1
|
Shang W, Geng X, Sun X, Fan X, Li A, Zhang C, Kang Y, Liang Y, Zhang J. Non-coding RNAs modulate pyroptosis in diabetic cardiomyopathy: A comprehensive review. Int J Biol Macromol 2025; 309:142865. [PMID: 40188918 DOI: 10.1016/j.ijbiomac.2025.142865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a leading cause of heart failure (HF) among individuals with diabetes, presenting a significant medical challenge due to its complex pathophysiology and the lack of targeted therapies. Pyroptosis, a pro-inflammatory form of programmed cell death (PCD), is the predominant mode of cell death in the primary resident cells involved in DCM. It has been reported to be critical in DCM's onset, progression, and pathogenesis. Non-coding RNAs (ncRNAs), diverse transcripts lacking protein-coding potential, are essential for cellular physiology and the progression of various diseases. Increasing evidence indicates that ncRNAs are pivotal in the pathogenesis of DCM by regulating pyroptosis. This observation suggests that targeting the regulation of pyroptosis by ncRNAs may offer a novel therapeutic approach for DCM. However, a comprehensive review of this topic is currently lacking. Our objective is to elucidate the regulatory role of ncRNAs in pyroptosis associated with DCM and to elucidate the relationships among these factors. Additionally, we explored how ncRNAs influence pyroptosis and contribute to the pathophysiology of DCM. By doing so, we aim to identify new research targets for the clinical diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Wenyu Shang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xiaofei Geng
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xitong Sun
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Xinbiao Fan
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Aolin Li
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Chi Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yuxin Kang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Yongchun Liang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China
| | - Junping Zhang
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, China.
| |
Collapse
|
2
|
Henry ÓC, O'Neill LAJ. Metabolic Reprogramming in Stromal and Immune Cells in Rheumatoid Arthritis and Osteoarthritis: Therapeutic Possibilities. Eur J Immunol 2025; 55:e202451381. [PMID: 40170391 PMCID: PMC11962241 DOI: 10.1002/eji.202451381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/03/2025]
Abstract
Metabolic reprogramming of stromal cells, including fibroblast-like synoviocytes (FLS) and chondrocytes, as well as osteoclasts (OCs), are involved in the inflammatory and degenerative processes underlying rheumatoid arthritis (RA) and osteoarthritis (OA). In RA, FLS exhibit mTOR activation, enhanced glycolysis and reduced oxidative phosphorylation, fuelling inflammation, angiogenesis, and cartilage degradation. In OA, chondrocytes undergo metabolic rewiring, characterised by mTOR and NF-κB activation, mitochondrial dysfunction, and increased glycolysis, which promotes matrix metalloproteinase production, extracellular matrix (ECM) degradation, and angiogenesis. Macrophage-derived immunometabolites, including succinate and itaconate further modulate stromal cell function, acting as signalling molecules that modulate inflammatory and catabolic processes. Succinate promotes inflammation whilst itaconate is anti-inflammatory, suppressing inflammatory joint disease in models. Itaconate deficiency also correlates inversely with disease severity in RA in humans. Emerging evidence highlights the potential of targeting metabolic processes as promising therapeutic strategies for connective tissue disorders.
Collapse
Affiliation(s)
- Órlaith C. Henry
- Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | | |
Collapse
|
3
|
Wang H, Ma L, Su W, Liu Y, Xie N, Liu J. NLRP3 inflammasome in health and disease (Review). Int J Mol Med 2025; 55:48. [PMID: 39930811 PMCID: PMC11781521 DOI: 10.3892/ijmm.2025.5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Activation of inflammasomes is the activation of inflammation‑related caspase mediated by the assembly signal of multi‑protein complex and the maturity of inflammatory factors, such as IL‑1β and IL‑18. Among them, the Nod‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most thoroughly studied type of inflammatory corpuscle at present, which is involved in the occurrence and development of numerous human diseases. Therefore, targeting the NLRP3 inflammasome has become the focus of drug development for related diseases. In this paper, the research progress of the NLRP3 inflammasome in recent years is summarized, including the activation and regulation of NLRP3 and its association with diseases. A deep understanding of the regulatory mechanism of NLRP3 will be helpful to the discovery of new drug targets and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Weiran Su
- Department of Internal Medicine, Jiading District Central Hospital, Shanghai 201800, P.R. China
| | - Yangruoyu Liu
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Ning Xie
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
4
|
Yuan M, Wu Y, Zhou X, Cai Y, Li H, Xia A, Wang X, Wen J, Duan Q, Xu C, Cao H, Miao C. Clematichinenoside AR alleviates rheumatoid arthritis by inhibiting synovial angiogenesis through the HIF-1α/VEGFA/ANG2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156552. [PMID: 40020629 DOI: 10.1016/j.phymed.2025.156552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Clematichinenoside AR (CAR) is an effective monomer component of Clematis chinensis Osbeck, which has therapeutic effects on rheumatoid arthritis (RA), but its specific mechanism is still not fully elucidated. PURPOSE This study elucidated whether CAR alleviated RA by inhibiting synovial angiogenesis and revealed its molecular mechanism. METHODS Arthritis indicators and H&E staining were used to evaluate the therapeutic effects of CAR on collagen-induced arthritis (CIA) rats, and the IHC, IF, EdU-Hoechst, tunel, flow cytometry, wound healing and transwell assay were used to investigate the effects of CAR on synovial angiogenesis. The co-culture model of RA fibroblast-like synoviocytes (FLSs) and human umbilical vein endothelial cells (HUVECs) was established. Tube formation, western blot, RT-qPCR and other related methods were used to evaluate the specific mechanism of CAR. RESULTS CAR alleviated arthritis pathology and inhibited angiogenesis in CIA rats. CAR inhibited the proliferation, migration and invasion of RA FLSs, and promoted their apoptosis. Importantly, overexpression of HIF-1α inversed the inhibitory impact of CAR on the expression of HIF-1α, VEGFA, VEGFR2, and ANG2, as well as the inhibitory effects of CAR on the expression of CD31/34 and the HUVEC tube formation. Molecular docking, molecular dynamics, and experimental verification confirmed that CAR has a strong binding affinity with HIF-1α, further indicating that HIF-1α was a target of CAR for anti-angiogenesis. CONCLUSION CAR had a good inhibitory effect on RA, and its mechanism was inhibition of synovial angiogenesis through the HIF-1α/VEGF/ANG2 axis.
Collapse
Affiliation(s)
- Meiling Yuan
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yikang Cai
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Aixin Xia
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei 230031, Anhui Province, China
| | - Qiangjun Duan
- Department of Experimental Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Chenhao Xu
- Department of Experimental Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Huibo Cao
- Department of Endocrinology, Chuzhou Integrated Traditional Chinese and Western Medicine Hospital, Anhui University of Chinese Medicine, 788 Huifeng East Road, Chuzhou 239000, Anhui Province, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
5
|
Tang J, Liu Y, Wu Y, Li S, Zhang D, Wang H, Wang W, Song X, Li Y. Saponins as potential novel NLRP3 inflammasome inhibitors for inflammatory disorders. Arch Pharm Res 2024; 47:757-792. [PMID: 39549164 DOI: 10.1007/s12272-024-01517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Nucleotide-binding domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is a downstream protein from the pattern recognition receptor family that forms the NLRP3 inflammasome. The NLRP3 inflammasome releases caspase-1, IL-1β, and IL-18, contributing to inflammatory responses associated with diabetes mellitus, arthritis, and ischemia-reperfusion injury. Recent studies suggest that specific saponin monomers and extracts from traditional Chinese medicines can inhibit inflammatory responses and related pathways, including the production of inflammatory factors. MCC950 is one of the most influential and specific NLRP3 inhibitors. Comparative molecular docking studies have identified 22 of the 37 saponin components as more robust binders to NLRP3 than MCC950. Dioscin, polyphyllin H, and saikosaponin-a have the highest binding affinities and potential NLRP3 inhibitors, offering a theoretical basis for developing novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jiamei Tang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yaxiao Liu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ying Wu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Shixing Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dongdong Zhang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, China
| | - Wei Wang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaomei Song
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yuze Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
6
|
Zhang Z, Li M, Li X, Feng Z, Luo G, Wang Y, Gao X. Glutamine metabolism modulates microglial NLRP3 inflammasome activity through mitophagy in Alzheimer's disease. J Neuroinflammation 2024; 21:261. [PMID: 39407211 PMCID: PMC11481753 DOI: 10.1186/s12974-024-03254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome in microglia is intimately linked to the pathogenesis of Alzheimer's disease (AD). Although NLRP3 inflammasome activity is regulated by cellular metabolism, the underlying mechanism remains elusive. Here, we found that under the pathological conditions of AD, the activation of NLRP3 inflammasome in microglia is accompanied by increased glutamine metabolism. Suppression of glutaminase, the rate limiting enzyme in glutamine metabolism, attenuated the NLRP3 inflammasome activation both in the microglia of AD mice and cultured inflammatory microglia. Mechanistically, inhibiting glutaminase blocked the anaplerotic flux of glutamine to the tricarboxylic acid cycle and amino acid synthesis, down-regulated mTORC1 signaling by phosphorylating AMPK, which stimulated mitophagy and limited the accumulation of intracellular reactive oxygen species, ultimately prevented the activation of NLRP3 inflammasomes in activated microglia during AD. Taken together, our findings suggest that glutamine metabolism regulates the activation of NLRP3 inflammasome through mitophagy in microglia, thus providing a potential therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Miao Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhiyang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
7
|
Huang J, Liu M, Zhang H, Sun G, Furey A, Rahman P, Zhai G. Multi-Omics Integrative Analyses Identified Two Endotypes of Hip Osteoarthritis. Metabolites 2024; 14:480. [PMID: 39330487 PMCID: PMC11434176 DOI: 10.3390/metabo14090480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
(1) Background: Osteoarthritis (OA) is a heterogeneous disorder, and subgroup classification of OA remains elusive. The aim of our study was to identify endotypes of hip OA and investigate the altered pathways in the different endotypes. (2) Methods: Metabolomic profiling and genome-wide genotyping were performed on fasting blood. Transcriptomic profiling was performed on RNA extracted from cartilage samples. Machine learning methods were used to identify endotypes of hip OA. Pathway analysis was used to identify the altered pathways between hip endotypes and controls. GWAS was performed on each of the identified metabolites. Transcriptomic data was used to examine the expression levels of identified genes in cartilage. (3) Results: 180 hip OA patients and 120 OA-free controls were classified into three clusters based on metabolomic data. The combination of arginine, ornithine, and the average value of 7 lysophosphatidylcholines had an area under the curve (AUC) of 0.97 (95% CI: 0.96-0.99) to discriminate hip OA from controls, and the combination of γ-aminobutyric acid, spermine, aconitic acid, and succinic acid had an AUC of 0.96 (95% CI: 0.94-0.99) to distinguish two hip OA endotypes. GWAS identified 236 SNPs to be associated with identified metabolites at GWAS significance level. Pro-inflammatory cytokine levels were significantly different between two endotypes (all p < 0.05). (4) Conclusions: Hip OA could be classified into two distinct molecular endotypes. The primary differences between the two endotypes involve changes in pro-inflammatory factors and energy metabolism.
