1
|
Lee D, Oh S, Lawler S, Kim Y. Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:744-809. [PMID: 40296792 DOI: 10.3934/mbe.2025028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Neutrophils play a crucial role in the innate immune response as a first line of defense in many diseases, including cancer. Tumor-associated neutrophils (TANs) can either promote or inhibit tumor growth in various steps of cancer progression via mutual interactions with cancer cells in a complex tumor microenvironment (TME). In this study, we developed and analyzed mathematical models to investigate the role of natural killer cells (NK cells) and the dynamic transition between N1 and N2 TAN phenotypes in killing cancer cells through key signaling networks and how adjuvant therapy with radiation can be used in combination to increase anti-tumor efficacy. We examined the complex immune-tumor dynamics among N1/N2 TANs, NK cells, and tumor cells, communicating through key extracellular mediators (Transforming growth factor (TGF-$ \beta $), Interferon gamma (IFN-$ \gamma $)) and intracellular regulation in the apoptosis signaling network. We developed several tumor prevention strategies to eradicate tumors, including combination (IFN-$ \gamma $, exogenous NK, TGF-$ \beta $ inhibitor) therapy and optimally-controlled ionizing radiation in a complex TME. Using this model, we investigated the fundamental mechanism of radiation-induced changes in the TME and the impact of internal and external immune composition on the tumor cell fate and their response to different treatment schedules.
Collapse
Affiliation(s)
- Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunju Oh
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Zheng F, Zhang S, Chang AE, Moon JJ, Wicha MS, Wang SX, Chen J, Liu J, Cheng F, Li Q. Breaking Immunosuppression to Enhance Cancer Stem Cell-Targeted Immunotherapy. Int J Biol Sci 2025; 21:1819-1836. [PMID: 39990669 PMCID: PMC11844285 DOI: 10.7150/ijbs.101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/03/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer stem cell (CSC)-targeted immunotherapy has emerged as a novel strategy in cancer treatment in the past decade. However, its efficacy is significantly limited due to the existence of host immune suppressive activity. Specifically, programmed cell death ligand-1 (PD-L1) is overexpressed in CSCs, and PD-L1 overexpressed CSCs create immunosuppressive milieu via interacting with various immune cells in tumor microenvironments (TME). Hence, novel immunotherapeutic strategies targeting CSCs with concurrent immunosuppression interruption will be promising in enhancing anti-CSC effects. These include dendritic cell (DC) and nanodisc (ND)-based vaccines to present CSC antigens in the forms of CSC lysate, CSC-marker proteins, and CSC-derived peptides to induce anti-CSC immunity. In addition, CSC-directed bispecific antibodies (BiAbs) and antibody drug conjugates (ADCs) have been developed to target CSCs effectively. Furthermore, chimeric antigen receptor (CAR)-T cell therapy and natural killer (NK) cell-based therapy targeting CSCs have achieved progress in both solid and hematologic tumors, and inhibition of CSC associated signaling pathways has proven successful. In this review, we aimed to outline the roles and regulatory mechanisms of PD-L1 in the properties of CSCs; the crosstalk between CSCs and immunosuppressive cells in TME, and recent progress and future promises of immunosuppression blockage to enhance CSC-targeted immunotherapy.
Collapse
Affiliation(s)
- Fang Zheng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Shan Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Alfred E. Chang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Max S. Wicha
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Junhui Chen
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Jixian Liu
- Peking University Shenzhen Hospital, Shenzhen, China
| | - Fanjun Cheng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Qiao Li
- Department of Surgery, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
3
|
Mahanti K, Bhattacharyya S. Rough neighborhood: Intricacies of cancer stem cells and infiltrating immune cell interaction in tumor microenvironment and potential in therapeutic targeting. Transl Res 2023; 265:S1931-5244(23)00176-7. [PMID: 39491179 DOI: 10.1016/j.trsl.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
Ongoing research on cellular heterogeneity of Cancer stem cells (CSCs) and its synergistic involvement with tumor milieu reveals enormous complexity, resulting in diverse hindrance in immune therapy. CSCs has captured attention for their contribution in shaping of tumor microenvironment and as target for therapeutic intervention. Recent studies have highlighted cell-extrinsic and intrinsic mechanisms of reciprocal interaction between tumor stroma constituents and CSCs. Therapeutic targeting requires an in-depth understanding of the underlying mechanisms involved with the rate limiting factors in tumor aggressiveness and pinpoint role of CSCs. Some of the major constituents of tumor microenvironment includes resident and infiltrating immune cell, both innate and adaptive. Some of these immune cells play crucial role as adjustors of tumor immune response. Tumor-adjustor immune cell interaction confer plasticity and features enabling tumor growth and metastasis in one hand and on the other hand blunts anti-tumor immunity. Detail understanding of CSC and TME resident immune cells interaction can shape new avenues for cancer immune therapy. In this review, we have tried to summarize the development of knowledge on cellular, molecular and functional interaction between CSCs and tumor microenvironment immune cells, highlighting immune-mediated therapeutic strategies aimed at CSCs. We also discussed developing a potential CSC and TME targeted therapeutic avenue.
Collapse
Affiliation(s)
- Krishna Mahanti
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India
| | - Sankar Bhattacharyya
- Immunobiology and Translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal India.
| |
Collapse
|
4
|
Tacchini M, Sacchetti G, Guerrini A, Paganetto G. Mycochemicals against Cancer Stem Cells. Toxins (Basel) 2023; 15:360. [PMID: 37368660 DOI: 10.3390/toxins15060360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Since ancient times, mushrooms have been considered valuable allies of human well-being both from a dietary and medicinal point of view. Their essential role in several traditional medicines is explained today by the discovery of the plethora of biomolecules that have shown proven efficacy for treating various diseases, including cancer. Numerous studies have already been conducted to explore the antitumoural properties of mushroom extracts against cancer. Still, very few have reported the anticancer properties of mushroom polysaccharides and mycochemicals against the specific population of cancer stem cells (CSCs). In this context, β-glucans are relevant in modulating immunological surveillance against this subpopulation of cancer cells within tumours. Small molecules, less studied despite their spread and assortment, could exhibit the same importance. In this review, we discuss several pieces of evidence of the association between β-glucans and small mycochemicals in modulating biological mechanisms which are proven to be involved with CSCs development. Experimental evidence and an in silico approach are evaluated with the hope of contributing to future strategies aimed at the direct study of the action of these mycochemicals on this subpopulation of cancer cells.
Collapse
Affiliation(s)
- Massimo Tacchini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandra Guerrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
5
|
Chen Y, Zhang X, Yang H, Liang T, Bai X. The "Self-eating" of cancer-associated fibroblast: A potential target for cancer. Biomed Pharmacother 2023; 163:114762. [PMID: 37100015 DOI: 10.1016/j.biopha.2023.114762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
Autophagy helps maintain energy homeostasis and protect cells from stress effects by selectively removing misfolded/polyubiquitylated proteins, lipids, and damaged mitochondria. Cancer-associated fibroblasts (CAFs) are cellular components of tumor microenvironment (TME). Autophagy in CAFs inhibits tumor development in the early stages; however, it has a tumor-promoting effect in advanced stages. In this review, we aimed to summarize the modulators responsible for the induction of autophagy in CAFs, such as hypoxia, nutrient deprivation, mitochondrial stress, and endoplasmic reticulum stress. In addition, we aimed to present autophagy-related signaling pathways in CAFs, and role of autophagy in CAF activation, tumor progression, tumor immune microenvironment. Autophagy in CAFs may be an emerging target for tumor therapy. In summary, autophagy in CAFs is regulated by a variety of modulators and can reshape tumor immune microenvironment, affecting tumor progression and treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Jia M, Liu C, Liu Y, Bao Z, Jiang Y, Sun X. Discovery and Validation of a SIT1-Related Prognostic Signature Associated with Immune Infiltration in Cutaneous Melanoma. J Pers Med 2022; 13:jpm13010013. [PMID: 36675674 PMCID: PMC9866779 DOI: 10.3390/jpm13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Signaling threshold regulating transmembrane adaptor 1 (SIT1) encodes a disulfide-linked homodimeric lymphocyte-specific glycoprotein involved in immune cell activation. However, the relationship between SIT1 and the prognosis of skin cutaneous melanoma (SKCM) and tumor-infiltrating lymphocytes remains elusive. Here, we first compared the differences in SIT1 expression levels between SKCM tissues and adjacent normal tissues. Next, we found that the immune cell infiltration levels and signature pattern of immune infiltration were positively associated with the SIT1 gene mRNA levels. TCGA_SKCM RNA-seq data unveiled that the SIT1 upregulated several immune-associated signaling pathways in GSEA analysis. The high expression of SIT1 was closely related to improved survival in patients with SKCM. A pathway enrichment analysis of SIT1-associated immunomodulators indicated the involvement of the NF-κB signaling pathways. Based on SIT1-associated immunomodulators, we built a 13-gene signature by LASSO Cox regression which served as an independent prognostic factor for the survival of melanoma patients. By using the signature risk score, we achieved a good prediction result for the immunotherapy response and survival of SKCM patients. Our findings provided evidence for SIT1's implication in tumor immunity and survival of SKCM patients. The nominated immune signature is a promising predictive model for prognosis and immunotherapy sensitivity in SKCM patients.
