1
|
Brzezniakiewicz-Janus K, Jarczak J, Konopko A, Ratajczak J, Kucia M, Ratajczak MZ. Mitochondria Express Functional Signaling Ligand-Binding Receptors that Regulate their Biological Responses - the Novel Role of Mitochondria as Stress-Response Sentinels. Stem Cell Rev Rep 2025; 21:597-604. [PMID: 39888573 PMCID: PMC11965210 DOI: 10.1007/s12015-025-10847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Evidence accumulated mitochondria, as the "powerplants of the cell," express several functional receptors for external ligands that modify their function and regulate cell biology. This review sheds new light on the role of these organelles in sensing external stimuli to facilitate energy production for cellular needs. This is possible because mitochondria express some receptors on their membranes that are responsible for their autonomous responses. This is not surprising given the widely accepted hypothesis that these intracellular organelles originated from prokaryotic ancestors that fused with eukaryotic cells during early evolution. It has been reported that mitochondria express functional estrogen, androgen, glucocorticoid, 5-hydroxytryptamine, melatonin, and cannabinoid receptors. What is intriguing is recent evidence showing that mitochondria could also be directly regulated by active mediators of intracellular complement (complosome) and intrinsic mediators of purinergic signaling. Accordingly, they express receptors for intracellular complement cleavage fragments (C5a and C3a) as well as for adenosine triphosphate (ATP), which, besides its crucial role in transferring energy in the cells, is also an important signaling molecule interacting with P2X7 receptor expressed not only on the cell surface but also on the mitochondria membrane. Based on this, intrinsic complosome and purinergic signaling mediators emerge as important cooperating regulators of reactive oxygen species (ROS) release from mitochondria and activators of intracellular pattern recognition receptor Nlrp3 inflammasome. This activation within the beneficial "hormetic zone response" regulates cell metabolism, proliferation, migration, and adaptation to the surrounding challenges of the microenvironment in a favorable way.
Collapse
Affiliation(s)
| | - Justyna Jarczak
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adrian Konopko
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Janina Ratajczak
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, Kentucky, 40202, USA
| | - Magdalena Kucia
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland
- Center for Preclinical Studies and Technology, Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Mariusz Z Ratajczak
- Department of Regenerative Medicine, Warsaw Medical University, Warsaw, Poland.
- Stem Cell Institute at Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, Kentucky, 40202, USA.
| |
Collapse
|
2
|
Tenner AJ, Petrisko TJ. Knowing the enemy: strategic targeting of complement to treat Alzheimer disease. Nat Rev Neurol 2025:10.1038/s41582-025-01073-y. [PMID: 40128350 DOI: 10.1038/s41582-025-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/26/2025]
Abstract
The complement system protects against infection, positively responds to tissue damage, clears cell debris, directs and modulates the adaptive immune system, and functions in neuronal development, normal synapse elimination and intracellular metabolism. However, complement also has a role in aberrant synaptic pruning and neuroinflammation - processes that lead to a feedforward loop of inflammation, injury and neuronal death that can contribute to neurodegenerative and neurological disorders, including Alzheimer disease. This Review provides justification, largely from preclinical mouse models but also from correlates with human tissue and biomarkers, for targeting specific complement components for therapeutic intervention in Alzheimer disease. We discuss promising strategies to slow the progression of cognitive loss with minimal undesired effects. The diverse interactions and functions of complement system components can influence biological processes in the healthy and diseased brain; here, these functions are described as a prerequisite to selecting appropriate, safe and effective therapeutic targets for translation to the clinic.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA.
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA.
| | - Tiffany J Petrisko
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Prasad RR, Kumar S, Zhang H, Li M, Hu CJ, Riddle S, McKeon BA, Frid M, Hoetzenecker K, Crnkovic S, Kwapiszewska G, Tuder RM, Stenmark KR. An intracellular complement system drives metabolic and proinflammatory reprogramming of vascular fibroblasts in pulmonary hypertension. JCI Insight 2025; 10:e184141. [PMID: 39946184 PMCID: PMC11949053 DOI: 10.1172/jci.insight.184141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
The complement system is central to the innate immune response, playing a critical role in proinflammatory and autoimmune diseases such as pulmonary hypertension (PH). Recent discoveries highlight the emerging role of intracellular complement, or the "complosome," in regulating cellular processes such as glycolysis, mitochondrial dynamics, and inflammatory gene expression. This study investigated the hypothesis that intracellular complement proteins C3, CFB, and CFD are upregulated in PH fibroblasts (PH-Fibs) and drive their metabolic and inflammatory states, contributing to PH progression. Our results revealed a pronounced upregulation of CFD, CFB, and C3 in PH-Fibs from human samples and bovine models, both in vivo and in vitro. The finding of elevated levels of C3 activation fragments, including C3b, C3d, and C3a, emphasized enhanced C3 activity. PH-Fibs exhibited notable metabolic reprogramming and increased levels of proinflammatory mediators such as MCP1, SDF1, IL-6, IL-13, and IL-33. Silencing CFD via shRNA reduced CFB activation and C3a production, while normalizing glycolysis, tricarboxylic acid (TCA) cycle activity, and fatty acid metabolism. Metabolomic and gene expression analyses of CFD-knockdown PH-Fibs revealed restored metabolic and inflammatory profiles, underscoring CFD's crucial role in these changes. This study emphasizes the crucial role of intracellular complement in PH pathogenesis, highlighting the potential for complement-targeted therapies in PH.
Collapse
Affiliation(s)
- Ram Raj Prasad
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Sushil Kumar
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Hui Zhang
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Min Li
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Cheng-Jun Hu
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Suzette Riddle
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Brittany A. McKeon
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - M.G. Frid
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus Liebig University Giessen, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardiopulmonary Institute, Member of the German Center for Lung Research, Justus Liebig University Giessen, Germany
| | - Rubin M. Tuder
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
- Department of Lung Biology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt R. Stenmark
- Cardiovascular and Pulmonary Research Laboratory (CVP), Department of Pediatrics and Medicine, and
| |
Collapse
|
4
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2025; 27:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarizes the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Ünal S, Kartal SP, Özsoy A, Aydin FN. Evaluation of Serum Zonulin Level and Intestinal Permeability in Patients with Chronic Spontaneous Urticaria and the Relationship Between Serum Zonulin Level and Disease Severity. Dermatol Pract Concept 2025; 15:dpc.1501a4237. [PMID: 40117602 PMCID: PMC11928137 DOI: 10.5826/dpc.1501a4237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 03/23/2025] Open
Abstract
INTRODUCTION An emerging hypothesis suggests a potential link between enhanced intestinal permeability and the advancement of chronic spontaneous urticaria (CSU). OBJECTIVE This study aimed to investigate the role of intestinal permeability in the etiopathogenesis of CSU by measuring serum zonulin levels, a marker of intestinal permeability, in both CSU patients and control subjects. Additionally, the study sought to explore the correlation between the severity of the illness and zonulin levels. METHODS The study involved 61 patients with CSU and 59 healthy control individuals. For the CSU patients, comprehensive data were collected encompassing various aspects: age at onset of the condition, duration of the most recent attack, presence of any comorbid conditions, dosage of antihistamines being used, and urticaria activity score as well as detailed personal and family medical histories. Additionally, demographic information for these patients was also meticulously documented. RESULT The study revealed a statistically significant difference in zonulin levels between the CSU patient group and the control group, with a p-value of 0.000, indicating a highly significant disparity. Furthermore, among the CSU patients, those who presented with angioedema exhibited considerably higher zonulin levels compared to those without angioedema. This variation in zonulin levels based on the presence of angioedema was also statistically significant, with a p-value of 0.023. CONCLUSION The observed results suggest that increased intestinal permeability, as indicated by elevated zonulin levels, may play a crucial role in the pathophysiology of both CSU and angioedema. This association highlights the potential significance of intestinal permeability in the development and manifestation of these conditions.
Collapse
Affiliation(s)
- Simge Ünal
- Dışkapı Yıldırım Beyazıt Hospital, Department of Dermatology and Venereology, Ankara, Turkey
| | - Selda Pelin Kartal
- Dışkapı Yıldırım Beyazıt Hospital, Department of Dermatology and Venereology, Ankara, Turkey
| | - Ahmet Özsoy
- Dışkapı Yıldırım Beyazıt Hospital, Department of Clinic Biochemistry, Ankara, Turkey
| | - Fevzi Nuri Aydin
- Dışkapı Yıldırım Beyazıt Hospital, Department of Clinic Biochemistry, Ankara, Turkey
| |
Collapse
|
6
|
Homan EA, Gilani A, Rubio-Navarro A, Johnson MA, Schaepkens OM, Cortada E, Pereira de Lima R, Stoll L, Lo JC. Complement 3a receptor 1 on macrophages and Kupffer cells is not required for the pathogenesis of metabolic dysfunction-associated steatotic liver disease. eLife 2025; 13:RP100708. [PMID: 39773465 PMCID: PMC11709426 DOI: 10.7554/elife.100708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Together with obesity and type 2 diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global epidemic. Activation of the complement system and infiltration of macrophages has been linked to progression of metabolic liver disease. The role of complement receptors in macrophage activation and recruitment in MASLD remains poorly understood. In human and mouse, C3AR1 in the liver is expressed primarily in Kupffer cells, but is downregulated in humans with MASLD compared to obese controls. To test the role of complement 3a receptor (C3aR1) on macrophages and liver resident macrophages in MASLD, we generated mice deficient in C3aR1 on all macrophages (C3aR1-MφKO) or specifically in liver Kupffer cells (C3aR1-KpKO) and subjected them to a model of metabolic steatotic liver disease. We show that macrophages account for the vast majority of C3ar1 expression in the liver. Overall, C3aR1-MφKO and C3aR1-KpKO mice have similar body weight gain without significant alterations in glucose homeostasis, hepatic steatosis and fibrosis, compared to controls on a MASLD-inducing diet. This study demonstrates that C3aR1 deletion in macrophages or Kupffer cells, the predominant liver cell type expressing C3ar1, has no significant effect on liver steatosis, inflammation or fibrosis in a dietary MASLD model.