Collapse
Affiliation(s)
- Jingyi Huang
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Ming Liu
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Hongwei Zhang
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Guang Sun
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Andrew Furey
- Discipline of Surgery, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
- Office of the Premier, Government of Newfoundland & Labrador, St. John's, NL A1B 4J6, Canada
| | - Proton Rahman
- Discipline of Medicine, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| | - Guangju Zhai
- Human Genetics & Genomics, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
8
|
Hu S, Lin Y, Tang Y, Zhang J, He Y, Li G, Li L, Cai X. Targeting dysregulated intracellular immunometabolism within synovial microenvironment in rheumatoid arthritis with natural products. Front Pharmacol 2024; 15:1403823. [PMID: 39104392 PMCID: PMC11298361 DOI: 10.3389/fphar.2024.1403823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Immunometabolism has been an emerging hotspot in the fields of tumors, obesity, and atherosclerosis in recent decades, yet few studies have investigated its connection with rheumatoid arthritis (RA). In principle, intracellular metabolic pathways upstream regulated by nutrients and growth factors control the effector functions of immune cells. Dynamic communication and hypermetabolic lesions of immune cells within the inflammatory synovial microenvironment contributes to the development and progression of RA. Hence, targeting metabolic pathways within immune subpopulations and pathological cells may represent novel therapeutic strategies for RA. Natural products constitute a great potential treasury for the research and development of novel drugs targeting RA. Here, we aimed to delineate an atlas of glycolysis, lipid metabolism, amino acid biosynthesis, and nucleotide metabolism in the synovial microenvironment of RA that affect the pathological processes of synovial cells. Meanwhile, therapeutic potentials and pharmacological mechanisms of natural products that are demonstrated to inhibit related key enzymes in the metabolic pathways or reverse the metabolic microenvironment and communication signals were discussed and highlighted.
Collapse
Affiliation(s)
- Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| |
Collapse
|
9
|
Huang H, Li G, He Y, Chen J, Yan J, Zhang Q, Li L, Cai X. Cellular succinate metabolism and signaling in inflammation: implications for therapeutic intervention. Front Immunol 2024; 15:1404441. [PMID: 38933270 PMCID: PMC11200920 DOI: 10.3389/fimmu.2024.1404441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Succinate, traditionally viewed as a mere intermediate of the tricarboxylic acid (TCA) cycle, has emerged as a critical mediator in inflammation. Disruptions within the TCA cycle lead to an accumulation of succinate in the mitochondrial matrix. This excess succinate subsequently diffuses into the cytosol and is released into the extracellular space. Elevated cytosolic succinate levels stabilize hypoxia-inducible factor-1α by inhibiting prolyl hydroxylases, which enhances inflammatory responses. Notably, succinate also acts extracellularly as a signaling molecule by engaging succinate receptor 1 on immune cells, thus modulating their pro-inflammatory or anti-inflammatory activities. Alterations in succinate levels have been associated with various inflammatory disorders, including rheumatoid arthritis, inflammatory bowel disease, obesity, and atherosclerosis. These associations are primarily due to exaggerated immune cell responses. Given its central role in inflammation, targeting succinate pathways offers promising therapeutic avenues for these diseases. This paper provides an extensive review of succinate's involvement in inflammatory processes and highlights potential targets for future research and therapeutic possibilities development.
Collapse
Affiliation(s)
- Hong Huang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianye Yan
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Zhang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
10
|
Shao P, Dong S, Mu LT, Han L, Lv CN, Yuan JZ, Lu JC. Two new anti-inflammatory compounds from the roots and rhizomes of Clematis terniflora var . manshurica (Rupr.) Ohwi. Nat Prod Res 2024; 38:1874-1881. [PMID: 37395431 DOI: 10.1080/14786419.2023.2227912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Two new compounds named mandshurica A (1) and mandshurica B (2), together with four known lignans (3-6) were isolated from the roots and rhizomes of Clematis terniflora var. manshurica (Rupr.) Ohwi. The structures of the new compounds were elucidated by HR-ESI-MS, 1D and 2D NMR spectroscopy. Moreover, the anti-inflammatory activity of compounds 1 and 2 were evaluated against lipopolysaccharide-induced mouse macrophage RAW264.7 cells. Compounds 1 and 2 displayed significant inhibitory effect on NO production, and compound 2 exhibited obvious inhibition on the pro-inflammatory cytokines TNF-α. Both new compounds showed potential anti-inflammatory activity.
Collapse
Affiliation(s)
- Ping Shao
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
- Research and Development Center, NERC for the Pharmaceutics of Traditional Chinese Medicines, Benxi, China
| | - Sheng Dong
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin-Tong Mu
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Ling Han
- Research and Development Center, NERC for the Pharmaceutics of Traditional Chinese Medicines, Benxi, China
| | - Chong-Ning Lv
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jiu-Zhi Yuan
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jin-Cai Lu
- Department of Pharmaceutical Botany and Authentication of TCM, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Ren W, Sun Y, Zhao L, Shi X. NLRP3 inflammasome and its role in autoimmune diseases: A promising therapeutic target. Biomed Pharmacother 2024; 175:116679. [PMID: 38701567 DOI: 10.1016/j.biopha.2024.116679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines IL-1β and IL-18. Numerous studies have highlighted its crucial role in the pathogenesis and development of inflammatory bowel disease, rheumatoid arthritis, systemic lupus erythematosus, autoimmune thyroid diseases, and other autoimmune diseases. Therefore, investigating the underlying mechanisms of NLRP3 in disease and targeted drug therapies holds clinical significance. This review summarizes the structure, assembly, and activation mechanisms of the NLRP3 inflammasome, focusing on its role and involvement in various autoimmune diseases. This review also identifies studies where the involvement of the NLRP3 inflammasome in the disease mechanism within the same disease appears contradictory, as well as differences in NLRP3-related gene polymorphisms among different ethnic groups. Additionally, the latest therapeutic advances in targeting the NLRP3 inflammasome for autoimmune diseases are outlined, and novel clinical perspectives are discussed. Conclusively, this review provides a consolidated source of information on the NLRP3 inflammasome and may guide future research efforts that have the potential to positively impact patient outcomes.
Collapse
Affiliation(s)
- Wenxuan Ren
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Ying Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Zhao
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Xiaoguang Shi
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
12
|
Wang X, Kong Y, Li Z. Advantages of Chinese herbal medicine in treating rheumatoid arthritis: a focus on its anti-inflammatory and anti-oxidative effects. Front Med (Lausanne) 2024; 11:1371461. [PMID: 38515982 PMCID: PMC10954842 DOI: 10.3389/fmed.2024.1371461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Oxidative stress is a condition characterized by an imbalance between the oxidative and antioxidant processes within the human body. Rheumatoid arthritis (RA) is significantly influenced by the presence of oxidative stress, which acts as a pivotal factor in its pathogenesis. Elevated levels of mitochondrial reactive oxygen species (ROS) and inflammation have been found to be closely associated in the plasma of patients with RA. The clinical treatment strategies for this disease are mainly chemical drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids (GCs) and biological agents, but it is difficult for patients to accept long-term drug treatment and its side effects. In the theory of traditional Chinese medicine (TCM), RA is thought to be caused by the attack of "wind, cold, damp humor," and herbs with the effect of removing wind and dampness are used to relieve pain. Chinese herbal medicine boasts a rich heritage in effectively attenuating the symptoms of RA, and its global recognition continues to ascend. In particular, RA-relevant anti-inflammatory/anti-oxidative effects of TCM herbs/herbal compounds. The main aim of this review is to make a valuable contribution to the expanding pool of evidence that advocates for the incorporation of Chinese herbal medicine in conventional treatment plans for RA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeguang Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
13
|
Liang M, Si L, Yu Z, Ding H, Wang L, Chen X, Chen B, Zhang J, Cao J. Intermittent hypoxia induces myofibroblast differentiation and extracellular matrix production of MRC5s via HIF-1α-TGF-β/Smad pathway. Sleep Breath 2024; 28:291-300. [PMID: 37698738 DOI: 10.1007/s11325-023-02889-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE To investigate whether or not intermittent hypoxia (IH), the main characteristic of obstructive sleep apnea (OSA) may affect the myofibroblast differentiation and extracellular matrix (ECM) production of lung fibroblast through the HIF-1α-TGF-β/Smad pathway and assess the interventional role of a HIF-1α inhibitor, 2-methoxyestradiol (2-ME2). METHOD The human lung fibroblast MRC5 cells were exposed to normoxia or IH conditions, and the expression of myofibroblast differentiation marker α-smooth muscle actin (α-SMA) and ECM protein collagen I were evaluated. To clarify the underlying mechanism, the expression level of HIF-1α, TGF-β, and p-Smads/Smads were measured and the effects of inhibiting HIF-1α with 2-ME2 on the α-SMA expression level and ECM production through the TGF-β/Smad pathway were assessed. Si HIF-1α was applied to genetically inhibit HIF-1α in MRC5 cells, and the related proteins were assessed. RESULTS IH increased the protein and mRNA expression of Collagen I and α-SMA of MRC5 cells in a time-dependent manner. IH activated the protein and mRNA level of HIF-1α and TGF-β and increased the phosphorylation of Smad2/Smad3 of MRC5 cells in a time-dependent manner. 2-ME2 inhibited the activation of HIF-1α induced by IH and decreased overexpression of TGF-β, p-Smad2/Smad2, and p-Smad3/Smad3, which in turn partially reversed the upregulation of α-SMA and Collagen I induced by IH in MRC5 cells. When HIF-1α was successfully silenced by si-HIF-1α, upregulation of TGF-β induced by intermittent hypoxia was partially decreased. CONCLUSIONS This study showed that IH contributes to myofibroblast differentiation and excessive ECM production of MRC5 cells through activation of the HIF-1α-TGF-β/Smad pathway. 2-ME2 partially attenuated myofibroblast differentiation induced by IH by inhibiting the HIF-1α-TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Maoli Liang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou, People's Republic of China
| | - Liang Si
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Zhi Yu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Hui Ding
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Le Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xing Chen
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Baoyuan Chen
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| | - Jie Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| |
Collapse
|
14
|
Zhang J, Cai H, Sun W, Wu W, Nan Y, Ni Y, Wu X, Chen M, Xu H, Wang Y. Endoplasmic reticulum aminopeptidase 2 regulates CD4 + T cells pyroptosis in rheumatoid arthritis. Arthritis Res Ther 2024; 26:36. [PMID: 38273310 PMCID: PMC10810225 DOI: 10.1186/s13075-024-03271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic, progressive autoimmune disease with a complex pathogenesis that has not yet been fully elucidated, and T-cell pyroptosis is an important pathogenetic factor in RA. This study aimed to investigate the role of endoplasmic reticulum aminopeptidase 2 (ERAP2) in the pyroptosis of CD4+ T cells in RA and the specific molecular mechanism. METHODS Peripheral venous blood was collected from human subjects, and CD4+ T cells were isolated and activated to measure the level of pyroptosis and ERAP2 expression. Pyroptosis levels were assessed using immunofluorescence, flow cytometry, qRT-PCR, and Western blotting. Changes in pyroptosis levels were observed upon knockdown or overexpression of ERAP2. To detect activated Caspase-1 in tissues, chimeric mice were engrafted with human synovial tissue and reconstituted with human CD4+ T cells. CD4 + T cells were treated with GLI1 antagonists and SMO receptor agonists to detect changes in pyroptosis levels. RESULTS CD4+ T cell levels undergoing pyroptosis were found to be elevated in the blood and synovium of RA patients. The gene and protein expression of ERAP2 were significantly higher in CD4+ T cells from RA patients. Deletion of ERAP2 suppressed pyroptosis of these cells, attenuated the activation of Caspase-1 in tissue T cells, and reduced tissue inflammatory responses. Reciprocally, overexpression of ERAP2 triggered inflammasome assembly, activated Caspase-1, and induced pyroptosis in CD4+ T cells. Mechanistically, ERAP2 inhibits the Hedgehog signaling pathway and upregulates the expression of nucleotide-binding oligomerization segment-like receptor family 3(NLRP3), cleaved Caspase-1, and Gasdermin D to promote pyroptosis in CD4+ T cells. CONCLUSIONS Taken together, our results identify a novel mechanism by which ERAP2 regulates RA development and document the effect of the ERAP2/Hedgehog signaling axis on pyroptosis of CD4+ T cells from RA patients.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yingchen Ni
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xinyuan Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
15
|
Chen B, Wang Y, Chen G. New Potentiality of Bioactive Substances: Regulating the NLRP3 Inflammasome in Autoimmune Diseases. Nutrients 2023; 15:4584. [PMID: 37960237 PMCID: PMC10650318 DOI: 10.3390/nu15214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an essential component of the human innate immune system, and is closely associated with adaptive immunity. In most cases, the activation of the NLRP3 inflammasome requires priming and activating, which are influenced by various ion flux signals and regulated by various enzymes. Aberrant functions of intracellular NLRP3 inflammasomes promote the occurrence and development of autoimmune diseases, with the majority of studies currently focused on rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. In recent years, a number of bioactive substances have shown new potentiality for regulating the NLRP3 inflammasome in autoimmune diseases. This review provides a concise overview of the composition, functions, and regulation of the NLRP3 inflammasome. Additionally, we focus on the newly discovered bioactive substances for regulating the NLRP3 inflammasome in autoimmune diseases in the past three years.
