1
|
Bolesławska I, Bolesławska-Król N, Jakubowski K, Przysławski J, Drzymała-Czyż S. Lactoferrin-A Regulator of Iron Homeostasis and Its Implications in Cancer. Molecules 2025; 30:1507. [PMID: 40286136 PMCID: PMC11990823 DOI: 10.3390/molecules30071507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Cancer is a global health challenge, and its development is closely linked to iron metabolism. Cancer cells have an increased demand for this element, which promotes their proliferation, invasion, and metastasis. Excess iron catalyzes the formation of reactive oxygen species (ROS), which can both induce ferroptosis and initiate oncogenic signaling pathways. The deregulation of iron metabolism in cancer patients leads to anemia or toxic iron overload and also affects the gut microbiota. Lactoferrin (LF), a glycoprotein with strong iron chelating properties, can regulate its availability to cancer cells, thereby limiting their growth and progression. By chelating free Fe ions, LF reduces oxidative stress and inhibits the mechanisms that promote carcinogenesis. Additionally, it exhibits immunomodulatory and anti-inflammatory effects and may enhance the body's anti-tumor response. This review analyses the mechanisms of action of lactoferrin in the context of cancer, with a particular focus on its chelating, antioxidant, and immunomodulatory properties. The multidirectional effects of LF make it a promising component of preventive and therapeutic strategies, requiring further clinical studies.
Collapse
Affiliation(s)
- Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.J.); (J.P.); (S.D.-C.)
| | - Natasza Bolesławska-Król
- Student Society of Radiotherapy, Collegium Medicum, University of Zielona Góra, Zyta 28, 65-046 Zielona Góra, Poland;
| | - Karol Jakubowski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.J.); (J.P.); (S.D.-C.)
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.J.); (J.P.); (S.D.-C.)
| | - Sławomira Drzymała-Czyż
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (K.J.); (J.P.); (S.D.-C.)
| |
Collapse
|
2
|
Tran TH, Le TH, Tran TTP. The Potential Effect of Endogenous Antimicrobial Peptides in Cancer Immunotherapy and Prevention. J Pept Sci 2025; 31:e3664. [PMID: 39716371 DOI: 10.1002/psc.3664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 12/25/2024]
Abstract
Antimicrobial peptides (AMPs) are crucial constituents of inherent immunity and serve as vital components of human host defense, playing a pivotal role in combating invading microbial pathogens. Beyond their antimicrobial functions, AMPs also exhibit various other biological activities including apoptosis induction, wound healing promotion, and immune modulation. These peptides are found in various exposed tissues or surfaces throughout the body, such as eyes, skin, mouth, ears, respiratory tract, lungs, digestive, and urinary system. Additionally, certain AMPs such as LL-37, HNP, and lactoferrin have shown potential as candidates for anticancer activity. Given the limited selectivity between normal and cancer cells exhibited by many current immunotherapeutic agents, the inherent properties of AMPs make them promising candidates for cancer treatment. Their abundance, bioavailability, safety profile, efficiency, and harmony with the host immune system position them as attractive tools in the fight against cancer. This review is aimed at exploring the potential anticancer properties of AMPs and elucidating their relationship with immunology and cancer immunotherapy.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
| | - Thanh Huong Le
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| | - Thi Thu Phuong Tran
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam
| |
Collapse
|
3
|
Rosa L, Cutone A, Ianiro G, Valenti P, Paesano R. Lactoferrin in the treatment of interstitial cystitis: a retrospective pilot study. Biochem Cell Biol 2024; 102:506-514. [PMID: 39088844 DOI: 10.1139/bcb-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024] Open
Abstract
Interstitial cystitis (IC), defined as a painful bladder syndrome (PBS), is a chronic condition that manifests itself as a suprapubic pain associated with an enhancing of frequency/urgency of urination, and for which there is no cure. Here, we present a retrospective pilot study on women affected from IC/PBS and treated with bovine lactoferrin (bLf). A total of 31 women, affected (20) or unaffected (11) from hereditary thrombophilia (HT), presented the median of 6 episodes of IC/PBS during the 6 months before the study. Treatment consisted of 17 weeks of orally administered Valpalf® capsules, containing bLf plus sodium bicarbonate and citrate. Out of 31 patients, only 3 women had one episode of IC/PBS during the follow-up period, while no episode was observed in 28 women. In the HT group, a significant decrease in both serum IL-6 and D-dimers was found after Valpalf® treatment. Moreover, in Valpalf®-treated women, cystoscopy revealed a global improvement in the appearance of the bladder, especially in term of inflammation/irritation and presence of Hunner ulcers. Even if our results must be corroborated by randomized double-blinded controlled trials on a larger number of patients, our observations indicate that bLf treatment is efficient in relieving IC/PBS symptoms, without side effects.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
4
|
Pollio G, Rosa L, Costanzo AM, Paesano R, Tripepi G, Valenti P. Lactoferrin efficacy in treating hyperferritinemia in patients suffering from pathologies unrelated to hereditary hemochromatosis. Biochem Cell Biol 2024; 102:410-417. [PMID: 38981137 DOI: 10.1139/bcb-2024-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Ferritin (Ftn), a globular protein, sequesters 4500 atoms of iron per molecule. Elevated serum Ftn levels (hyperferritinemia) is an indicator of iron homeostasis disorders. We present the results of an observational study involving 17 patients with hyperferritinemia unrelated to hereditary hemochromatosis (HH). All participants received treatment with 200 mg of bovine lactoferrin (bLf) once (n = 14) or twice (n = 3) a day before meals. The patients, treated with 200 mg/day of bLf, exhibited a significant increase in red blood cells (+10%, p < 0.001), hemoglobin (+4%, p < 0.001), and hematocrit (+15%, p = 0.004), accompanied by a significant reduction in serum Ftn levels (-52%, p < 0.001), C-reactive protein (CRP) (-85.0%, p < 0.001), and D-dimers (-19%, p < 0.001). Among the three patients treated with 400 mg/day of bLf, two had effects similar to those of patients bLf-treated with 200 mg/day and one experienced a strong reduction of Ftn, CRP, and erythrocyte sedimentation rate (from -97% to -75%). The decrease in serum Ftn levels due to bLf treatment was largely independent of gender (p = 0.78), age (p = 0.66), baseline symptoms (p = 0.20), and concomitant acute (p = 0.34) and chronic (p = 0.53) infections. Although this observational pilot study yields positive effects in patients with hyperferritinemia unrelated to HH treated with bLf, a larger sample size is needed for conclusive results.
Collapse
Affiliation(s)
- Giuditta Pollio
- Ambulatorio di ematologia, Distretto 66, ASL Salerno, Salerno, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | | | - Giovanni Tripepi
- Clinical Epidemiology of Renal Diseases and Hypertension, Institute of Clinical Physiology (IFC), National Research Council (CNR), Ospedali Riuniti, Reggio Calabria, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Chen X, Zhang X, Wu Y, Wang Z, Yu T, Chen P, Tong P, Gao J, Chen H. The Iron Binding Ability Maps the Fate of Food-Derived Transferrins: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17771-17781. [PMID: 39087686 DOI: 10.1021/acs.jafc.4c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
As the demand for lactoferrin increases, the search for cost-effective alternative proteins becomes increasingly important. Attention naturally turns to other members of the transferrin family such as ovotransferrin. The iron-binding abilities of these proteins influence their characteristics, although the underlying mechanisms remain unclear. This overview systematically summarizes the effects of the iron-binding ability on the fate of food-derived transferrins (lactoferrin and ovotransferrin) and their potential applications. The findings indicate that iron-binding ability significantly influences the structure of food-derived transferrins, particularly their tertiary structure. Changes in structure influence their physicochemical properties, which, in turn, lead to different behaviors in response to environmental variations. Thus, these proteins exhibit distinct digestive characteristics by the time they reach the small intestine, ultimately performing varied physiological functions in vivo. Consequently, food-derived transferrins with different iron-binding states may find diverse applications. Understanding this capability is essential for developing food-derived transferrins and driving innovation in lactoferrin-related industries.
Collapse
Affiliation(s)
- Xiao Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Xing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Zhongliang Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Tian Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Pingduo Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Jinyan Gao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- College of Food Science and Technology, Nanchang University, Nanchang 330031, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Sino German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang University, Nanchang 330047, China
| |
Collapse
|
6
|
Rosa L, Ianiro G, Conte AL, Conte MP, Ottolenghi L, Valenti P, Cutone A. Antibacterial, anti-invasive, and anti-inflammatory activity of bovine lactoferrin extracted from milk or colostrum versus whole colostrum. Biochem Cell Biol 2024; 102:331-341. [PMID: 38810276 DOI: 10.1139/bcb-2024-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Lactoferrin (Lf), a multifunctional cationic glycoprotein extracted from milk or colostrum, is able to chelate two ferric ions per molecule, inhibit the formation of reactive oxygen species, interact with the anionic components of bacteria or host cells, and enter inside host cell nucleus, thereby exerting antibacterial, anti-invasive, and anti-inflammatory activities. By virtue of Lf presence, bovine colostrum is expected to perform analogous functions to pure Lf, along with additional activities attributable to other bioactive constituents. The present research aims to compare the antibacterial, anti-invasive, and anti-inflammatory activities of bovine Lf purified from milk (mbLf) and colostrum (cbLf) in comparison to those exhibited by whole bovine colostrum (wbc). The results demonstrated a major efficacy of mbLf in inhibiting pathogenic bacteria and in exerting anti-invasive and anti-survival activities with respect to cbLf and wbc. Furthermore, mbLf lowered IL-6 levels to those of uninfected cells, while a less evident decrease was observed upon cbLf treatment. Conversely, wbc managed to slightly lower IL-6 levels compared to those synthesized by infected cells. These data demonstrate that, to obtain maximum effectiveness in such activities, Lf should be formulated/used without addition of other substances and should be sourced from bovine milk rather than colostrum.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | | | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Livia Ottolenghi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| |
Collapse
|
7
|
Cecchi N, Romanelli R, Ricevuti F, Carbone MG, Dinardo M, Cesarano E, De Michele A, Messere G, Morra S, Scognamiglio A, Spagnuolo MI. Bioactives in Oral Nutritional Supplementation: A Pediatric Point of View. Nutrients 2024; 16:2067. [PMID: 38999815 PMCID: PMC11243142 DOI: 10.3390/nu16132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Oral nutritional supplements (ONSs) are crucial for supporting the nutritional needs of pediatric populations, particularly those with medical conditions or dietary deficiencies. Bioactive compounds within ONSs play a pivotal role in enhancing health outcomes by exerting various physiological effects beyond basic nutrition. However, the comprehensive understanding of these bioactives in pediatric ONSs remains elusive. OBJECTIVE This systematic narrative review aims to critically evaluate the existing literature concerning bioactive compounds present in oral nutritional supplements from a pediatric standpoint, focusing on their types, sources, bioavailability, physiological effects, and clinical implications. METHODS A systematic search was conducted across the major academic databases, including PubMed, Scopus, and Web of Science, employing predefined search terms related to oral nutritional supplements, bioactives, and pediatrics. Studies published between 2013 and 2024 were considered eligible for inclusion. Data extraction and synthesis were performed according to the PRISMA guidelines. RESULTS The initial search yielded 558 of articles, of which 72 met the inclusion criteria. The included studies encompassed a diverse range of bioactive compounds present in pediatric ONS formulations, including, but not limited to, vitamins, minerals, amino acids, prebiotics, probiotics, and phytonutrients. These bioactives were sourced from various natural and synthetic origins and were found to exert beneficial effects on growth, development, immune function, gastrointestinal health, cognitive function, and overall well-being in pediatric populations. However, variations in bioavailability, dosing, and clinical efficacy were noted across different compounds and formulations. CONCLUSIONS Bioactive compounds in oral nutritional supplements offer promising avenues for addressing the unique nutritional requirements and health challenges faced by pediatric populations. However, further research is warranted to elucidate the optimal composition, dosage, and clinical applications of these bioactives in pediatric ONS formulations. A deeper understanding of these bioactive compounds and their interplay with pediatric health may pave the way for personalized and effective nutritional interventions in pediatric clinical practice.