Collapse
Affiliation(s)
- Ming Jia
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Chengfei Liu
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yuean Liu
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Zhengqiang Bao
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Yuhua Jiang
- Department of Cancer Center, The Secondary Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
- Correspondence: (Y.J.); (X.S.)
| | - Xifeng Sun
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan 250012, China
- Correspondence: (Y.J.); (X.S.)
| |
Collapse
|
8
|
Macrophages Are a Double-Edged Sword: Molecular Crosstalk between Tumor-Associated Macrophages and Cancer Stem Cells. Biomolecules 2022; 12:biom12060850. [PMID: 35740975 PMCID: PMC9221070 DOI: 10.3390/biom12060850] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subset of highly tumorigenic cells in tumors. They have enhanced self-renewal properties, are usually chemo-radioresistant, and can promote tumor recurrence and metastasis. They can recruit macrophages into the tumor microenvironment and differentiate them into tumor-associated macrophages (TAMs). TAMs maintain CSC stemness and construct niches that are favorable for CSC survival. However, how CSCs and TAMs interact is not completely understood. An understanding on these mechanisms can provide additional targeting strategies for eliminating CSCs. In this review, we comprehensively summarize the reported mechanisms of crosstalk between CSCs and TAMs and update the related signaling pathways involved in tumor progression. In addition, we discuss potential therapies targeting CSC–TAM interaction, including targeting macrophage recruitment and polarization by CSCs and inhibiting the TAM-induced promotion of CSC stemness. This review also provides the perspective on the major challenge for developing potential therapeutic strategies to overcome CSC-TAM crosstalk.
Collapse
|
9
|
Wagner KD, Wagner N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022; 11:cells11121966. [PMID: 35741095 PMCID: PMC9221567 DOI: 10.3390/cells11121966] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that senescent cells accumulate with aging. They are characterized by replicative arrest and the release of a myriad of factors commonly called the senescence-associated secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4, p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development, cancer, and tissue homeostasis. While many markers of senescence have been identified, none are able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in embryonic and postnatal development and potential functions in pathophysiology and homeostasis. The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care and detailed knowledge about the involvement of senescence and senescence-associated proteins in developmental processes and homeostatic mechanism. The review contributes to these topics, summarizes open questions, and provides some directions for future research.
Collapse
|
10
|
The tricks for fighting against cancer using CAR NK cells: A review. Mol Cell Probes 2022; 63:101817. [DOI: 10.1016/j.mcp.2022.101817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
|
11
|
Huang JL, Chen SY, Lin CS. Targeting Cancer Stem Cells through Epigenetic Modulation of Interferon Response. J Pers Med 2022; 12:jpm12040556. [PMID: 35455671 PMCID: PMC9027081 DOI: 10.3390/jpm12040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells and are thought to play a critical role in the initiation and maintenance of tumor mass. CSCs exhibit similar hallmarks to normal stem cells, such as self-renewal, differentiation, and homeostasis. In addition, CSCs are equipped with several features so as to evade anticancer mechanisms. Therefore, it is hard to eliminate CSCs by conventional anticancer therapeutics that are effective at clearing bulk cancer cells. Interferons are innate cytokines and are the key players in immune surveillance to respond to invaded pathogens. Interferons are also crucial for adaptive immunity for the killing of specific aliens including cancer cells. However, CSCs usually evolve to escape from interferon-mediated immune surveillance and to shape the niche as a “cold” tumor microenvironment (TME). These CSC characteristics are related to their unique epigenetic regulations that are different from those of normal and bulk cancer cells. In this review, we introduce the roles of epigenetic modifiers, focusing on LSD1, BMI1, G9a, and SETDB1, in contributing to CSC characteristics and discussing the interplay between CSCs and interferon response. We also discuss the emerging strategy for eradicating CSCs by targeting these epigenetic modifiers, which can elevate cytosolic nuclei acids, trigger interferon response, and reshape a “hot” TME for improving cancer immunotherapy. The key epigenetic and immune genes involved in this crosstalk can be used as biomarkers for precision oncology.
Collapse
Affiliation(s)
- Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan;
| | - Si-Yun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence:
| |
Collapse
|
12
|
Zhang Y, Chen Z, Jiang A, Gao G. KLRK1 as a prognostic biomarker for lung adenocarcinoma cancer. Sci Rep 2022; 12:1976. [PMID: 35132098 PMCID: PMC8821622 DOI: 10.1038/s41598-022-05997-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Lung cancer is one of the most common malignancy worldwide and causes estimated 1.6 million deaths each year. Cancer immunosurveillance has been found to play an important role in lung cancer and may be related with its prognosis. KLRK1, encoding NKG2D, is a homodimeric lectin-like receptor. However, there has not been one research of KLRK1 as a biomarker in lung cancer. Data including patients` clinical characteristics and RNAseq information of KLRK1 from TCGA were downloaded. A total of 1019 patients with lung cancer were included in this study, among which 407 patients were female and 611 patients were male. Evaluations of mRNA expression, diagnostic value by ROC (receiver operating characteristic) curves and prognostic value by survival curve, Cox model and subgroup analysis were performed. The level of KLRK1 expression in lung adenocarcinoma cancer tissues and normal lung tissues was detected by qRT-PCR. The CCK-8 assay investigated the proliferation rate and the wound healing assay assessed the migratory ability in vitro. The expression of KLRK1 in tumor was lower than that in normal tissue. KLRK1 expression was associated with gender, histologic grade, stage, T classification and vital status. Patients with high KLRK1 expression presented an improved overall survival (P = 0.0036) and relapse free survival (P = 0.0031). KLRK1 was found to have significant prognostic value in lung adenocarcinoma (P = 0.015), stage I/II (P = 0.03), older patients (P = 0.0052), and male (P = 0.0047) by subgroup overall survival analysis, and in lung adenocarcinoma (P = 0.0094), stage I/II (P = 0.0076), older patients (P = 0.0072), and male (P = 0.0033) by subgroup relapse free survival analysis. Lung adenocarcinoma cancer patients with high KLRK1 expression presented an improved overall survival (P = 0.015) and relapse free survival (P = 0.0094). In vitro studies indicated that KLRK1 inhibited tumor cell proliferation and migration. KLRK1 was an independent prognostic factor and high KLRK1 expression indicated a better overall and relapse free survival. KLRK1 may be a prognostic biomarker for lung adenocarcinoma cancer.
Collapse
Affiliation(s)
- Yanan Zhang
- Clinical Medical College, Weifang Medical University, Weifang, 261000, China.,Linyi People's Hospital, Linyi, 276000, China
| | - Zeyang Chen
- Clinical Medical College, Qingdao University, Qingdao, 266000, China
| | - Aifang Jiang
- Weifang Medical University, Weifang, 261000, China.
| | - Guanqi Gao
- Linyi People's Hospital, Linyi, 276000, China.
| |
Collapse
|
13
|
Allavena P, Digifico E, Belgiovine C. Macrophages and cancer stem cells: a malevolent alliance. Mol Med 2021; 27:121. [PMID: 34583655 PMCID: PMC8480058 DOI: 10.1186/s10020-021-00383-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells infiltrating tumors are gaining ever growing attention in the last years because their pro-tumor and immunosuppressive functions are relevant for disease progression and therapeutic responses. The functional ambiguity of tumor-associated macrophages (TAMs), mostly promoting tumor evolution, is a challenging hurdle. This is even more evident in the case of cancer stem cells (CSCs); as active participants in the specialized environment of the cancer stem cell niche, TAMs initiate a reciprocal conversation with CSCs. TAMs contribute to protect CSCs from the hostile environment (exogenous insults, toxic compounds, attacks from the immune cells), and produce several biologically active mediators that modulate crucial developmental pathways that sustain cancer cell stemness. In this review, we have focused our attention on the interaction between TAMs and CSCs; we describe how TAMs impact on CSC biology and, in turn, how CSCs exploit the tissue trophic activity of macrophages to survive and progress. Since CSCs are responsible for therapy resistance and tumor recurrence, they are important therapeutic targets. In view of the recent success in oncology obtained by stimulating the immune system, we discuss some macrophage-targeted therapeutic strategies that may also affect the CSCs and interrupt their malevolent alliance.
Collapse
Affiliation(s)
- Paola Allavena
- Humanitas Clinical and Research Center -IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy.
| | - Elisabeth Digifico
- Humanitas Clinical and Research Center -IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| | - Cristina Belgiovine
- Humanitas Clinical and Research Center -IRCCS, via Manzoni 56, 20089, Rozzano, MI, Italy
| |
Collapse
|
14
|
Murphy DA, Cheng H, Yang T, Yan X, Adjei IM. Reversing Hypoxia with PLGA-Encapsulated Manganese Dioxide Nanoparticles Improves Natural Killer Cell Response to Tumor Spheroids. Mol Pharm 2021; 18:2935-2946. [PMID: 34191525 DOI: 10.1021/acs.molpharmaceut.1c00085] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The adoptive transfer of natural killer (NK) cells, which can recognize and obliterate cancer cells, provides a practical alternative to current treatment modalities to improve cancer patients' survival. However, translating NK cell therapies to treat solid tumors has proven challenging due to the tumor microenvironment (TME). Hypoxia in the TME induces immunosuppression that inhibits the cytotoxic function of NK cells. Thus, reversing hypoxia-induced immunosuppression is critical for effective adoptive NK cell immunotherapy. In this study, we use manganese dioxide nanoparticles (MnO2 NPs) to catalyze the degradation of tumor-produced hydrogen peroxide, thereby generating oxygen. For improved biocompatibility and modulation of oxygen production, the MnO2 NPs were encapsulated into poly(lactic-co-glycolic) to produce particles that are 116 nm in size and with a ζ-potential of +17 mV (PLGA-MnO2 NPs). The PLGA-MnO2 NPs showed first-order oxygen production and sustained high oxygen tension compared to equivalent amounts of bare MnO2 NPs in the presence of H2O2. The PLGA-MnO2 NPs were biocompatible, reduced hypoxia after penetration into the core of cancer spheroids, and decreased hypoxia-induced factor 1 α expression. Reducing hypoxia in the spheroid resulted in a decrease in the potent immunosuppressors, adenosine, and lactate, which was confirmed by electrospray ionization mass spectroscopy (ESI-MS). ESI-MS also showed a change in the metabolism of the amino acids aspartate, glutamine, and glutamate after hypoxia reduction in the cancer cells. Notably, the spheroids' microenvironment changes enhanced NK cells' cytotoxicity, which obliterated the spheroids. These results demonstrate that reducing hypoxia-induced immunosuppression in tumors is a potent strategy to increase the potency of cytotoxic immune cells in the TME. The developed NPs are promising new tools to improve adoptive NK cell therapy.