Collapse
Affiliation(s)
| | | | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (B.C.); (Y.W.)
| |
Collapse
|
16
|
Höper T, Karkossa I, Dumit VI, von Bergen M, Schubert K, Haase A. A comparative proteomics analysis of four contact allergens in THP-1 cells shows distinct alterations in key metabolic pathways. Toxicol Appl Pharmacol 2023; 475:116650. [PMID: 37541627 DOI: 10.1016/j.taap.2023.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Allergic contact dermatitis (ACD) is the predominant form of immunotoxicity in humans. The sensitizing potential of chemicals can be assessed in vitro. However, a better mechanistic understanding could improve the current OECD-validated test battery. The aim of this study was to get insights into toxicity mechanisms of four contact allergens, p-benzoquinone (BQ), 2,4-dinitrochlorobenzene (DNCB), p-nitrobenzyl bromide (NBB) and NiSO4, by analyzing differential proteome alterations in THP-1 cells using two common proteomics workflows, stable isotope labeling by amino acids in cell culture (SILAC) and label-free quantification (LFQ). Here, SILAC was found to deliver more robust results. Overall, the four allergens induced similar responses in THP-1 cells, which underwent profound metabolic reprogramming, including a striking upregulation of the TCA cycle accompanied by pronounced induction of the Nrf2 oxidative stress response pathway. The magnitude of induction varied between the allergens with DNCB and NBB being most potent. A considerable overlap between transcriptome-based signatures of the GARD assay and the proteins identified in our study was found. When comparing the results of this study to a previous proteomics study in human primary monocyte-derived dendritic cells, we found a rather low share in regulated proteins. However, on pathway level, the overlap was high, indicating that affected pathways rather than single proteins are more eligible to investigate proteomic changes induced by contact allergens. Overall, this study confirms the potential of proteomics to obtain a profound mechanistic understanding, which may help improving existing in vitro assays for skin sensitization.
Collapse
Affiliation(s)
- Tessa Höper
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany; Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Verónica I Dumit
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany; Institute of Biochemistry, Leipzig University, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, UFZ, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
17
|
Feng C, Yong X, Jiang Q, Su Z, Liu Z, Wu T, Tao R. Inhibitory Effects of Corydalis saxicola Bunting Total Alkaloids on Macrophage Pyroptosis. Chem Biodivers 2023; 20:e202201255. [PMID: 37380608 DOI: 10.1002/cbdv.202201255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 06/30/2023]
Abstract
This study investigated the effect of Corydalis saxicola Bunting total alkaloids (CSBTA) on pyroptosis in macrophages (Mϕ). In the Mϕ pyroptosis model, an inverted fluorescence microscope was used to assess cell pyroptosis, while a scanning electron microscope was used to observe morphological changes in Mϕ. NLR family pyrin domain-containing 3 (NLRP3), caspase-1, and gasdermin D (GSDMD) expression levels were detected by polymerase chain reaction and western blotting, whereas interleukin-1 (IL-1) and interleukin-18 (IL-18) expression levels were measured by an enzyme-linked immunosorbent assay. After pretreatment with CSBTA or the caspase-1 inhibitor, acetyl-tyrosyl-valyl-alanyl-aspartyl-chloromethylketone (Ac-YVAD-cmk), it was discovered that NLRP3, caspase-1, and GSDMD expressions were significantly reduced at both the mRNA and protein levels, as were IL-1 and IL-18 levels. The inhibitory effects of CSBTA and Ac-YVAD-cmk did not differ significantly. These findings indicate that CSBTA blocks Porphyromonas gingivalis-lipopolysaccharide-induced Mϕ pyroptosis.
Collapse
Affiliation(s)
- Cong Feng
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, P. R. China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, P. R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Universities
- Colleges Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, P. R. China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| | - Xiangzhi Yong
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, P. R. China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, P. R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Universities
- Colleges Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, P. R. China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| | - Qiaozhi Jiang
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, P. R. China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, P. R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Universities
- Colleges Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, P. R. China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University
| | - Zhenmin Liu
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, P. R. China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, P. R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Universities
- Colleges Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, P. R. China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| | - Tiantian Wu
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, P. R. China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| | - Renchuan Tao
- Department of Periodontics and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, P. R. China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, P. R. China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Universities
- Colleges Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, P. R. China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, P. R. China
| |
Collapse
|
18
|
Ortega MA, De Leon-Oliva D, García-Montero C, Fraile-Martinez O, Boaru DL, de Castro AV, Saez MA, Lopez-Gonzalez L, Bujan J, Alvarez-Mon MA, García-Honduvilla N, Diaz-Pedrero R, Alvarez-Mon M. Reframing the link between metabolism and NLRP3 inflammasome: therapeutic opportunities. Front Immunol 2023; 14:1232629. [PMID: 37545507 PMCID: PMC10402745 DOI: 10.3389/fimmu.2023.1232629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Inflammasomes are multiprotein signaling platforms in the cytosol that senses exogenous and endogenous danger signals and respond with the maturation and secretion of IL-1β and IL-18 and pyroptosis to induce inflammation and protect the host. The inflammasome best studied is the Nucleotide-binding oligomerization domain, leucine-rich repeat-containing family pyrin domain containing 3 (NLRP3) inflammasome. It is activated in a two-step process: the priming and the activation, leading to sensor NLRP3 oligomerization and recruitment of both adaptor ASC and executioner pro-caspase 1, which is activated by cleavage. Moreover, NLRP3 inflammasome activation is regulated by posttranslational modifications, including ubiquitination/deubiquitination, phosphorylation/dephosphorylation, acetylation/deacetylation, SUMOylation and nitrosylation, and interaction with NLPR3 protein binding partners. Moreover, the connection between it and metabolism is receiving increasing attention in this field. In this review, we present the structure, functions, activation, and regulation of NLRP3, with special emphasis on regulation by mitochondrial dysfunction-mtROS production and metabolic signals, i.e., metabolites as well as enzymes. By understanding the regulation of NLRP3 inflammasome activation, specific inhibitors can be rationally designed for the treatment and prevention of various immune- or metabolic-based diseases. Lastly, we review current NLRP3 inflammasome inhibitors and their mechanism of action.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Amador Velazquez de Castro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-University of Alcalá (UAH) Madrid, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcala de Henares, Spain
- Department of General and Digestive Surgery, University Hospital Príncipe de Asturias, Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Spain
| |
Collapse
|
19
|
Chakraborty S, Lulla A, Cheng X, Yeo JY, Mandal J, Yang T, Mei X, Saha P, Golonka RM, Yeoh BS, Mell B, Jia W, Putluri V, Piyarathna DWB, Putluri N, Sreekumar A, Meyer K, Vijay-Kumar M, Joe B. Conjugated bile acids are nutritionally re-programmable antihypertensive metabolites. J Hypertens 2023; 41:979-994. [PMID: 37071431 PMCID: PMC10158603 DOI: 10.1097/hjh.0000000000003423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Hypertension is the largest risk factor affecting global mortality. Despite available medications, uncontrolled hypertension is on the rise, whereby there is an urgent need to develop novel and sustainable therapeutics. Because gut microbiota is now recognized as an important entity in blood pressure regulation, one such new avenue is to target the gut-liver axis wherein metabolites are transacted via host-microbiota interactions. Knowledge on which metabolites within the gut-liver axis regulate blood pressure is largely unknown. METHOD To address this, we analyzed bile acid profiles of human, hypertensive and germ-free rat models and report that conjugated bile acids are inversely correlated with blood pressure in humans and rats. RESULTS Notably intervening with taurine or tauro-cholic acid rescued bile acid conjugation and reduced blood pressure in hypertensive rats. Subsequently, untargeted metabolomics uncovered altered energy metabolism following conjugation of bile acids as a mechanism alleviating high blood pressure. CONCLUSION Together this work reveals conjugated bile acids as nutritionally re-programmable anti-hypertensive metabolites.
Collapse
Affiliation(s)
- Saroj Chakraborty
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Anju Lulla
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
| | - Xi Cheng
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Ji-Youn Yeo
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Juthika Mandal
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Tao Yang
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Xue Mei
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Piu Saha
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Rachel M. Golonka
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Beng San Yeoh
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Blair Mell
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii
| | | | | | - Nagireddy Putluri
- Dan L. Duncan Cancer Center, Advanced Technology Core
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Arun Sreekumar
- Dan L. Duncan Cancer Center, Advanced Technology Core
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Katie Meyer
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,USA
| | - Matam Vijay-Kumar
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Program in Physiological Genomics, Microbiome Consortium and Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
20
|
Iacobazzi D, Convertini P, Todisco S, Santarsiero A, Iacobazzi V, Infantino V. New Insights into NF-κB Signaling in Innate Immunity: Focus on Immunometabolic Crosstalks. BIOLOGY 2023; 12:776. [PMID: 37372061 DOI: 10.3390/biology12060776] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
The nuclear factor kappa B (NF-κB) is a family of transcription factors that, beyond their numberless functions in various cell processes, play a pivotal role in regulating immune cell activation. Two main pathways-canonical and non-canonical-are responsible for NF-κB activation and heterodimer translocation into the nucleus. A complex crosstalk between NF-κB signaling and metabolism is emerging in innate immunity. Metabolic enzymes and metabolites regulate NF-κB activity in many cases through post-translational modifications such as acetylation and phosphorylation. On the other hand, NF-κB affects immunometabolic pathways, including the citrate pathway, thereby building an intricate network. In this review, the emerging findings about NF-κB function in innate immunity and the interplay between NF-κB and immunometabolism have been discussed. These outcomes allow for a deeper comprehension of the molecular mechanisms underlying NF-κB function in innate immune cells. Moreover, the new insights are important in order to perceive NF-κB signaling as a potential therapeutic target for inflammatory/immune chronic diseases.