Collapse
Affiliation(s)
- Nicola Cecchi
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Roberta Romanelli
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Flavia Ricevuti
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Maria Grazia Carbone
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Michele Dinardo
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Elisabetta Cesarano
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Alfredo De Michele
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Giovanni Messere
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Salvatore Morra
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Armando Scognamiglio
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | | |
Collapse
|
8
|
Younes S. The role of nutrition on the treatment of Covid 19. HUMAN NUTRITION & METABOLISM 2024; 36:200255. [DOI: 10.1016/j.hnm.2024.200255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
9
|
Dyrda-Terniuk T, Pomastowski P. The Multifaceted Roles of Bovine Lactoferrin: Molecular Structure, Isolation Methods, Analytical Characteristics, and Biological Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20500-20531. [PMID: 38091520 PMCID: PMC10755757 DOI: 10.1021/acs.jafc.3c06887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Bovine lactoferrin (bLF) is widely known as an iron-binding glycoprotein from the transferrin family. The bLF molecule exhibits a broad spectrum of biological activity, including iron delivery, antimicrobial, antiviral, immunomodulatory, antioxidant, antitumor, and prebiotic functions, thereby making it one of the most valuable representatives for biomedical applications. Remarkably, LF functionality might completely differ in dependence on the iron saturation state and glycosylation patterns. Recently, a violently growing demand for bLF production has been observed, mostly for infant formulas, dietary supplements, and functional food formulations. Unfortunately, one of the reasons that inhibit the development of the bLF market and widespread protein implementation is related to its negligible amount in both major sources─colostrum and mature milk. This study provides a comprehensive overview of the significance of bLF research by delineating the key structural characteristics of the protein and elucidating their impact on its physicochemical and biological properties. Progress in the development of optimal isolation techniques for bLF is critically assessed, alongside the challenges that arise during its production. Furthermore, this paper presents a curated list of the most relevant instrumental techniques for the characterization of bLF. Lastly, it discusses the prospective applications and future directions for bLF-based formulations, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
10
|
Ianiro G, Niro A, Rosa L, Valenti P, Musci G, Cutone A. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism. Int J Mol Sci 2023; 24:15925. [PMID: 37958908 PMCID: PMC10650157 DOI: 10.3390/ijms242115925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Many pathological conditions, including obesity, diabetes, hypertension, heart disease, and cancer, are associated with abnormal metabolic states. The progressive loss of metabolic control is commonly characterized by insulin resistance, atherogenic dyslipidemia, inflammation, central obesity, and hypertension, a cluster of metabolic dysregulations usually referred to as the "metabolic syndrome". Recently, nutraceuticals have gained attention for the generalized perception that natural substances may be synonymous with health and balance, thus becoming favorable candidates for the adjuvant treatment of metabolic dysregulations. Among nutraceutical proteins, lactoferrin (Lf), an iron-binding glycoprotein of the innate immune system, has been widely recognized for its multifaceted activities and high tolerance. As this review shows, Lf can exert a dual role in human metabolism, either boosting or resetting it under physiological and pathological conditions, respectively. Lf consumption is safe and is associated with several benefits for human health, including the promotion of oral and gastrointestinal homeostasis, control of glucose and lipid metabolism, reduction of systemic inflammation, and regulation of iron absorption and balance. Overall, Lf can be recommended as a promising natural, completely non-toxic adjuvant for application as a long-term prophylaxis in the therapy for metabolic disorders, such as insulin resistance/type II diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antonella Niro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (A.N.); (G.M.)
| |
Collapse
|
11
|
El-Fakharany EM, El-Maradny YA, Ashry M, Abdel-Wahhab KG, Shabana ME, El-Gendi H. Green synthesis, characterization, anti-SARS-CoV-2 entry, and replication of lactoferrin-coated zinc nanoparticles with halting lung fibrosis induced in adult male albino rats. Sci Rep 2023; 13:15921. [DOI: https:/doi.org/10.1038/s41598-023-42702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
AbstractThe ethanolic extract of Coleus forskohlii Briq leaves was employed in the green synthesis of zinc nanoparticles (Zn-NPs) by an immediate, one-step, and cost-effective method in the present study. Zn-NPs were coated with purified bovine lactoferrin (LF) and characterized through different instrumental analysis. The biosynthesized Zn-NPs were white in color revealing oval to spherical-shaped particles with an average size of 77 ± 5.50 nm, whereas LF-coated Zn-NPs (LF-Zn-NPs) revealed a larger particles size of up to 98 ± 6.40 nm. The biosynthesized Zn-NPs and LF-Zn-NPs revealed negatively charged surfaces with zeta-potentials of – 20.25 ± 0.35 and – 44.3 ± 3.25 mV, respectively. Interestingly, the LF-Zn-NPs showed potent in vitro retardation for SARS-CoV-2 entry to host cells by binding to the ACE2-receptor and spike protein receptor binding domain at IC50 values of 59.66 and μg/mL, respectively. Additionally, the results indicated the ability of LF-Zn-NPs to inhibit SARS-CoV-2 replication by interfering with RNA-dependent RNA polymerase “RdRp” activity at IC50 of 49.23 μg/mL. In vivo, the LF-Zn-NPs displayed a protective and therapeutic activity against induced pulmonary fibrosis in Bleomycin-treated male albino rats owing to its anti-inflammatory, antioxidant, and significant reduction in CRP, LDH, ferritin, and D-dimer levels. The obtained findings offer a promising route for biosynthesized Zn-NPs and LF-Zn-NPs as promising candidates against COVID-19.
Collapse
|
12
|
El-Fakharany EM, El-Maradny YA, Ashry M, Abdel-Wahhab KG, Shabana ME, El-Gendi H. Green synthesis, characterization, anti-SARS-CoV-2 entry, and replication of lactoferrin-coated zinc nanoparticles with halting lung fibrosis induced in adult male albino rats. Sci Rep 2023; 13:15921. [PMID: 37741872 PMCID: PMC10518009 DOI: 10.1038/s41598-023-42702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
The ethanolic extract of Coleus forskohlii Briq leaves was employed in the green synthesis of zinc nanoparticles (Zn-NPs) by an immediate, one-step, and cost-effective method in the present study. Zn-NPs were coated with purified bovine lactoferrin (LF) and characterized through different instrumental analysis. The biosynthesized Zn-NPs were white in color revealing oval to spherical-shaped particles with an average size of 77 ± 5.50 nm, whereas LF-coated Zn-NPs (LF-Zn-NPs) revealed a larger particles size of up to 98 ± 6.40 nm. The biosynthesized Zn-NPs and LF-Zn-NPs revealed negatively charged surfaces with zeta-potentials of - 20.25 ± 0.35 and - 44.3 ± 3.25 mV, respectively. Interestingly, the LF-Zn-NPs showed potent in vitro retardation for SARS-CoV-2 entry to host cells by binding to the ACE2-receptor and spike protein receptor binding domain at IC50 values of 59.66 and μg/mL, respectively. Additionally, the results indicated the ability of LF-Zn-NPs to inhibit SARS-CoV-2 replication by interfering with RNA-dependent RNA polymerase "RdRp" activity at IC50 of 49.23 μg/mL. In vivo, the LF-Zn-NPs displayed a protective and therapeutic activity against induced pulmonary fibrosis in Bleomycin-treated male albino rats owing to its anti-inflammatory, antioxidant, and significant reduction in CRP, LDH, ferritin, and D-dimer levels. The obtained findings offer a promising route for biosynthesized Zn-NPs and LF-Zn-NPs as promising candidates against COVID-19.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
- Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alamein, 51718, Egypt
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| | | | | | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| |
Collapse
|
13
|
Chibanda Y, Brookes M, Churchill D, Al-Hassi H. The Ferritin, Hepcidin and Cytokines Link in the Diagnoses of Iron Deficiency Anaemia during Pregnancy: A Review. Int J Mol Sci 2023; 24:13323. [PMID: 37686128 PMCID: PMC10488244 DOI: 10.3390/ijms241713323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Following a diagnosis of iron deficiency anaemia in pregnancy, iron supplements are prescribed using UK guidelines; however, despite this, the condition remains highly prevalent, affecting up to 30% of pregnant women in the UK. According to the World Health Organisation, it globally accounts for 45% in the most vulnerable groups of pregnant women and infants (<5 years old). Recently, the efficacy of iron replacement therapy and the effectiveness of current standard testing of iron parameters have been reviewed in order to evaluate whether a more accurate diagnosis can be made using alternative and/or supplementary markers. Furthermore, many questions remain about the mechanisms involved in iron metabolism during pregnancy. The most recent studies have shed more light on serum hepcidin and raised questions on the significance of pregnancy related inflammatory markers including cytokines in iron deficiency anaemia. However, research into this is still scarce, and this review aims to contribute to further understanding and elucidating these areas.