Collapse
Affiliation(s)
- David A Murphy
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Heyong Cheng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Isaac M Adjei
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
15
|
Chung KPS, Leung RWH, Lee TKW. Hampering Stromal Cells in the Tumor Microenvironment as a Therapeutic Strategy to Destem Cancer Stem Cells. Cancers (Basel) 2021; 13:3191. [PMID: 34202411 PMCID: PMC8268361 DOI: 10.3390/cancers13133191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/30/2021] [Accepted: 06/21/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells (CSCs) within the tumor bulk play crucial roles in tumor initiation, recurrence and therapeutic resistance. In addition to intrinsic regulation, a growing body of evidence suggests that the phenotypes of CSCs are also regulated extrinsically by stromal cells in the tumor microenvironment (TME). Here, we discuss the current knowledge of the interplay between stromal cells and cancer cells with a special focus on how stromal cells drive the stemness of cancer cells and immune evasive mechanisms of CSCs. Knowledge gained from the interaction between CSCs and stromal cells will provide a mechanistic basis for the development of novel therapeutic strategies for the treatment of cancers.
Collapse
Affiliation(s)
- Katherine Po Sin Chung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (K.P.S.C.); (R.W.H.L.)
| | - Rainbow Wing Hei Leung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (K.P.S.C.); (R.W.H.L.)
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; (K.P.S.C.); (R.W.H.L.)
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
16
|
Lei MML, Lee TKW. Cancer Stem Cells: Emerging Key Players in Immune Evasion of Cancers. Front Cell Dev Biol 2021; 9:692940. [PMID: 34235155 PMCID: PMC8257022 DOI: 10.3389/fcell.2021.692940] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are subpopulations of undifferentiated cancer cells within the tumor bulk that are responsible for tumor initiation, recurrence and therapeutic resistance. The enhanced ability of CSCs to give rise to new tumors suggests potential roles of these cells in the evasion of immune surveillance. A growing body of evidence has described the interplay between CSCs and immune cells within the tumor microenvironment (TME). Recent data have shown the pivotal role of some major immune cells in driving the expansion of CSCs, which concurrently elicit evasion of the detection and destruction of various immune cells through a number of distinct mechanisms. Here, we will discuss the role of immune cells in driving the stemness of cancer cells and provide evidence of how CSCs evade immune surveillance by exerting their effects on tumor-associated macrophages (TAMs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), T-regulatory (Treg) cells, natural killer (NK) cells, and tumor-infiltrating lymphocytes (TILs). The knowledge gained from the interaction between CSCs and various immune cells will provide insight into the mechanisms by which tumors evade immune surveillance. In conclusion, CSC-targeted immunotherapy emerges as a novel immunotherapy strategy against cancer by disrupting the interaction between immune cells and CSCs in the TME.
Collapse
Affiliation(s)
- Martina Mang Leng Lei
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
17
|
Tsuchiya H, Shiota G. Immune evasion by cancer stem cells. Regen Ther 2021; 17:20-33. [PMID: 33778133 PMCID: PMC7966825 DOI: 10.1016/j.reth.2021.02.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunity represents a new avenue for cancer therapy. Immune checkpoint inhibitors have successfully improved outcomes in several tumor types. In addition, currently, immune cell-based therapy is also attracting significant attention. However, the clinical efficacy of these treatments requires further improvement. The mechanisms through which cancer cells escape the immune response must be identified and clarified. Cancer stem cells (CSCs) play a central role in multiple aspects of malignant tumors. CSCs can initiate tumors in partially immunocompromised mice, whereas non-CSCs fail to form tumors, suggesting that tumor initiation is a definitive function of CSCs. However, the fact that non-CSCs also initiate tumors in more highly immunocompromised mice suggests that the immune evasion property may be a more fundamental feature of CSCs rather than a tumor-initiating property. In this review, we summarize studies that have elucidated how CSCs evade tumor immunity and create an immunosuppressive milieu with a focus on CSC-specific characteristics and functions. These profound mechanisms provide important clues for the development of novel tumor immunotherapies.
Collapse
Key Words
- ADCC, antibody-dependent cell mediated cytotoxicity
- ALDH, alcohol dehydrogenase
- AML, acute myeloid leukemia
- ARID3B, AT-rich interaction domain-containing protein 3B
- CCR7, C–C motif chemokine receptor 7
- CIK, cytokine-induced killer cell
- CMV, cytomegalovirus
- CSC, cancer stem cell
- CTL, cytotoxic T lymphocytes
- CTLA-4, cytotoxic T-cell-associated antigen-4
- Cancer stem cells
- DC, dendritic cell
- DNMT, DNA methyltransferase
- EMT, epithelial–mesenchymal transition
- ETO, fat mass and obesity associated protein
- EV, extracellular vesicle
- HNSCC, head and neck squamous cell carcinoma
- Immune checkpoints
- Immune evasion
- KDM4, lysine-specific demethylase 4C
- KIR, killer immunoglobulin-like receptor
- LAG3, lymphocyte activation gene 3
- LILR, leukocyte immunoglobulin-like receptor
- LMP, low molecular weight protein
- LOX, lysyl oxidase
- MDSC, myeloid-derived suppressor cell
- MHC, major histocompatibility complex
- MIC, MHC class I polypeptide-related sequence
- NGF, nerve growth factor
- NK cells
- NK, natural killer
- NOD, nonobese diabetic
- NSG, NOD/SCID IL-2 receptor gamma chain null
- OCT4, octamer-binding transcription factor 4
- PD-1, programmed death receptor-1
- PD-L1/2, ligands 1/2
- PI9, protease inhibitor 9
- PSME3, proteasome activator subunit 3
- SCID, severe combined immunodeficient
- SOX2, sex determining region Y-box 2
- T cells
- TAM, tumor-associated macrophage
- TAP, transporter associated with antigen processing
- TCR, T cell receptor
- Treg, regulatory T cell
- ULBP, UL16 binding protein
- uPAR, urokinase-type plasminogen activator receptor
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| |
Collapse
|
18
|
Capuano C, Pighi C, Battella S, De Federicis D, Galandrini R, Palmieri G. Harnessing CD16-Mediated NK Cell Functions to Enhance Therapeutic Efficacy of Tumor-Targeting mAbs. Cancers (Basel) 2021; 13:cancers13102500. [PMID: 34065399 PMCID: PMC8161310 DOI: 10.3390/cancers13102500] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Natural Killer (NK) cells play a major role in cancer immunotherapy based on tumor-targeting mAbs. NK cell-mediated tumor cell killing and cytokine secretion are powerfully stimulated upon interaction with IgG-opsonized tumor cells, through the aggregation of FcγRIIIA/CD16 IgG receptor. Advances in basic and translational NK cell biology have led to the development of strategies that, by improving mAb-dependent antitumor responses, may overcome the current limitations of antibody therapy attributable to tolerance, immunosuppressive microenvironment, and genotypic factors. This review provides an overview of the immunotherapeutic strategies being pursued to improve the efficacy of mAb-induced NK antitumor activity. The exploitation of antibody combinations, antibody-based molecules, used alone or combined with adoptive NK cell therapy, will be uncovered. Within the landscape of NK cell heterogeneity, we stress the role of memory NK cells as promising effectors in the next generation of immunotherapy with the aim to obtain long-lasting tumor control. Abstract Natural killer (NK) cells hold a pivotal role in tumor-targeting monoclonal antibody (mAb)-based activity due to the expression of CD16, the low-affinity receptor for IgG. Indeed, beyond exerting cytotoxic function, activated NK cells also produce an array of cytokines and chemokines, through which they interface with and potentiate adaptive immune responses. Thus, CD16-activated NK cells can concur to mAb-dependent “vaccinal effect”, i.e., the development of antigen-specific responses, which may be highly relevant in maintaining long-term protection of treated patients. On this basis, the review will focus on strategies aimed at potentiating NK cell-mediated antitumor functions in tumor-targeting mAb-based regimens, represented by (a) mAb manipulation strategies, aimed at augmenting recruitment and efficacy of NK cells, such as Fc-engineering, and the design of bi- or trispecific NK cell engagers and (b) the possible exploitation of memory NK cells, whose distinctive characteristics (enhanced responsiveness to CD16 engagement, longevity, and intrinsic resistance to the immunosuppressive microenvironment) may maximize therapeutic mAb antitumor efficacy.
