, Department of Pediatrics, Oregon Health Science Center, Portland, OR, United States
| | - Pratibha Kapoor
- Division of Clinical Immunology and Rheumatology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Peter D. Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harry W. Schroeder
- Division of Clinical Immunology and Rheumatology, Department of Medicine, Microbiology, and Genetics, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Khass M, Vale AM, Burrows PD, Schroeder HW. The sequences encoded by immunoglobulin diversity (D H ) gene segments play key roles in controlling B-cell development, antigen-binding site diversity, and antibody production. Immunol Rev 2019; 284:106-119. [PMID: 29944758 DOI: 10.1111/imr.12669] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Although at first glance the diversity of the immunoglobulin repertoire appears random, there are a number of mechanisms that act to constrain diversity. For example, key mechanisms controlling the diversity of the third complementarity determining region of the immunoglobulin heavy chain (CDR-H3) include natural selection of germline diversity (DH ) gene segment sequence and somatic selection upon passage through successive B-cell developmental checkpoints. To test the role of DH gene segment sequence, we generated a panel of mice limited to the use of a single germline or frameshifted DH gene segment. Specific individual amino acids within core DH gene segment sequence heavily influenced the absolute numbers of developing and mature B-cell subsets, antibody production, epitope recognition, protection against pathogen challenge, and susceptibility to the production of autoreactive antibodies. At the tip of the antigen-binding loop (PDB position 101) in CDR-H3, both natural (germline) and somatic selection favored tyrosine while disfavoring the presence of hydrophobic amino acids. Enrichment for arginine in CDR-H3 appeared to broaden recognition of epitopes of varying hydrophobicity, but led to diminished binding intensity and an increased likelihood of generating potentially pathogenic dsDNA-binding autoreactive antibodies. The phenotype of altering the sequence of the DH was recessive for T-independent antibody production, but dominant for T-cell-dependent responses. Our work suggests that the antibody repertoire is structured, with the sequence of individual DH selected by evolution to preferentially generate an apparently preferred category of antigen-binding sites. The result of this structured approach appears to be a repertoire that has been adapted, or optimized, to produce protective antibodies for a wide range of pathogen epitopes while reducing the likelihood of generating autoreactive specificities.
Collapse
Affiliation(s)
- Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Genetic Engineering and Biotechnology, National Research Center, Cairo, Egypt
| | - Andre M Vale
- Program in Immunobiology, Laboratory of Lymphocyte Biology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
4
|
Lemke H. Immune Response Regulation by Antigen Receptors' Clone-Specific Nonself Parts. Front Immunol 2018; 9:1471. [PMID: 30034389 PMCID: PMC6026803 DOI: 10.3389/fimmu.2018.01471] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Antigen determinants (epitopes) are recognized by the combining sites (paratopes) of B and T cell antigen receptors (BCR/TCR), which again express clone-specific epitopes (idiotopes) that can be recognized by BCR/TCR not only of genetically different donors but also within the autologous immune system. While xenogeneic and allogeneic anti-idiotypic BCR/TCR are broadly cross-reactive, only autologous anti-idiotypes are truly specific and of functional regulatory relevance within a particular immune system. Autologous BCR/TCR idiotopes are (a) somatically created at the third complementarity-determining regions, (b) through mutations introduced into BCRs during adaptive immune responses, and (c) through the conformational impact of both. As these idiotypic characters have no genomic counterparts they have to be regarded as antigen receptor-intrinsic nonself-portions. Although foreign, however, they are per se non-immunogenic, but in conjunction with immunogenicity- and adjuvanticity-providing antigen-induced immune responses, they induce abating regulatory idiotypic chain reactions. The dualistic nature of antigen receptors of seeing antigens (self and nonself alike) and being nonself at the same time has far reaching consequences for an understanding of the regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Hilmar Lemke
- Biochemical Institute of the Medical Faculty, Christian-Albrechts-University at Kiel, Kiel, Germany
| |
Collapse
|
5
|
Khass M, Blackburn T, Elgavish A, Burrows PD, Schroeder HW. In the Absence of Central pre-B Cell Receptor Selection, Peripheral Selection Attempts to Optimize the Antibody Repertoire by Enriching for CDR-H3 Y101. Front Immunol 2018; 9:120. [PMID: 29472919 PMCID: PMC5810287 DOI: 10.3389/fimmu.2018.00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/15/2018] [Indexed: 01/13/2023] Open
Abstract
Sequential developmental checkpoints are used to “optimize” the B cell antigen receptor repertoire by minimizing production of autoreactive or useless immunoglobulins and enriching for potentially protective antibodies. The first and apparently most impactful checkpoint requires μHC to form a functional pre-B cell receptor (preBCR) by associating with surrogate light chain, which is composed of VpreB and λ5. Absence of any of the preBCR components causes a block in B cell development that is characterized by severe immature B cell lymphopenia. Previously, we showed that preBCR controls the amino acid content of the third complementary determining region of the H chain (CDR-H3) by using a VpreB amino acid motif (RDR) to select for tyrosine at CDR-H3 position 101 (Y101). In antibodies bound to antigen, Y101 is commonly in direct contact with the antigen, thus preBCR selection impacts the antigen binding characteristics of the repertoire. In this work, we sought to determine the forces that shape the peripheral B cell repertoire when it is denied preBCR selection. Using bromodeoxyuridine incorporation and evaluation of apoptosis, we found that in the absence of preBCR there is increased turnover of B cells due to increased apoptosis. CDR-H3 sequencing revealed that this is accompanied by adjustments to DH identity, DH reading frame, JH, and CDR-H3 amino acid content. These adjustments in the periphery led to wild-type levels of CDR-H3 Y101 content among transitional (T1), mature recirculating, and marginal zone B cells. However, peripheral selection proved incomplete, with failure to restore Y101 levels in follicular B cells and increased production of dsDNA-binding IgM antibodies.