Collapse
Affiliation(s)
- Edwin A Homan
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Ankit Gilani
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Alfonso Rubio-Navarro
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Maya A Johnson
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Odin M Schaepkens
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Eric Cortada
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Renan Pereira de Lima
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - Lisa Stoll
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| | - James C Lo
- Division of Cardiology, Department of Medicine, Cardiovascular Research Institute, Weill Center for Metabolic Health, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
7
|
Gray GI, Chukwuma PC, Eldaly B, Perera WWJG, Brambley CA, Rosales TJ, Baker BM. The Evolving T Cell Receptor Recognition Code: The Rules Are More Like Guidelines. Immunol Rev 2025; 329:e13439. [PMID: 39804137 PMCID: PMC11771984 DOI: 10.1111/imr.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
αβ T cell receptor (TCR) recognition of peptide-MHC complexes lies at the core of adaptive immunity, balancing specificity and cross-reactivity to facilitate effective antigen discrimination. Early structural studies established basic frameworks helpful for understanding and contextualizing TCR recognition and features such as peptide specificity and MHC restriction. However, the growing TCR structural database and studies launched from structural work continue to reveal exceptions to common assumptions and simplifications derived from earlier work. Here we explore our evolving understanding of TCR recognition, illustrating how structural and biophysical investigations regularly uncover complex phenomena that push against paradigms and expand our understanding of how TCRs bind to and discriminate between peptide/MHC complexes. We discuss the implications of these findings for basic, translational, and predictive immunology, including the challenges in accounting for the inherent adaptability, flexibility, and occasional biophysical sloppiness that characterize TCR recognition.
Collapse
MESH Headings
- Humans
- Animals
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Peptides/immunology
- Peptides/metabolism
- Peptides/chemistry
Collapse
Affiliation(s)
- George I Gray
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - P Chukwunalu Chukwuma
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Bassant Eldaly
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - W W J Gihan Perera
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Chad A Brambley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Tatiana J Rosales
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
8
|
Gao R, Song SJ, Tian MY, Wang LB, Zhang Y, Li X. Myelin debris phagocytosis in demyelinating disease. Glia 2024; 72:1934-1954. [PMID: 39073200 DOI: 10.1002/glia.24602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Demyelinating diseases are often caused by a variety of triggers, including immune responses, viral infections, malnutrition, hypoxia, or genetic factors, all of which result in the loss of myelin in the nervous system. The accumulation of myelin debris at the lesion site leads to neuroinflammation and inhibits remyelination; therefore, it is crucial to promptly remove the myelin debris. Initially, Fc and complement receptors on cellular surfaces were the primary clearance receptors responsible for removing myelin debris. However, subsequent studies have unveiled the involvement of additional receptors, including Mac-2, TAM receptors, and the low-density lipoprotein receptor-related protein 1, in facilitating the removal process. In addition to microglia and macrophages, which serve as the primary effector cells in the disease phase, a variety of other cell types such as astrocytes, Schwann cells, and vascular endothelial cells have been demonstrated to engage in the phagocytosis of myelin debris. Furthermore, we have concluded that oligodendrocyte precursor cells, as myelination precursor cells, also exhibit this phagocytic capability. Moreover, our research group has innovatively identified the low-density lipoprotein receptor as a potential phagocytic receptor for myelin debris. In this article, we discuss the functional processes of various phagocytes in demyelinating diseases. We also highlight the alterations in signaling pathways triggered by phagocytosis, and provide a comprehensive overview of the various phagocytic receptors involved. Such insights are invaluable for pinpointing potential therapeutic strategies for the treatment of demyelinating diseases by targeting phagocytosis.
Collapse
Affiliation(s)
- Rui Gao
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Sheng-Jiao Song
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng-Yuan Tian
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Li-Bin Wang
- Neurosurgery Department, Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, Guangdong, China
| | - Yuan Zhang
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xing Li
- The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Quintanilla B, Zarate CA, Pillai A. Ketamine's mechanism of action with an emphasis on neuroimmune regulation: can the complement system complement ketamine's antidepressant effects? Mol Psychiatry 2024; 29:2849-2858. [PMID: 38575806 PMCID: PMC11804209 DOI: 10.1038/s41380-024-02507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Over 300 million people worldwide suffer from major depressive disorder (MDD). Unfortunately, only 30-40% of patients with MDD achieve complete remission after conventional monoamine antidepressant therapy. In recent years, ketamine has revolutionized the treatment of MDD, with its rapid antidepressant effects manifesting within a few hours as opposed to weeks with conventional antidepressants. Many research endeavors have sought to identify ketamine's mechanism of action in mood disorders; while many studies have focused on ketamine's role in glutamatergic modulation, several studies have implicated its role in regulating neuroinflammation. The complement system is an important component of the innate immune response vital for synaptic plasticity. The complement system has been implicated in the pathophysiology of depression, and studies have shown increases in complement component 3 (C3) expression in the prefrontal cortex of suicidal individuals with depression. Given the role of the complement system in depression, ketamine and the complement system's abilities to modulate glutamatergic transmission, and our current understanding of ketamine's anti-inflammatory properties, there is reason to suspect a common link between the complement system and ketamine's mechanism of action. This review will summarize ketamine's anti- inflammatory roles in the periphery and central nervous system, with an emphasis on complement system regulation.
Collapse
Affiliation(s)
- Brandi Quintanilla
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA.
| |
Collapse
|
10
|
Romanò C, Jiang H, Tahvili S, Wei P, Keiding UB, Clergeaud G, Skovbakke SL, Blomberg AL, Hafkenscheid L, Henriksen JR, Andresen TL, Goletz S, Hansen AE, Christensen D, Clausen MH. Chemical synthesis and immunological evaluation of cancer vaccines based on ganglioside antigens and α-galactosylceramide. RSC Med Chem 2024; 15:2718-2728. [PMID: 39149099 PMCID: PMC11324045 DOI: 10.1039/d4md00387j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
iNKT cells - often referred as the "Swiss Army knife" of the immune system - have emerged as central players in cancer vaccine therapies. Glycolipids activating iNKT cells, such as α-galactosylceramide (αGalCer), can enhance the immune response against co-delivered cancer antigens and have been applied in the design of self-adjuvanting anti-tumor vaccines. In this context, this work focuses on the chemical synthesis of ganglioside tumor-associated carbohydrate antigens (TACAs), namely GM3 and (Neu5Gc)GM3 antigens, their conjugation to αGalCer, and their formulation into liposomes as an efficient platform for their in vivo delivery. Liposomes containing GM3-αGalCer, (Neu5Gc)GM3-αGalCer, and equimolar amounts of the two conjugates have been fully characterized and their ability to activate iNKT cell has been confirmed ex vivo in mouse and human cell assays. The candidates were tested in in vivo immunization studies, demonstrating an ability to induce both TH1 and TH2 cytokines leading to the production of all subclasses of IgG antibodies. Notably, the study also demonstrated that serum antibodies raised against the two TACAs, alone and in combination, were cross-reactive. This finding has consequences for future vaccine designs - even if a highly tumor-selective antigen is chosen, the resulting antibody response may be broader than anticipated.
Collapse
Affiliation(s)
- Cecilia Romanò
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Hao Jiang
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Sahar Tahvili
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Peng Wei
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Ulrik B Keiding
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Gael Clergeaud
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark Ørsteds Plads 2800 Kgs Lyngby Denmark
| | - Sarah Line Skovbakke
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark Søltofts Plads 2800 Kgs Lyngby Denmark
| | - Anne Louise Blomberg
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark Søltofts Plads 2800 Kgs Lyngby Denmark
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark Søltofts Plads 2800 Kgs Lyngby Denmark
| | - Jonas R Henriksen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark Ørsteds Plads 2800 Kgs Lyngby Denmark
| | - Thomas L Andresen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark Ørsteds Plads 2800 Kgs Lyngby Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Section for Medical Biotechnology, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark Søltofts Plads 2800 Kgs Lyngby Denmark
| | - Anders E Hansen
- Department of Health Technology, Section for Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark Ørsteds Plads 2800 Kgs Lyngby Denmark
| | - Dennis Christensen
- Adjuvant Systems Research & Development, Croda Pharma 2800 Lyngby Denmark
| | - Mads H Clausen
- Center for Nanomedicine & Theranostics, Department of Chemistry, Technical University of Denmark Kemitorvet 207 2800 Kgs. Lyngby Denmark
| |
Collapse
|
11
|
Gedam M, Zheng H. Complement C3aR signaling: Immune and metabolic modulation and its impact on Alzheimer's disease. Eur J Immunol 2024; 54:e2350815. [PMID: 38778507 PMCID: PMC11305912 DOI: 10.1002/eji.202350815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia among the elderly population. Despite its widespread prevalence, our comprehension of the intricate mechanisms governing the pathogenesis of the disease remains incomplete, posing a challenge for the development of efficient therapies. Pathologically characterized by the presence of amyloid β plaques and neurofibrillary tau tangles, AD is also accompanied by the hyperactivation of glial cells and the immune system. The complement cascade, the evolutionarily conserved innate immune pathway, has emerged as a significant contributor to AD. This review focuses on one of the complement components, the C3a receptor (C3aR), covering its structure, ligand-receptor interaction, intracellular signaling and its functional consequences. Drawing insights from cellular and AD mouse model studies, we present the multifaceted role of complement C3aR signaling in AD and attempt to convey to the readers that C3aR acts as a crucial immune and metabolic modulator to influence AD pathogenesis. Building on this framework, the objective of this review is to inform future research endeavors and facilitate the development of therapeutic strategies for this challenging condition.
Collapse
Affiliation(s)
- Manasee Gedam
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Hui Zheng
- Department of Molecular and Human Genetics, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Negro-Demontel L, Maleki AF, Reich DS, Kemper C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front Neurol 2024; 15:1396520. [PMID: 39022733 PMCID: PMC11252048 DOI: 10.3389/fneur.2024.1396520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Neurodegenerative and neuroinflammatory diseases, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis, affect millions of people globally. As aging is a major risk factor for neurodegenerative diseases, the continuous increase in the elderly population across Western societies is also associated with a rising prevalence of these debilitating conditions. The complement system, a crucial component of the innate immune response, has gained increasing attention for its multifaceted involvement in the normal development of the central nervous system (CNS) and the brain but also as a pathogenic driver in several neuroinflammatory disease states. Although complement is generally understood as a liver-derived and blood or interstitial fluid operative system protecting against bloodborne pathogens or threats, recent research, particularly on the role of complement in the healthy and diseased CNS, has demonstrated the importance of locally produced and activated complement components. Here, we provide a succinct overview over the known beneficial and pathological roles of complement in the CNS with focus on local sources of complement, including a discussion on the potential importance of the recently discovered intracellularly active complement system for CNS biology and on infection-triggered neurodegeneration.