Collapse
Affiliation(s)
- Cristina Capuano
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
| | - Chiara Pighi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
| | - Simone Battella
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- ReiThera Srl, 00128 Rome, Italy
| | - Davide De Federicis
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ricciarda Galandrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Correspondence: (R.G.); (G.P.)
| | - Gabriella Palmieri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.C.); (C.P.); (S.B.); (D.D.F.)
- Correspondence: (R.G.); (G.P.)
| |
Collapse
|
19
|
Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V. Cellular Immunotherapy Targeting Cancer Stem Cells: Preclinical Evidence and Clinical Perspective. Cells 2021; 10:cells10030543. [PMID: 33806296 PMCID: PMC8001974 DOI: 10.3390/cells10030543] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The term “cancer stem cells” (CSCs) commonly refers to a subset of tumor cells endowed with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may present peculiar immunogenic features influencing their homeostasis within the tumor microenvironment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant issue and matter of investigation, especially considering the multiple emerging immunotherapy strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies, indirect evidence from clinical studies may be derived and new studies are ongoing. Here we review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T antitumor lymphocytes.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Ramona Rotolo
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Alessia Proment
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
- Correspondence: ; Tel.: +39-011-993-3503; Fax: +39-011-993-3522
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| |
Collapse
|
20
|
Killing the Invaders: NK Cell Impact in Tumors and Anti-Tumor Therapy. Cancers (Basel) 2021; 13:cancers13040595. [PMID: 33546248 PMCID: PMC7913353 DOI: 10.3390/cancers13040595] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary NK cells are innate lymphoid cells involved in the control of tumor growth and metastatic spread. Given their significant cytolytic capacity, several promising strategies have been developed to target NK cells in cancer immunotherapy. Abstract Natural Killer cells belong to group 1 innate lymphoid cells, which also includes ILC1s. NK/ILC1s are highly heterogeneous cell types showing distinct phenotypes across tissues and conditions. NK cells have long been described as innate lymphocytes able to directly and rapidly kill tumor cells without antigen-restriction. Different mechanisms were shown to modulate NK cell activation and tumor resistance, mainly based on cytokine stimulation and receptor–ligand interactions, and several strategies have been developed to target NK cells in tumor immunotherapy to promote NK cell function and overcome tumor evasion. The characterization of ILC1 distinct phenotype and function and the specific role in tumors still needs further investigation and will be essential to better understand the impact of innate lymphoid cells in tumors. Here, we review key aspects of NK cell biology that are relevant in tumor immune surveillance, emphasizing the most recent findings in the field. We describe the novel therapeutical strategies that have been developed in tumor immunotherapy targeting NK cells, and we summarize some recent findings related to NK cell/ILC1 transition in tumor models.
Collapse
|
21
|
Greenbaum U, Yalniz FF, Srour SA, Rezvani K, Singh H, Olson A, Blumenschein G, Hong DS, Shpall EJ, Kebriaei P. Chimeric Antigen Receptor Therapy: How Are We Driving in Solid Tumors? Biol Blood Marrow Transplant 2020; 26:1759-1769. [PMID: 32623078 PMCID: PMC11409837 DOI: 10.1016/j.bbmt.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
Abstract
Immune effector cell (IEC) therapy is emerging as a promising approach in the field of cancer immunotherapy. Clinical IEC trials, predominantly using chimeric antigen receptor (CAR) T cells, have shown excellent responses in CD19+ B cell malignancies and multiple myeloma. In solid tumors, preclinical data are encouraging, but clinical data are in their infancy, and there are challenges in using CAR T therapy in this setting, including (1) on-target off-tumor toxicity, (2) optimal target identification, (3) effective trafficking into bulky tumor tissue, and (4) resistance to tumor immune evasion mechanisms. Novel techniques and modifications are being explored in both the preclinical and clinical settings, aiming to improve treatment efficacy and address the aforementioned obstacles to successful CAR T therapy in solid tumors. Here we review these challenges in a clinically oriented approach and summarize published clinical trials using CAR T therapy in a variety of solid tumors.
Collapse
Affiliation(s)
- Uri Greenbaum
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fevzi F Yalniz
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Samer A Srour
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Harjeet Singh
- Department of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amanda Olson
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George Blumenschein
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S Hong
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
22
|
Zhou C, Fan N, Liu F, Fang N, Plum PS, Thieme R, Gockel I, Gromnitza S, Hillmer AM, Chon SH, Schlösser HA, Bruns CJ, Zhao Y. Linking Cancer Stem Cell Plasticity to Therapeutic Resistance-Mechanism and Novel Therapeutic Strategies in Esophageal Cancer. Cells 2020; 9:1481. [PMID: 32560537 PMCID: PMC7349233 DOI: 10.3390/cells9061481] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive form of cancer, including squamous cell carcinoma (ESCC) and adenocarcinoma (EAC) as two predominant histological subtypes. Accumulating evidence supports the existence of cancer stem cells (CSCs) able to initiate and maintain EAC or ESCC. In this review, we aim to collect the current evidence on CSCs in esophageal cancer, including the biomarkers/characterization strategies of CSCs, heterogeneity of CSCs, and the key signaling pathways (Wnt/β-catenin, Notch, Hedgehog, YAP, JAK/STAT3) in modulating CSCs during esophageal cancer progression. Exploring the molecular mechanisms of therapy resistance in EC highlights DNA damage response (DDR), metabolic reprogramming, epithelial mesenchymal transition (EMT), and the role of the crosstalk of CSCs and their niche in the tumor progression. According to these molecular findings, potential therapeutic implications of targeting esophageal CSCs may provide novel strategies for the clinical management of esophageal cancer.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Ningbo Fan
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Fanyu Liu
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Nan Fang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing 210000, China
| | - Patrick S Plum
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig, 4107 Leipzig, Germany
| | - Sascha Gromnitza
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Axel M Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Seung-Hun Chon
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| | - Hans A Schlösser
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Yue Zhao
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, 50937 Cologne, Germany
| |
Collapse
|
23
|
Cristiani CM, Garofalo C, Passacatini LC, Carbone E. New avenues for melanoma immunotherapy: Natural Killer cells? Scand J Immunol 2020; 91:e12861. [PMID: 31879979 DOI: 10.1111/sji.12861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2023]
Abstract
Human solid malignant tumours may be particularly resistant to conventional therapies. Among solid tumours, immunological features of cutaneous melanoma have been well characterized in the past and today melanoma patients are routinely treated with the anti-immune checkpoints immunotherapy that has completely changed metastatic melanoma treatment and prognosis. Two cytotoxic cell populations may lead to the physical elimination of tumour cell targets: cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Tumour recognition by CTLs depends on major histocompatibility complex (MHC) class I molecules, while NK cells recognize tumours expressing low or null levels of MHC class I molecules. Despite this well-established complementarity, NK cells are still left behind in the optimization of innovative immunotherapy approaches. NK cells are members of innate lymphoid cells (ILCs) that play a critical role in early host defence against invading pathogens and transformed cells. Recent findings suggest that NK cell frequencies directly correlate with the overall survival of ipilimumab-treated melanoma patients. Furthermore, in vitro and in vivo evidences indicate that NK cells can selectively kill cancer stem cells, reducing tumour size and delaying metastatic progression. The aim of this review is to provide a survey of the evidences indicating NK cells as an excellent candidate to complement the newest solid tumour immunotherapy approaches.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Lucia Carmela Passacatini
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Department of Microbiology Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
| |
Collapse
|
24
|
Adjei IM, Jordan J, Tu N, Trinh TL, Kandell W, Wei S, Sharma B. Functional recovery of natural killer cell activity by nanoparticle‐mediated delivery of transforming growth factor beta 2 small interfering RNA. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/jin2.63] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isaac M. Adjei
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville Florida 32611 USA
| | - Jahnelle Jordan
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville Florida 32611 USA
| | - Nhan Tu
- Moffitt Cancer Center Tampa Florida 33612 USA
| | | | | | - Sheng Wei
- Moffitt Cancer Center Tampa Florida 33612 USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of Florida Gainesville Florida 32611 USA
| |
Collapse
|
25
|
Triaca V, Carito V, Fico E, Rosso P, Fiore M, Ralli M, Lambiase A, Greco A, Tirassa P. Cancer stem cells-driven tumor growth and immune escape: the Janus face of neurotrophins. Aging (Albany NY) 2019; 11:11770-11792. [PMID: 31812953 PMCID: PMC6932930 DOI: 10.18632/aging.102499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/17/2019] [Indexed: 05/12/2023]
Abstract
Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting in typically aggressive tumors with poor prognosis.In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral effects of NGF/TrkA-inhibitory therapy.A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune system will possibly open the way to precision medicine in neurotrophic therapy and improve patient's prognosis in both TrkA- dependent and independent cancers.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
26
|
Ravindran S, Rasool S, Maccalli C. The Cross Talk between Cancer Stem Cells/Cancer Initiating Cells and Tumor Microenvironment: The Missing Piece of the Puzzle for the Efficient Targeting of these Cells with Immunotherapy. CANCER MICROENVIRONMENT 2019; 12:133-148. [PMID: 31758404 PMCID: PMC6937350 DOI: 10.1007/s12307-019-00233-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Cancer Stem Cells/Cancer Initiating Cells (CSCs/CICs) is a rare sub-population within a tumor that is responsible for tumor formation, progression and resistance to therapies. The interaction between CSCs/CICs and tumor microenvironment (TME) can sustain “stemness” properties and promote their survival and plasticity. This cross-talk is also pivotal in regulating and modulating CSC/CIC properties. This review will provide an overview of the mechanisms underlying the mutual interaction between CSCs/CICs and TME. Particular focus will be dedicated to the immunological profile of CSCs/CICs and its role in orchestrating cancer immunosurveillance. Moreover, the available immunotherapy strategies that can target CSCs/CICs and of their possible implementation will be discussed. Overall, the dissection of the mechanisms regulating the CSC/CIC-TME interaction is warranted to understand the plasticity and immunoregulatory properties of stem-like tumor cells and to achieve complete eradications of tumors through the optimization of immunotherapy.