Collapse
Affiliation(s)
- Yvonne Chibanda
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Matthew Brookes
- Gastroenterology, The Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK
| | - David Churchill
- Obstetrics, The Royal Wolverhampton NHS Trust, Wolverhampton WV10 0QP, UK
| | - Hafid Al-Hassi
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| |
Collapse
|
14
|
El-Fakharany EM, El-Gendi H, El-Maradny YA, Abu-Serie MM, Abdel-Wahhab KG, Shabana ME, Ashry M. Inhibitory effect of lactoferrin-coated zinc nanoparticles on SARS-CoV-2 replication and entry along with improvement of lung fibrosis induced in adult male albino rats. Int J Biol Macromol 2023; 245:125552. [PMID: 37356684 PMCID: PMC10290166 DOI: 10.1016/j.ijbiomac.2023.125552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Severe acute respiratory syndrome 2019-new coronavirus (SARS-CoV-2) is a major global challenge caused by a pandemic disease, named 'COVID-19' with no effective and selective therapy available so far. COVID-19-associated mortality is directly related to the inability to suppress the viral infection and the uncontrolled inflammatory response. So, we investigated the antiviral efficiency of the nanofabricated and well-characterized lactoferrin-coated zinc nanoparticles (Lf-Zn-NPs) on SARS-CoV-2 replication and entry into host cells. Lf-Zn-NPs showed potent inhibition of the entry of SARS-CoV-2 into the host cells by inhibition of ACE2, the SARS-CoV-2 receptor. This inhibitory activity of Lf-Zn-NPs to target the interaction between the SARS-CoV-2 spike protein and the ACE2 receptor offers potent protection against COVID-19 outbreaks. Moreover, the administration of Lf-Zn-NPs markedly improved lung fibrosis disorders, as supported by histopathological findings and monitored by the significant reduction in the values of CRP, LDH, ferritin, and D-dimer, with a remarkable rise in CD4+, lung SOD, GPx, GSH, and CAT levels. Lf-Zn-NPs revealed therapeutic efficiency against lung fibrosis owing to their anti-inflammatory, antioxidant, and ACE2-inhibiting activities. These findings suggest a promising nanomedicine agent against COVID-19 and its complications, with improved antiviral and immunomodulatory properties as well as a safer mode of action.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA- City), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Yousra A El-Maradny
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA- City), New Borg El-Arab City 21934, Alexandria, Egypt; Microbiology and Immunology, Faculty of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alamein 51718, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt
| | | | | | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| |
Collapse
|
15
|
Zhang X, Zhou J, Holbein BE, Lehmann C. Iron Chelation as a Potential Therapeutic Approach in Acute Lung Injury. Life (Basel) 2023; 13:1659. [PMID: 37629516 PMCID: PMC10455621 DOI: 10.3390/life13081659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Acute lung injury (ALI) has been challenging health care systems since before the COVID-19 pandemic due to its morbidity, mortality, and length of hospital stay. In view of the complex pathogenesis of ALI, effective strategies for its prevention and treatment are still lacking. A growing body of evidence suggests that iron dysregulation is a common characteristic in many subtypes of ALI. On the one hand, iron is needed to produce reactive oxygen species (ROS) as part of the immune response to an infection; on the other hand, iron can accelerate the occurrence of ferroptosis and extend host cell damage. Iron chelation represents a novel therapeutic strategy for alleviating lung injury and improving the survival of patients with ALI. This article reviews the current knowledge of iron homeostasis, the role of iron in ALI development, and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiyang Zhang
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Juan Zhou
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
| | - Bruce E. Holbein
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
| | - Christian Lehmann
- Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada; (X.Z.); (J.Z.)
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 1X5, Canada;
- Department of Physiology & Biophysics, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
16
|
Ianiro G, Rosa L, Bonaccorsi di Patti MC, Valenti P, Musci G, Cutone A. Lactoferrin: from the structure to the functional orchestration of iron homeostasis. Biometals 2023; 36:391-416. [PMID: 36214975 DOI: 10.1007/s10534-022-00453-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/25/2022] [Indexed: 11/02/2022]
Abstract
Iron is by far the most widespread and essential transition metal, possessing crucial biological functions for living systems. Despite chemical advantages, iron biology has forced organisms to face with some issues: ferric iron insolubility and ferrous-driven formation of toxic radicals. For these reasons, acquisition and transport of iron constitutes a formidable challenge for cells and organisms, which need to maintain adequate iron concentrations within a narrow range, allowing biological processes without triggering toxic effects. Higher organisms have evolved extracellular carrier proteins to acquire, transport and manage iron. In recent years, a renewed interest in iron biology has highlighted the role of iron-proteins dysregulation in the onset and/or exacerbation of different pathological conditions. However, to date, no resolutive therapy for iron disorders has been found. In this review, we outline the efficacy of Lactoferrin, a member of the transferrin family mainly secreted by exocrine glands and neutrophils, as a new emerging orchestrator of iron metabolism and homeostasis, able to counteract iron disorders associated to different pathologies, including iron deficiency and anemia of inflammation in blood, Parkinson and Alzheimer diseases in the brain and cystic fibrosis in the lung.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | | | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy.
| |
Collapse
|
17
|
Mahmoud RMA, Mohammed A. Lactoferrin: A Promising New Player in Treatment of Iron Deficiency Anemia in Patients on Regular Hemodialysis: A Randomized Controlled Trial. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2023; 34:235-241. [PMID: 38231718 DOI: 10.4103/1319-2442.393996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Hepcidin is secreted in inflammatory states as in patients on regular hemodialysis (HD). Therefore, novel agents modulating hepcidin secretion may have the potential to effectively reverse anemia in HD patients. Bovine milk derivative lactoferrin (BLF) is a glycoprotein that was found to decrease serum interleukin-6, therefore, having anti-inflammatory properties. Thus, it can downregulate hepcidin secretion in various inflammatory states including patients on regular HD, so improving iron absorption and utilization in those patients. In addition, BLF is a source of iron as each BLF molecule chelates two ferric ions. We started an interventional study. Seventy patients on regular HD with iron deficiency anemia received 100 mg of 20%-30% iron-saturated BLF (corresponding to 70-84 μg of elemental iron) orally b.i.d for 6 months. We compared those patients with another 70 patients on regular HD with iron deficiency anemia who were given 576 mg of ferrous glycine sulfate (corresponding to 100 mg of elemental iron) orally b.i.d for 6 months. BLF significantly decreased serum hepcidin level (from 340-350 ng/mL to 101-112 ng/mL), P <0.0001 and significantly increased hemoglobin (Hb) concentration (from 7.5-8.1 g/dL to 9.3-10 g/dL), P <0.0001, and transferrin saturation (TSAT) (from 5%-9% to 26%-31%), P <0.0001. Furthermore, ferrous glycine sulfate significantly decreased serum hepcidin level (from 335-350 ng/mL to 330--341 ng/mL), P <0.0001, and significantly increased Hb (from 7.5-8.1 to 7.6-8.5 g/dL), P <0.0001, and TSAT (from 5%-9% to 7%-12%), P <0.0001. However, the magnitude of decrease in serum hepcidin level and rise in Hb and TSAT in the BLF group was significantly higher than in the ferrous glycine sulfate group, P <0.0001. Oral BLF can be considered a promising novel agent in treatment of iron deficiency anemia in patients on regular HD.
Collapse
|
18
|
Ianiro G, D’Ezio V, Carpinelli L, Casella C, Bonaccorsi di Patti MC, Rosa L, Valenti P, Colasanti M, Musci G, Cutone A, Persichini T. Iron Saturation Drives Lactoferrin Effects on Oxidative Stress and Neurotoxicity Induced by HIV-1 Tat. Int J Mol Sci 2023; 24:7947. [PMID: 37175651 PMCID: PMC10178013 DOI: 10.3390/ijms24097947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The Trans-Activator of Transcription (Tat) of Human Immunodeficiency Virus (HIV-1) is involved in virus replication and infection and can promote oxidative stress in human astroglial cells. In response, host cells activate transcription of antioxidant genes, including a subunit of System Xc- cystine/glutamate antiporter which, in turn, can trigger glutamate-mediated excitotoxicity. Here, we present data on the efficacy of bovine Lactoferrin (bLf), both in its native (Nat-bLf) and iron-saturated (Holo-bLf) forms, in counteracting oxidative stress in U373 human astroglial cells constitutively expressing the viral protein (U373-Tat). Our results show that, dependent on iron saturation, both Nat-bLf and Holo-bLf can boost host antioxidant response by up-regulating System Xc- and the cell iron exporter Ferroportin via the Nuclear factor erythroid 2-related factor (Nrf2) pathway, thus reducing Reactive Oxygen Species (ROS)-mediated lipid peroxidation and DNA damage in astrocytes. In U373-Tat cells, both forms of bLf restore the physiological internalization of Transferrin (Tf) Receptor 1, the molecular gate for Tf-bound iron uptake. The involvement of astrocytic antioxidant response in Tat-mediated neurotoxicity was evaluated in co-cultures of U373-Tat with human neuronal SH-SY5Y cells. The results show that the Holo-bLf exacerbates Tat-induced excitotoxicity on SH-SY5Y, which is directly dependent on System-Xc- upregulation, thus highlighting the mechanistic role of iron in the biological activities of the glycoprotein.
Collapse
Affiliation(s)
- Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (G.M.)
| | - Veronica D’Ezio
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | - Ludovica Carpinelli
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | - Cecilia Casella
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | | | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Roma, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Roma, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Marco Colasanti
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (G.M.)