Collapse
Affiliation(s)
- Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Vito Iacobazzi
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
21
|
王 甲, 邹 淑, 谢 静, 周 陈. [Latest Findings on NOD-Like Receptor Family Pyrin Domain Containing Protein 3 Inflammasome and Bone and Articular Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:679-684. [PMID: 37248605 PMCID: PMC10475432 DOI: 10.12182/20230560105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 05/31/2023]
Abstract
Inflammasomes are important components of the innate immune system. They are assembled by cytoplasmic pattern recognition receptors and play a critical role in the pathogenesis and progression of various inflammatory diseases through regulating the release and activation of inflammatory cytokines and inducing cell prytosis. NOD-like receptor family pyrin domain containing protein 3 (NLRP3) inflammasome has been widely studied and has been shown to be closely associated with cardiovascular diseases and metabolic disorders. Bone and joint diseases, such as osteoarthritis and rheumatoid arthritis show high prevalence worldwide and can cause bone and cartilage damage, pain, and dysfunction, adversely affecting the patients' quality of life. The reported findings of some studies indicate that the pathogenesis of various bone and articular diseases is associated with NLRP3 inflammasome. Small molecule antagonists targeting NLRP3 inflammasome have shown considerable therapeutic potentials, but their clinical application still needs further exploration. Herein, we reviewed the composition and function of NLRP3 inflammasome and its association with bone and articular diseases.
Collapse
Affiliation(s)
- 甲河 王
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 静 谢
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 陈晨 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
22
|
Marquez-Ortiz RA, Leon M, Abril D, Escobar-Perez J, Florez-Sarmiento C, Parra-Izquierdo V, Chalem P, Romero-Sanchez C. Colonoscopy aspiration lavages for mucosal metataxonomic profiling of spondylarthritis-associated gastrointestinal tract alterations. Sci Rep 2023; 13:7015. [PMID: 37117227 PMCID: PMC10147911 DOI: 10.1038/s41598-023-33597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/15/2023] [Indexed: 04/30/2023] Open
Abstract
The study of the GI-tract microbiota of spondylarthritis (SpA) patients has focused on the analysis of feces samples, that picture mostly the luminal microbiota. The aim of this study was to determine the contribution of mucosal and luminal microbiome to the gut dysbiosis in SpA, using colonoscopy aspiration lavages (CAL), a recent alternative for regional studies of the GI-tract. We analyzed 59 CAL (from sigmoid colon and distal ileum), and 41 feces samples, from 32 SpA patients and 7 healthy individuals, using 16S rRNA gene-targeted metataxonomic profiling. It was found high prevalence of GI-tract manifestations among SpA patients (65.3%). Metataxonomic profiling, confirmed CAL samples from the lower GI tract (colon or ileum) presented a distinctive and undifferentiated bacteriome and separate from that found in feces' samples or in the beginning of the GI tract (oral cavity (OC)). Lower GI-tract samples and feces of SpA patients exhibited similar behavior to the microbiota of IBD group with reduced microbial richness and diversity, comparing to the healthy controls. Interestingly, it was found increase in proinflammatory taxa in SpA patients, such as Enterobacteriaceae family (mostly in the ileum), Succinivibrio spp. and Prevotella stercorea. Conversely, SpA patients presented significant decrease in the SCFA producers Coprococcus catus and Eubacterium biforme. Our data support the value of CAL samples for the regional study of GI-tract and contribute with information of potential "disruptor taxa" involved in the GI-tract associated disorders observed in SpA patients.
Collapse
Affiliation(s)
- Ricaurte A Marquez-Ortiz
- Bacterial Molecular Genetics Laboratory/LGMB, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia.
| | - Moises Leon
- Master's Program in Basic Biomedical Sciences, Faculty of Science, Universidad El Bosque, Bogotá, Colombia
| | - Deisy Abril
- Bacterial Molecular Genetics Laboratory/LGMB, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
| | - Javier Escobar-Perez
- Bacterial Molecular Genetics Laboratory/LGMB, Vicerrectoría de Investigaciones, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
| | - Cristian Florez-Sarmiento
- Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
- Gastroadvanced, Bogotá, Colombia
| | - Viviana Parra-Izquierdo
- Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia
- Gastroadvanced, Bogotá, Colombia
| | - Philippe Chalem
- Fundación Instituto de Reumatología Fernando Chalem, Bogotá, Colombia
| | - Consuelo Romero-Sanchez
- Cellular and Molecular Immunology Group/INMUBO, School of Dentistry, Universidad El Bosque, Av. Cra 9 No. 131 A-02, Bogotá, Colombia.
- Hospital Militar Central, Rheumatology and Immunology Department, Bogotá, Colombia.
- Clinical Immunology Group, School of Medicine, Universidad Militar Nueva Granada, Bogotá, Colombia.
| |
Collapse
|
23
|
Zhong WJ, Liu T, Yang HH, Duan JX, Yang JT, Guan XX, Xiong JB, Zhang YF, Zhang CY, Zhou Y, Guan CX. TREM-1 governs NLRP3 inflammasome activation of macrophages by firing up glycolysis in acute lung injury. Int J Biol Sci 2023; 19:242-257. [PMID: 36594089 PMCID: PMC9760435 DOI: 10.7150/ijbs.77304] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022] Open
Abstract
The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory immune receptor potentiating acute lung injury (ALI). However, the mechanism of TREM-1-triggered inflammation response remains poorly understood. Here, we showed that TREM-1 blocking attenuated NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome activation and glycolysis in LPS-induced ALI mice. Then, we observed that TREM-1 activation enhanced glucose consumption, induced glycolysis, and inhibited oxidative phosphorylation in macrophages. Specifically, inhibition of glycolysis with 2-deoxyglucose diminished NLRP3 inflammasome activation of macrophages triggered by TREM-1. Hypoxia-inducible factor-1α (HIF-1α) is a critical transcriptional regulator of glycolysis. We further found that TREM-1 activation facilitated HIF-1α accumulation and translocation to the nucleus via the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Inhibiting mTOR or HIF-1α also suppressed TREM-1-induced metabolic reprogramming and NLRP3/caspase-1 activation. Overall, the mTOR/HIF-1α/glycolysis pathway is a novel mechanism underlying TREM-1-governed NLRP3 inflammasome activation. Therapeutic targeting of the mTOR/HIF-1α/glycolysis pathway in TREM-1-activated macrophages could be beneficial for treating or preventing inflammatory diseases, such as ALI.
Collapse
Affiliation(s)
- Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Tian Liu
- College of Physiology Education, Chongqing University of Arts and Science, Chongqing 412160, China
| | - Hui-Hui Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jin-Tong Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Xin-Xin Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jian-Bing Xiong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yan-Feng Zhang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China,✉ Corresponding authors: Prof. Cha-Xiang Guan or Yong Zhou; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China. Tel.: +86-731-82355051; Fax: +86-731-82355056; E-mail: or
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China,✉ Corresponding authors: Prof. Cha-Xiang Guan or Yong Zhou; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China. Tel.: +86-731-82355051; Fax: +86-731-82355056; E-mail: or
| |
Collapse
|
24
|
Nan H, Guo P, Fan J, Zeng W, Hu C, Zheng C, Pan B, Cao Y, Ge Y, Xue X, Li W, Lin K. Comprehensive analysis of the prognosis, tumor microenvironment, and immunotherapy response of SDHs in colon adenocarcinoma. Front Immunol 2023; 14:1093974. [PMID: 36949947 PMCID: PMC10025334 DOI: 10.3389/fimmu.2023.1093974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Background Succinate dehydrogenase (SDH), one of the key enzymes in the tricarboxylic acid cycle, is mainly found in the mitochondria. SDH consists of four subunits encoding SDHA, SDHB, SDHC, and SDHD. The biological function of SDH is significantly related to cancer progression. Colorectal cancer (CRC) is one of the most common malignant tumors globally, whose most common histological subtype is colon adenocarcinoma (COAD). However, the correlation between SDH factors and COAD remains unclear. Methods The data on pan-cancer was obtained from The Cancer Genome Atlas (TCGA) database. Kaplan-Meier survival analysis showed the prognostic ability of SDHs. The cBioPortal database reflected genetic variations of SDHs. The correlation analysis was conducted between SDHs and mitochondrial energy metabolism genes (MMGs) and the protein-protein interaction (PPI) network was built. Consequently, Univariate and Multivariate Cox Regression Analysis on SDHs and other clinical characteristics were conducted. A nomogram was established. The ssGSEA analysis visualized the association between SDHs and immune infiltration. Immunophenoscore (IPS) explored the correlation between SDHs and immunotherapy, and the correlation between SDHs and targeted therapy was investigated through Genomics of Drug Sensitivity in Cancer. Finally, qPCR and immunohistochemistry detected SDHs' expression. Results After assessing SDHs differential expression in pan-cancer, we found that SDHB, SDHC, and SDHD benefit COAD patients. The cBioPortal database demonstrated that SDHA was the top gene in mutation frequency rank. Correlation analysis mirrored a strong link between SDHs and MMGs. We formulated a nomogram and found that SDHB, SDHC, SDHD, and clinical characteristics correlated with COAD patients' survival. For T helper cells, Th2 cells, and Tem, SDHA, SDHB, SDHC, and SDHD were significantly enriched in the high expression group. Moreover, COAD patients with high SDHA expression were more suitable for immunotherapy. And COAD patients with different SDHs' expression have different sensitivity to targeted drugs. Further verifying the gene and protein expression levels of SDHs, we found that the tissues were consistent with the bioinformatics analysis. Conclusions Our study analyzed the expression and prognostic value of SDHs in COAD, explored the pathway mechanisms involved, and the immune cell correlations, indicating that SDHs might be biomarkers for COAD patients.
Collapse
Affiliation(s)
- Han Nan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pengkun Guo
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianing Fan
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wen Zeng
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chonghan Hu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Can Zheng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Bujian Pan
- Department of Hepatobiliary Surgery, Wenzhou Central Hospital, The Dingli Clinical Institute of Wenzhou Medical University, Wenzhou, China
| | - Yu Cao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiwen Ge
- School of Second Clinical Medical, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangyang Xue, ; Wenshu Li, ; Kezhi Lin,
| | - Wenshu Li
- Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Xiangyang Xue, ; Wenshu Li, ; Kezhi Lin,
| | - Kezhi Lin
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiangyang Xue, ; Wenshu Li, ; Kezhi Lin,
| |
Collapse
|
25
|
Capece D, Verzella D, Flati I, Arboretto P, Cornice J, Franzoso G. NF-κB: blending metabolism, immunity, and inflammation. Trends Immunol 2022; 43:757-775. [PMID: 35965153 DOI: 10.1016/j.it.2022.07.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 85.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023]
Abstract
The procurement and management of nutrients and ability to fight infections are fundamental requirements for survival. These defense responses are bioenergetically costly, requiring the immune system to balance protection against pathogens with the need to maintain metabolic homeostasis. NF-κB transcription factors are central regulators of immunity and inflammation. Over the last two decades, these factors have emerged as a pivotal node coordinating the immune and metabolic systems in physiology and the etiopathogenesis of major threats to human health, including cancer, autoimmunity, chronic inflammation, and others. In this review, we discuss recent advances in understanding how NF-κB-dependent metabolic programs control inflammation, metabolism, and immunity and how improved knowledge of them may lead to better diagnostics and therapeutics for widespread human diseases.