Collapse
Affiliation(s)
- Shilpa Ravindran
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Saad Rasool
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Cristina Maccalli
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar.
| |
Collapse
|
27
|
Rajayi H, Tavasolian P, Rezalotfi A, Ebrahimi M. Cancer Stem Cells Targeting; the Lessons from the Interaction of the Immune System, the Cancer Stem Cells and the Tumor Niche. Int Rev Immunol 2019; 38:267-283. [DOI: 10.1080/08830185.2019.1669593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/15/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hajar Rajayi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parsova Tavasolian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alaleh Rezalotfi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
29
|
Weng J, Han X, Liu K, Yang J, Wei S, Zhang Y, Zeng F, Li Y, Shen L, Gao Y. CD44 3'-Untranslated Region Functions as a Competing Endogenous RNA to Enhance NK Sensitivity of Liver Cancer Stem Cell by Regulating ULBP2 Expression. Int J Biol Sci 2019; 15:1664-1675. [PMID: 31360109 PMCID: PMC6643214 DOI: 10.7150/ijbs.35216] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Liver CSCs are a rare subpopulation of heterogenous liver cancer cells with self-renewal and differentiation properties, which has emerged as a promising therapeutic target. Compelling data shows that NK cells selectively eliminate human cancer derived CSCs like colorectal carcinoma, melanoma, and glioblastoma. But the effect of NK cells on liver CSCs still remains unknown. To study the cytotoxic effect of NK cells on liver CSCs and the mechanism, we performed cytotoxicity assay, ELISA assays, CRISPRi, qRT-PCR, immunoblotting, RNA immunoprecipitation, and luciferase reporter using two types of CSCs reprogrammed from HCC. CSCs derived from liver cancer were susceptible to NK cell mediated cytotoxicity. The susceptibility of liver CSCs to NK cell-mediated cytotoxicity declined significantly after silencing CD44 by CRISPRi-mediated gene knockdown. CD44 3ʹ UTR functioned as a ceRNA to regulate the expression of ULBP2 mainly by competing miR-34a. CD44 3ʹ UTR functioned as a ceRNA to enhance NK sensitivity of liver cancer stem cell by regulating ULBP2 expression.
Collapse
Affiliation(s)
- Jun Weng
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Xu Han
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Kaiyu Liu
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jiong Yang
- Department of Geriatrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiruo Wei
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yue Zhang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Fanhong Zeng
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Yang Li
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Li Shen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yi Gao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, State Key Laboratory of Organ Failure Research, Co-Innovation Center for Organ Failure Research, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Poggi A, Benelli R, Venè R, Costa D, Ferrari N, Tosetti F, Zocchi MR. Human Gut-Associated Natural Killer Cells in Health and Disease. Front Immunol 2019; 10:961. [PMID: 31130953 PMCID: PMC6509241 DOI: 10.3389/fimmu.2019.00961] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/15/2019] [Indexed: 12/14/2022] Open
Abstract
It is well established that natural killer (NK) cells are involved in both innate and adaptive immunity. Indeed, they can recognize molecules induced at the cell surface by stress signals and virus infections. The functions of NK cells in the gut are much more complex. Gut NK cells are not precisely organized in lymphoid aggregates but rather scattered in the epithelium or in the stroma, where they come in contact with a multitude of antigens derived from commensal or pathogenic microorganisms in addition to components of microbiota. Furthermore, NK cells in the bowel interact with several cell types, including epithelial cells, fibroblasts, macrophages, dendritic cells, and T lymphocytes, and contribute to the maintenance of immune homeostasis and development of efficient immune responses. NK cells have a key role in the response to intestinal bacterial infections, primarily through production of IFNγ, which can stimulate recruitment of additional NK cells from peripheral blood leading to amplification of the anti-bacterial immune response. Additionally, NK cells can have a role in the pathogenesis of gut autoimmune inflammatory bowel diseases (IBDs), such as Crohn's Disease and Ulcerative Colitis. These diseases are considered relevant to the generation of gastrointestinal malignancies. Indeed, the role of gut-associated NK cells in the immune response to bowel cancers is known. Thus, in the gut immune system, NK cells play a dual role, participating in both physiological and pathogenic processes. In this review, we will analyze the known functions of NK cells in the gut mucosa both in health and disease, focusing on the cross-talk among bowel microenvironment, epithelial barrier integrity, microbiota, and NK cells.
Collapse
Affiliation(s)
- Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Benelli
- Immunology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Delfina Costa
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicoletta Ferrari
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesca Tosetti
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
31
|
Yan Y, Chen X, Wang X, Zhao Z, Hu W, Zeng S, Wei J, Yang X, Qian L, Zhou S, Sun L, Gong Z, Xu Z. The effects and the mechanisms of autophagy on the cancer-associated fibroblasts in cancer. J Exp Clin Cancer Res 2019; 38:171. [PMID: 31014370 PMCID: PMC6480893 DOI: 10.1186/s13046-019-1172-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/10/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) plays an essential role in cancer cell growth, metabolism and immunoreaction. Autophagy is an intracellular self-degradative process that balances cell energy source and regulates tissue homeostasis. Targeting autophagy has gained interest with multiple preclinical and clinical trials, such as the pharmacological inhibitor chloroquine or the inducer rapamycin, especially in exploiting its ability to modulate the secretory capability of CAFs to enhance drug delivery or inhibit it to prevent its influence on cancer cell chemoresistance. In this review, we summarize the reports on autophagy in cancer-associated fibroblasts by detailing the mechanism and role of autophagy in CAFs, including the hypoxic-autophagy positive feedback cycle, the metabolic cross-talk between CAFs and tumors induced by autophagy, CAFs secreted cytokines promote cancer survival by secretory autophagy, CAFs autophagy-induced EMT, stemness, senescence and treatment sensitivity, as well as the research of antitumor chemicals, miRNAs and lncRNAs. Additionally, we discuss the evidence of molecules in CAFs that are relevant to autophagy and the contribution to sensitive treatments as a potential target for cancer treatment.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Wenfeng Hu
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Jie Wei
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Xue Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Long Qian
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Shuyi Zhou
- Hunan Provincial People’s Hospital Xingsha Branch (People’s Hospital of Changsha County), Changsha, 410008 Hunan China
| | - Lunquan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| |
Collapse
|
32
|
Ruiu R, Tarone L, Rolih V, Barutello G, Bolli E, Riccardo F, Cavallo F, Conti L. Cancer stem cell immunology and immunotherapy: Harnessing the immune system against cancer's source. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:119-188. [PMID: 31383404 DOI: 10.1016/bs.pmbts.2019.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent advances in diagnosis and therapy having improved cancer outcome, many patients still do not respond to treatments, resulting in the progression or relapse of the disease, eventually impairing survival expectations. The limited efficacy of therapy is often attributable to its inability to affect cancer stem cells (CSCs), a small population of cells resistant to current radio- and chemo-therapies. CSCs are characterized by self-renewal and tumor-initiating capabilities, and function as a reservoir for the local and distant recurrence of the disease. Therefore, new therapeutic approaches able to effectively target and deplete CSCs are urgently needed. Immunotherapy is facing a renewed interest for its potential in cancer treatment, and the possibility of harnessing the immune system to target CSCs is being addressed by a new exciting research field. In this chapter, we discuss the cancer stem cell model and illustrate CSC biological and molecular properties, critically addressing theoretical and practical issues linked with their definition and study. We then review the existing literature regarding the immunological properties of CSCs and the complex interplay occurring between CSCs and immune cells. Finally, we present up-to-date studies on CSC immunotargeting and its potential future perspective. In conclusion, understanding the interplay between CSC biology and tumor immunology will provide a deeper understanding of the mechanisms that regulate CSC immunological properties. This will contribute to the design of new CSC-directed immunotherapeutic strategies with the potential of strongly improving cancer outcomes.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
33
|
Cristiani CM, Turdo A, Ventura V, Apuzzo T, Capone M, Madonna G, Mallardo D, Garofalo C, Giovannone ED, Grimaldi AM, Tallerico R, Marcenaro E, Pesce S, Del Zotto G, Agosti V, Costanzo FS, Gulletta E, Rizzo A, Moretta A, Karre K, Ascierto PA, Todaro M, Carbone E. Accumulation of Circulating CCR7 + Natural Killer Cells Marks Melanoma Evolution and Reveals a CCL19-Dependent Metastatic Pathway. Cancer Immunol Res 2019; 7:841-852. [PMID: 30940644 DOI: 10.1158/2326-6066.cir-18-0651] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/29/2018] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
Immune checkpoint blockade therapy has changed prognoses for many melanoma patients. However, immune responses that correlate with clinical progression of the disease are still poorly understood. To identify immune responses correlating with melanoma clinical evolution, we analyzed serum cytokines as well as circulating NK and T-cell subpopulations from melanoma patients. The patients' immune profiles suggested that melanoma progression leads to changes in peripheral blood NK and T-cell subsets. Stage IV melanoma was characterized by an increased frequency of CCR7+CD56bright NK cells as well as high serum concentrations of the CCR7 ligand CCL19. CCR7 expression and CCL19 secretion were also observed in melanoma cell lines. The CCR7+ melanoma cell subpopulation coexpressed PD-L1 and Galectin-9 and had stemness properties. Analysis of melanoma-derived cancer stem cells (CSC) showed high CCR7 expression; these CSCs were efficiently recognized and killed by NK cells. An accumulation of CCR7+, PD-L1+, and Galectin-9+ melanoma cells in melanoma metastases was demonstrated ex vivo Altogether, our data identify biomarkers that may mark a CCR7-driven metastatic melanoma pathway.