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (G.I.); (G.M.)
| | - Tiziana Persichini
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy; (V.D.); (L.C.); (C.C.); (M.C.)
| |
Collapse
|
19
|
Ohradanova-Repic A, Praženicová R, Gebetsberger L, Moskalets T, Skrabana R, Cehlar O, Tajti G, Stockinger H, Leksa V. Time to Kill and Time to Heal: The Multifaceted Role of Lactoferrin and Lactoferricin in Host Defense. Pharmaceutics 2023; 15:1056. [PMID: 37111542 PMCID: PMC10146187 DOI: 10.3390/pharmaceutics15041056] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Lactoferrin is an iron-binding glycoprotein present in most human exocrine fluids, particularly breast milk. Lactoferrin is also released from neutrophil granules, and its concentration increases rapidly at the site of inflammation. Immune cells of both the innate and the adaptive immune system express receptors for lactoferrin to modulate their functions in response to it. On the basis of these interactions, lactoferrin plays many roles in host defense, ranging from augmenting or calming inflammatory pathways to direct killing of pathogens. Complex biological activities of lactoferrin are determined by its ability to sequester iron and by its highly basic N-terminus, via which lactoferrin binds to a plethora of negatively charged surfaces of microorganisms and viruses, as well as to mammalian cells, both normal and cancerous. Proteolytic cleavage of lactoferrin in the digestive tract generates smaller peptides, such as N-terminally derived lactoferricin. Lactoferricin shares some of the properties of lactoferrin, but also exhibits unique characteristics and functions. In this review, we discuss the structure, functions, and potential therapeutic uses of lactoferrin, lactoferricin, and other lactoferrin-derived bioactive peptides in treating various infections and inflammatory conditions. Furthermore, we summarize clinical trials examining the effect of lactoferrin supplementation in disease treatment, with a special focus on its potential use in treating COVID-19.
Collapse
Affiliation(s)
- Anna Ohradanova-Repic
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Romana Praženicová
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Laura Gebetsberger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tetiana Moskalets
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| | - Rostislav Skrabana
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Ondrej Cehlar
- Laboratory of Structural Biology of Neurodegeneration, Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Gabor Tajti
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Vladimir Leksa
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Molecular Immunology, Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia
| |
Collapse
|
20
|
Abdelmalak MFL, Abdelrahim DS, George Michael TMA, Abdel-Maksoud OM, Labib JMW. Vitamin D and lactoferrin attenuate stress-induced colitis in Wistar rats via enhancing AMPK expression with inhibiting mTOR-STAT3 signaling and modulating autophagy. Cell Biochem Funct 2023; 41:211-222. [PMID: 36588325 DOI: 10.1002/cbf.3774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 01/03/2023]
Abstract
Irritable bowel syndrome (IBS) is a global gastrointestinal disorder closely related to psychological stress exposure and local colonic inflammation. Herein, we investigated the effect of wrap-restraint stress (WRS) on rat behavior, on adenosine monophosphate-activated protein kinase-mammalian/mechanistic target of rapamycin-signal transducer and activator of transcription 3 (AMPK-mTOR-STAT3) signaling, and autophagy in colonic mucosa. The impact of chronic administration of vitamin D3 and lactoferrin was compared. Twenty-four male Wistar rats were randomly divided into four groups. Chronic WRS protocol was applied as a rodent model of IBS. Group I: naïve animals, Group II: WRS animals, Group III: WRS-exposed and treated with vitamin D3 (500 IU/kg/day), and Group IV: WRS-exposed and treated with lactoferrin (300 mg/kg/day). In this study, we found that chronic administration of each of vitamin D3 and lactoferrin resulted in a significant increase in social interaction test, interleukin-10, AMPK, optical density of LC3B, goblet cell count and marked decrease in serum cortisol level, STAT3, inflammatory cell count, and optical density of mTOR in comparison to the WRS rats. Our findings suggest that both vitamin D3 and Lactoferrin could augment colonic autophagy through enhanced AMPK expression and inhibition of mTOR-STAT3 signaling, which offers practical insights into their clinical use in the prevention and therapy of IBS. However, lactoferrin intake as a nutritional supplement could be more helpful for stress-induced colitis treatment than vitamin D3.
Collapse
Affiliation(s)
- Marian F L Abdelmalak
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dina S Abdelrahim
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | | | - Jolly M W Labib
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
21
|
Naidu SAG, Clemens RA, Naidu AS. SARS-CoV-2 Infection Dysregulates Host Iron (Fe)-Redox Homeostasis (Fe-R-H): Role of Fe-Redox Regulators, Ferroptosis Inhibitors, Anticoagulants, and Iron-Chelators in COVID-19 Control. J Diet Suppl 2023; 20:312-371. [PMID: 35603834 DOI: 10.1080/19390211.2022.2075072] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Severe imbalance in iron metabolism among SARS-CoV-2 infected patients is prominent in every symptomatic (mild, moderate to severe) clinical phase of COVID-19. Phase-I - Hypoxia correlates with reduced O2 transport by erythrocytes, overexpression of HIF-1α, altered mitochondrial bioenergetics with host metabolic reprogramming (HMR). Phase-II - Hyperferritinemia results from an increased iron overload, which triggers a fulminant proinflammatory response - the acute cytokine release syndrome (CRS). Elevated cytokine levels (i.e. IL6, TNFα and CRP) strongly correlates with altered ferritin/TF ratios in COVID-19 patients. Phase-III - Thromboembolism is consequential to erythrocyte dysfunction with heme release, increased prothrombin time and elevated D-dimers, cumulatively linked to severe coagulopathies with life-threatening outcomes such as ARDS, and multi-organ failure. Taken together, Fe-R-H dysregulation is implicated in every symptomatic phase of COVID-19. Fe-R-H regulators such as lactoferrin (LF), hemoxygenase-1 (HO-1), erythropoietin (EPO) and hepcidin modulators are innate bio-replenishments that sequester iron, neutralize iron-mediated free radicals, reduce oxidative stress, and improve host defense by optimizing iron metabolism. Due to its pivotal role in 'cytokine storm', ferroptosis is a potential intervention target. Ferroptosis inhibitors such as ferrostatin-1, liproxstatin-1, quercetin, and melatonin could prevent mitochondrial lipid peroxidation, up-regulate antioxidant/GSH levels and abrogate iron overload-induced apoptosis through activation of Nrf2 and HO-1 signaling pathways. Iron chelators such as heparin, deferoxamine, caffeic acid, curcumin, α-lipoic acid, and phytic acid could protect against ferroptosis and restore mitochondrial function, iron-redox potential, and rebalance Fe-R-H status. Therefore, Fe-R-H restoration is a host biomarker-driven potential combat strategy for an effective clinical and post-recovery management of COVID-19.
Collapse
Affiliation(s)
| | - Roger A Clemens
- Department of International Regulatory Science, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | | |
Collapse
|
22
|
Cutone A, Rosa L, Bonaccorsi di Patti MC, Iacovelli F, Conte MP, Ianiro G, Romeo A, Campione E, Bianchi L, Valenti P, Falconi M, Musci G. Lactoferrin Binding to SARS-CoV-2 Spike Glycoprotein Blocks Pseudoviral Entry and Relieves Iron Protein Dysregulation in Several In Vitro Models. Pharmaceutics 2022; 14:2111. [PMID: 36297546 PMCID: PMC9612385 DOI: 10.3390/pharmaceutics14102111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2 causes COVID-19, a predominantly pulmonary disease characterized by a burst of pro-inflammatory cytokines and an increase in free iron. The viral glycoprotein Spike mediates fusion to the host cell membrane, but its role as a virulence factor is largely unknown. Recently, the antiviral activity of lactoferrin against SARS-CoV-2 was demonstrated in vitro and shown to occur via binding to cell surface receptors, and its putative interaction with Spike was suggested by in silico analyses. We investigated the anti-SARS-CoV-2 activity of bovine and human lactoferrins in epithelial and macrophagic cells using a Spike-decorated pseudovirus. Lactoferrin inhibited pseudoviral fusion and counteracted the deleterious effects of Spike on iron and inflammatory homeostasis by restoring basal levels of iron-handling proteins and of proinflammatory cytokines IL-1β and IL-6. Using pull-down assays, we experimentally proved for the first time that lactoferrin binds to Spike, immediately suggesting a mechanism for the observed effects. The contribution of transferrin receptor 1 to Spike-mediated cell fusion was also experimentally demonstrated. In silico analyses showed that lactoferrin interacts with transferrin receptor 1, suggesting a multifaceted mechanism of action for lactoferrin. Our results give hope for the use of bovine lactoferrin, already available as a nutraceutical, as an adjuvant to standard therapies in COVID-19.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Federico Iacovelli
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Alice Romeo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
23
|
Krzyzowska M, Janicka M, Tomaszewska E, Ranoszek-Soliwoda K, Celichowski G, Grobelny J, Szymanski P. Lactoferrin-Conjugated Nanoparticles as New Antivirals. Pharmaceutics 2022; 14:pharmaceutics14091862. [PMID: 36145610 PMCID: PMC9504495 DOI: 10.3390/pharmaceutics14091862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Lactoferrin is an iron-binding glycoprotein with multiple functions in the body. Its activity against a broad spectrum of both DNA and RNA viruses as well as the ability to modulate immune responses have made it of interest in the pharmaceutical and food industries. The mechanisms of its antiviral activity include direct binding to the viruses or its receptors or the upregulation of antiviral responses by the immune system. Recently, much effort has been devoted to the use of nanotechnology in the development of new antivirals. In this review, we focus on describing the antiviral mechanisms of lactoferrin and the possible use of nanotechnology to construct safe and effective new antiviral drugs.
Collapse
Affiliation(s)
- Malgorzata Krzyzowska
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- Correspondence:
| | - Martyna Janicka
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Emilia Tomaszewska
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Katarzyna Ranoszek-Soliwoda
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Grzegorz Celichowski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Jarosław Grobelny
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163 St., 90-236 Lodz, Poland
| | - Pawel Szymanski
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
24
|
Actor JK, Nguyen TKT, Wasik-Smietana A, Kruzel ML. Modulation of TDM-induced granuloma pathology by human lactoferrin: a persistent effect in mice. Biometals 2022; 36:603-615. [PMID: 35976499 DOI: 10.1007/s10534-022-00434-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
Abstract
Lactoferrin (LTF), an iron binding protein, is known to exhibit immune modulatory effects on pulmonary pathology during insult-induced models of primary Mycobacterium tuberculosis (Mtb) infection. The effects of LTF correlate with modulation of the immune related development of the pathology, and altering of the histological nature of the physically compact and dense lung granuloma in mice. Specifically, a recombinant human version of LTF limits immediate progression of granulomatous severity following administration of the Mtb cell wall mycolic acid, trehalose 6,6'-dimycolate (TDM), in part through reduced pro-inflammatory responses known to control these events. This current study investigates a limited course of LTF to modulate not only initiation, but also maintenance and resolution of pathology post development of the granulomatous response in mice. Comparison is made to a fusion of LTF with the Fc domain of IgG2 (FcLTF), which is known to extend LTF half-life in circulation. TDM induced granulomas were examined at extended times post insult (day 7 and 14). Both LTF and the novel FcLTF exerted sustained effects on lung granuloma pathology. Reduction of pulmonary pro-inflammatory cytokines TNF-α and IL-1β occurred, correlating with reduced pathology. Increase in IL-6, known to regulate granuloma maintenance, was also seen with the LTFs. The FcLTF demonstrated greater impact than the recombinant LTF, and was superior in limiting damage to pulmonary tissues while limiting residual inflammatory cytokine production.