Collapse
Affiliation(s)
- Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy; Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, 67100 L'Aquila, Italy
| | - Paola Arboretto
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Jessica Cornice
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK
| | - Guido Franzoso
- Department of Immunology and Inflammation, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
26
|
Ge C, Zhao Y, Liang Y, He Y. Silencing of TLR4 Inhibits Atrial Fibrosis and Susceptibility to Atrial Fibrillation via Downregulation of NLRP3-TGF- β in Spontaneously Hypertensive Rats. DISEASE MARKERS 2022; 2022:2466150. [PMID: 35860690 PMCID: PMC9293556 DOI: 10.1155/2022/2466150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/04/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022]
Abstract
Introduction This study was aimed at exploring whether silencing of TLR4 could inhibit atrial fibrosis and susceptibility to atrial fibrillation (AF) by regulating NLRP3-TGF-β in hypertensive rats. Methods Spontaneously hypertensive rats (SHRs) were transfected with either a virus containing TLR4-shRNA to downregulate TLR4 or an empty virus (vehicle) at the age of 14 weeks. Fibrosis of left atrium and susceptibility to AF were detected, and expression of NLRP3-TGF-β in left atrial tissue at 22 weeks of age was measured. Primary cardiac fibroblasts were transfected with TLR4-shRNA or scrambled vehicle and stimulated with angiotensin (Ang) II. Proliferation of cardiac fibroblasts and expression of NLRP3-TGF-β were detected. Results Silencing of TLR4 reduced left atrial fibrosis and susceptibility to AF in SHRs and downregulated expression of NLRP3, TGF-β, and collagen I. In vitro, TLR4 silencing reduced proliferation of cardiac fibroblasts induced by Ang II as well as expression of NLRP3, TGF-β, and collagen I. Conclusion Silencing of TLR4 can downregulate NLRP3-TGF-β to reduce atrial fibrosis and susceptibility to AF in SHRs.
Collapse
Affiliation(s)
- Chenliang Ge
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yaxin Zhao
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuming Liang
- Internal Medicine-Cardiovascular Department, Jiangbin Hospital, Nanning 530021, China
| | - Yan He
- Department of Geriatrics Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
27
|
Jiang P, Wei K, Chang C, Zhao J, Zhang R, Xu L, Jin Y, Xu L, Shi Y, Guo S, Schrodi SJ, He D. SFRP1 Negatively Modulates Pyroptosis of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis: A Review. Front Immunol 2022; 13:903475. [PMID: 35795672 PMCID: PMC9251540 DOI: 10.3389/fimmu.2022.903475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/26/2022] [Indexed: 12/26/2022] Open
Abstract
Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP family. As a primitive gene regulating cell growth, development and transformation, SFRP1 is widely expressed in human cells, including various cancer cells and fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves epigenetic and other mechanisms, and participates in biological behaviors such as cell proliferation, migration and cell pyroptosis, which leads to disease progression and poor prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and summarize different experimental platforms and recent research results. These are helpful for understanding the biological characteristics of SFRP1 in RA, especially the mechanism by which SFRP1 regulates RA-FLS pyroptosis through Wnt/β-catenin and Notch signaling pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which may be considered as a promising biomarker and therapeutic target of RA.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Department of Rheumatology, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yehua Jin
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Bartikoski BJ, de Oliveira MS, do Espírito Santo RC, dos Santos LP, dos Santos NG, Xavier RM. A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease Pathogenesis, Treatment and Comorbidities. Metabolites 2022; 12:394. [PMID: 35629898 PMCID: PMC9146149 DOI: 10.3390/metabo12050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolomic analysis provides a wealth of information that can be predictive of distinctive phenotypes of pathogenic processes and has been applied to better understand disease development. Rheumatoid arthritis (RA) is an autoimmune disease with the establishment of chronic synovial inflammation that affects joints and peripheral tissues such as skeletal muscle and bone. There is a lack of useful disease biomarkers to track disease activity, drug response and follow-up in RA. In this review, we describe potential metabolic biomarkers that might be helpful in the study of RA pathogenesis, drug response and risk of comorbidities. TMAO (choline and trimethylamine oxide) and TCA (tricarboxylic acid) cycle products have been suggested to modulate metabolic profiles during the early stages of RA and are present systemically, which is a relevant characteristic for biomarkers. Moreover, the analysis of lipids such as cholesterol, FFAs and PUFAs may provide important information before disease onset to predict disease activity and treatment response. Regarding therapeutics, TNF inhibitors may increase the levels of tryptophan, valine, lysine, creatinine and alanine, whereas JAK/STAT inhibitors may modulate exclusively fatty acids. These observations indicate that different disease modifying antirheumatic drugs have specific metabolic profiles and can reveal differences between responders and non-responders. In terms of comorbidities, physical impairment represented by higher fatigue scores and muscle wasting has been associated with an increase in urea cycle, FFAs, tocopherols and BCAAs. In conclusion, synovial fluid, blood and urine samples from RA patients seem to provide critical information about the metabolic profile related to drug response, disease activity and comorbidities.
Collapse
Affiliation(s)
- Bárbara Jonson Bartikoski
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Marianne Schrader de Oliveira
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Rafaela Cavalheiro do Espírito Santo
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Leonardo Peterson dos Santos
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Natália Garcia dos Santos
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Ricardo Machado Xavier
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
29
|
Jiang SQ, Pan T, Yu JL, Zhang Y, Wang T, Li P, Li F. Thermal and wine processing enhanced Clematidis Radix et Rhizoma ameliorate collagen Ⅱ induced rheumatoid arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114993. [PMID: 35032583 DOI: 10.1016/j.jep.2022.114993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clematidis Radix et Rhizoma, a kind of traditional Chinese medicine, is derived from Clematis chinensis Osbeck, Clematis hexapetala Pall. and Clematis manshurica Rupr. This herb shows great effects on expelling wind and dispelling dampness in ancient and it has anti-inflammatory and analgesic activity in modern clinical application. AIM OF THE STUDY This experiment aimed to research anti-rheumatoid arthritis effect of crude and wine processed RC based on glycolysis metabolism to provide new ideas treating RA. MATERIALS AND METHODS Network pharmacology was applied to preliminarily forecast the potential pathways of common targets of RC and RA. RAW264.7 macrophages were induced by LPS, NO production, glucose uptake, lactate production, ROS and MMP were detected as instructions in vitro. ELISA was used to measure the content of HK2, PKM2 and LDHA involving in glycolysis process. Gut microbiota was analyzed by 16S rRNA gene amplicon sequencing in CIA rats. RESULTS Crude and wine processed RC had good anti-inflammatory effect by reducing NO in RAW264.7 macrophages and ameliorating inflammatory infiltration and cartilage surface erosion in CIA rats. Whether in LPS-induced macrophages or CIA rats, crude and wine processed RC could inhibit glycolysis by down-regulating the expression of PKM2, causing less glucose uptake and lactic acid, which lead to less ROS and higher MMP to normal. PI3K-AKT and HIF-1α pathways were deduced to possibly play a crucial part in controlling glycolysis metabolism by network pharmacology analysis. Besides, it was displayed that Firmicutes and Bacteroidetes were prominent gut microbiota in CIA rats feces. CC-H and PZ-H groups could both increase the relative abundance of Firmicutes and decrease Bacteroidetes. These microbiota also played a role in RA pathological process via involving in energy metabolism, carbohydrate metabolism and immune system. CONCLUSION Crude and wine processed RC have a good influence in ameliorating rheumatoid arthritis by inhibiting glycolysis and modulating gut microbiota together.
Collapse
Affiliation(s)
- Si-Qi Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ting Pan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jia-Lin Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ying Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Ting Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650000, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Fei Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, PR China; School of Pharmacy, Xinjiang Medical University, Urumqi, 830011, PR China.
| |
Collapse
|
30
|
Wang XN, Xia WR, Liu JQ, Sun FY, Zhong ZJ, Liu LF, Xin GZ. Targeting tryptophan metabolism reveals Clematichinenoside AR alleviates triptolide-induced hepatotoxicity. J Pharm Biomed Anal 2022; 208:114461. [PMID: 34775190 DOI: 10.1016/j.jpba.2021.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/19/2022]
Abstract
Liver toxicity induced by Triptolide (TP) has limited its clinical application on rheumatoid arthritis (RA). Saponins have been proved as an efficacious remedy to mitigate hepatotoxicity. However, the mechanism of reducing hepatotoxicity by saponins intervention remains incompletely characterized. Tryptophan (Trp) metabolites activate transcriptional regulators to mediate host detoxification responses. Our study aimed to investigate whether Clematichinenoside AR (C-AR) could attenuate TP-induced liver damage by regulating Trp metabolism. We used targeted metabolomics to quantify Trp metabolites in the serum and liver samples of collagen-induced arthritis rats treated by TP. Multiple comparison analyses helped the evaluation of promising biomarkers. The pronounced changed levels of Trp, indole acetic acid, and indole-3-carboxaldehyde in the serum and indole acetic acid, indole, and tryptamine in the liver are relevant to TP-induced liver injury. Intervention with C-AR could relieve TP-induced hepatotoxicity evidenced by ameliorative serum parameters and hepatic histology. In addition, C-AR regulated the levels of these indoles biomarker candidates to normal. Therapeutic modulation with natural compounds might be a useful clinical strategy to ameliorate toxicity induced by TP. Deciphering Trp metabolism will facilitate a better understanding of the pathogenesis of diseases and drug responding.
Collapse
Affiliation(s)
- Xin-Nan Wang
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Wen-Rui Xia
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Jian-Qun Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, No. 818 Xingwan Road, Nanchang 330004, Jiangxi Province, China.
| | - Fang-Yuan Sun
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Zhu-Jun Zhong
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Li-Fang Liu
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, Department of Chinese Medicines Analysis, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, China.
| |
Collapse
|
31
|
Zhang T, Tsutsuki H, Li X, Sawa T. New insights into the regulatory roles of glutathione in NLRP3-inflammasome-mediated immune and inflammatory responses. J Biochem 2022; 171:367-377. [PMID: 34981119 DOI: 10.1093/jb/mvab158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Glutathione (GSH) is the most abundant non-protein thiol (-SH) in mammalian cells. Its synthesis and metabolism serve to maintain cellular reduction-oxidation (redox) homeostasis, which is important for multiple cellular processes including proliferation, differentiation, and death. An accumulating body of evidence suggests that the essential roles of GSH extended far beyond its oxidant and electrophile scavenger activities and regulatory role in the lifespan of cells. Recent findings revealed that altered GSH levels are closely associated with a wide range of pathologies including bacterial and viral infections, neurodegenerative diseases, and autoimmune disorders, all of which are also characterized by aberrant activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. As a result of these findings, GSH was assigned a central role in influencing the activation of the NLRP3 inflammasome. To expand on our recent advances in understanding this process, we discuss here the emerging roles of GSH in activation of the NLRP3 inflammasome, and the therapeutic potential of GSH in its associated pathologies.