Collapse
Affiliation(s)
- Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Alice Turdo
- Department of Surgical, Oncological and Stomatological Sciences (Di.Chir.On.S), University of Palermo, Palermo, Italy
| | - Valeria Ventura
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Tiziana Apuzzo
- Department of Surgical, Oncological and Stomatological Sciences (Di.Chir.On.S), University of Palermo, Palermo, Italy
| | - Mariaelena Capone
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Gabriele Madonna
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Domenico Mallardo
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Cinzia Garofalo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emilia Dora Giovannone
- Services and Research Interdepartmental Center, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Antonio M Grimaldi
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Rossana Tallerico
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Silvia Pesce
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Genny Del Zotto
- Core Facilities Laboratory, Department of Translational Research, Laboratory Medicine, Diagnosis and Services, Istituto Giannina Gaslini, Genoa, Italy
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Services and Research Interdepartmental Center, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
- Services and Research Interdepartmental Center, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Elio Gulletta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Aroldo Rizzo
- Unit of Pathology, Ospedali Riuniti Villa Sofia-Cervello, Palermo, Italy
| | - Alessandro Moretta
- Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Klas Karre
- Department of Microbiology, Cell and Tumor biology, Karolinska Intitutet, Stockholm, Sweden
| | - Paolo A Ascierto
- Istituto Nazionale Tumori - IRCCS - Fondazione "G. Pascale," Dipartimento di Melanoma, Immunoterapia Oncologica e Terapie Innovative, Naples, Italy
| | - Matilde Todaro
- Department of PROMISE, University of Palermo, Palermo, Italy.
| | - Ennio Carbone
- Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
- Department of Microbiology, Cell and Tumor biology, Karolinska Intitutet, Stockholm, Sweden
| |
Collapse
|
34
|
Luna JI, Grossenbacher SK, Sturgill IR, Ames E, Judge SJ, Bouzid LA, Darrow MA, Murphy WJ, Canter RJ. Bortezomib Augments Natural Killer Cell Targeting of Stem-Like Tumor Cells. Cancers (Basel) 2019; 11:cancers11010085. [PMID: 30646520 PMCID: PMC6356940 DOI: 10.3390/cancers11010085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor cells harboring stem-like/cancer stem cell (CSC) properties have been identified and isolated from numerous hematological and solid malignancies. These stem-like tumor cells can persist following conventional cytoreductive therapies, such as chemotherapy and radiotherapy, thereby repopulating the tumor and seeding relapse and/or metastasis. We have previously shown that natural killer (NK) cells preferentially target stem-like tumor cells via non- major histocompatibility complex (MHC) restricted mechanisms. Here, we demonstrated that the proteasome inhibitor, bortezomib, augments NK cell targeting of stem cell-like tumor cells against multiple solid human tumor-derived cancer lines and primary tissue samples. Mechanistically, this was mediated by the upregulation of cell surface NK ligands MHC class I chain-related protein A and B (MICA and MICB) on aldehyde dehydrogenases (ALDH)-positive CSCs. The increased expression of MICA and MICB on CSC targets thereby enhanced NK cell mediated killing in vitro and ex vivo from both human primary tumor and patient-derived xenograft samples. In vivo, the combination of bortezomib and allogeneic NK cell adoptive transfer in immunodeficient mice led to increased elimination of CSCs as well as tumor growth delay of orthotopic glioblastoma tumors. Taken together, our data support the combination bortezomib and NK transfer as a strategy for both CSC targeting and potentially improved outcomes in clinical cancer patients.
Collapse
Affiliation(s)
- Jesus I Luna
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Steven K Grossenbacher
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Ian R Sturgill
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Erik Ames
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Sean J Judge
- Department of Surgery, Division of Surgical Oncology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Lyes A Bouzid
- Department of Biological Sciences, California State University Sacramento, Sacramento, CA 95817, USA.
| | - Morgan A Darrow
- Department of Pathology and Laboratory Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - William J Murphy
- Department of Dermatology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
- Department of Internal Medicine, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| | - Robert J Canter
- Department of Surgery, Division of Surgical Oncology, University of California Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
35
|
Obiedat A, Seidel E, Mahameed M, Berhani O, Tsukerman P, Voutetakis K, Chatziioannou A, McMahon M, Avril T, Chevet E, Mandelboim O, Tirosh B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1. FASEB J 2018; 33:3481-3495. [PMID: 30452881 DOI: 10.1096/fj.201801350rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The unfolded protein response (UPR) is an adaptive signaling pathway activated in response to endoplasmic reticulum (ER) stress. The effectors of the UPR are potent transcription activators; however, some genes are suppressed by ER stress at the mRNA level. The mechanisms underlying UPR-mediated gene suppression are less known. Exploration of the effect of UPR on NK cells ligand expression found that the transcription of NK group 2 member D (NKG2D) ligand major histocompatibility complex class I polypeptide-related sequence A/B (MICA/B) is suppressed by the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) pathway of the UPR. Deletion of IRE1 or XBP1 was sufficient to promote mRNA and surface levels of MICA. Accordingly, NKG2D played a greater role in the killing of IRE1/XBP1 knockout target cells. Analysis of effectors downstream to XBP1s identified E2F transcription factor 1 (E2F1) as linking UPR and MICA transcription. The inverse correlation between XBP1 and E2F1 or MICA expression was corroborated in RNA-Seq analysis of 470 primary melanoma tumors. While mechanisms that connect XBP1 to E2F1 are not fully understood, we implicate a few microRNA molecules that are modulated by ER stress and possess dual suppression of E2F1 and MICA. Because of the importance of E2F1 and MICA in cancer progression and recognition, these observations could be exploited for cancer therapy by manipulating the UPR in tumor cells.-Obiedat, A., Seidel, E., Mahameed, M., Berhani, O., Tsukerman, P., Voutetakis, K., Chatziioannou, A., McMahon, M., Avril, T., Chevet, E., Mandelboim, O., Tirosh, B. Transcription of the NKG2D ligand MICA is suppressed by the IRE1/XBP1 pathway of the unfolded protein response through the regulation of E2F1.
Collapse
Affiliation(s)
- Akram Obiedat
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Einat Seidel
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Mohamed Mahameed
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Orit Berhani
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Konstantinos Voutetakis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Aristotelis Chatziioannou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation (NHRF), Athens, Greece.,e-Noesis Inspired Operational Systems Applications Private Company PC, Kallithea-Athens, Greece
| | - Mari McMahon
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and.,Apoptosis Research Centre (ARC), National University of Ireland, Galway (NUIG), Galway, Ireland
| | - Tony Avril
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France; and
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, The Biomedical Research Institute Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem Hadassah Medical School, Jerusalem, Israel
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
36
|
Dianat-Moghadam H, Rokni M, Marofi F, Panahi Y, Yousefi M. Natural killer cell-based immunotherapy: From transplantation toward targeting cancer stem cells. J Cell Physiol 2018; 234:259-273. [PMID: 30144312 DOI: 10.1002/jcp.26878] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
Natural killer (NK) cells are key players of the innate immune system. NK cells provide protection against infectious pathogens and malignancies in cell. This characteristic may be attributable to their intrinsic diverse potentialities and also their cooperation with adaptive immune lymphocytes, known as B and T cells. The growth, recurrence, and metastasis of cancer cells, and the failure of cytoreductive therapies against cancer cells are due to the small population of intratumor stem-like cells, called cancer stem cells (CSCs). Furthermore, NK cells can efficiently eradicate heterogeneous tumor cells after a long-term treatment. Therefore, NK cell-based therapy is a promising strategy to target and break CSC-associated resistance to anticancer drugs treatment. In this review, we have presented an overview of the emerging knowledge of the characteristics, diversities, and mechanism-driven immune surveillance of human NK cells and advances in NK cell-based immunotherapies. Finally, we will discuss how these cells can be applied to introduce the next generation of vaccine- and immune-based approaches to prevent drug resistance.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Rokni
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Department of Clinical Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Fang F, Xiao W, Tian Z. Challenges of NK cell-based immunotherapy in the new era. Front Med 2018; 12:440-450. [PMID: 30047028 DOI: 10.1007/s11684-018-0653-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022]
Abstract
Natural killer cells (NKs) have a great potential for cancer immunotherapy because they can rapidly and directly kill transformed cells in the absence of antigen presensitization. Various cellular sources, including peripheral blood mononuclear cells (PBMCs), stem cells, and NK cell lines, have been used for producing NK cells. In particular, NK cells that expanded from allogeneic PBMCs exhibit better efficacy than those that did not. However, considering the safety, activities, and reliability of the cell products, researchers must develop an optimal protocol for producing NK cells from PBMCs in the manufacture setting and clinical therapeutic regimen. In this review, the challenges on NK cell-based therapeutic approaches and clinical outcomes are discussed.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China
| | - Weihua Xiao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China.