Collapse
Affiliation(s)
- Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, UTHealth McGovern Medical School, MSB 2.214, 6431 Fannin, Houston, TX, 77030, USA.
| | - Thao K T Nguyen
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | | | | |
Collapse
|
25
|
Rosa L, Cutone A, Conte MP, Campione E, Bianchi L, Valenti P. An overview on in vitro and in vivo antiviral activity of lactoferrin: its efficacy against SARS-CoV-2 infection. Biometals 2022; 36:417-436. [PMID: 35920949 PMCID: PMC9362590 DOI: 10.1007/s10534-022-00427-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022]
Abstract
Beyond the absolute and indisputable relevance and efficacy of anti-SARS-CoV-2 vaccines, the rapid transmission, the severity of infection, the absence of the protection on immunocompromised patients, the propagation of variants, the onset of infection and/or disease in vaccinated subjects and the lack of availability of worldwide vaccination require additional antiviral treatments. Since 1987, lactoferrin (Lf) is well-known to possess an antiviral activity related to its physico-chemical properties and to its ability to bind to both heparan sulfate proteoglycans (HSPGs) of host cells and/or surface components of viral particles. In the present review, we summarize in vitro and in vivo studies concerning the efficacy of Lf against DNA, RNA, enveloped and non-enveloped viruses. Recent studies have revealed that the in vitro antiviral activity of Lf is also extendable to SARS-CoV-2. In vivo, Lf oral administration in early stage of SARS-CoV-2 infection counteracts COVID-19 pathogenesis. In particular, the effect of Lf on SARS-CoV-2 entry, inflammatory homeostasis, iron dysregulation, iron-proteins synthesis, reactive oxygen formation, oxidative stress, gut-lung axis regulation as well as on RNA negativization, and coagulation/fibrinolysis balance will be critically reviewed. Moreover, the molecular mechanisms underneath, including the Lf binding to HSPGs and spike glycoprotein, will be disclosed and discussed. Taken together, present data not only support the application of the oral administration of Lf alone in asymptomatic COVID-19 patients or as adjuvant of standard of care practice in symptomatic ones but also constitute the basis for enriching the limited literature on Lf effectiveness for COVID-19 treatment.
Collapse
Affiliation(s)
- Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, Rome, Italy.
| |
Collapse
|
26
|
Ward JL, Torres-Gonzalez M, Ammons MCB. The Influence of Viral Infections on Iron Homeostasis and the Potential for Lactoferrin as a Therapeutic in the Age of the SARS-CoV-2 Pandemic. Nutrients 2022; 14:3090. [PMID: 35956266 PMCID: PMC9370565 DOI: 10.3390/nu14153090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
The association of hyperinflammation and hyperferritinemia with adverse outcomes in SARS-CoV-2-infected patients suggests an integral role for iron homeostasis in pathogenesis, a commonly described symptom of respiratory viral infections. This dysregulated iron homeostasis results in viral-induced lung injury, often lasting long after the acute viral infection; however, much remains to be understood mechanistically. Lactoferrin is a multipurpose glycoprotein with key immunomodulatory, antimicrobial, and antiviral functions, which can be found in various secreted fluids, but is most abundantly characterized in milk from all mammalian species. Lactoferrin is found at its highest concentrations in primate colostrum; however, the abundant availability of bovine-dairy-derived lactoferrin (bLf) has led to the use of bLf as a functional food. The recent research has demonstrated the potential value of bovine lactoferrin as a therapeutic adjuvant against SARS-CoV-2, and herein this research is reviewed and the potential mechanisms of therapeutic targeting are considered.
Collapse
Affiliation(s)
- Jeffrey L Ward
- Medical Student, College of Osteopathic Medicine, William Carey University, Hattiesburg, MI 39401, USA
| | | | - Mary Cloud B Ammons
- Associate Research Scientist, IVREF, Boise VA Medical Center, Boise, ID 83702, USA
| |
Collapse
|
27
|
Effect of bovine lactoferrin on recurrent urinary tract infections: in vitro and in vivo evidences. Biometals 2022; 36:491-507. [PMID: 35768747 DOI: 10.1007/s10534-022-00409-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) strains are the primary cause of urinary tract infections (UTIs). UPEC strains are able to invade, multiply and persisting in host cells. Therefore, UPEC strains are associated to recurrent UTIs requiring long-term antibiotic therapy. However, this therapy is suboptimal due to the increase of multidrug-resistant UPEC. The use of non-antibiotic treatments for managing UTIs is required. Among these, bovine lactoferrin (bLf), a multifunctional cationic glycoprotein, could be a promising tool because inhibits the entry into the host cells of several intracellular bacteria. Here, we demonstrate that 100 μg/ml bLf hinders the invasion of 2.0 ± 0.5 × 104 CFU/ml E. coli CFT073, prototype of UPEC, infecting 2.0 ± 0.5 × 105 cells/ml urinary bladder T24 epithelial cells. The highest protection (100%) is due to the bLf binding with host surface components even if an additional binding to bacterial surface components cannot be excluded. Of note, in the absence of bLf, UPEC survives and multiplies, while bLf significantly decreases bacterial intracellular survival. After these encouraging results, an observational survey on thirty-three patients affected by recurrent cystitis was performed. The treatment consisted in the oral administration of bLf alone or in combination with antibiotics and/or probiotics. After the observation period, a marked reduction of cystitis episodes was observed (p < 0.001) in all patients compared to the episodes occurred during the 6 months preceding the bLf-treatment. Twenty-nine patients did not report cystitis episodes (87.9%) whereas the remaining four (12.1%) experienced only one episode, indicating that bLf could be a worthwhile and safe treatment in counteracting recurrent cystitis.
Collapse
|
28
|
Elazab MFA, Elbaiomy AEA, Ahmed MS, Alsharif KF, Dahran N, Elmahallawy EK, Mokhbatly AA. Ameliorative Effects of Bovine Lactoferrin on Benzene-Induced Hematotoxicity in Albino Rats. Front Vet Sci 2022; 9:907580. [PMID: 35812844 PMCID: PMC9257330 DOI: 10.3389/fvets.2022.907580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Benzene (Bz) is one of the major products of the petrochemical industry globally, which induces aplastic anemia and leukemia in humans and animals. This study aimed to investigate the modulatory effects of bovine lactoferrin (bLf) on Bz-induced hematotoxicity in albino rats. Eighty male rats were randomly divided into eight groups: corn oil group [2 mL/kg body weight (BW)], bLf groups (100, 200, and 300 mg/kg BW), Bz group (Bz 2 mL/kg BW; corn oil 2 mL/kg BW), and Bz + bLf groups (Bz 2 mL/kg BW; corn oil 2 mL/kg BW; bLf 100, 200, and 300 mg/kg BW). Hematobiochemical results exhibited marked pancytopenia, a significant decrease in total protein, albumin, α2- and γ-globulin, ferritin, serum iron, and total iron-binding capacity (TIBC), and an increase in serum bioactivities of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and erythropoietin hormone levels in Bz-treated rats. Histopathological examination revealed a marked reduction in all hematopoietic cell lines in the bone marrow (BM), necrosis in the white pulp of the spleen and cytosolic hydrops, and apoptosis of hepatocytes in the Bz-treated group. Rats treated with bLf (300 mg/kg BW) revealed marked increases in total protein, albumin, α2- and γ-globulin, ferritin, serum iron, and TIBC levels and decreases both in ALP and LDH bioactivities and erythropoietin hormone levels compared with the Bz-treated group. Histopathological results were concomitant with hematobiochemical parameters in rats treated with bLf (300 mg/kg BW), almost showing restoration of the normal cellularity of BM, the architecture of red and white pulps of the spleen, and even the normal hypertrophy of hepatocytes compared with the control groups. To conclude, bLf (300 mg/kg BW) can be recommended to treat Bz-induced hematotoxicity.
Collapse
Affiliation(s)
- Mohamed F. Abou Elazab
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Asmaa E. A. Elbaiomy
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mohamed S. Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, Egypt
| | - Abdallah A. Mokhbatly
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
29
|
Alesci A, Aragona M, Cicero N, Lauriano ER. Can nutraceuticals assist treatment and improve covid-19 symptoms? Nat Prod Res 2022; 36:2672-2691. [PMID: 33949266 DOI: 10.1080/14786419.2021.1914032] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Viral diseases have always played an important role in public and individual health. Since December 2019, the world is facing a pandemic of SARS-CoV-2, a coronavirus that results in a syndrome known as COVID-19. Several studies were conducted to implement antiviral drug therapy, until the arrival of SARS-CoV-2 vaccines. Numerous scientific investigations have considered some nutraceuticals as an additional treatment of COVID-19 patients to improve their clinical picture. In this review, we would like to emphasize the studies conducted to date about this issue and try to understand whether the use of nutraceuticals as a supplementary therapy to COVID-19 may be a valid and viable avenue. Based on the results obtained so far, quercetin, astaxanthin, luteolin, glycyrrhizin, lactoferrin, hesperidin and curcumin have shown encouraging data suggesting their use to prevent and counteract the symptoms of this pandemic infection.
Collapse
Affiliation(s)
- Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Nicola Cicero
- Department of Biomedical and Dental Science and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
30
|
Bartolomé F, Rosa L, Valenti P, Lopera F, Hernández-Gallego J, Cantero JL, Orive G, Carro E. Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer's Disease Patients. Front Immunol 2022; 13:878201. [PMID: 35547737 PMCID: PMC9083828 DOI: 10.3389/fimmu.2022.878201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Coronavirus 2 (SARS-CoV2) (COVID-19) causes severe acute respiratory syndrome. Severe illness of COVID-19 largely occurs in older people and recent evidence indicates that demented patients have higher risk for COVID-19. Additionally, COVID-19 further enhances the vulnerability of older adults with cognitive damage. A balance between the immune and inflammatory response is necessary to control the infection. Thus, antimicrobial and anti-inflammatory drugs are hopeful therapeutic agents for the treatment of COVID-19. Accumulating evidence suggests that lactoferrin (Lf) is active against SARS-CoV-2, likely due to its potent antiviral and anti-inflammatory actions that ultimately improves immune system responses. Remarkably, salivary Lf levels are significantly reduced in different Alzheimer's disease (AD) stages, which may reflect AD-related immunological disturbances, leading to reduced defense mechanisms against viral pathogens and an increase of the COVID-19 susceptibility. Overall, there is an urgent necessity to protect AD patients against COVID-19, decreasing the risk of viral infections. In this context, we propose bovine Lf (bLf) as a promising preventive therapeutic tool to minimize COVID-19 risk in patients with dementia or AD.