Collapse
Affiliation(s)
- Luciana Negro-Demontel
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Department of Histology and Embryology, Faculty of Medicine, UDELAR, Montevideo, Uruguay
- Neuroinflammation and Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Adam F. Maleki
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD, United States
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, United States
| |
Collapse
|
13
|
Venkatachalam G, Giri J, Mallik S, Arumugam GS, Arulmani M, Dewangan VK, Doble M, Zhao Z. Immunomodulatory zymosan/ι-carrageenan/ agarose hydrogel for targeting M2 to M1 macrophages (antitumoral). RSC Adv 2024; 14:11694-11705. [PMID: 38605900 PMCID: PMC11008189 DOI: 10.1039/d3ra06978h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Several studies have been performed on the immunomodulatory effects of yeast β-(1,3) glucan, but there is no proper evaluation of the thermal and immunomodulating properties of zymosan (ZM). Thermogravimetry analysis indicated a 54% weight loss of ZM at 270 °C. Circular dichroism showed absorption peaks in the region of 250 to 400 nm, suggesting a helical coil β-sheet configuration. XRD showed a broad peak at 2θ of 20.38°, indicating the crystalline nature, and the size was found to be 23 nm. ZM is biocompatible and showed no toxicity against L929 and RAW 264.7 cell lines (cell viability > 90%). Immunomodulatory studies with PCR showed upregulation of M1 genes in human differentiated THP-1 macrophage cell lines, which were responsible for antitumor properties. The uptake of ZM particles inside the differentiated THP-1 macrophages and Raw 264.7 cells was confirmed (Video clip). ZM particle uptake via Dectin-1 was identified by competitive receptor blocking. Seaweed derived carrageenan/ZM/agarose hydrogel was successfully prepared (@5 : 5 wt%) and was seen to support the growth of L929 cells (1 × 105 cells per mL) and have a higher swelling (≈250-280%). This study indicates that ZM-based hydrogel could be a potential drug carrier (Rifampicin and Levofloxacin) for targeting tumour-associated macrophages (M2).
Collapse
Affiliation(s)
- Geetha Venkatachalam
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras 600036 Chennai Tamilnadu India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering Nagpur India
| | - Saurav Mallik
- Department of Pharmacology and Toxicology, University of Arizona Tucson AZ USA
| | | | - Manavalan Arulmani
- Department of Cariology, Saveetha Dental College, SIMATS 600077 Chennai Tamilnadu India
| | - Vimal Kumar Dewangan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras 600036 Chennai India
| | - Mukesh Doble
- Department of Cariology, Saveetha Dental College, SIMATS 600077 Chennai Tamilnadu India
| | - Zhongming Zhao
- McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston Houston TX USA
| |
Collapse
|
14
|
Ratajczak MZ, Bujko K, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M. Hematopoiesis Revolves Around the Primordial Evolutional Rhythm of Purinergic Signaling and Innate Immunity - A Journey to the Developmental Roots. Stem Cell Rev Rep 2024; 20:827-838. [PMID: 38363476 PMCID: PMC10984895 DOI: 10.1007/s12015-024-10692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
A cell's most significant existential task is to survive by ensuring proper metabolism, avoiding harmful stimuli, and adapting to changing environments. It explains why early evolutionary primordial signals and pathways remained active and regulate cell and tissue integrity. This requires energy supply and a balanced redox state. To meet these requirements, the universal intracellular energy transporter purine nucleotide-adenosine triphosphate (ATP) became an important signaling molecule and precursor of purinergic signaling after being released into extracellular space. Similarly, ancient proteins involved in intracellular metabolism gave rise to the third protein component (C3) of the complement cascade (ComC), a soluble arm of innate immunity. These pathways induce cytosol reactive oxygen (ROS) and reactive nitrogen species (RNS) that regulate the redox state of the cells. While low levels of ROS and RNS promote cell growth and differentiation, supra-physiological concentrations can lead to cell damage by pyroptosis. This balance explains the impact of purinergic signaling and innate immunity on cell metabolism, organogenesis, and tissue development. Subsequently, along with evolution, new regulatory cues emerge in the form of growth factors, cytokines, chemokines, and bioactive lipids. However, their expression is still modulated by both primordial signaling pathways. This review will focus on the data that purinergic signaling and innate immunity carry on their ancient developmental task in hematopoiesis and specification of hematopoietic stem/progenitor cells (HSPCs). Moreover, recent evidence shows both these regulatory pathways operate in a paracrine manner and inside HSPCs at the autocrine level.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Department of Hematology, University of Zielona Gora, Multi-Specialist Hospital Gorzow Wlkp., Gorzow Wielkopolski, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Abdollahi Z, Nejabat M, Abnous K, Hadizadeh F. The therapeutic value of thiazole and thiazolidine derivatives in Alzheimer's disease: a systematic literature review. Res Pharm Sci 2024; 19:1-12. [PMID: 39006977 PMCID: PMC11244712 DOI: 10.4103/1735-5362.394816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 04/19/2023] [Accepted: 12/23/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Alzheimer's disease (AD) is a common neurodegenerative disease and the fifth leading cause of death among the elderly. The development of drugs for AD treatment is based on inhibiting cholinesterase (ChE) activity and inhibiting amyloid-beta peptide and tau protein aggregations. Many in vitro findings have demonstrated that thiazole-and thiazolidine-based compounds have a good inhibitory effect on ChE and other elements involved in the AD pathogenicity cascade. Experimental approach In the present review, we collected available documents to verify whether these synthetic compounds can be a step forward in developing new medications for AD. A systematic literature search was performed in major electronic databases in April 2021. Twenty-eight relevant in vitro and in vivo studies were found and used for data extraction. Findings/Results Findings demonstrated that thiazole-and thiazolidine-based compounds could ameliorate AD's pathologic condition by affecting various targets, including inhibition of ChE activity, amyloid-beta, and tau aggregation in addition to cyclin-dependent kinase 5/p25, beta-secretase-1, cyclooxygenase, and glycogen synthase kinase-3β. Conclusion and implications Due to multitarget effects at micromolar concentration, this review demonstrated that these synthetic compounds could be considered promising candidates for developing anti-Alzheimer drugs.
Collapse
Affiliation(s)
- Zahra Abdollahi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Singh P, Kemper C. Complement, complosome, and complotype: A perspective. Eur J Immunol 2023; 53:e2250042. [PMID: 37120820 PMCID: PMC10613581 DOI: 10.1002/eji.202250042] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/01/2023]
Abstract
Recent rapid progress in key technological advances, including the broader accessibility of single-cell "omic" approaches, have allowed immunologists to gain important novel insights into the contributions of individual immune cells in protective immunity and immunopathologies. These insights also taught us that there is still much to uncover about the (cellular) networks underlying immune responses. For example, in the last decade, studies on a key component of innate immunity, the complement system, have defined intracellularly active complement (the complosome) as a key orchestrator of normal cell physiology. This added an unexpected facet to the biology of complement, which was long considered fully explored. Here, we will summarize succinctly the known activation modes and functions of the complosome and provide a perspective on the origins of intracellular complement. We will also make a case for extending assessments of the complotype, the individual inherited landscape of common variants in complement genes, to the complosome, and for reassessing patients with known serum complement deficiencies for complosome perturbations. Finally, we will discuss where we see current opportunities and hurdles for dissecting the compartmentalization of complement activities toward a better understanding of their contributions to cellular function in health and disease.
Collapse
Affiliation(s)
- Parul Singh
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Salken I, Provencio JJ, Coulibaly AP. A potential therapeutic target: The role of neutrophils in the central nervous system. Brain Behav Immun Health 2023; 33:100688. [PMID: 37767236 PMCID: PMC10520304 DOI: 10.1016/j.bbih.2023.100688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophils play a critical role in immune defense as the first recruited and most abundant leukocytes in the innate immune system. As such, regulation of neutrophil effector functions have strong implications on immunity. These cells display a wide heterogeneity of function, including both inflammatory and immunomodulatory roles. Neutrophils commonly infiltrate the central nervous system (CNS) in response to varied pathological conditions. There is still little understanding of the role these cells play in the CNS in such conditions. In the present review, we will summarize what is known of neutrophil's role in cancer and Alzheimer's disease (AD), with a focus on highlighting the gaps in our understanding.
Collapse
Affiliation(s)
- Isabel Salken
- College of Arts and Science, University of Virginia, USA
| | | | | |
Collapse
|
18
|
Julian JULIAN, Robiatul ADAWIYAH, Sri WAHDINI. BIOMOLECULAR ACTIVITY OF CRYPTOCOCCUS DURING CRYPTOCOCCOSIS: A REVIEW OF MOLECULAR INTERACTIONS OF CRYPTOCOCCUS WITH HUMAN IMMUNE SYSTEM AND BLOOD-BRAIN-BARRIER. Afr J Infect Dis 2023; 18:11-22. [PMID: 38058414 PMCID: PMC10696652 DOI: 10.21010/ajidv18i1.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 12/08/2023] Open
Abstract
Global mycosis is still a problem. One of these is the cryptococcal disease. A systemic mycosis brought on by Cryptococcus is called cryptococcosis. Host immunological conditions influence infection with Cryptococcosis. When environmental spores are inhaled by the host, the spores get to the lungs, an infection is created. Alveolar macrophages and other immune cells recognize Cryptococcus in the lung. The initial line of defense against pathogens in the phagolysosome is provided by alveolar macrophages found in the lungs. When the immune system is weak, Cryptococcus uses the evasion system as a molecular interaction with the immune system and persists in the lungs without causing any symptoms such as Factor Transcription, Cell masking, N-glycan structure, Extracellular molecule, and Antioxidant system. The evasion mechanism protects and makes Cryptococcus disseminate throughout the other organs, especially CNS. If Cryptococcus escapes against the host immune system, it will disseminate to other organs, especially Cerebrospinal System by Three mechanisms. There are Trojan Horse, Paracellular, and Transcellular interactions with Blood-Brain Barrier. Disease severity is determined by the Interaction between the host's immune system and the fungus.
Collapse
Affiliation(s)
- JULIAN Julian
- Master’s Programme in biomedical science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - ADAWIYAH Robiatul
- Master’s Programme in biomedical science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - WAHDINI Sri
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
19
|
Kiss MG, Papac-Miličević N, Porsch F, Tsiantoulas D, Hendrikx T, Takaoka M, Dinh HQ, Narzt MS, Göderle L, Ozsvár-Kozma M, Schuster M, Fortelny N, Hladik A, Knapp S, Gruber F, Pickering MC, Bock C, Swirski FK, Ley K, Zernecke A, Cochain C, Kemper C, Mallat Z, Binder CJ. Cell-autonomous regulation of complement C3 by factor H limits macrophage efferocytosis and exacerbates atherosclerosis. Immunity 2023; 56:1809-1824.e10. [PMID: 37499656 PMCID: PMC10529786 DOI: 10.1016/j.immuni.2023.06.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/21/2022] [Accepted: 06/30/2023] [Indexed: 07/29/2023]
Abstract
Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.