Collapse
Affiliation(s)
- Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Xiaoyan Li
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-Ku, Kumamoto 860-8556, Japan
| |
Collapse
|
32
|
Zhao J, Jiang P, Guo S, Schrodi SJ, He D. Apoptosis, Autophagy, NETosis, Necroptosis, and Pyroptosis Mediated Programmed Cell Death as Targets for Innovative Therapy in Rheumatoid Arthritis. Front Immunol 2021; 12:809806. [PMID: 35003139 PMCID: PMC8739882 DOI: 10.3389/fimmu.2021.809806] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory joint disease that can lead to clinical manifestations of systemic diseases. Its leading features include chronic synovial inflammation and degeneration of the bones and joints. In the past decades, multiple susceptibilities for rheumatoid arthritis have been identified along with the development of a remarkable variety of drugs for its treatment; which include analgesics, glucocorticoids, nonsteroidal anti-inflammatory medications (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and biologic response modifiers (bDMARDs). Despite the existence of many clinical treatment options, the prognosis of some patients remains poor due to complex mechanism of the disease. Programmed cell death (PCD) has been extensively studied and ascertained to be one of the essential pathological mechanisms of RA. Its dysregulation in various associated cell types contributes to the development of RA. In this review, we summarize the role of apoptosis, cell death-associated neutrophil extracellular trap formation, necroptosis, pyroptosis, and autophagy in the pathophysiology of RA to provide a theoretical reference and insightful direction to the discovery and development of novel therapeutic targets for RA.
Collapse
Affiliation(s)
- Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Steven J. Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
33
|
Zhang H, Ding L, Shi X, Mei W, Huang Z, Zhang L, Li X, Xu B, Zhang L, Wang P. Imperatorin alleviated NLR family pyrin domain-containing 3 inflammasome cascade-induced synovial fibrosis and synovitis in rats with knee osteoarthritis. Bioengineered 2021; 12:12954-12964. [PMID: 34847824 PMCID: PMC8809955 DOI: 10.1080/21655979.2021.2012949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 01/09/2023] Open
Abstract
We aimed to clarify the therapeutic effects of imperatorin (IMP) on knee osteoarthritis (KOA). Thirty 3-month-old SD male rats were randomly divided into Normal, monosodium iodoacetate (MIA) and MIA+IMP groups. Their synovial tissues were subjected to histopathological analysis. Primary synovial fibroblasts obtained from additional normal rats were treated by lipopolysaccharide (LPS) and then IMP. The mRNA and protein expressions of factors related to synovitis and synovial fibrosis were detected by qRT-PCR and Western blotting, respectively. The concentrations of inflammatory factors IL-1β and IL-18 were measured by ELISA. IMP reduced HIF-1α, NLR family pyrin domain-containing 3 inflammasome expression and IL-1β, IL-18 production in synovial fibroblasts induced by LPS. IMP also downregulated synovial fibrosis markers. In vitro study revealed that MIA-induced synovitis and synovial fibrosis were relieved by IMP. IMP relieves the inflammation associated with synovitis and synovial fibrosis. It reduces the production of pro-inflammatory mediators and cytokines and inhibits TGF-β1, TIMP-1 and VEGF expressions that promote synovial fibrosis.
Collapse
Affiliation(s)
- Haosheng Zhang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine, ZhenjiangJiangsu Province, China
| | - Liang Ding
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu Province, China
| | - Xiaoqing Shi
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu Province, China
| | - Wei Mei
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu Province, China
| | - Zhengquan Huang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu Province, China
| | - Li Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu Province, China
| | - Xiaochen Li
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu Province, China
| | - Bo Xu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu Province, China
| | - Li Zhang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu Province, China
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine, NanjingJiangsu Province, China
- Department of Orthopedics, Jiangsu Province Hospital of Chinese Medicine, NanjingJiangsu Province, China
| |
Collapse
|
34
|
Ruan Y, Ling J, Ye F, Cheng N, Wu F, Tang Z, Cheng X, Liu H. Paeoniflorin alleviates CFA-induced inflammatory pain by inhibiting TRPV1 and succinate/SUCNR1-HIF-1α/NLPR3 pathway. Int Immunopharmacol 2021; 101:108364. [PMID: 34844873 DOI: 10.1016/j.intimp.2021.108364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Treatment of chronic inflammatory pain remains a major goal in the clinic. It is thus of prime importance to characterize inherent pathophysiological pathways to design new therapeutic strategies and analgesics for pain management. Paeoniflorin (PF), a monoterpenoid glycoside from Paeonia lactiflora Pallas plants, possesses promising anti-nociceptive property. However, therapeutic effect and underlying mechanism of action of PF on inflammatory pain have not yet been fully elucidated. In this study, we aim to investigate the analgesic effect further and clarify its mechanism of action of PF on complete freund's adjuvant (CFA)-evoked inflammatory pain. METHODS Twenty-four male mice were divided into 3 groups: sham, CFA, and CFA + PF groups (n = 8/group). Mice were treated with normal saline or PF (30 mg/kg) for 11 days. Footpad swelling (n = 8/group), mechanical (n = 8/group) and thermal hypersensitivity (n = 8/group) were measured to evaluate the analgesic effect of PF on CFA-injected mice. At the end of the animal experiment, blood and L4-L6 dorsal root ganglion neurons were collected to assess the therapeutic effect of PF on CFA-induced inflammatory pain. Next, hematoxylin and eosin, quantitative realtime PCR, ELISA, capsaicin and dimethyl succinate induced pain test (n = 8/group), motor coordination test (n = 8/group), tail flicking test (n = 8/group), pyruvate and succinate dehydrogenase assay (n = 6/group), immunohistochemical staining, were performed to clarify the action mechanism of PF on CFA-evoked inflammatory pain. Besides, the effect of PF on TRPV1 was evaluated by whole-cell patch clamp recording on primary neurons (n = 7). Finally, molecular docking further performed to evaluate the binding ability of PF to TRPV1. RESULTS PF significantly relieved inflammatory pain (P < 0.001) and paw edema (P < 0.001) on a complete Freund adjuvant (CFA)-induced peripheral inflammatory pain model. Furthermore, PF inhibited neutrophil infiltration (P < 0.01), IL-1β increase (P < 0.01), and pain-related peptide substance P release (P < 0.001). Intriguingly, CFA-induced succinate aggregation was notably reversed by PF via modulating pyruvate and SDH activity (P < 0.01). In addition, PF dampened the high expression of subsequent succinate receptor SUCNR1 (P < 0.01), HIF-1α (P < 0.05), as well as the activation of NLPR3 inflammasome (P < 0.05) and TRPV1 (P < 0.05). More importantly, both capsaicin and dimethyl succinate supplementation obviously counteracted the pain-relieving effect of PF and TRPV1 (P < 0.01 or P < 0.001). CONCLUSION Our findings suggest that PF can significantly relieve CFA-induced paw swelling, as well as mechanical and thermal hyperalgesia. PF alleviated inflammatory pain partly through inhibiting the activation of TRPV1 and succinate/SUCNR1-HIF-1α/NLPR3 pathway. Furthermore, we found that PF exerted its analgesic effect without affecting motor coordination and pain-related cold ion-channels. In summary, this study may provide valuable evidence for the potential application of PF as therapeutic strategy for inflammatory pain treatment.
Collapse
Affiliation(s)
- Yonglan Ruan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Neurology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jinying Ling
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Fan Ye
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nuo Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Neurology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Fei Wu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Neurology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Zongxiang Tang
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolan Cheng
- School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Hongquan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Neurology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
35
|
Plasma Metabolome Normalization in Rheumatoid Arthritis Following Initiation of Methotrexate and the Identification of Metabolic Biomarkers of Efficacy. Metabolites 2021; 11:metabo11120824. [PMID: 34940582 PMCID: PMC8706490 DOI: 10.3390/metabo11120824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
Methotrexate (MTX) efficacy in the treatment of rheumatoid arthritis (RA) is variable and unpredictable, resulting in a need to identify biomarkers to guide drug therapy. This study evaluates changes in the plasma metabolome associated with response to MTX in RA with the goal of understanding the metabolic basis for MTX efficacy towards the identification of potential metabolic biomarkers of MTX response. Plasma samples were collected from healthy control subjects (n = 20), and RA patients initiating MTX therapy (n = 20, 15 mg/week) before and after 16 weeks of treatment. The samples were analyzed by a semi-targeted metabolomic analysis, and then analyzed by univariate and multivariate methods, as well as an enrichment analysis. An MTX response was defined as a clinically significant reduction in the disease activity score in 28 joints (DAS-28) of greater than 1.2; achievement of clinical remission, defined as a DAS-28 < 2.6, was also utilized as an additional measure of response. In this study, RA is associated with an altered plasma metabolome that is normalized following initiation of MTX therapy. Metabolite classes found to be altered in RA and corrected by MTX therapy were diverse and included triglycerides (p = 1.1 × 10−16), fatty acids (p = 8.0 × 10−12), and ceramides (p = 9.8 × 10−13). Stratification based on responses to MTX identified various metabolites differentially impacted in responders and non-responders including glucosylceramides (GlcCer), phosphatidylcholines (PC), sphingomyelins (SM), phosphatidylethanolamines (PE), choline, inosine, hypoxanthine, guanosine, nicotinamide, and itaconic acid (p < 0.05). In conclusion, RA is associated with significant alterations to the plasma metabolome displaying at least partial normalization following 16 weeks of MTX therapy. Changes in multiple metabolites were found to be associated with MTX efficacy, including metabolites involved in fatty acid/lipid, nucleotide, and energy metabolism.
Collapse
|
36
|
Hanlon MM, Canavan M, Barker BE, Fearon U. Metabolites as drivers and targets in Rheumatoid Arthritis. Clin Exp Immunol 2021; 208:167-180. [PMID: 35020864 PMCID: PMC9188347 DOI: 10.1093/cei/uxab021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by neovascularization, immune cell infiltration, and synovial hyperplasia, which leads to degradation of articular cartilage and bone, and subsequent functional disability. Dysregulated angiogenesis, synovial hypoxia, and immune cell infiltration result in a ‘bioenergetic crisis’ in the inflamed joint which further exacerbates synovial invasiveness. Several studies have examined this vicious cycle between metabolism, immunity, and inflammation and the role metabolites play in these interactions. To add to this complexity, the inflamed synovium is a multicellular tissue with many cellular subsets having different metabolic requirements. Metabolites can shape the inflammatory phenotype of immune cell subsets during disease and act as central signalling hubs. In the RA joint, the increased energy demand of stromal and immune cells leads to the accumulation of metabolites such as lactate, citrate, and succinate as well as adipocytokines which can regulate downstream signalling pathways. Transcription factors such as HIF1ɑ and mTOR can act as metabolic sensors to activate synovial cells and drive pro-inflammatory effector function, thus perpetuating chronic inflammation further. These metabolic intermediates may be potential therapeutic targets and so understanding the complex interplay between metabolites and synovial cells in RA may allow for identification of novel therapeutic strategies but also may provide significant insight into the underlying mechanisms of disease pathogenesis.