Collapse
Affiliation(s)
- Fernando Bartolomé
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, Rome, Italy
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Jesús Hernández-Gallego
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Luis Cantero
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country, Vitoria, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Networked Center for Biomedical Research in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Neurobiology of Alzheimer’s Disease Unit, Chronic Disease Programme, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Motti ML, Tafuri D, Donini L, Masucci MT, De Falco V, Mazzeo F. The Role of Nutrients in Prevention, Treatment and Post-Coronavirus Disease-2019 (COVID-19). Nutrients 2022; 14:1000. [PMID: 35267974 PMCID: PMC8912782 DOI: 10.3390/nu14051000] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 virus, infecting human cells via its spike protein, causes Coronavirus disease 2019 (COVID-19). COVID-19 is characterized by shortness of breath, fever, and pneumonia and is sometimes fatal. Unfortunately, to date, there is still no definite therapy to treat COVID-19. Therefore, the World Health Organization (WHO) approved only supportive care. During the COVID-19 pandemic, the need to maintain a correct intake of nutrients to support very weakened patients in overcoming disease arose. The literature available on nutrient intake for COVID-19 is mainly focused on prevention. However, the safe intake of micro- and/or macro-nutrients can be useful either for preventing infection and supporting the immune response during COVID-19, as well as in the post-acute phase, i.e., "long COVID", that is sometimes characterized by the onset of various long lasting and disabling symptoms. The aim of this review is to focus on the role of nutrient intake during all the different phases of the disease, including prevention, the acute phase, and finally long COVID.
Collapse
Affiliation(s)
- Maria Letizia Motti
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy; (D.T.); (L.D.); (F.M.)
| | - Domenico Tafuri
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy; (D.T.); (L.D.); (F.M.)
| | - Lorenzo Donini
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy; (D.T.); (L.D.); (F.M.)
| | - Maria Teresa Masucci
- Neoplastic Progression Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Naples, Italy;
| | - Valentina De Falco
- Istituto di Endocrinologia e Oncologia Sperimentale del CNR, Dipartimento di Medicina Molecolare e Biotecnologie mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy;
| | - Filomena Mazzeo
- Department of Movement Sciences and Wellbeing, University “Parthenope”, 80133 Naples, Italy; (D.T.); (L.D.); (F.M.)
| |
Collapse
|
32
|
Liu N, Feng G, Zhang X, Hu Q, Sun S, Sun J, Sun Y, Wang R, Zhang Y, Wang P, Li Y. The Functional Role of Lactoferrin in Intestine Mucosal Immune System and Inflammatory Bowel Disease. Front Nutr 2021; 8:759507. [PMID: 34901112 PMCID: PMC8655231 DOI: 10.3389/fnut.2021.759507] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel disease (IBD), encompassing ulcerative colitis (UC) and Crohn's disease (CD), is one of the main types of intestinal inflammatory diseases with intestine mucosal immune disorder. Intestine mucosal immune system plays a remarkable and important role in the etiology and pathogenesis of IBD. Therefore, understanding the intestine mucosal immune mechanism is a key step to develop therapeutic interventions for IBD. Intestine mucosal immune system and IBD are influenced by various factors, such as inflammation, gut permeability, gut microbiota, and nutrients. Among these factors, emerging evidence show that nutrients play a key role in inflammation activation, integrity of intestinal barrier, and immune cell modulation. Lactoferrin (LF), an iron-binding glycoprotein belonging to transferrin family, is a dietary bioactive component abundantly found in mammalian milk. Notably, LF has been reported to perform diverse biological functions including antibacterial activity, anti-inflammatory activity, intestinal barrier protection, and immune cell modulation, and is involved in maintaining intestine mucosal immune homeostasis. The improved understanding of the properties of LF in intestine mucosal immune system and IBD will facilitate its application in nutrition, clinical medicine, and health. Herein, this review outlines the recent advancements on LF as a potential therapeutic intervention for IBD associated with intestine mucosal immune system dysfunction. We hope this review will provide a reference for future studies and lay a theoretical foundation for LF-based therapeutic interventions for IBD by understanding the particular effects of LF on intestine mucosal immune system.
Collapse
Affiliation(s)
- Ning Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Gang Feng
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Xiaoying Zhang
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Qingjuan Hu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Jiaqi Sun
- Inner Mongolia Yili Industrial Group, Co., Ltd., Hohhot, China
- Yili Maternal & Infant Nutrition Institute, Beijing, China
| | - Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
33
|
Lanser L, Fuchs D, Kurz K, Weiss G. Physiology and Inflammation Driven Pathophysiology of Iron Homeostasis-Mechanistic Insights into Anemia of Inflammation and Its Treatment. Nutrients 2021; 13:3732. [PMID: 34835988 PMCID: PMC8619077 DOI: 10.3390/nu13113732] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anemia is very common in patients with inflammatory disorders. Its prevalence is associated with severity of the underlying disease, and it negatively affects quality of life and cardio-vascular performance of patients. Anemia of inflammation (AI) is caused by disturbances of iron metabolism resulting in iron retention within macrophages, a reduced erythrocyte half-life, and cytokine mediated inhibition of erythropoietin function and erythroid progenitor cell differentiation. AI is mostly mild to moderate, normochromic and normocytic, and characterized by low circulating iron, but normal and increased levels of the storage protein ferritin and the iron hormone hepcidin. The primary therapeutic approach for AI is treatment of the underlying inflammatory disease which mostly results in normalization of hemoglobin levels over time unless other pathologies such as vitamin deficiencies, true iron deficiency on the basis of bleeding episodes, or renal insufficiency are present. If the underlying disease and/or anemia are not resolved, iron supplementation therapy and/or treatment with erythropoietin stimulating agents may be considered whereas blood transfusions are an emergency treatment for life-threatening anemia. New treatments with hepcidin-modifying strategies and stabilizers of hypoxia inducible factors emerge but their therapeutic efficacy for treatment of AI in ill patients needs to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Lukas Lanser
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.L.); (K.K.)
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
34
|
Campione E, Lanna C, Cosio T, Rosa L, Conte MP, Iacovelli F, Romeo A, Falconi M, Del Vecchio C, Franchin E, Lia MS, Minieri M, Chiaramonte C, Ciotti M, Nuccetelli M, Terrinoni A, Iannuzzi I, Coppeta L, Magrini A, Bernardini S, Sabatini S, Rosapepe F, Bartoletti PL, Moricca N, Di Lorenzo A, Andreoni M, Sarmati L, Miani A, Piscitelli P, Squillaci E, Valenti P, Bianchi L. Lactoferrin as Antiviral Treatment in COVID-19 Management: Preliminary Evidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10985. [PMID: 34682731 PMCID: PMC8535893 DOI: 10.3390/ijerph182010985] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023]
Abstract
Lactoferrin (Lf), a multifunctional cationic glycoprotein synthesized by exocrine glands and neutrophils, possesses an in vitro antiviral activity against SARS-CoV-2. Thus, we conducted an in vivo preliminary study to investigate the antiviral effect of oral and intranasal liposomal bovine Lf (bLf) in asymptomatic and mild-to-moderate COVID-19 patients. From April 2020 to June 2020, a total of 92 mild-to-moderate (67/92) and asymptomatic (25/92) COVID-19 patients were recruited and divided into three groups. Thirty-two patients (14 hospitalized and 18 in home-based isolation) received only oral and intranasal liposomal bLf; 32 hospitalized patients were treated only with standard of care (SOC) treatment; and 28, in home-based isolation, did not take any medication. Furthermore, 32 COVID-19 negative, untreated, healthy subjects were added for ancillary analysis. Liposomal bLf-treated COVID-19 patients obtained an earlier and significant (p < 0.0001) SARS-CoV-2 RNA negative conversion compared to the SOC-treated and untreated COVID-19 patients (14.25 vs. 27.13 vs. 32.61 days, respectively). Liposomal bLf-treated COVID-19 patients showed fast clinical symptoms recovery compared to the SOC-treated COVID-19 patients. In bLf-treated patients, a significant decrease in serum ferritin, IL-6, and D-dimers levels was observed. No adverse events were reported. These observations led us to speculate a potential role of bLf in the management of mild-to-moderate and asymptomatic COVID-19 patients.
Collapse
Affiliation(s)
- Elena Campione
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| | - Caterina Lanna
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| | - Terenzio Cosio
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Federico Iacovelli
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Alice Romeo
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Mattia Falconi
- Structural Bioinformatics Group, Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.I.); (A.R.); (M.F.)
| | - Claudia Del Vecchio
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (E.F.)
| | - Elisa Franchin
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (C.D.V.); (E.F.)
| | - Maria Stella Lia
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Marilena Minieri
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Carlo Chiaramonte
- Department of Statistics, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Marco Ciotti
- Virology Unit, Tor Vergata University Hospital, 00133 Rome, Italy;
| | - Marzia Nuccetelli
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (M.N.); (S.B.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (M.S.L.); (M.M.); (A.T.)
| | - Ilaria Iannuzzi
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Luca Coppeta
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Andrea Magrini
- Occupational Medicine Department, University of Rome “Tor Vergata”, 00133 Rome, Italy; (I.I.); (L.C.); (A.M.)
| | - Sergio Bernardini
- Laboratory Medicine, Department of Experimental Medicine and Surgery, Tor Vergata University Hospital, 00133 Rome, Italy; (M.N.); (S.B.)
| | | | | | | | - Nicola Moricca
- Villa dei Pini Hospital, 00042 Anzio, Italy; (S.S.); (N.M.)
| | - Andrea Di Lorenzo
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Massimo Andreoni
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Loredana Sarmati
- Infectious Disease Unit, Tor Vergata University Hospital, 00133 Rome, Italy; (A.D.L.); (M.A.); (L.S.)