Collapse
Affiliation(s)
- Máté G Kiss
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| | | | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Dimitrios Tsiantoulas
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tim Hendrikx
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Minoru Takaoka
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Huy Q Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Laura Göderle
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Mária Ozsvár-Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Anastasiya Hladik
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Filip K Swirski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Klaus Ley
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Clément Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany; Comprehensive Heart Failure Center Würzburg, University Hospital Würzburg, Würzburg, Germany
| | - Claudia Kemper
- Inflammation Research Section, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK; Institut National de la Santé et de la Recherche Médicale, Paris Cardiovascular Research Center, Paris, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
20
|
Greif CE, Mertens RT, Berger G, Parkin S, Awuah SG. An anti-glioblastoma gold(i)-NHC complex distorts mitochondrial morphology and bioenergetics to induce tumor growth inhibition. RSC Chem Biol 2023; 4:592-599. [PMID: 37547458 PMCID: PMC10398352 DOI: 10.1039/d3cb00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/19/2023] [Indexed: 08/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most lethal brain cancer subtype, often advanced by the time of initial diagnosis. Existing treatment modalities including surgery, chemotherapy and radiation have been stymied by recurrence, metastasis, drug resistance and brain targetability. Here, we report a geometrically distinct Au(i) complex ligated by N^N-bidentate ligands and supported by a N-heterocyclic ligand that modulates mitochondrial morphology to inhibit GBM in vitro and in vivo. This work benefits from the facile preparation of anti-GBM Au(i)-NHC complexes.
Collapse
Affiliation(s)
- Charles E Greif
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - R Tyler Mertens
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - Gilles Berger
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston MA 02115 USA
- Microbiology, Bioorganic & Macromolecular Chemistry, Faculté de Pharmacie, Université libre de Bruxelles (ULB), Boulevard du Triomphe 1050 Brussels Belgium
| | - Sean Parkin
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky Lexington Kentucky 40506 USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky Lexington Kentucky 40536 USA
- University of Kentucky Markey Cancer Center, University of Kentucky Lexington KY 40536 USA
| |
Collapse
|
21
|
Aligita W, Singgih M, Sutrisno E, Adnyana IK. Hepatoprotective Properties of Water Kefir: A Traditional Fermented Drink and Its Potential Role. Int J Prev Med 2023; 14:93. [PMID: 37855014 PMCID: PMC10580206 DOI: 10.4103/ijpvm.ijpvm_29_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/01/2022] [Indexed: 10/20/2023] Open
Abstract
The liver is extremely vulnerable to damage because of its role in metabolism. Toxin, metabolic syndrome, alcohol, microorganisms, and autoimmune diseases can be the cause of liver damage. While different etiologies can cause liver disease, pathophysiologically, there are similarities in the role of free radicals, inflammatory mediators, and gut microbiome during the disease development. Therefore, ingredients with antioxidant, antiinflammatory, and antidysbiotic properties have the potential to act as hepatoprotectors; and water kefir is one of them. Water kefir is a traditional fermented drink made from water kefir grains, sugar, and dried fruit. Water kefir is dominated by lactic acid bacteria and yeast as a fermented beverage, and several species of this group of microorganisms have been shown as probiotics. According to researches, water kefir has strong antioxidant, antiinflammatory, and hepatoprotective effects. Even so, there are still few researches reported about water kefir as a hepatoprotective agent. Several studies, on the other hand, showed promising results. This review discusses the relationship between the pathophysiology of liver disease and the pharmacological activity of water kefir and other probiotics in general, which leads to the potential prospect of water kefir research as a hepatoprotective agent.
Collapse
Affiliation(s)
- Widhya Aligita
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia
| | - Marlia Singgih
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Entris Sutrisno
- Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia
| | - I. K. Adnyana
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
22
|
Surniyantoro HNE, Kisnanto T, Tetriana D, Yusuf D, Basri IKH, Lusiyanti Y. Study of Immune Response and Malondialdehyde Levels in Irradiated Rats Supplemented with Curcuma xanthorriza Roxb Extract. Asian Pac J Cancer Prev 2023; 24:1717-1723. [PMID: 37247293 PMCID: PMC10495877 DOI: 10.31557/apjcp.2023.24.5.1717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVE The purpose of this study was to assess the immune response and malondialdehyde levels in irradiated rats supplemented with Curcuma xanthorriza Roxb extract as a candidate for mitigating radiation exposure. METHODS Twenty-four male Wistar rats were grouped into eight treatment groups, then Curcuma xanthorrhiza Roxb extract was administered orally and irradiated at 6 Gy. Measurement of rats IL-6 and INF-γ was performed using a sandwich ELISA Kit, while the MDA concentration was quantified according to the method of Wills (1971). The statistical test is determined by one way ANOVA test. P-value <0.05 was considered statistically significant. RESULT The concentration of IL-6 in all groups showed no statistically significant difference (P=0.18). There was an increase in the concentration of IL-6 in the group of rats irradiated with 6 Gy for 7 days and 14 days. Meanwhile, the INF-γ concentration also showed no significant results in all treatment groups (P=0.28). The average of MDA concentration showed a significant difference in the liver and spleen of irradiated rats at 6 Gy for 14 days compared to the control (0.044 nmol/mg vs 0.008 nmol/mg, P=0.03 and 0.032 nmol/mg vs 0.014 nmol/mg, P=0.05, respectively). CONCLUSION The administration of Curcuma xanthorriza Xorb extract was able to reduce MDA concentrations in the liver and spleen although not statistically significant. In addition, exposure to ionizing radiation at a dose of 6 Gy significantly increased lipid peroxidation in the liver and spleen by 5.5 times and 2.3 times, respectively.
Collapse
Affiliation(s)
- Harry Nugroho Eko Surniyantoro
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Serpong, Indonesia.
- Doctoral Program, Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia.
| | - Teja Kisnanto
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Serpong, Indonesia.
| | - Devita Tetriana
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia.
| | - Darlina Yusuf
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia.
| | - Iin Kurnia Hasan Basri
- Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Serpong, Indonesia.
| | - Yanti Lusiyanti
- Research Center for Safety, Metrology, and Nuclear Quality Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Jakarta, Indonesia.
| |
Collapse
|
23
|
Bohlson SS, Tenner AJ. Complement in the Brain: Contributions to Neuroprotection, Neuronal Plasticity, and Neuroinflammation. Annu Rev Immunol 2023; 41:431-452. [PMID: 36750318 DOI: 10.1146/annurev-immunol-101921-035639] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The complement system is an ancient collection of proteolytic cascades with well-described roles in regulation of innate and adaptive immunity. With the convergence of a revolution in complement-directed clinical therapeutics, the discovery of specific complement-associated targetable pathways in the central nervous system, and the development of integrated multi-omic technologies that have all emerged over the last 15 years, precision therapeutic targeting in Alzheimer disease and other neurodegenerative diseases and processes appears to be within reach. As a sensor of tissue distress, the complement system protects the brain from microbial challenge as well as the accumulation of dead and/or damaged molecules and cells. Additional more recently discovered diverse functions of complement make it of paramount importance to design complement-directed neurotherapeutics such that the beneficial roles in neurodevelopment, adult neural plasticity, and neuroprotective functions of the complement system are retained.
Collapse
Affiliation(s)
- Suzanne S Bohlson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA; ,
| | - Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA; ,
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
24
|
West EE, Kemper C. Complosome - the intracellular complement system. Nat Rev Nephrol 2023:10.1038/s41581-023-00704-1. [PMID: 37055581 PMCID: PMC10100629 DOI: 10.1038/s41581-023-00704-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
The complement system is a recognized pillar of host defence against infection and noxious self-derived antigens. Complement is traditionally known as a serum-effective system, whereby the liver expresses and secretes most complement components, which participate in the detection of bloodborne pathogens and drive an inflammatory reaction to safely remove the microbial or antigenic threat. However, perturbations in normal complement function can cause severe disease and, for reasons that are currently not fully understood, the kidney is particularly vulnerable to dysregulated complement activity. Novel insights into complement biology have identified cell-autonomous and intracellularly active complement - the complosome - as an unexpected central orchestrator of normal cell physiology. For example, the complosome controls mitochondrial activity, glycolysis, oxidative phosphorylation, cell survival and gene regulation in innate and adaptive immune cells, and in non-immune cells, such as fibroblasts and endothelial and epithelial cells. These unanticipated complosome contributions to basic cell physiological pathways make it a novel and central player in the control of cell homeostasis and effector responses. This discovery, together with the realization that an increasing number of human diseases involve complement perturbations, has renewed interest in the complement system and its therapeutic targeting. Here, we summarize the current knowledge about the complosome across healthy cells and tissues, highlight contributions from dysregulated complosome activities to human disease and discuss potential therapeutic implications.
Collapse
Affiliation(s)
- Erin E West
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Complement and Inflammation Research Section (CIRS), Bethesda, MD, USA.
| |
Collapse
|
25
|
Menezes dos Reis L, Berçot MR, Castelucci BG, Martins AJE, Castro G, Moraes-Vieira PM. Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses 2023; 15:v15020525. [PMID: 36851739 PMCID: PMC9965666 DOI: 10.3390/v15020525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
RNA viruses are known to induce a wide variety of respiratory tract illnesses, from simple colds to the latest coronavirus pandemic, causing effects on public health and the economy worldwide. Influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (MPV), respiratory syncytial virus (RSV), rhinovirus (RhV), and coronavirus (CoV) are some of the most notable RNA viruses. Despite efforts, due to the high mutation rate, there are still no effective and scalable treatments that accompany the rapid emergence of new diseases associated with respiratory RNA viruses. Host-directed therapies have been applied to combat RNA virus infections by interfering with host cell factors that enhance the ability of immune cells to respond against those pathogens. The reprogramming of immune cell metabolism has recently emerged as a central mechanism in orchestrated immunity against respiratory viruses. Therefore, understanding the metabolic signature of immune cells during virus infection may be a promising tool for developing host-directed therapies. In this review, we revisit recent findings on the immunometabolic modulation in response to infection and discuss how these metabolic pathways may be used as targets for new therapies to combat illnesses caused by respiratory RNA viruses.
Collapse
Affiliation(s)
- Larissa Menezes dos Reis
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Marcelo Rodrigues Berçot
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-270, SP, Brazil
| | - Bianca Gazieri Castelucci
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Ana Julia Estumano Martins
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Gisele Castro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Pedro M. Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-862, SP, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas 13083-872, SP, Brazil
- Correspondence:
| |
Collapse
|
26
|
Fraga-Silva TFDC, Boko MMM, Martins NS, Cetlin AA, Russo M, Vianna EO, Bonato VLD. Asthma-associated bacterial infections: Are they protective or deleterious? THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:14-22. [PMID: 37780109 PMCID: PMC10510013 DOI: 10.1016/j.jacig.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 10/03/2023]
Abstract
Eosinophilic, noneosinophilic, or mixed granulocytic inflammations are the hallmarks of asthma heterogeneity. Depending on the priming of lung immune and structural cells, subjects with asthma might generate immune responses that are TH2-prone or TH17-prone immune response. Bacterial infections caused by Haemophilus, Moraxella, or Streptococcus spp. induce the secretion of IL-17, which in turn recruit neutrophils into the airways. Clinical studies and experimental models of asthma indicated that neutrophil infiltration induces a specific phenotype of asthma, characterized by an impaired response to corticosteroid treatment. The understanding of pathways that regulate the TH17-neutrophils axis is critical to delineate and develop host-directed therapies that might control asthma and its exacerbation episodes that course with infectious comorbidities. In this review, we outline clinical and experimental studies on the role of airway epithelial cells, S100A9, and high mobility group box 1, which act in concert with the IL-17-neutrophil axis activated by bacterial infections, and are related with asthma that is difficult to treat. Furthermore, we report critically our view in the light of these findings in an attempt to stimulate further investigations and development of immunotherapies for the control of severe asthma.