Collapse
Affiliation(s)
- Megan M Hanlon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,EULAR Centre of Excellence for Rheumatology, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,EULAR Centre of Excellence for Rheumatology, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, Dublin, Ireland
| | - Brianne E Barker
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,EULAR Centre of Excellence for Rheumatology, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,EULAR Centre of Excellence for Rheumatology, Centre for Arthritis and Rheumatic Diseases, St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
37
|
Adamowski M, Wołodko K, Oliveira J, Castillo-Fernandez J, Murta D, Kelsey G, Galvão AM. Leptin Signaling in the Ovary of Diet-Induced Obese Mice Regulates Activation of NOD-Like Receptor Protein 3 Inflammasome. Front Cell Dev Biol 2021; 9:738731. [PMID: 34805147 PMCID: PMC8595835 DOI: 10.3389/fcell.2021.738731] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Obesity leads to ovarian dysfunction and the establishment of local leptin resistance. The aim of our study was to characterize the levels of NOD-like receptor protein 3 (NLRP3) inflammasome activation in ovaries and liver of mice during obesity progression. Furthermore, we tested the putative role of leptin on NLRP3 regulation in those organs. C57BL/6J female mice were treated with equine chorionic gonadotropin (eCG) or human chorionic gonadotropin (hCG) for estrous cycle synchronization and ovary collection. In diet-induced obesity (DIO) protocol, mice were fed chow diet (CD) or high-fat diet (HFD) for 4 or 16 weeks, whereas in the hyperleptinemic model (LEPT), mice were injected with leptin for 16 days (16 L) or saline (16 C). Finally, the genetic obese leptin-deficient ob/ob (+/? and −/−) mice were fed CD for 4 week. Either ovaries and liver were collected, as well as cumulus cells (CCs) after superovulation from DIO and LEPT. The estrus cycle synchronization protocol showed increased protein levels of NLRP3 and interleukin (IL)-18 in diestrus, with this stage used for further sample collections. In DIO, protein expression of NLRP3 inflammasome components was increased in 4 week HFD, but decreased in 16 week HFD. Moreover, NLRP3 and IL-1β were upregulated in 16 L and downregulated in ob/ob. Transcriptome analysis of CC showed common genes between LEPT and 4 week HFD modulating NLRP3 inflammasome. Liver analysis showed NLRP3 protein upregulation after 16 week HFD in DIO, but also its downregulation in ob/ob−/−. We showed the link between leptin signaling and NLRP3 inflammasome activation in the ovary throughout obesity progression in mice, elucidating the molecular mechanisms underpinning ovarian failure in maternal obesity.
Collapse
Affiliation(s)
- Marek Adamowski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Joana Oliveira
- Centro de Investigação em Ciências Veterinárias, Lusófona University, Lisbon, Portugal
| | | | - Daniel Murta
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Escola Superior de Saúde Egas Moniz, Campus Universitário, Monte de Caparica, Portugal.,Centro de Investigação Interdisciplinar em Sanidade Animal (C.I.I.S.A.), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom.,Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
38
|
Cui J, Xu G, Bian F. H 2S alleviates aortic aneurysm and dissection: Crosstalk between transforming growth factor 1 signaling and NLRP3 inflammasome. Int J Cardiol 2021; 338:215-225. [PMID: 34157359 DOI: 10.1016/j.ijcard.2021.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vascular remodeling and inflammation are involved in aortic aneurysm (AA) and aortic dissection (AD). TGF-β1 signaling is involved in tissue fibrosis, extracellular matrix remodeling and inflammation, which are linked with AA and AD. The inhibition of NLRP3 inflammasome suppresses AA and AD. Hydrogen sulfide (H2S) exerts anti-vascular remodeling and anti-inflammatory properties, but little is known about its action on AA and AD progression. METHODS The effect of H2S on AA and AD formation was investigated in Sprague-Dawley (SD) rat fed a normal diet supplemented with 0.25% β-aminopropionitrile (BAPN). HE staining, Masson's trichrome staining, Picrosirius red staining and EVG staining were to evaluate vascular remodeling in the aortic wall. Western blotting and IHC were to detect the expression of TGF-β1 and matrix metalloproteinases (MMPs) and NLRP3 inflammasome-associated proteins. The interaction between TGF-β1 signaling and NLRP3 inflammasome was explored in Human aortic vascular smooth muscle cells (HA-VSMCs). RESULTS H2S alleviated AA and AD progression. Specifically, it improved irregular tissue arrangement and vascular fibrosis, increased the expression of elastin fibers, decreased collagen deposition and the expression of TGF-β1 and matrix metalloproteinases (MMP-2/9). In addition, H2S inhibited the expression of proteins involved in NLRP3 inflammasome. Furthermore, H2S down-regulated TGF-β1 signaling and then ameliorated vascular fibrosis by preventing NLRP3 inflammasome activation. Finally, H2S inhibited NLRP3 inflammasome activation and decreased the level of IL-1β by disrupting TGF-β1 signaling. CONCLUSIONS These data support a crosstalk between TGF-β1 signaling and NLRP3 inflammasome. H2S inhibits AA and AD progression via blocking the crosstalk.
Collapse
Affiliation(s)
- Jun Cui
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China
| | - Gao Xu
- Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Special Preparation of Vitiligo Xiangyang Key Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China.
| |
Collapse
|
39
|
Zhang L, Xing R, Huang Z, Ding L, Zhang L, Li M, Li X, Wang P, Mao J. Synovial Fibrosis Involvement in Osteoarthritis. Front Med (Lausanne) 2021; 8:684389. [PMID: 34124114 PMCID: PMC8187615 DOI: 10.3389/fmed.2021.684389] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
Bone changes have always been the focus of research on osteoarthritis, but the number of studies on synovitis has increased only over the last 10 years. Our current understanding is that the mechanism of osteoarthritis involves all the tissues that make up the joints, including nerve sprouting, pannus formation, and extracellular matrix environmental changes in the synovium. These factors together determine synovial fibrosis and may be closely associated with the clinical symptoms of pain, hyperalgesia, and stiffness in osteoarthritis. In this review, we summarize the consensus of clinical work, the potential pathological mechanisms, the possible therapeutic targets, and the available therapeutic strategies for synovial fibrosis in osteoarthritis to gain insight and provide a foundation for further study.
Collapse
Affiliation(s)
- Li Zhang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Runlin Xing
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Zhengquan Huang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Liang Ding
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Li Zhang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Mingchao Li
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaochen Li
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jun Mao
- Departments of Orthopedics, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
40
|
Kim HY, Kim TR, Kim SH, Kim IH, Ko Y, Yun S, Lee IC, Park HO, Kim JC. Genotoxicity evaluation of self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG), a novel siRNA nanoparticle for the treatment of fibrotic disease. Drug Chem Toxicol 2021; 45:2109-2115. [PMID: 33906534 DOI: 10.1080/01480545.2021.1908003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) is a novel small-interfering RNA (siRNA) nanoparticle that is used for treatment of pulmonary fibrosis. We investigated the potential genotoxicity of SAMiRNA-AREG based on the guidelines published by the Organization for Economic Cooperation and Development. In the bacterial reverse mutation assay (Ames test), SAMiRNA-AREG did not induce mutations in Salmonella typhimurium TA100, TA1535, TA98, and TA1537 and Escherichia coli WP2uvrA at concentrations of up to 3000 μg/plate with or without metabolic activation. The SAMiRNA-AREG (concentrations up to 500 μg/mL) did not induce chromosomal aberrations in cultured Chinese hamster lung cells with or without metabolic activation. In the in vivo mouse bone marrow micronucleus assay, the SAMiRNA-AREG (concentrations up to 300 mg/kg body weight) did not affect the proportions of polychromatic erythrocytes and total erythrocytes, nor did it increase the number of micronucleated polychromatic erythrocytes in ICR mice. Collectively, these results suggest that SAMiRNA-AREG is safe with regard to genotoxicity such as mutagenesis or clastogenesis under the present experimental conditions. These results might support the safety of SAMiRNA-AREG as a potential therapeutic agent for pharmaceutical development.
Collapse
Affiliation(s)
- Hyeon-Young Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Tae Rim Kim
- siRNAgen therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - Sung-Hwan Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - In-Hyeon Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongeup, Republic of Korea.,College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Youngho Ko
- siRNAgen therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - Sungil Yun
- siRNAgen therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Han-Oh Park
- siRNAgen therapeutics and Bioneer Corporation, Daejeon, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
41
|
Aghakhani S, Zerrouk N, Niarakis A. Metabolic Reprogramming of Fibroblasts as Therapeutic Target in Rheumatoid Arthritis and Cancer: Deciphering Key Mechanisms Using Computational Systems Biology Approaches. Cancers (Basel) 2020; 13:E35. [PMID: 33374292 PMCID: PMC7795338 DOI: 10.3390/cancers13010035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Fibroblasts, the most abundant cells in the connective tissue, are key modulators of the extracellular matrix (ECM) composition. These spindle-shaped cells are capable of synthesizing various extracellular matrix proteins and collagen. They also provide the structural framework (stroma) for tissues and play a pivotal role in the wound healing process. While they are maintainers of the ECM turnover and regulate several physiological processes, they can also undergo transformations responding to certain stimuli and display aggressive phenotypes that contribute to disease pathophysiology. In this review, we focus on the metabolic pathways of glucose and highlight metabolic reprogramming as a critical event that contributes to the transition of fibroblasts from quiescent to activated and aggressive cells. We also cover the emerging evidence that allows us to draw parallels between fibroblasts in autoimmune disorders and more specifically in rheumatoid arthritis and cancer. We link the metabolic changes of fibroblasts to the toxic environment created by the disease condition and discuss how targeting of metabolic reprogramming could be employed in the treatment of such diseases. Lastly, we discuss Systems Biology approaches, and more specifically, computational modeling, as a means to elucidate pathogenetic mechanisms and accelerate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Sahar Aghakhani
- GenHotel, University of Evry, University of Paris-Saclay, Genopole, 91000 Evry, France; (S.A.); (N.Z.)
- Lifeware Group, Inria Saclay, 91120 Palaiseau, France
| | - Naouel Zerrouk
- GenHotel, University of Evry, University of Paris-Saclay, Genopole, 91000 Evry, France; (S.A.); (N.Z.)
| | - Anna Niarakis
- GenHotel, University of Evry, University of Paris-Saclay, Genopole, 91000 Evry, France; (S.A.); (N.Z.)
- Lifeware Group, Inria Saclay, 91120 Palaiseau, France
| |
Collapse
|
42
|
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HXY, Fan LH, Peng W, Huang YL, Wu CJ. HIF-1α is a Potential Molecular Target for Herbal Medicine to Treat Diseases. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4915-4949. [PMID: 33235435 PMCID: PMC7680173 DOI: 10.2147/dddt.s274980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
HIF-1α is an important factor regulating oxygen balance in mammals, and its expression is closely related to various physiological and pathological conditions of the body. Because HIF-1α plays an important role in the occurrence and development of cancer and other diseases, it has become an enduring research hotspot. At the same time, natural medicines and traditional Chinese medicine compounds have amazing curative effects in various diseases related to HIF-1 subtype due to their unique pharmacological effects and more effective ingredients. Therefore, in this article, we first outline the structure of HIF-1α and the regulation related to its expression, then introduce various diseases closely related to HIF-1α, and finally focus on the regulation of natural medicines and compound Chinese medicines through various pathways. This will help us understand HIF-1α systematically, and use HIF-1α as a target to discover more natural medicines and traditional Chinese medicines that can treat related diseases.
Collapse
Affiliation(s)
- Ruo-Lan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Li-Ying He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Feng Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Hu-Xin-Yue Duan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Lin-Hong Fan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| | - Yong-Liang Huang
- Pharmacy Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, People's Republic of China
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, People's Republic of China
| |
Collapse
|
43
|
Toxoplasma gondii GRA9 Regulates the Activation of NLRP3 Inflammasome to Exert Anti-Septic Effects in Mice. Int J Mol Sci 2020; 21:ijms21228437. [PMID: 33182702 PMCID: PMC7696177 DOI: 10.3390/ijms21228437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Dense granule proteins (GRAs) are essential components in Toxoplasma gondii, which are suggested to be promising serodiagnostic markers in toxoplasmosis. In this study, we investigated the function of GRA9 in host response and the associated regulatory mechanism, which were unknown. We found that GRA9 interacts with NLR family pyrin domain containing 3 (NLRP3) involved in inflammation by forming the NLRP3 inflammasome. The C-terminal of GRA9 (GRA9C) is essential for GRA9–NLRP3 interaction by disrupting the NLRP3 inflammasome through blocking the binding of apoptotic speck-containing (ASC)-NLRP3. Notably, Q200 of GRA9C is essential for the interaction of NLRP3 and blocking the conjugation of ASC. Recombinant GRA9C (rGRA9C) showed an anti-inflammatory effect and the elimination of bacteria by converting M1 to M2 macrophages. In vivo, rGRA9C increased the anti-inflammatory and bactericidal effects and subsequent anti-septic activity in CLP- and E. coli- or P. aeruginosa-induced sepsis model mice by increasing M2 polarization. Taken together, our findings defined a role of T. gondii GRA9 associated with NLRP3 in host macrophages, suggesting its potential as a new candidate therapeutic agent for sepsis.