| | - Alessandro Miani
- Department of Environmental Sciences and Policy, University of Milan, 20133 Milan, Italy;
| | - Prisco Piscitelli
- UNESCO Chair on Health Education and Sustainable Development, University of Naples Federico II, 80131 Naples, Italy;
| | - Ettore Squillaci
- Department of Diagnostic and Molecular Imaging, Radiation Therapy and Interventional Radiology, University Hospital Tor Vergata, 00133 Rome, Italy;
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome “La Sapienza”, 00185 Rome, Italy; (L.R.); (M.P.C.); (P.V.)
| | - Luca Bianchi
- Dermatology Unit, Department of Systems Medicine, Tor Vergata University Hospital, 00133 Rome, Italy; (C.L.); (T.C.); (L.B.)
| |
Collapse
|
35
|
Influence of iron binding in the structural stability and cellular internalization of bovine lactoferrin. Heliyon 2021; 7:e08087. [PMID: 34632151 PMCID: PMC8487029 DOI: 10.1016/j.heliyon.2021.e08087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 09/26/2021] [Indexed: 02/05/2023] Open
Abstract
Lactoferrin (Lf) is an iron-binding glycoprotein and a component of many external secretions with a wide diversity of functions. Structural studies are important to understand the mechanisms employed by Lf to exert so varied functions. Here, we used guanidine hydrochloride and high hydrostatic pressure to cause perturbations in the structure of bovine Lf (bLf) in apo and holo (unsaturated and iron-saturated, respectively) forms, and analyzed conformational changes by intrinsic and extrinsic fluorescence spectroscopy. Our results showed that the iron binding promotes changes on tertiary structure of bLf and increases its structural stability. In addition, we evaluated the effects of bLf structural change on the kinetics of bLf internalization in Vero cells by confocal fluorescence microscopy, and observed that the holo form was faster than the apo form. This finding may indicate that structural changes promoted by iron binding may play a key role in the intracellular traffic of bLf. Altogether, our data improve the comprehension of bLf stability and uptake, adding knowledge to its potential use as a biopharmaceutical.
Collapse
|
36
|
Ambulatory COVID-19 Patients Treated with Lactoferrin as a Supplementary Antiviral Agent: A Preliminary Study. J Clin Med 2021; 10:jcm10184276. [PMID: 34575388 PMCID: PMC8469309 DOI: 10.3390/jcm10184276] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2, an enveloped, single-stranded RNA virus causing COVID-19, exerts morbidity and mortality especially in elderly, obese individuals and those suffering from chronic conditions. In addition to the availability of vaccines and the limited efficacy of the first dose of vaccine against SARS-CoV-2 variants, there is an urgent requirement for the discovery and development of supplementary antiviral agents. Lactoferrin (Lf), a pleiotropic cationic glycoprotein of innate immunity, has been proposed as a safe treatment combined with other therapies in COVID-19 patients. Here, we present a small retrospective study on asymptomatic, paucisymptomatic, and moderate symptomatic COVID-19 Lf-treated versus Lf-untreated patients. The time required to achieve SARS-CoV-2 RNA negativization in Lf-treated patients (n = 82) was significantly lower (p < 0.001) compared to that observed in Lf-untreated ones (n = 39) (15 versus 24 days). A link among reduction in symptoms, age, and Lf treatment was found. The Lf antiviral activity could be explained through the interaction with SARS-CoV-2 spike, the binding with heparan sulfate proteoglycans of cells, and the anti-inflammatory activity associated with the restoration of iron homeostasis disorders, which favor viral infection/replication. Lf could be an important supplementary treatment in counteracting SARS-CoV-2 infection, as it is also safe and well-tolerated by all treated patients.
Collapse
|
37
|
Artym J, Zimecki M, Kruzel ML. Lactoferrin for Prevention and Treatment of Anemia and Inflammation in Pregnant Women: A Comprehensive Review. Biomedicines 2021; 9:898. [PMID: 34440102 PMCID: PMC8389615 DOI: 10.3390/biomedicines9080898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023] Open
Abstract
Pregnancy is a physiological state that demands higher level of nutrients, including vitamins and minerals, for the growth and maintenance of the fetus. Iron deficiency is a part of most common diet deficiencies in pregnancy and has high clinical significance leading to the development of syderopenic anemia and its consequences for mother and child, such as higher risk of perinatal death, susceptibility to infection, intra-uteral growth inhibition, prematurity and low birth weight. Hence, iron supplementation is recommended for pregnant women; however dietary intake of iron from most commercially available formulas is often insufficient due to iron-poor bioavailability, or have undesired side-effects in the gastrointestinal tract, resulting in a discouraging and distrustful attitude to such treatment. The results of numerous studies indicate that diet supplementation with lactoferrin (LTF), an iron-binding protein, may be advantageous in prophylaxis and treatment of iron deficiency anemia. LTF, administered orally, normalizes iron homeostasis, not only by facilitating iron absorption, but also by inhibiting inflammatory processes responsible for anemia of chronic diseases, characterized by a functional iron deficit for physiological processes. LTF also protects against infections and inflammatory complications, caused by diagnostic surgical interventions in pregnant women. Beneficial, multidirectional actions of LTF during pregnancy encompass, in addition, inhibition of oxidative stress, normalization of intestine and genital tract microbiota and carbohydrate-lipid metabolism, protection of intestine barrier function, promotion of wound healing, as well as hypotensive, analgesic and antistress actions. Bovine lactoferrin (BLTF) is readily available on the nutritional market and generally recognized as safe (GRAS) for use in human diet.
Collapse
Affiliation(s)
- Jolanta Artym
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12 Str., 53-112 Wrocław, Poland;
| | - Michał Zimecki
- Department of Experimental Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12 Str., 53-112 Wrocław, Poland;
| | - Marian L. Kruzel
- Department of Integrative Biology and Pharmacology, McGovern Medical School at Houston, University of Texas, 25 7505 Fannin Str., Third Floor 313, Houston, TX 77054, USA;
| |
Collapse
|
38
|
Alpogan O, Karakucuk S. Lactoferrin: The Natural Protector of the Eye against Coronavirus-19. Ocul Immunol Inflamm 2021; 29:751-752. [PMID: 34255583 DOI: 10.1080/09273948.2021.1954202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Coronavirus-19 (Covid-19), which has affected the whole world in a very short time, can infect the eye by using the Angiotensin-Converting Enzyme 2 receptor. Viral prevalence in the conjunctiva was reported to be between 3% and 16% in patients with Covid-19. Although Covid-19 has been reported to cause symptoms of conjunctivitis and rash in the eye, no complete evidence has yet been presented that the virus is transmitted from the eye. The low rate of PCR positivity in conjunctival swabs may be due to the effect of lactoferrin (LF), which is among the tear defense systems. LF, the natural protein found in tears, plays a major role in the eye's immune system. The antiviral effect of LF on the SARS-CoV pseudotype, which is in the same family as SARS-CoV-2, has been demonstrated in-vitro.
Collapse
Affiliation(s)
- Oksan Alpogan
- Department of Ophthalmology, Haydarpasa Numune Training and Resarch Hospital, Istanbul, Turkey
| | - Sarper Karakucuk
- Department of Ophthalmology, Acıbadem University Atakent Hospital, Istanbul, Turkey
| |
Collapse
|
39
|
Liebold I, Jawazneh AA, Hamley M, Bosurgi L. Apoptotic cell signals and heterogeneity in macrophage function: Fine-tuning for a healthy liver. Semin Cell Dev Biol 2021; 119:72-81. [PMID: 34246569 DOI: 10.1016/j.semcdb.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
Functional heterogeneity in tissue macrophage populations has often been traced to developmental and spatial cues. Upon tissue damage, macrophages are exposed to soluble mediators secreted by activated cells, which shape their polarisation. Interestingly, macrophages are concomitantly exposed to a variety of different dying cells, which carry miscellaneous signals and that need to be recognised and promptly up-taken by professional phagocytes. This review discusses how differences in the nature of the dying cells, like their morphological and biochemical features as well as the specificity of phagocytic receptor usage on macrophages, might contribute to the transcriptional and functional heterogeneity observed in phagocytic cells in the tissue.
Collapse
Affiliation(s)
- Imke Liebold
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Amirah Al Jawazneh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Madeleine Hamley
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| |
Collapse
|
40
|
Chen Q, Qi X, Zhang W, Zhang Y, Bi Y, Meng Q, Bian H, Li Y. Catalpol Inhibits Macrophage Polarization and Prevents Postmenopausal Atherosclerosis Through Regulating Estrogen Receptor Alpha. Front Pharmacol 2021; 12:655081. [PMID: 33995075 PMCID: PMC8120111 DOI: 10.3389/fphar.2021.655081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Lacking estrogen increases the risk of atherosclerosis (AS) in postmenopausal women. Inflammation plays a vital role in the pathological process of AS, and macrophages are closely related to inflammation. Catalpol is an iridoid glucoside extracted from the fresh roots of the traditional Chinese herb Rehmanniae radix preparata. In this study, we aimed to evaluate the effects of catalpol on macrophage polarization and postmenopausal AS. In addition, we investigated whether the mechanism of catalpol was dependent on regulating the expression of estrogen receptors (ERs). In vitro, lipopolysaccharides (LPS) and interferon-γ (IFN-γ) were applied to induce M1 macrophage polarization. In vivo, the ApoE-/- mice were fed with a high-fat diet to induce AS, and ovariectomy was operated to mimic the estrogen cessation. We demonstrated catalpol inhibited M1 macrophage polarization induced by LPS and INF-γ, and eliminated lipid accumulation in postmenopausal AS mice. Catalpol not only suppressed the inflammatory response but also reduced the level of oxidative stress. Then, ERs (ERα and ERβ) inhibitors and ERα siRNA were also applied in confirming that the protective effect of catalpol was mediated by ERα, rather than ERβ. In conclusion, catalpol significantly inhibited macrophage polarization and prevented postmenopausal AS by increasing ERα expression.