Collapse
Affiliation(s)
| | - Mèdéton Mahoussi Michaël Boko
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Núbia Sabrina Martins
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Andrea Antunes Cetlin
- Pulmonary Division, Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Elcio Oliveira Vianna
- Pulmonary Division, Department of Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Vania Luiza Deperon Bonato
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
- Basic and Applied Immunology Program, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
27
|
Xu Z, Hou XF, Feng CM, Zheng L, Xu DX, Zhao H, Fu L. The association between serum complement C3a and severity in patients with community-acquired pneumonia. Front Immunol 2023; 14:1034233. [PMID: 36776834 PMCID: PMC9911530 DOI: 10.3389/fimmu.2023.1034233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
Background A few studies found that the complement system may be involved in the onset and progression of community-acquired pneumonia (CAP). However, the role of the complement system in CAP was obscure. The goal of this study was to analyze the association of serum complement C3a with CAP severity scores based on a cross-sectional study. Methods All 190 CAP patients and 95 control subjects were enrolled. Demographic information and clinical data were extracted. Peripheral blood samples were collected on admission. Results Serum complement C3a on admission was elevated in CAP patients compared with healthy subjects. The level of complement C3a was gradually elevated in parallel with CAP severity scores (CURB-65, CRB-65, PSI, SMART-COP, and CURXO). Complement C3a was positively correlated with blood routine parameters, renal function markers, and inflammatory cytokines in CAP patients. Furthermore, multivariate linear and logistic regression models found that serum complement C3a on admission was positively associated with CAP severity scores. Mechanistic research suggested that complement system inhibition alleviated Streptococcus pneumoniae-induced upregulation of IL-1β, TNF-α, IL-6, and CRP in MLE-12 cells. Conclusions Serum complement C3a on admission is positively associated with the severity of CAP patients. Inhibiting complement system attenuates S. pneumoniae-elevated secretion of inflammatory cytokines in pulmonary epithelial cells, indicating that complement C3a is involved in the pathophysiology of CAP. Serum complement C3a may serve as an earlier diagnostic biomarker for CAP.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of Respiratory and Critical Care Medicine, The Sixth People’s Hospital of Fuyang, Anhui, China
| | - Xue-Feng Hou
- School of Pharmacy, Drug Research and Development Center, Wannan Medical College, Wuhu, Anhui, China
| | - Chun-Mei Feng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling Zheng
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui, China,*Correspondence: Lin Fu, ; Hui Zhao, ; De-Xiang Xu,
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,*Correspondence: Lin Fu, ; Hui Zhao, ; De-Xiang Xu,
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,Department of Toxicology, Anhui Medical University, Hefei, Anhui, China,*Correspondence: Lin Fu, ; Hui Zhao, ; De-Xiang Xu,
| |
Collapse
|
28
|
He M, Yu WX, Shen Y, Zhang JN, Ni LL, Li Y, Liu H, Zhao Y, Zhao HR, Zhang CG. Kangfuxin alleviates ulcerative colitis in rats by inhibiting NF-κB p65 activation and regulating T lymphocyte subsets. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:882-890. [PMID: 37427322 PMCID: PMC10329251 DOI: 10.22038/ijbms.2023.68771.14990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/10/2023] [Indexed: 07/11/2023]
Abstract
Objectives Ulcerative colitis (UC) remains an enduring, idiopathic inflammatory bowel disease marked by persistent mucosal inflammation initiating from the rectum and extending in a proximal direction. An ethanol extract of Periplaneta americana L., namely Kangfuxin (KFX), has a significant historical presence in Traditional Chinese Medicine and has been broadly utilized in clinical practice for the treatment of injury. Here, we aimed to determine the effect of KFX on 2,4,6-trinitro'benzene sulfonic acid (TNBS)-induced UC in Sprague-Dawley rats. Materials and Methods We established the UC model by TNBS/ethanol method. Then, the rats were subject to KFX (50, 100, 200 mg/kg/day) for 2 weeks by intragastric gavage. The body weight, disease activity index (DAI), colonic mucosal injury index (CMDI), and histopathological score were evaluated. The colonic tissue interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), IL-10, transforming growth factor-1 (TGF-β1), and epidermal growth factor (EGF) were determined by Elisa. To study T-lymphocyte subsets, flow cytometry was performed. In addition, the expression level of NF-κB p65 was evaluated by immunohistochemistry and western blot analysis. Results Compared with the TNBS-triggered colitis rats, the treatment of rats with KFX significantly increased the body weight, and decreased DAI, CMDI, and histopathological score. Also, KFX elicited a reduction in the secretion of colonic pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF-α, concomitant with up-regulation of IL-10, TGF-β1, and EGF levels. Upon KFX treatment, the CD3+CD4+/CD3+CD8+ ratio in the spleen decreased, while the CD3+CD8+ subset and the CD3+CD4+CD25+/CD3+CD4+ ratio demonstrated an increase. In addition, the expression of NF-κB p65 in the colon was decreased. Conclusion KFX effectively suppresses TNBS-induced colitis by inhibiting the activation of NF-κB p65 and regulating the ratio of CD4+/CD8+.
Collapse
Affiliation(s)
- Miao He
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, Dali, Yunnan, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- These authors contributed eqully to this work
| | - Wan-xin Yu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
- These authors contributed eqully to this work
| | - Yongmei Shen
- Good Doctor Pharmaceutical Group, Chengduo, Sichuang, China
| | - Jing-na Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
| | - Lian-li Ni
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, Dali, Yunnan, China
| | - Yu Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, Dali, Yunnan, China
| | - Hai-rong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, Dali, Yunnan, China
| | - Cheng-gui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, China
- Yunnan Provincial 2011 Collaborative Innovation Center for Entomoceutics, Dali, Yunnan, China
| |
Collapse
|
29
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
30
|
Bacterial ectosymbionts in cuticular organs chemically protect a beetle during molting stages. THE ISME JOURNAL 2022; 16:2691-2701. [PMID: 36056153 PMCID: PMC9666510 DOI: 10.1038/s41396-022-01311-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
In invertebrates, the cuticle is the first and major protective barrier against predators and pathogen infections. While immune responses and behavioral defenses are also known to be important for insect protection, the potential of cuticle-associated microbial symbionts to aid in preventing pathogen entry during molting and throughout larval development remains unexplored. Here, we show that bacterial symbionts of the beetle Lagria villosa inhabit unusual dorsal invaginations of the insect cuticle, which remain open to the outer surface and persist throughout larval development. This specialized location enables the release of several symbiont cells and the associated protective compounds during molting. This facilitates ectosymbiont maintenance and extended defense during larval development against antagonistic fungi. One Burkholderia strain, which produces the antifungal compound lagriamide, dominates the community across all life stages, and removal of the community significantly impairs the survival probability of young larvae when exposed to different pathogenic fungi. We localize both the dominant bacterial strain and lagriamide on the surface of eggs, larvae, pupae, and on the inner surface of the molted cuticle (exuvia), supporting extended protection. These results highlight adaptations for effective defense of immature insects by cuticle-associated ectosymbionts, a potentially key advantage for a ground-dwelling insect when confronting pathogenic microbes.
Collapse
|
31
|
van Osch TLJ, Pongracz T, Geerdes DM, Mok JY, van Esch WJE, Voorberg J, Kapur R, Porcelijn L, Kerkhoffs JH, van der Meer PF, van der Schoot CE, de Haas M, Wuhrer M, Vidarsson G. Altered Fc glycosylation of anti-HLA alloantibodies in hemato-oncological patients receiving platelet transfusions. J Thromb Haemost 2022; 20:3011-3025. [PMID: 36165642 PMCID: PMC9828502 DOI: 10.1111/jth.15898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The formation of alloantibodies directed against class I human leukocyte antigens (HLA) continues to be a clinically challenging complication after platelet transfusions, which can lead to platelet refractoriness (PR) and occurs in approximately 5%-15% of patients with chronic platelet support. Interestingly, anti-HLA IgG levels in alloimmunized patients do not seem to predict PR, suggesting functional or qualitative differences among anti-HLA IgG. The binding of these alloantibodies to donor platelets can result in rapid clearance after transfusion, presumably via FcγR-mediated phagocytosis and/or complement activation, which both are affected by the IgG-Fc glycosylation. OBJECTIVES To characterize the Fc glycosylation profile of anti-HLA class I antibodies formed after platelet transfusion and to investigate its effect on clinical outcome. PATIENTS/METHODS We screened and captured anti-HLA class I antibodies (anti-HLA A2, anti-HLA A24, and anti-HLA B7) developed after platelet transfusions in hemato-oncology patients, who were included in the PREPAReS Trial. Using liquid chromatography-mass spectrometry, we analyzed the glycosylation profiles of total and anti-HLA IgG1 developed over time. Subsequently, the glycosylation data was linked to the patients' clinical information and posttransfusion increments. RESULTS The glycosylation profile of anti-HLA antibodies was highly variable between patients. In general, Fc galactosylation and sialylation levels were elevated compared to total plasma IgG, which correlated negatively with the platelet count increment. Furthermore, high levels of afucosylation were observed for two patients. CONCLUSIONS These differences in composition of anti-HLA Fc-glycosylation profiles could potentially explain the variation in clinical severity between patients.