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Signaling Network, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, 230027, China.
| |
Collapse
|
38
|
Abstract
Alpha-fetoprotein is a shuttle protein that delivers nutrients through receptor-mediated endocytosis to embryotic cells. In adults, alpha-fetoprotein can shuttle drugs into alpha-fetoprotein receptor-positive myeloid-derived suppressor, regenerating and also cancer cells. Drugs with high-binding affinity to alpha-fetoprotein can activate or deplete targeted cells. Myeloid-derived suppressor cells activation leads to immune suppression that can be used for treating autoimmune diseases. On the other hand, toxins delivered by alpha-fetoprotein can damage myeloid-derived suppressor cells and consequently unleash innate and adaptive immunity to destroy cancer cells. Innate immunity natural killers reduce cancer stem cells and metastases. The new alpha-fetoprotein drug noncovalent complexes for immunotherapy change the local immune balance and has potential in oncology, autoimmune and infectious diseases treatment, inflammation, transplantation, vaccination, etc.
Collapse
|
39
|
Costa D, Venè R, Benelli R, Romairone E, Scabini S, Catellani S, Rebesco B, Mastracci L, Grillo F, Minghelli S, Loiacono F, Zocchi MR, Poggi A. Targeting the Epidermal Growth Factor Receptor Can Counteract the Inhibition of Natural Killer Cell Function Exerted by Colorectal Tumor-Associated Fibroblasts. Front Immunol 2018; 9:1150. [PMID: 29910806 PMCID: PMC5992415 DOI: 10.3389/fimmu.2018.01150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 05/07/2018] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cells (MSC) present in the tumor microenvironment [usually named tumor-associated fibroblasts (TAF)] can exert immunosuppressive effects on T and natural killer (NK) lymphocytes, favoring tumor immune escape. We have analyzed this mechanism in colorectal carcinoma (CRC) and found that co-culture of NK cells with TAF can prevent the IL-2-mediated NKG2D upregulation. This leads to the impairment of NKG2D-mediated recognition of CRC cells, sparing the NK cell activation through DNAM1 or FcγRIIIA (CD16). In situ, TAF express detectable levels of epidermal growth factor receptor (EGFR); thus, the therapeutic anti-EGFR humanized antibody cetuximab can trigger the antibody-dependent cellular cytotoxicity of TAF, through the engagement of FcγRIIIA on NK cells. Importantly, in the tumor, we found a lymphoid infiltrate containing NKp46+CD3- NK cells, enriched in CD16+ cells. This population, sorted and cultured with IL-2, could be triggered via CD16 and via NKG2D. Of note, ex vivo NKp46+CD3- cells were able to kill autologous TAF; in vivo, this might represent a control mechanism to reduce TAF-mediated regulatory effect on NK cell function. Altogether, these findings suggest that MSC from the neoplastic mucosa (TAF) of CRC patients can downregulate the immune cell recognition of CRC tumor cells. This immunosuppression can be relieved by the anti-EGFR antibody used in CRC immunotherapy.
Collapse
Affiliation(s)
- Delfina Costa
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberta Venè
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Benelli
- Immunology Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Stefano Scabini
- Oncological Surgery, Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Catellani
- Clinical Hematology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Barbara Rebesco
- Antiblastic Drug Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Mastracci
- Unit of Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Grillo
- Unit of Pathology, Ospedale Policlinico San Martino, Genoa, Italy
| | - Simona Minghelli
- Clinical and Experimental Immunology Laboratory, Ospedale G. Gaslini, Genoa, Italy
| | | | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
40
|
Efficacy of combining ING4 and TRAIL genes in cancer-targeting gene virotherapy strategy: first evidence in preclinical hepatocellular carcinoma. Gene Ther 2017; 25:54-65. [PMID: 28925992 PMCID: PMC5817393 DOI: 10.1038/gt.2017.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022]
Abstract
Current treatments of hepatocellular carcinoma (HCC) are ineffective and unsatisfactory in many aspects. Cancer-targeting gene virotherapy using oncolytic adenoviruses (OAds) armed with anticancer genes has shown efficacy and safety in clinical trials. Nowadays, both inhibitor of growth 4 (ING4), as a multimodal tumor suppressor gene, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as a potent apoptosis-inducing gene, are experiencing a renaissance in cancer gene therapy. Herein we investigated the antitumor activity and safety of mono- and combined therapy with OAds armed with ING4 (Ad-ΔB/ING4) and TRAIL (Ad-ΔB/TRAIL) gene, respectively, on preclinical models of human HCC. OAd-mediated expression of ING4 or TRAIL transgene was confirmed. Ad-ΔB/TRAIL and/or Ad-ΔB/ING4 exhibited potent killing effect on human HCC cells (HuH7 and Hep3B) but not on normal liver cells. Most importantly, systemic therapy with Ad-ΔB/ING4 plus Ad-ΔB/TRAIL elicited more eradicative effect on an orthotopic mouse model of human HCC than their monotherapy, without causing obvious overlapping toxicity. Mechanistically, Ad-ΔB/ING4 and Ad-ΔB/TRAIL were remarkably cooperated to induce antitumor apoptosis and immune response, and to repress tumor angiogenesis. This is the first study showing that concomitant therapy with Ad-ΔB/ING4 and Ad-ΔB/TRAIL may provide a potential strategy for HCC therapy and merits further investigations to realize its possible clinical translation.
Collapse
|
41
|
Pan P, Kang S, Wang Y, Liu K, Oshima K, Huang YW, Zhang J, Yearsley M, Yu J, Wang LS. Black Raspberries Enhance Natural Killer Cell Infiltration into the Colon and Suppress the Progression of Colorectal Cancer. Front Immunol 2017; 8:997. [PMID: 28861089 PMCID: PMC5561013 DOI: 10.3389/fimmu.2017.00997] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are an essential component of innate immunity against cancer development. Many studies have been conducted to evaluate immune-modulating effects using dietary compounds. Our laboratory has been investigating the chemopreventive potential of black raspberries (BRBs) and previously demonstrated their beneficial modulation of genetic and epigenetic biomarkers in patients with colorectal cancer (CRC). The current study investigated their potential on modulating NK cells. To avoid the excessive inflammation caused by the dextran sulfate sodium (DSS) treatment that leads to colitis, we treated the mice with overnight DSS so that it would slightly irritate the colon but still promote colon carcinogenesis with 100% incidence in both the ApcMin/+ mice and azoxymethane (AOM)-treated mice. A significant decrease of tissue-infiltrating NK cells along the progression of microadenoma-to-adenoma and adenoma-to-adenocarcinoma was observed in the ApcMin/+ /DSS and AOM/DSS mice, respectively. Depletion of NK cells significantly promoted the development of CRC, suggesting a critical role of NK cells in combating CRC progression. BRBs significantly suppressed the CRC progression and increased the number of tissue-infiltrating NK cells in both mouse models. Moreover, we further determined BRBs' effects on NK cells in the human biopsy specimens collected from our previously completed clinical trial, in which CRC patients consumed BRBs for an average of 4 weeks during a presurgical window. We observed an increased number and an enhanced cytotoxicity of NK cells by BRB intervention. The current study provides evidence that BRBs have the potential to enhance the tumor immunesurveillance of NK cells that can be beneficial in the setting of CRC prevention and treatment.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siwen Kang
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Youwei Wang
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ka Liu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Kiyoko Oshima
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jianying Zhang
- Center for Biostatistics, The Ohio State University, Columbus, OH, United States
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, OH, United States
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The James Cancer Hospital, The Ohio State University, Columbus, OH, United States
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
42
|
Kaur K, Cook J, Park SH, Topchyan P, Kozlowska A, Ohanian N, Fang C, Nishimura I, Jewett A. Novel Strategy to Expand Super-Charged NK Cells with Significant Potential to Lyse and Differentiate Cancer Stem Cells: Differences in NK Expansion and Function between Healthy and Cancer Patients. Front Immunol 2017; 8:297. [PMID: 28424683 PMCID: PMC5380683 DOI: 10.3389/fimmu.2017.00297] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/02/2017] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells are known to target cancer stem cells and undifferentiated tumors. In this paper, we provide a novel strategy for expanding large numbers of super-charged NK cells with significant potential to lyse and differentiate cancer stem cells and demonstrate the differences in the dynamics of NK cell expansion between healthy donors and cancer patients. Decline in cytotoxicity and lower interferon (IFN)-γ secretion by osteoclast (OC)-expanded NK cells from cancer patients correlates with faster expansion of residual contaminating T cells within purified NK cells, whereas healthy donors’ OCs continue expanding super-charged NK cells while limiting T cell expansion for up to 60 days. Similar to patient NK cells, NK cells from tumor-bearing BLT-humanized mice promote faster expansion of residual T cells resulting in decreased numbers and function of NK cells, whereas NK cells from mice with no tumor continue expanding NK cells and retain their cytotoxicity. In addition, dendritic cells (DCs) in contrast to OCs are found to promote faster expansion of residual T cells within purified NK cells resulting in the decline in NK cell numbers from healthy individuals. Addition of anti-CD3 mAb inhibits T cell proliferation while enhancing NK cell expansion; however, expanding NK cells have lower cytotoxicity but higher secretion of IFN-γ. Expansion and functional activation of super-charged NK cells by OCs is dependent on interleukin (IL)-12 and IL-15. Thus, in this report, we not only provide a novel strategy to expand super-charged NK cells, but also demonstrate that rapid and sustained expansion of residual T cells within the purified NK cells during expansion with DCs or OCs could be a potential mechanism by which the numbers and function of NK cells decline in cancer patients and in BLT-humanized mice.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - Jessica Cook
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - So-Hyun Park
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - Paytsar Topchyan
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - Anna Kozlowska
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA.,Department of Tumor Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Nick Ohanian
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA
| | - Changge Fang
- Pingan Advanced Personalized Diagnostics, Biomed Co. (USA and Beijing), Beijing, China
| | - Ichiro Nishimura
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA.,The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.,Division of Advanced Prosthodontics, UCLA School of Dentistry, Los Angeles, CA, USA.,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Anahid Jewett
- Division of Oral Biology and Oral Medicine, School of Dentistry, Los Angeles, CA, USA.,The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.,The Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| |
Collapse
|
43
|
Bosisio FM, van den Oord JJ. Immunoplasticity in cutaneous melanoma: beyond pure morphology. Virchows Arch 2017; 470:357-369. [PMID: 28054151 DOI: 10.1007/s00428-016-2058-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/03/2016] [Accepted: 12/19/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Francesca Maria Bosisio
- Laboratory of Translational Cell and Tissue Research, KUL, Minderbroederstraat 19, 3000, Leuven, Belgium.