Collapse
Affiliation(s)
- Mohamed Khass
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Genetic Engineering and Biotechnology Division, National Research Center, Cairo, Egypt
| | - Tessa Blackburn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ada Elgavish
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Peter D Burrows
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harry W Schroeder
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
6
|
Abdel-Azim H, Elshoury A, Mahadeo KM, Parkman R, Kapoor N. Humoral Immune Reconstitution Kinetics after Allogeneic Hematopoietic Stem Cell Transplantation in Children: A Maturation Block of IgM Memory B Cells May Lead to Impaired Antibody Immune Reconstitution. Biol Blood Marrow Transplant 2017; 23:1437-1446. [PMID: 28495643 DOI: 10.1016/j.bbmt.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/04/2017] [Indexed: 01/25/2023]
Abstract
Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4+ T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California; University of Southern California Keck School of Medicine, Los Angeles, California.
| | - Amro Elshoury
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California
| | - Kris M Mahadeo
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California; University of Southern California Keck School of Medicine, Los Angeles, California
| | - Robertson Parkman
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California; University of Southern California Keck School of Medicine, Los Angeles, California
| | - Neena Kapoor
- Division of Hematology, Oncology, and Blood and Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, California; University of Southern California Keck School of Medicine, Los Angeles, California
| |
Collapse
|
7
|
Wang Y, Kapoor P, Parks R, Silva-Sanchez A, Alam SM, Verkoczy L, Liao HX, Zhuang Y, Burrows P, Levinson M, Elgavish A, Cui X, Haynes BF, Schroeder H. HIV-1 gp140 epitope recognition is influenced by immunoglobulin DH gene segment sequence. Immunogenetics 2016; 68:145-55. [PMID: 26687685 PMCID: PMC4729650 DOI: 10.1007/s00251-015-0890-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/04/2015] [Indexed: 12/31/2022]
Abstract
Complementarity Determining Region 3 of the immunoglobulin (Ig) H chain (CDR-H3) lies at the center of the antigen-binding site where it often plays a decisive role in antigen recognition and binding. Amino acids encoded by the diversity (DH) gene segment are the main component of CDR-H3. Each DH has the potential to rearrange into one of six DH reading frames (RFs), each of which exhibits a characteristic amino acid hydrophobicity signature that has been conserved among jawed vertebrates by natural selection. A preference for use of RF1 promotes the incorporation of tyrosine into CDR-H3 while suppressing the inclusion of hydrophobic or charged amino acids. To test the hypothesis that these evolutionary constraints on DH sequence influence epitope recognition, we used mice with a single DH that has been altered to preferentially use RF2 or inverted RF1. B cells in these mice produce a CDR-H3 repertoire that is enriched for valine or arginine in place of tyrosine. We serially immunized this panel of mice with gp140 from HIV-1 JR-FL isolate and then used enzyme-linked immunosorbent assay (ELISA) or peptide microarray to assess antibody binding to key or overlapping HIV-1 envelope epitopes. By ELISA, serum reactivity to key epitopes varied by DH sequence. By microarray, sera with Ig CDR-H3s enriched for arginine bound to linear peptides with a greater range of hydrophobicity but had a lower intensity of binding than sera containing Ig CDR-H3s enriched for tyrosine or valine. We conclude that patterns of epitope recognition and binding can be heavily influenced by DH germ line sequence. This may help explain why antibodies in HIV-infected patients must undergo extensive somatic mutation in order to bind to specific viral epitopes and achieve neutralization.
Collapse
Affiliation(s)
- Yuge Wang
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Pratibha Kapoor
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Aaron Silva-Sanchez
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Yingxin Zhuang
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Peter Burrows
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Michael Levinson
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ada Elgavish
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Xiangqin Cui
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Harry Schroeder
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
8
|
Lavinder JJ, Horton AP, Georgiou G, Ippolito GC. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr Opin Chem Biol 2014; 24:112-20. [PMID: 25461729 DOI: 10.1016/j.cbpa.2014.11.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
Recent developments of high-throughput technologies are enabling the molecular-level analysis and bioinformatic mining of antibody-mediated (humoral) immunity in humans at an unprecedented level. These approaches explore either the sequence space of B-cell receptor repertoires using next-generation deep sequencing (BCR-seq), or the amino acid identities of antibody in blood using protein mass spectrometry (Ig-seq), or both. Generalizable principles about the molecular composition of the protective humoral immune response are being defined, and as such, the field could supersede traditional methods for the development of diagnostics, vaccines, and antibody therapeutics. Three key challenges remain and have driven recent advances: (1) incorporation of innovative techniques for paired BCR-seq to ascertain the complete antibody variable-domain VH:VL clonotype, (2) integration of proteomic Ig-seq with BCR-seq to reveal how the serum antibody repertoire compares with the antibody repertoire encoded by circulating B cells, and (3) a demand to link antibody sequence data to functional meaning (binding and protection).
Collapse
Affiliation(s)
- Jason J Lavinder
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Andrew P Horton
- Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Center for Systems & Synthetic Biology, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1062, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712-1062, USA.
| |
Collapse
|