Collapse
Affiliation(s)
- Thijs L. J. van Osch
- Immunoglobulin Research laboratory, Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
- Department of Biomolecular Mass Spectrometry and ProteomicsUtrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrechtThe Netherlands
| | - Tamas Pongracz
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | | | | | | | - Jan Voorberg
- Department of Molecular HematologyAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Rick Kapur
- Department of Experimental Immunohematology|Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology DiagnosticsSanquin Diagnostic ServicesAmsterdamThe Netherlands
| | - Jean‐Louis H. Kerkhoffs
- Department of Clinical Transfusion ResearchSanquin ResearchAmsterdamThe Netherlands
- Department of HematologyHaga Teaching HospitalThe HagueThe Netherlands
| | - Pieter F. van der Meer
- Department of HematologyHaga Teaching HospitalThe HagueThe Netherlands
- Department of ImmunologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Product and Process DevelopmentSanquin Blood BankAmsterdamThe Netherlands
| | - C. Ellen van der Schoot
- Department of Experimental Immunohematology|Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Masja de Haas
- Department of Immunohematology DiagnosticsSanquin Diagnostic ServicesAmsterdamThe Netherlands
- Department of Clinical Transfusion ResearchSanquin ResearchAmsterdamThe Netherlands
- Departement of HematologyLeiden University Medical CenterLeidenThe Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenThe Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research laboratory, Department of Experimental ImmunohematologySanquin ResearchAmsterdamThe Netherlands
- Department of Biomolecular Mass Spectrometry and ProteomicsUtrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
32
|
Dunn CM, Kameishi S, Cho YK, Song SU, Grainger DW, Okano T. Interferon-Gamma Primed Human Clonal Mesenchymal Stromal Cell Sheets Exhibit Enhanced Immunosuppressive Function. Cells 2022; 11:cells11233738. [PMID: 36497001 PMCID: PMC9737548 DOI: 10.3390/cells11233738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) represent a promising treatment for immune-related diseases due to their diverse immunomodulatory paracrine functions. However, progress of culture-expanded MSCs is hindered by inconsistent cell function, poor localization, and insufficient retention when administered as suspended cell injections, thus placing spatiotemporal dosing constraints on therapeutic functions. To address these limitations, we introduce the combination of in vitro interferon-gamma (IFN-γ) priming, a key stimulator of MSC immunosuppressive potency, and thermoresponsive cultureware to harvest cultured MSCs as directly transplantable scaffold-free immunosuppressive cell sheets. Here, we demonstrate that MSC sheets produced with IFN-γ priming upregulate expression of immunosuppressive factors indoleamine 2,3-dioxygenase (IDO-1), interleukin-10 (IL-10), programmed death ligand-1 (PD-L1), and prostaglandin E2 (PGE2) in both dose- and duration-dependent manners. In addition, IFN-γ primed MSC sheets showed increased ability to inhibit T-cell proliferation via indirect and direct contact, specifically related to increased IDO-1 and PGE2 concentrations. Furthermore, this study's use of human clinical-grade single-cell-derived clonal bone marrow-derived MSCs, contributes to the future translatability and clinical relevancy of the produced sheets. Ultimately, these results present the combination of IFN-γ priming and MSC sheets as a new strategy to improve MSC-mediated treatment of localized inflammatory diseases.
Collapse
Affiliation(s)
- Celia M. Dunn
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Sumako Kameishi
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (S.K.); (T.O.)
| | - Yun-Kyoung Cho
- SCM Lifescience Co., Ltd., Incheon 21999, Republic of Korea
| | - Sun U. Song
- SCM Lifescience Co., Ltd., Incheon 21999, Republic of Korea
| | - David W. Grainger
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Teruo Okano
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
- Institute for Advanced Biomedical Sciences, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Correspondence: (S.K.); (T.O.)
| |
Collapse
|
33
|
Knapp RA, Norman VC, Rouse JL, Duncan EJ. Environmentally responsive reproduction: neuroendocrine signalling and the evolution of eusociality. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100951. [PMID: 35863739 PMCID: PMC9586883 DOI: 10.1016/j.cois.2022.100951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 05/12/2023]
Abstract
Eusociality is a rare but successful life-history strategy that is defined by the reproductive division of labour. In eusocial species, most females forgo their own reproduction to support that of a dominant female or queen. In many eusocial insects, worker reproduction is inhibited via dominance hierarchies or by pheromones produced by the queen and her brood. Here, we consider whether these cues may act as generic 'environmental signals', similar to temperature or nutrition stress, which induce a state of reproductive dormancy in some solitary insects. We review the recent findings regarding the mechanisms of reproductive dormancy in insects and highlight key gaps in our understanding of how environmental cues inhibit reproduction.
Collapse
Affiliation(s)
- Rosemary A Knapp
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Victoria C Norman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James L Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
34
|
Tan SM, Snelson M, Østergaard JA, Coughlan MT. The Complement Pathway: New Insights into Immunometabolic Signaling in Diabetic Kidney Disease. Antioxid Redox Signal 2022; 37:781-801. [PMID: 34806406 PMCID: PMC9587781 DOI: 10.1089/ars.2021.0125] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: The metabolic disorder, diabetes mellitus, results in microvascular complications, including diabetic kidney disease (DKD), which is partly believe to involve disrupted energy generation in the kidney, leading to injury that is characterized by inflammation and fibrosis. An increasing body of evidence indicates that the innate immune complement system is involved in the pathogenesis of DKD; however, the precise mechanisms remain unclear. Recent Advances: Complement, traditionally thought of as the prime line of defense against microbial intrusion, has recently been recognized to regulate immunometabolism. Studies have shown that the complement activation products, Complement C5a and C3a, which are potent pro-inflammatory mediators, can mediate an array of metabolic responses in the kidney in the diabetic setting, including altered fuel utilization, disrupted mitochondrial respiratory function, and reactive oxygen species generation. In diabetes, the lectin pathway is activated via autoreactivity toward altered self-surfaces known as danger-associated molecular patterns, or via sensing altered carbohydrate and acetylation signatures. In addition, endogenous complement inhibitors can be glycated, whereas diet-derived glycated proteins can themselves promote complement activation, worsening DKD, and lending support for environmental influences as an additional avenue for propagating complement-induced inflammation and kidney injury. Critical Issues: Recent evidence indicates that conventional renoprotective agents used in DKD do not target the complement, leaving this web of inflammatory stimuli intact. Future Directions: Future studies should focus on the development of novel pharmacological agents that target the complement pathway to alleviate inflammation, oxidative stress, and kidney fibrosis, thereby reducing the burden of microvascular diseases in diabetes. Antioxid. Redox Signal. 37, 781-801.
Collapse
Affiliation(s)
- Sih Min Tan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Matthew Snelson
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Jakob A Østergaard
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia.,Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia.,Baker Heart & Diabetes Institute, Melbourne, Australia
| |
Collapse
|
35
|
Noguès EB, Kropp C, Bétemps L, de Sousa C, Chain F, Auger S, Azevedo V, Langella P, Chatel JM. Lactococcus lactis engineered to deliver hCAP18 cDNA alleviates DNBS-induced colitis in C57BL/6 mice by promoting IL17A and IL10 cytokine expression. Sci Rep 2022; 12:15641. [PMID: 36123355 PMCID: PMC9485145 DOI: 10.1038/s41598-022-19455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
With its antimicrobial and immunomodulating properties, the cathelicidin (LL37) plays an important role in innate immune system. Here, we attempted to alleviate chemically induced colitis using a lactococci strain that either directly expressed the precursor to LL37, hCAP18 (LL-pSEC:hCAP18), or delivered hCAP18 cDNA to host cells under the control of the cytomegalovirus promoter (LL-Probi-H1:hCAP18). We also investigated whether the alleviation of symptoms could be explained through modification of the gut microbiota by hCAP18. Mice were administered daily doses of LL-pSEC:hCAP18 or LL-Probi-H1:hCAP18. On day 7, colitis was induced by DNBS. During autopsy, we assessed macroscopic tissue damage in the colon and collected tissue samples for the characterization of inflammation markers and histological analysis. Feces were collected at day 7 for 16S DNA sequencing. We also performed a fecal transplant experiment in which mice underwent colon washing and received feces from Lactococcus lactis-treated mice before DNBS-colitis induction. Treatment with LL-Probi-H1:hCAP18 reduced the severity of colitis symptoms. The protective effects were accompanied by increased levels of IL17A and IL10 in mesenteric lymph node cells. L. lactis administration altered the abundance of Lachnospiraceae and Muribaculaceae. However, fecal transplant from L. lactis-treated mice did not improve DNBS-induced symptoms in recipient mice.
Collapse
Affiliation(s)
- Esther Borras Noguès
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Camille Kropp
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Laureline Bétemps
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Cassiana de Sousa
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France ,grid.8430.f0000 0001 2181 4888Institute of Biological Sciences, Federal University of Minas Gerais, Belo-Horizonte, MG Brazil
| | - Florian Chain
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Sandrine Auger
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Vasco Azevedo
- grid.8430.f0000 0001 2181 4888Institute of Biological Sciences, Federal University of Minas Gerais, Belo-Horizonte, MG Brazil
| | - Philippe Langella
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| | - Jean-Marc Chatel
- grid.462293.80000 0004 0522 0627Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, 78352 Jouy en Josas, France
| |
Collapse
|
36
|
Rachmadi L, Susanto YDB, Manatar AF, Sitinjak D. Factors Associated with Dysplastic Changes in Sinonasal Inverted Papilloma: Study of Tumor Infiltrating Lymphocytes (TILs) FOXP3, CD4, CD8, and expression of p53. Asian Pac J Cancer Prev 2022; 23:3223-3227. [PMID: 36172688 PMCID: PMC9810298 DOI: 10.31557/apjcp.2022.23.9.3223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE This study examine FOXP3, CD4, CD8 and p53 expression in the transformation of the Sinonasal Inverted Papilloma (SIP) malignancy into sinonasal carcinoma. MATERIALS AND METHODS This study used a cross-sectional approach. The research sample from thirty-six paraffin block preparations with the diagnosis of SIP. Then, immunohistochemical staining was performed using FOXP3 mouse monoclonal antibody (236A/E7), CD8 rabbit monoclonal antibody (CD8/1179R), CD4 mouse monoclonal antibody (4B12) and p53 rabbit monoclonal antibody. Results: There was a significant difference between Foxp3 expression in SIP without dysplasia and SIP with dysplasia (p= 0.013). There was no significant difference between the expression of CD4 and CD8 in the two groups with p-values 0.1 and 0.062, respectively. The mean percentage of positive p53 expression in SIP without dysplasia was 0.45+0.63 and in the SIP with dysplasia 29.31+38.96. There was a significant difference between the two groups (p<0.001). CONCLUSION FOXP3 and p53 were overexpressed in SIP with malignant transformation. FOXP3 together with p53 status is associated with dysplastic changed in the SIP. FOXP3 and p53 status could be potential biomarker of malignant transformation in sinonasal inverted papilloma.
Collapse
|
37
|
Kolev M, Das M, Gerber M, Baver S, Deschatelets P, Markiewski MM. Inside-Out of Complement in Cancer. Front Immunol 2022; 13:931273. [PMID: 35860237 PMCID: PMC9291441 DOI: 10.3389/fimmu.2022.931273] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/21/2022] Open
Abstract
The role of complement in cancer has received increasing attention over the last decade. Recent studies provide compelling evidence that complement accelerates cancer progression. Despite the pivotal role of complement in fighting microbes, complement seems to suppress antitumor immunity via regulation of host cell in the tumor microenvironment. Although most studies link complement in cancer to complement activation in the extracellular space, the discovery of intracellular activation of complement, raises the question: what is the relevance of this process for malignancy? Intracellular activation is pivotal for the survival of immune cells. Therefore, complement can be important for tumor cell survival and growth regardless of the role in immunosuppression. On the other hand, because intracellular complement (the complosome) is indispensable for activation of T cells, these functions will be essential for priming antitumor T cell responses. Here, we review functions of complement in cancer with the consideration of extra and intracellular pathways of complement activation and spatial distribution of complement proteins in tumors and periphery and provide our take on potential significance of complement as biomarker and target for cancer therapy.