Collapse
|
44
|
Masoumi M, Mehrabzadeh M, Mahmoudzehi S, Mousavi MJ, Jamalzehi S, Sahebkar A, Karami J. Role of glucose metabolism in aggressive phenotype of fibroblast-like synoviocytes: Latest evidence and therapeutic approaches in rheumatoid arthritis. Int Immunopharmacol 2020; 89:107064. [PMID: 33039953 DOI: 10.1016/j.intimp.2020.107064] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/10/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
Glucose metabolism is considerably increased in inflamed joints of rheumatoid arthritis (RA) patients at early stages. Fibroblast-like synoviocytes (FLSs) activation and subsequent joint damage are linked with metabolic alterations, especially glucose metabolism. It has been shown that glucose metabolism is elevated in aggressive phenotype of FLS cells. In this regard, glycolytic blockers are able to reduce aggressiveness of the FLS cells resulting in decreased joint damage in various arthritis models. Besides, metabolic changes in immune and non-immune cells such as FLS can provide important targets for therapeutic intervention. Glycolytic enzymes such as hexokinase 2 (HK2), phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB), and phosphoglycerate kinase (PGK) play essential roles in aggressive behavior of FLS cells. It has been documented that the HK2 enzyme is significantly upregulated in RA FLS cells, compared with osteoarthritis (OA) FLS cells. The HK2 is expressed in a few tissues and upregulated in the inflamed synovium of RA patients that makes it a potential target for RA treatment. Furthermore, HK2 has different roles in each cellular compartment, which offers another level of specificity and provides a specific target to reduce deleterious effects of inhibiting the enzyme in RA without affecting glycolysis in normal cells. Thus, targeting the HK2 enzyme might be an attractive potential selective target for arthritis therapy and safer than global glycolysis inhibition. Therefore, this review was aimed to summarize the current knowledge about glucose metabolism of FLS cells and suggest novel biomarkers, which are potential candidates for RA treatment.
Collapse
Affiliation(s)
- Maryam Masoumi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Mehrabzadeh
- Department of Medical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Salman Mahmoudzehi
- Department of Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sirous Jamalzehi
- Department of Medical Laboratory Sciences, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| | - Jafar Karami
- Department of Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Lee WS, Kato M, Sugawara E, Kono M, Kudo Y, Kono M, Fujieda Y, Bohgaki T, Amengual O, Oku K, Yasuda S, Onodera T, Iwasaki N, Atsumi T. Protective Role of Optineurin Against Joint Destruction in Rheumatoid Arthritis Synovial Fibroblasts. Arthritis Rheumatol 2020; 72:1493-1504. [DOI: 10.1002/art.41290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/14/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Wen Shi Lee
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | | | | | | | | | | | | | | - Shinsuke Yasuda
- Hokkaido University, Sapporo, Japan, and Tokyo Medical and Dental University Tokyo Japan
| | | | | | | |
Collapse
|
46
|
Li Z, Guo J, Bi L. Role of the NLRP3 inflammasome in autoimmune diseases. Biomed Pharmacother 2020; 130:110542. [PMID: 32738636 DOI: 10.1016/j.biopha.2020.110542] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
NOD-like receptor family pyrin domain containing 3 (NLRP3) is an intracellular receptor that senses foreign pathogens and endogenous danger signals. It assembles with apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1 to form a multimeric protein called the NLRP3 inflammasome. Among its various functions, the NLRP3 inflammasome can induce the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 while also promoting gasdermin D (GSDMD)-mediated pyroptosis. Previous studies have established a vital role for the NLRP3 inflammasome in innate and adaptive immune system as well as its contribution to several autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), systemic sclerosis (SSc), and ankylosing spondylitis (AS). In this review, we briefly introduce the biological features of the NLRP3 inflammasome and present the mechanisms underlying its activation and regulation. We also summarize recent studies that have reported on the roles of NLRP3 inflammasome in the immune system and several autoimmune diseases, with a focus on therapeutic and clinical applications.
Collapse
Affiliation(s)
- Zhe Li
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jialong Guo
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Liqi Bi
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
47
|
Claycombe-Larson KJ, Alvine T, Wu D, Kalupahana NS, Moustaid-Moussa N, Roemmich JN. Nutrients and Immunometabolism: Role of Macrophage NLRP3. J Nutr 2020; 150:1693-1704. [PMID: 32271912 DOI: 10.1093/jn/nxaa085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammation is largely mediated by immune cells responding to invading pathogens, whereas metabolism is oriented toward producing usable energy for vital cell functions. Immunometabolic alterations are considered key determinants of chronic inflammation, which leads to the development of chronic diseases. Studies have demonstrated that macrophages and the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome are activated in key metabolic tissues to contribute to increased risk for type 2 diabetes mellitus, Alzheimer disease, and liver diseases. Thus, understanding the tissue-/cell-type-specific regulation of the NLRP3 inflammasome is crucial for developing intervention strategies. Currently, most of the nutrients and bioactive compounds tested to determine their inflammation-reducing effects are limited to animal models. Future studies need to address how dietary compounds regulate immune and metabolic cell reprograming in humans.
Collapse
Affiliation(s)
- Kate J Claycombe-Larson
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| | - Travis Alvine
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| | - Dayong Wu
- The Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | | | - Naima Moustaid-Moussa
- Nutritional Science Department and Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - James N Roemmich
- Grand Forks Human Nutrition Research Center, USDA Agricultural Research Service, Grand Forks, ND, USA
| |
Collapse
|
48
|
Liu P, Wang J, Wen W, Pan T, Chen H, Fu Y, Wang F, Huang JH, Xu S. Cinnamaldehyde suppresses NLRP3 derived IL-1β via activating succinate/HIF-1 in rheumatoid arthritis rats. Int Immunopharmacol 2020; 84:106570. [PMID: 32413739 DOI: 10.1016/j.intimp.2020.106570] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Cinnamaldehyde (CA) is an essential component of cinnamon (Cinnamomum cassia Presland), which is often used as a flavoring condiment in beverages, pastries, perfumes, etc. Cinnamon is also used as herbal medicine in China and Southeast Asia to treat rheumatoid arthritis. However, the molecular mechanism is unclear. In this study, we aim to investigate its anti-inflammatory effects against Rheumatoid arthritis (RA) using activated macrophages (Raw246.7) in vitro and adjuvant arthritis rats (AA) in vivo. The results demonstrated that CA significantly reduced synovial inflammation in AA rats, possibly due to suppression of the expressions of pro-inflammatory cytokines, especially the IL-1β. Further investigation found that CA also suppressed the activity of HIF-1α by inhibiting the accumulation of succinate in cytoplasm. As we know, the reduction of HIF-1α nucleation slows down IL-1β production, because HIF-1α activates the expression of NLRP3, which is involved in the assembly of inflammasome and processing of IL-1β. In addition, CA also inhibited the expression of the succinate receptor GPR91, which in turn inhibited the activation of HIF-1α. In conclusions, our results suggested that CA might be a potential therapeutic compound to relieve rheumatoid arthritis progress by suppressing IL-1β through modulating succinate/HIF-1α axis and inhibition of NLRP3.
Collapse
Affiliation(s)
- Panwang Liu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Jie Wang
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wen Wen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ting Pan
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Huan Chen
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ying Fu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Fushun Wang
- Institute of Brain and Psyhological Sciences, Sichuan Normal University, Chengdu, Sichuan 610000, China
| | - Jason H Huang
- Department of Neurosurgery, Balor Scott & White Health Science Center, Temple, TX, United States; Department of Surgery, Texas A&M University College of Medicine, Temple, TX 79409, United States
| | - Shijun Xu
- Institute of Meterial Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| |
Collapse
|
49
|
Succinate Activates EMT in Intestinal Epithelial Cells through SUCNR1: A Novel Protagonist in Fistula Development. Cells 2020; 9:cells9051104. [PMID: 32365557 PMCID: PMC7290938 DOI: 10.3390/cells9051104] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/15/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of Crohn’s disease-associated fibrostenosis and fistulas imply the epithelial-to-mesenchymal transition (EMT) process. As succinate and its receptor (SUCNR1) are involved in intestinal inflammation and fibrosis, we investigated their relevance in EMT and Crohn’s disease (CD) fistulas. Succinate levels and SUCNR1-expression were analyzed in intestinal resections from non-Inflammatory Bowel Disease (non-IBD) subjects and CD patients with stenosing-B2 or penetrating-B3 complications and in a murine heterotopic-transplant model of intestinal fibrosis. EMT, as increased expression of Snail1, Snail2 and vimentin and reduction in E-cadherin, was analyzed in tissues and succinate-treated HT29 cells. The role played by SUCNR1 was studied by silencing its gene. Succinate levels and SUCNR1 expression are increased in B3-CD patients and correlate with EMT markers. SUCNR1 is detected in transitional cells lining the fistula tract and in surrounding mesenchymal cells. Grafts from wild type (WT) mice present increased succinate levels, SUCNR1 up-regulation and EMT activation, effects not observed in SUCNR1−/− tissues. SUCNR1 activation induces the expression of Wnt ligands, activates WNT signaling and induces a WNT-mediated EMT in HT29 cells. In conclusion, succinate and its receptor are up-regulated around CD-fistulas and activate Wnt signaling and EMT in intestinal epithelial cells. These results point to SUCNR1 as a novel pharmacological target for fistula prevention.
Collapse
|
50
|
Coras R, Murillo-Saich JD, Guma M. Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid Arthritis Pathogenesis. Cells 2020; 9:E827. [PMID: 32235564 PMCID: PMC7226773 DOI: 10.3390/cells9040827] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that affects synovial joints, leading to inflammation, joint destruction, loss of function, and disability. Although recent pharmaceutical advances have improved the treatment of RA, patients often inquire about dietary interventions to improve RA symptoms, as they perceive pain and/or swelling after the consumption or avoidance of certain foods. There is evidence that some foods have pro- or anti-inflammatory effects mediated by diet-related metabolites. In addition, recent literature has shown a link between diet-related metabolites and microbiome changes, since the gut microbiome is involved in the metabolism of some dietary ingredients. But diet and the gut microbiome are not the only factors linked to circulating pro- and anti-inflammatory metabolites. Other factors including smoking, associated comorbidities, and therapeutic drugs might also modify the circulating metabolomic profile and play a role in RA pathogenesis. This article summarizes what is known about circulating pro- and anti-inflammatory metabolites in RA. It also emphasizes factors that might be involved in their circulating concentrations and diet-related metabolites with a beneficial effect in RA.
Collapse
Affiliation(s)
- Roxana Coras
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; (R.C.); (J.D.M.-S.)
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| | - Jessica D. Murillo-Saich
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; (R.C.); (J.D.M.-S.)
| | - Monica Guma
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; (R.C.); (J.D.M.-S.)
- Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|