- Università degli studi di Milano-Bicocca, Milan, Italy.
| | - Joost J van den Oord
- Laboratory of Translational Cell and Tissue Research, KUL, Minderbroederstraat 19, 3000, Leuven, Belgium
| |
Collapse
|
44
|
Relation T, Dominici M, Horwitz EM. Concise Review: An (Im)Penetrable Shield: How the Tumor Microenvironment Protects Cancer Stem Cells. Stem Cells 2017; 35:1123-1130. [PMID: 28207184 DOI: 10.1002/stem.2596] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/27/2017] [Accepted: 02/06/2017] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are defined by their unlimited self-renewal ability and their capacity to initiate and maintain malignancy, traits that are not found in most cells that comprise the tumor. Although current cancer treatments successfully reduce tumor burden, the tumor will likely recur unless CSCs are effectively eradicated. This challenge is made greater by the protective impact of the tumor microenvironment (TME), consisting of infiltrating immune cells, endothelial cells, extracellular matrix, and signaling molecules. The TME acts as a therapeutic barrier through immunosuppressive, and thereby tumor-promoting, actions. These factors, outside of the cancer cell lineage, work in concert to shelter CSCs from both the body's intrinsic anticancer immunity and pharmaceutical interventions to maintain cancer growth. Emerging therapies aimed at the TME offer a promising new tool in breaking through this shield to target the CSCs, yet definitive treatments remain unrealized. In this review, we summarize the mechanisms by which CSCs are protected by the TME and current efforts to overcome these barriers. Stem Cells 2017;35:1123-1130.
Collapse
Affiliation(s)
- Theresa Relation
- The Research Institute, Columbus, Ohio, USA.,Medical Scientist Training Program, Columbus, Ohio, USA
| | - Massimo Dominici
- Department of Medical and Surgical Sciences of Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Edwin M Horwitz
- The Research Institute, Columbus, Ohio, USA.,Departments of Pediatrics and Medicine, Nationwide Children's Hospital, Columbus, Ohio, USA.,The Division of Hematology/Oncology/BMT, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
45
|
Stabile H, Fionda C, Gismondi A, Santoni A. Role of Distinct Natural Killer Cell Subsets in Anticancer Response. Front Immunol 2017; 8:293. [PMID: 28360915 PMCID: PMC5352654 DOI: 10.3389/fimmu.2017.00293] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells, the prototypic member of innate lymphoid cells, are important effectors of anticancer immune response. These cells can survey and control tumor initiation due to their capability to recognize and kill malignant cells and to regulate the adaptive immune response via cytokines and chemokines release. However, several studies have shown that tumor-infiltrating NK cells associated with advanced disease can have profound functional defects and display protumor activity. This evidence indicates that NK cell behavior undergoes crucial alterations during cancer progression. Moreover, a further level of complexity is due to the extensive heterogeneity and plasticity of these lymphocytes, implying that different NK cell subsets, endowed with specific phenotypic and functional features, may be involved and play distinct roles in the tumor context. Accordingly, many studies reported the enrichment of selective NK cell subsets within tumor tissue, whereas the underlying mechanisms are not fully elucidated. A malignant microenvironment can significantly impact NK cell activity, by recruiting specific subpopulations and/or influencing their developmental programming or the acquisition of a mature phenotype; in particular, neoplastic, stroma and immune cells, or tumor-derived factors take part in these processes. In this review, we will summarize and discuss the recently acquired knowledge on the possible contribution of distinct NK cell subsets in the control and/or progression of solid and hematological malignancies. Moreover, we will address emerging evidence regarding the role of different components of tumor microenvironment on shaping NK cell response.
Collapse
Affiliation(s)
- Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome , Rome , Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Italian Institute of Technology, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
46
|
Brinckerhoff CE. Cancer Stem Cells (CSCs) in melanoma: There's smoke, but is there fire? J Cell Physiol 2017; 232:2674-2678. [PMID: 28078710 DOI: 10.1002/jcp.25796] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs), also called Tumor Initiating Cells (TICs), can be defined as cancer cells that are present within solid tumors or hematological cancers, which have characteristics associated with normal stem cells, but which can give rise to all cell types found in a particular cancer sample. CSCs, therefore, are transformed stem cells, which can self-renew, differentiate into diverse progenies, and drive continuous tumor growth (Kreso & Dick, , Cell Stem Cell, 14:275-291; Schatton et al., , Nature, 451:345-349; Villani, Sabbatino, Ferrone, & Ferrone, , Melanoma Management, 2:109-114; Zhou et al., , Drug Discovery, 8:806-823) (Fig. ). [Figure: see text].
Collapse
Affiliation(s)
- Constance E Brinckerhoff
- Departments of Medicine and Biochemistry, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, Lebanon, New Hampshire
| |
Collapse
|
47
|
Kumar D, Gorain M, Kundu G, Kundu GC. Therapeutic implications of cellular and molecular biology of cancer stem cells in melanoma. Mol Cancer 2017; 16:7. [PMID: 28137308 PMCID: PMC5282877 DOI: 10.1186/s12943-016-0578-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/25/2016] [Indexed: 01/04/2023] Open
Abstract
Melanoma is a form of cancer that initiates in melanocytes. Melanoma has multiple phenotypically distinct subpopulation of cells, some of them have embryonic like plasticity which are involved in self-renewal, tumor initiation, metastasis and progression and provide reservoir of therapeutically resistant cells. Cancer stem cells (CSCs) can be identified and characterized based on various unique cell surface and intracellular markers. CSCs exhibit different molecular pattern with respect to non-CSCs. They maintain their stemness and chemoresistant features through specific signaling cascades. CSCs are weak in immunogenicity and act as immunosupressor in the host system. Melanoma treatment becomes difficult and survival is greatly reduced when the patient develop metastasis. Standard conventional oncology treatments such as chemotherapy, radiotherapy and surgical resection are only responsible for shrinking the bulk of the tumor mass and tumor tends to relapse. Thus, targeting CSCs and their microenvironment niche addresses the alternative of traditional cancer therapy. Combined use of CSCs targeted and traditional therapies may kill the bulk tumor and CSCs and offer a promising therapeutic strategy for the management of melanoma.
Collapse
Affiliation(s)
- Dhiraj Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Mahadeo Gorain
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India
| | - Gautam Kundu
- Deapartment of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India.
| |
Collapse
|
48
|
Luna JI, Grossenbacher SK, Murphy WJ, Canter RJ. Targeting Cancer Stem Cells with Natural Killer Cell Immunotherapy. Expert Opin Biol Ther 2016; 17:313-324. [PMID: 27960589 DOI: 10.1080/14712598.2017.1271874] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Standard cytoreductive cancer therapy, such as chemotherapy and radiotherapy, are frequently resisted by a small portion of cancer cells with 'stem-cell' like properties including quiescence and repopulation. Immunotherapy represents a breakthrough modality for improving oncologic outcomes in cancer patients. Since the success of immunotherapy is not contingent on target cell proliferation, it may also be uniquely suited to address the problem of resistance and repopulation exerted by cancer stem cells (CSCs). Areas covered: Natural killer (NK) cells have long been known for their ability to reject allogeneic hematopoietic stem cells, and there are increasing data demonstrating that NK cells can selectively identify and lyse CSCs. The authors review the current knowledge of CSCs and NK cells and highlight recent studies that support the concept that NK cells are capable of targeting CSC in solid tumors, especially in the context of combination therapy simultaneously targeting non-CSCs and CSCs. Expert opinion: Unlike cytotoxic cancer treatments, NK cells can target and eliminate quiescent/non-proliferating cells such as CSCs, and these enigmatic cells are an important source of relapse and metastasis. NK targeting of CSCs represents a novel and potentially high impact method to capitalize on the intrinsic therapeutic potential of NK cells.
Collapse
Affiliation(s)
- Jesus I Luna
- a Department of Dermatology , University of California Davis School of Medicine , Sacramento , CA USA
| | - Steven K Grossenbacher
- a Department of Dermatology , University of California Davis School of Medicine , Sacramento , CA USA
| | - William J Murphy
- a Department of Dermatology , University of California Davis School of Medicine , Sacramento , CA USA.,b Department of Internal Medicine , University of California Davis Medical Center , Sacramento , CA USA
| | - Robert J Canter
- c Division of Surgical Oncology, Department of Surgery , University of California Davis School of Medicine , Sacramento , CA USA
| |
Collapse
|