Collapse
Affiliation(s)
- Martin Kolev
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| | - Madhumita Das
- Discovery, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Monica Gerber
- Legal Department, Apellis Pharmaceuticals, Waltham, MA, United States
| | - Scott Baver
- Medical Affairs, Apellis Pharmaceuticals, Waltham, MA, United States
| | | | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, United States
- *Correspondence: Martin Kolev, ; Maciej M. Markiewski,
| |
Collapse
|
38
|
Zauhar R, Biber J, Jabri Y, Kim M, Hu J, Kaplan L, Pfaller AM, Schäfer N, Enzmann V, Schlötzer-Schrehardt U, Straub T, Hauck SM, Gamlin PD, McFerrin MB, Messinger J, Strang CE, Curcio CA, Dana N, Pauly D, Grosche A, Li M, Stambolian D. As in Real Estate, Location Matters: Cellular Expression of Complement Varies Between Macular and Peripheral Regions of the Retina and Supporting Tissues. Front Immunol 2022; 13:895519. [PMID: 35784369 PMCID: PMC9240314 DOI: 10.3389/fimmu.2022.895519] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 05/11/2022] [Indexed: 01/02/2023] Open
Abstract
The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells. In late AMD, complement changes were more prominent in the retina especially with the expression of the classical pathway initiators. Notably, we found a spatial preference for these differences. Overall, this study provides insights into the heterogeneity of cellular responses for complement expression and the cooperation of neighboring cells to complete the pathway in healthy and AMD eyes. Further, our findings provide new cellular targets for therapies directed at complement.
Collapse
Affiliation(s)
- Randy Zauhar
- Department of Chemistry and Biochemistry, The University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Josef Biber
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Yassin Jabri
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Mijin Kim
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Lew Kaplan
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Anna M. Pfaller
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Nicole Schäfer
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB), University of Regensburg, Regensburg, Germany
| | - Volker Enzmann
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Tobias Straub
- Bioinformatics Unit, Biomedical Center, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core and Research Unit Protein Science, Helmholtz-Zentrum München, Neuherberg, Germany
| | - Paul D. Gamlin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Michael B. McFerrin
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeffrey Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christianne E. Strang
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nicholas Dana
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University of Marburg, Marburg, Germany
| | - Antje Grosche
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Dwight Stambolian
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
39
|
Mulè MP, Martins AJ, Tsang JS. Normalizing and denoising protein expression data from droplet-based single cell profiling. Nat Commun 2022; 13:2099. [PMID: 35440536 PMCID: PMC9018908 DOI: 10.1038/s41467-022-29356-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 03/01/2022] [Indexed: 12/02/2022] Open
Abstract
Multimodal single-cell profiling methods that measure protein expression with oligo-conjugated antibodies hold promise for comprehensive dissection of cellular heterogeneity, yet the resulting protein counts have substantial technical noise that can mask biological variations. Here we integrate experiments and computational analyses to reveal two major noise sources and develop a method called "dsb" (denoised and scaled by background) to normalize and denoise droplet-based protein expression data. We discover that protein-specific noise originates from unbound antibodies encapsulated during droplet generation; this noise can thus be accurately estimated and corrected by utilizing protein levels in empty droplets. We also find that isotype control antibodies and the background protein population average in each cell exhibit significant correlations across single cells, we thus use their shared variance to correct for cell-to-cell technical noise in each cell. We validate these findings by analyzing the performance of dsb in eight independent datasets spanning multiple technologies, including CITE-seq, ASAP-seq, and TEA-seq. Compared to existing normalization methods, our approach improves downstream analyses by better unmasking biologically meaningful cell populations. Our method is available as an open-source R package that interfaces easily with existing single cell software platforms such as Seurat, Bioconductor, and Scanpy and can be accessed at "dsb [ https://cran.r-project.org/package=dsb ]".
Collapse
Affiliation(s)
- Matthew P Mulè
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- NIH-Oxford-Cambridge Scholars Program, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew J Martins
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
- NIH Center for Human Immunology (CHI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
40
|
Yen M, Ren J, Liu Q, Glassman CR, Sheahan TP, Picton LK, Moreira FR, Rustagi A, Jude KM, Zhao X, Blish CA, Baric RS, Su LL, Garcia KC. Facile discovery of surrogate cytokine agonists. Cell 2022; 185:1414-1430.e19. [PMID: 35325595 PMCID: PMC9021867 DOI: 10.1016/j.cell.2022.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
Abstract
Cytokines are powerful immune modulators that initiate signaling through receptor dimerization, but natural cytokines have structural limitations as therapeutics. We present a strategy to discover cytokine surrogate agonists by using modular ligands that exploit induced proximity and receptor dimer geometry as pharmacological metrics amenable to high-throughput screening. Using VHH and scFv to human interleukin-2/15, type-I interferon, and interleukin-10 receptors, we generated combinatorial matrices of single-chain bispecific ligands that exhibited diverse spectrums of functional activities, including potent inhibition of SARS-CoV-2 by surrogate interferons. Crystal structures of IL-2R:VHH complexes revealed that variation in receptor dimer geometries resulted in functionally diverse signaling outputs. This modular platform enabled engineering of surrogate ligands that compelled assembly of an IL-2R/IL-10R heterodimer, which does not naturally exist, that signaled through pSTAT5 on T and natural killer (NK) cells. This "cytokine med-chem" approach, rooted in principles of induced proximity, is generalizable for discovery of diversified agonists for many ligand-receptor systems.
Collapse
Affiliation(s)
- Michelle Yen
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junming Ren
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingxiang Liu
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb R Glassman
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fernando R Moreira
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiang Zhao
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
41
|
Rozowsky JS, Meesters-Ensing JI, Lammers JAS, Belle ML, Nierkens S, Kranendonk MEG, Kester LA, Calkoen FG, van der Lugt J. A Toolkit for Profiling the Immune Landscape of Pediatric Central Nervous System Malignancies. Front Immunol 2022; 13:864423. [PMID: 35464481 PMCID: PMC9022116 DOI: 10.3389/fimmu.2022.864423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The prognosis of pediatric central nervous system (CNS) malignancies remains dismal due to limited treatment options, resulting in high mortality rates and long-term morbidities. Immunotherapies, including checkpoint inhibition, cancer vaccines, engineered T cell therapies, and oncolytic viruses, have promising results in some hematological and solid malignancies, and are being investigated in clinical trials for various high-grade CNS malignancies. However, the role of the tumor immune microenvironment (TIME) in CNS malignancies is mostly unknown for pediatric cases. In order to successfully implement immunotherapies and to eventually predict which patients would benefit from such treatments, in-depth characterization of the TIME at diagnosis and throughout treatment is essential. In this review, we provide an overview of techniques for immune profiling of CNS malignancies, and detail how they can be utilized for different tissue types and studies. These techniques include immunohistochemistry and flow cytometry for quantifying and phenotyping the infiltrating immune cells, bulk and single-cell transcriptomics for describing the implicated immunological pathways, as well as functional assays. Finally, we aim to describe the potential benefits of evaluating other compartments of the immune system implicated by cancer therapies, such as cerebrospinal fluid and blood, and how such liquid biopsies are informative when designing immune monitoring studies. Understanding and uniformly evaluating the TIME and immune landscape of pediatric CNS malignancies will be essential to eventually integrate immunotherapy into clinical practice.
Collapse
Affiliation(s)
| | | | | | - Muriël L. Belle
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | |
Collapse
|
42
|
Efficient human-like antibody repertoire and hybridoma production in trans-chromosomic mice carrying megabase-sized human immunoglobulin loci. Nat Commun 2022; 13:1841. [PMID: 35383174 PMCID: PMC8983744 DOI: 10.1038/s41467-022-29421-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/15/2022] [Indexed: 11/15/2022] Open
Abstract
Trans-chromosomic (Tc) mice carrying mini-chromosomes with megabase-sized human immunoglobulin (Ig) loci have contributed to the development of fully human therapeutic monoclonal antibodies, but mitotic instability of human mini-chromosomes in mice may limit the efficiency of hybridoma production. Here, we establish human antibody-producing Tc mice (TC-mAb mice) that stably maintain a mouse-derived, engineered chromosome containing the entire human Ig heavy and kappa chain loci in a mouse Ig-knockout background. Comprehensive, high-throughput DNA sequencing shows that the human Ig repertoire, including variable gene usage, is well recapitulated in TC-mAb mice. Despite slightly altered B cell development and a delayed immune response, TC-mAb mice have more subsets of antigen-specific plasmablast and plasma cells than wild-type mice, leading to efficient hybridoma production. Our results thus suggest that TC-mAb mice offer a valuable platform for obtaining fully human therapeutic antibodies, and a useful model for elucidating the regulation of human Ig repertoire formation. Trans-chromosomic (Tc) mice have helped the development of therapeutic antibodies, but chromosome instability limits its application. Here the authors develop a new line of Tc mice with full human Ig heavy and kappa loci integrated into the mouse artificial chromosome for stable passage, and confirm efficient generation of B cell responses and specific antibodies.
Collapse
|
43
|
Kiss MG, Binder CJ. The multifaceted impact of complement on atherosclerosis. Atherosclerosis 2022; 351:29-40. [DOI: 10.1016/j.atherosclerosis.2022.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/17/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
|
44
|
Owlett LD, Karaahmet B, Le L, Belcher EK, Dionisio-Santos D, Olschowka JA, Elliott MR, O'Banion MK. Gas6 induces inflammation and reduces plaque burden but worsens behavior in a sex-dependent manner in the APP/PS1 model of Alzheimer's disease. J Neuroinflammation 2022; 19:38. [PMID: 35130912 PMCID: PMC8822838 DOI: 10.1186/s12974-022-02397-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/20/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Alzheimer's disease is the leading cause of dementia worldwide. TAM receptor tyrosine kinases (Tyro3, Axl, MerTK) are known for their role in engagement of phagocytosis and modulation of inflammation, and recent evidence suggests a complex relationship between Axl, Mer, and microglial phagocytosis of amyloid plaques in AD. Gas6, the primary CNS TAM ligand, reduces neuroinflammation and improves outcomes in murine models of CNS disease. Therefore, we hypothesized that AAV-mediated overexpression of Gas6 would alleviate plaque pathology, reduce neuroinflammation, and improve behavior in the APP/PS1 model of Alzheimer's disease. METHODS Adeno-associated viral vectors were used to overexpress Gas6 in the APP/PS1 model of Alzheimer's disease. Nine-month-old male and female APP/PS1 and nontransgenic littermates received bilateral stereotactic hippocampal injections of AAV-Gas6 or AAV-control, which expresses a non-functional Gas6 protein. One month after injections, mice underwent a battery of behavioral tasks to assess cognitive function and brains were processed for immunohistochemical and transcriptional analyses. RESULTS Gas6 overexpression reduced plaque burden in male APP/PS1 mice. However, contrary to our hypothesis, Gas6 increased pro-inflammatory microglial gene expression and worsened contextual fear conditioning compared to control-treated mice. Gas6 overexpression appeared to have no effect on phagocytic mechanisms in vitro or in vivo as measured by CD68 immunohistochemistry, microglial methoxy-04 uptake, and primary microglial uptake of fluorescent fibrillar amyloid beta. CONCLUSION Our data describes a triad of worsened behavior, reduced plaque number, and an increase in proinflammatory signaling in a sex-specific manner. While Gas6 has historically induced anti-inflammatory signatures in the peripheral nervous system, our data suggest an alternative, proinflammatory role in the context of Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Laura D Owlett
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Berke Karaahmet
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Linh Le
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Elizabeth K Belcher
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Dawling Dionisio-Santos
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - John A Olschowka
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Michael R Elliott
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - M Kerry O'Banion
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
45
|
|
46
|
Min XY, Liu CF, Cao B, Zhang T, Yang X, Ma N, Wang N, Li K. Human CD3 +CD56 +NKT-like cells express a range of complement receptors and C3 activation has negative effects on these cell activity and effector function. Hum Immunol 2021; 82:625-633. [PMID: 34134908 DOI: 10.1016/j.humimm.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
CD3+CD56+NKT-like cells are a rare population of lymphocytes that serve important roles in various types of immune-related diseases, and particularly in cancer. The complement system regulates inflammatory and immune responses by interacting with complement receptors expressed on a range of immune cells. However, whether CD3+CD56+NKT-like cells are regulated by the complement system has still not been definitively determined. In the present study, the expression of complement receptors and regulators in gated CD3+CD56+NKT-like cells isolated from human peripheral blood was assessed using PCR and flow cytometry. The results showed that human CD3+CD56+NKT-like cells expressed a range of complement receptors and regulators, such as CR3, C3aR, C5aR, C5L2, CD46 and CD55. Furthermore, the presence of complement component 3 (C3), a key component in complement activation in culture supernatant, mitigated the activity, IFN-γ production and killing function of CD3+CD56+NKT-like cells. The present study provides evidences supporting the relationship between complement activation and functional modulation of CD3+CD56+NKT-like cells, expanding our knowledge of the complement regulatory network, and also highlighting a potential target for treatment of numerous immune-related diseases, particularly NKT cell-based tumor adoptive immunotherapy.
Collapse
Affiliation(s)
- Xiao-Yun Min
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Cheng-Fei Liu
- Cancer Centre, The Second Hospital of Shandong University, Ji'nan, Shandong, PR China
| | - Bo Cao
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ting Zhang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xiao Yang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ning Ma
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Na Wang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
47
|
Anaphylatoxins orchestrate Th17 response via interactions between CD16+ monocytes and pleural mesothelial cells in tuberculous pleural effusion. PLoS Negl Trop Dis 2021; 15:e0009508. [PMID: 34237073 PMCID: PMC8291687 DOI: 10.1371/journal.pntd.0009508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 07/20/2021] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
The complement system is activated in tuberculous pleural effusion (TPE), with increased levels of the anaphylatoxins stimulating pleural mesothelial cells (PMCs) to secrete chemokines, which recruit nonclassical monocytes to the pleural cavity. The differentiation and recruitment of naive CD4+ T cells are induced by pleural cytokines and PMC-produced chemokines in TPE. However, it is unclear whether anaphylatoxins orchestrate CD4+ T cell response via interactions between PMCs and monocytes in TPE. In this study, CD16+ and CD16- monocytes isolated from TPE patients were cocultured with PMCs pretreated with anaphylatoxins. After removing the PMCs, the conditioned monocytes were cocultured with CD4+ T cells. The levels of the cytokines were measured in PMCs and monocyte subsets treated separately with anaphylatoxins. The costimulatory molecules were assessed in conditioned monocyte subsets. Furthermore, CD4+ T cell response was evaluated in different coculture systems. The results indicated that anaphylatoxins induced PMCs and CD16+ monocytes to secrete abundant cytokines capable of only inducing Th17 expansion, but Th1 was feeble. In addition, costimulatory molecules were more highly expressed in CD16+ than in CD16− monocytes isolated from TPE. The interactions between monocytes and PMCs enhanced the ability of PMCs and monocytes to produce cytokines and that of monocytes to express HLA-DR, CD40, CD80 and CD86, which synergistically induced Th17 expansion. In the above process, anaphylatoxins enhanced the interactions between monocytes and PMCs by increasing the level of the cytokines IL-1β, IL-6, IL-23 and upregulating the phenotype of CD40 and CD80 in CD16+ monocytes. Collectively, these data indicate that anaphylatoxins play a central role in orchestrating Th17 response mainly via interactions between CD16+ monocytes and PMCs in TPE. Tuberculous pleural effusion is characterized by intense chronic accumulations of fluid and lymphocyte cells and monocytes/macrophages in the pleural space. Complement mediators play important roles in providing protection against Mycobacterium tuberculosis. Our results demonstrated that Mycobacterium tuberculosis infection induced the amplification of complement activation in TPE. Complement activation produces anaphylatoxins that induce PMCs and CD16+ monocytes to secrete abundant cytokines capable of only inducing Th17 expansion, but Th1 was feeble. In addition, costimulatory molecules were more highly expressed in CD16+ than in CD16− monocytes isolated from TPE. The interactions between monocytes and PMCs enhanced the ability of PMCs and monocytes to produce cytokines and that of monocytes to express HLA-DR, CD40, CD80 and CD86, which synergistically induced Th17 expansion. In the above process, anaphylatoxins enhanced the interactions between monocytes and PMCs by increasing the level of the cytokines IL-1β, IL-6, IL-23 and upregulating the phenotype of CD40 and CD80 in CD16+ monocytes. In summary, these data highlighted the importance of anaphylatoxins and the innate immune system in eliciting pathogenic T cell responses in TPE and suggested that monocytes, especially the CD16+ subset, might be an efficient target for controlling inflammation.
Collapse
|
48
|
Bolcaen J, Kleynhans J, Nair S, Verhoeven J, Goethals I, Sathekge M, Vandevoorde C, Ebenhan T. A perspective on the radiopharmaceutical requirements for imaging and therapy of glioblastoma. Theranostics 2021; 11:7911-7947. [PMID: 34335972 PMCID: PMC8315062 DOI: 10.7150/thno.56639] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Despite numerous clinical trials and pre-clinical developments, the treatment of glioblastoma (GB) remains a challenge. The current survival rate of GB averages one year, even with an optimal standard of care. However, the future promises efficient patient-tailored treatments, including targeted radionuclide therapy (TRT). Advances in radiopharmaceutical development have unlocked the possibility to assess disease at the molecular level allowing individual diagnosis. This leads to the possibility of choosing a tailored, targeted approach for therapeutic modalities. Therapeutic modalities based on radiopharmaceuticals are an exciting development with great potential to promote a personalised approach to medicine. However, an effective targeted radionuclide therapy (TRT) for the treatment of GB entails caveats and requisites. This review provides an overview of existing nuclear imaging and TRT strategies for GB. A critical discussion of the optimal characteristics for new GB targeting therapeutic radiopharmaceuticals and clinical indications are provided. Considerations for target selection are discussed, i.e. specific presence of the target, expression level and pharmacological access to the target, with particular attention to blood-brain barrier crossing. An overview of the most promising radionuclides is given along with a validation of the relevant radiopharmaceuticals and theranostic agents (based on small molecules, peptides and monoclonal antibodies). Moreover, toxicity issues and safety pharmacology aspects will be presented, both in general and for the brain in particular.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Janke Kleynhans
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | | | - Ingeborg Goethals
- Ghent University Hospital, Department of Nuclear Medicine, Ghent, Belgium
| | - Mike Sathekge
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town, South Africa
| | - Thomas Ebenhan
- Nuclear Medicine Research Infrastructure NPC, Pretoria, South Africa
- Nuclear Medicine Department, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
49
|
Wenzel UO, Kemper C, Bode M. The role of complement in arterial hypertension and hypertensive end organ damage. Br J Pharmacol 2021; 178:2849-2862. [PMID: 32585035 PMCID: PMC10725187 DOI: 10.1111/bph.15171] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that hypertension and hypertensive end organ damage are not only mediated by haemodynamic injury but that inflammation also plays an important role. The complement system protects the host from a hostile microbial environment and maintains tissue and cell integrity through the elimination of altered or dead cells. As an important effector arm of innate immunity, it plays also central roles in the regulation of adaptive immunity. Thus, complement activation may drive the pathology of hypertension through its effects on innate and adaptive immune responses, aside from direct effects on the vasculature. Recent experimental data strongly support a role for complement in all stages of arterial hypertension. The remarkably similar clinical and histopathological features of malignant nephrosclerosis and atypical haemolytic uraemic syndrome suggest also a role for complement in the development of malignant nephrosclerosis. Here, we review the role of complement in hypertension and hypertensive end organ damage. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Ulrich O Wenzel
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Marlies Bode
- III. Department of Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
50
|
King BC, Blom AM. Complement in metabolic disease: metaflammation and a two-edged sword. Semin Immunopathol 2021; 43:829-841. [PMID: 34159399 PMCID: PMC8613079 DOI: 10.1007/s00281-021-00873-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/23/2021] [Indexed: 01/28/2023]
Abstract
We are currently experiencing an enduring global epidemic of obesity and diabetes. It is now understood that chronic low-grade tissue inflammation plays an important role in metabolic disease, brought upon by increased uptake of a so-called Western diet, and a more sedentary lifestyle. Many evolutionarily conserved links exist between metabolism and the immune system, and an imbalance in this system induced by chronic over-nutrition has been termed 'metaflammation'. The complement system is an important and evolutionarily ancient part of innate immunity, but recent work has revealed that complement not only is involved in the recognition of pathogens and induction of inflammation, but also plays important roles in cellular and tissue homeostasis. Complement can therefore contribute both positively and negatively to metabolic control, depending on the nature and anatomical site of its activity. This review will therefore focus on the interactions of complement with mechanisms and tissues relevant for metabolic control, obesity and diabetes.
Collapse
Affiliation(s)
- B C King
- Department of Translational Medicine, Lund University, Lund, Sweden.
| | - A M Blom
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|