Collapse
Affiliation(s)
- Qi Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Qi
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuhan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunhui Bi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
41
|
Wei YS, Feng K, Li SF, Hu TG, Linhardt RJ, Zong MH, Wu H. Oral fate and stabilization technologies of lactoferrin: a systematic review. Crit Rev Food Sci Nutr 2021; 62:6341-6358. [PMID: 33749401 DOI: 10.1080/10408398.2021.1900774] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactoferrin (Lf), a bioactive protein initially found in many biological secretions including milk, is regarded as the nutritional supplement or therapeutic ligand due to its multiple functions. Research on its mode of action reveals that intact Lf or its active peptide (i.e., lactoferricin) shows an important multifunctional performance. Oral delivery is considered as the most convenient administration route for this bioactive protein. Unfortunately, Lf is sensitive to the gastrointestinal (GI) physicochemical stresses and lactoferricin is undetectable in GI digesta. This review introduces the functionality of Lf at the molecular level and its degradation behavior in GI tract is discussed in detail. Subsequently, the absorption and transport of Lf from intestine into the blood circulation, which is pivotal to its health promoting effects in various tissues, and some assisting labeling methods are discussed. Stabilization technologies aiming at preserving the structural integrity and functional properties of orally administrated Lf are summarized and compared. Altogether, this work comprehensively reviews the structure-function relationship of Lf, its oral fate and the development of stabilization technologies for the enhancement of the oral bioavailability of Lf. The existing limitations and scope for future research are also discussed.
Collapse
Affiliation(s)
- Yun-Shan Wei
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Kun Feng
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Shu-Fang Li
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, China
| |
Collapse
|
42
|
Maccio A, Sanna E, Neri M, Oppi S, Madeddu C. Cachexia as Evidence of the Mechanisms of Resistance and Tolerance during the Evolution of Cancer Disease. Int J Mol Sci 2021; 22:2890. [PMID: 33809200 PMCID: PMC8001015 DOI: 10.3390/ijms22062890] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
During its evolution, cancer induces changes in patients' energy metabolism that strongly affect the overall clinical state and are responsible for cancer-related cachexia syndrome. To better understand the mechanisms underlying cachexia and its metabolic derangements, research efforts should focus on the events that are driven by the immune system activation during the evolution of neoplastic disease and on the phenomena of "resistance" and "tolerance" typically involved in the human body response against stress, pathogens, or cancer. Indeed, in the case where resistance is not able to eliminate the cancer, tolerance mechanisms can utilize the symptoms of cachexia (anemia, anorexia, and fatigue) to counteract unregulated cancer growth. These notions are also sustained by the evidence that cancer cachexia may be reversible if the resistance and tolerance phases are supported by appropriate antineoplastic treatments. Accordingly, there is no doubt that anticachectic therapies have an irreplaceable role in cases of reversible cancer cachexia where, if harmoniously associated with effective antineoplastic therapies, they can contribute to preserve the quality of life and improve prognosis. Such anticachectic treatments should be based on targeting the complex immunological, inflammatory, and metabolic pathways involved in the complex pathogenesis of cachexia. Meanwhile, the role of the anticachectic therapies is very different in the stage of irreversible cachexia when the available antineoplastic treatments are not able to control the disease and the resistance mechanisms fail with the prevalence of the tolerance phenomena. At this stage, they can be useful only to improve the quality of life, allowing the patient and their family to get a better awareness of the final phases of life, thereby opening to the best spiritual remodulation of the final event, death.
Collapse
Affiliation(s)
- Antonio Maccio
- Department of Gynecologic Oncology, Businco Hospital, ARNAS G. Brotzu, 09121 Cagliari, Italy; (E.S.); (M.N.)
| | - Elisabetta Sanna
- Department of Gynecologic Oncology, Businco Hospital, ARNAS G. Brotzu, 09121 Cagliari, Italy; (E.S.); (M.N.)
| | - Manuela Neri
- Department of Gynecologic Oncology, Businco Hospital, ARNAS G. Brotzu, 09121 Cagliari, Italy; (E.S.); (M.N.)
| | - Sara Oppi
- Hematology and Transplant Center, Businco Hospital, ARNAS G. Brotzu, 09121 Cagliari, Italy;
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
| |
Collapse
|
43
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
44
|
Romeo I, Mesiti F, Lupia A, Alcaro S. Current Updates on Naturally Occurring Compounds Recognizing SARS-CoV-2 Druggable Targets. Molecules 2021; 26:632. [PMID: 33530467 PMCID: PMC7865633 DOI: 10.3390/molecules26030632] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified in China as the etiologic agent of the recent COVID-19 pandemic outbreak. Due to its high transmissibility, this virus quickly spread throughout the world, causing considerable health issues. The scientific community exerted noteworthy efforts to obtain therapeutic solutions for COVID-19, and new scientific networks were constituted. No certified drugs to efficiently inhibit the virus were identified, and the development of de-novo medicines requires approximately ten years of research. Therefore, the repurposing of natural products could be an effective strategy to handle SARS-CoV-2 infection. This review aims to update on current status of the natural occurring compounds recognizing SARS-CoV-2 druggable targets. Among the clinical trials actually recruited, some natural compounds are ongoing to examine their potential role to prevent and to treat the COVID-19 infection. Many natural scaffolds, including alkaloids, terpenes, flavonoids, and benzoquinones, were investigated by in-silico, in-vitro, and in-vivo approaches. Despite the large data set obtained by a computational approach, experimental evidences in most cases are not available. To fill this gap, further efforts to validate these results are required. We believe that an accurate investigation of naturally occurring compounds may provide insights for the potential treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Isabella Romeo
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (F.M.); (A.L.)
| | - Francesco Mesiti
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (F.M.); (A.L.)
| | - Antonio Lupia
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (F.M.); (A.L.)
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy;
- Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (F.M.); (A.L.)
| |
Collapse
|
45
|
Cutone A, Ianiro G, Lepanto MS, Rosa L, Valenti P, Bonaccorsi di Patti MC, Musci G. Lactoferrin in the Prevention and Treatment of Intestinal Inflammatory Pathologies Associated with Colorectal Cancer Development. Cancers (Basel) 2020; 12:3806. [PMID: 33348646 PMCID: PMC7766217 DOI: 10.3390/cancers12123806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/20/2022] Open
Abstract
The connection between inflammation and cancer is well-established and supported by genetic, pharmacological and epidemiological data. The inflammatory bowel diseases (IBDs), including Crohn's disease and ulcerative colitis, have been described as important promoters for colorectal cancer development. Risk factors include environmental and food-borne mutagens, dysbalance of intestinal microbiome composition and chronic intestinal inflammation, with loss of intestinal epithelial barrier and enhanced cell proliferation rate. Therapies aimed at shutting down mucosal inflammatory response represent the foundation for IBDs treatment. However, when applied for long periods, they can alter the immune system and promote microbiome dysbiosis and carcinogenesis. Therefore, it is imperative to find new safe substances acting as both potent anti-inflammatory and anti-pathogen agents. Lactoferrin (Lf), an iron-binding glycoprotein essential in innate immunity, is generally recognized as safe and used as food supplement due to its multifunctionality. Lf possesses a wide range of immunomodulatory and anti-inflammatory properties against different aseptic and septic inflammatory pathologies, including IBDs. Moreover, Lf exerts anti-adhesive, anti-invasive and anti-survival activities against several microbial pathogens that colonize intestinal mucosa of IBDs patients. This review focuses on those activities of Lf potentially useful for the prevention/treatment of intestinal inflammatory pathologies associated with colorectal cancer development.
Collapse
Affiliation(s)
- Antimo Cutone
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Giusi Ianiro
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| | - Maria Stefania Lepanto
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (M.S.L.); (L.R.); (P.V.)
| | | | - Giovanni Musci
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (A.C.); (G.I.)
| |
Collapse
|
46
|
Lee J, Lee J, Lee S, Ahmad T, Madhurakkat Perikamana SK, Kim EM, Lee SW, Shin H. Bioactive Membrane Immobilized with Lactoferrin for Modulation of Bone Regeneration and Inflammation. Tissue Eng Part A 2020; 26:1243-1258. [DOI: 10.1089/ten.tea.2020.0015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Jinki Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Taufiq Ahmad
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sajeesh Kumar Madhurakkat Perikamana
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
- BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, Hanyang University, Seoul, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Mancinelli R, Cutone A, Rosa L, Lepanto MS, Onori P, Pannarale L, Franchitto A, Gaudio E, Valenti P. Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma. Eur J Histochem 2020; 64. [PMID: 33131269 PMCID: PMC7586138 DOI: 10.4081/ejh.2020.3156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) represents the second most common primary hepatic malignancy and originates from the neoplastic transformation of the biliary cells. The intrahepatic subtype includes two morpho-molecular forms: large-duct type intrahepatic CCA (iCCA) and small-duct type iCCA. Iron is fundamental for the cellular processes, contributing in tumor development and progression. The aim of this study was to evaluate iron uptake, storage, and efflux proteins in both lipopolysaccharide-inflamed small and large cholangiocytes as well as in different iCCA subtypes. Our results show that, despite an increase in interleukin-6 production by both small and large cholangiocytes, ferroportin (Fpn) was decreased only in small cholangiocytes, whereas transferrin receptor-1 (TfR1) and ferritin (Ftn) did not show any change. Differently from in vitro models, Fpn expression was increased in malignant cholangiocytes of small-duct type iCCA in comparison to large-duct type iCCA and peritumoral tissues. TfR1, Ftn and hepcidin were enhanced, even if at different extent, in both malignant cholangiocytes in comparison to the surrounding samples. Lactoferrin was higher in large-duct type iCCA in respect to small-duct type iCCA and peritumoral tissues. These findings show a different iron handling by inflamed small and large cholangiocytes, and small and large-duct type iCCA. The difference in iron homeostasis by the iCCA subtypes may have implications for the tumor management.
Collapse
Affiliation(s)
- Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome.
| | - Antimo Cutone
- Department of Biosciences and Territory, University of Molise, Pesche (IS).
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome.
| | | | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome; Eleonora Lorillard Spencer Cenci Foundation, Rome.
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome .
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome.
| |
Collapse
|
48
|
Dossou AS, Sabnis N, Nagarajan B, Mathew E, Fudala R, Lacko AG. Lipoproteins and the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:93-116. [PMID: 32845504 DOI: 10.1007/978-3-030-48457-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The tumor microenvironment (TME) plays a key role in enhancing the growth of malignant tumors and thus contributing to "aggressive phenotypes," supporting sustained tumor growth and metastasis. The precise interplay between the numerous components of the TME that contribute to the emergence of these aggressive phenotypes is yet to be elucidated and currently under intense investigation. The purpose of this article is to identify specific role(s) for lipoproteins as part of these processes that facilitate (or oppose) malignant growth as they interact with specific components of the TME during tumor development and treatment. Because of the scarcity of literature reports regarding the interaction of lipoproteins with the components of the tumor microenvironment, we were compelled to explore topics that were only tangentially related to this topic, to ensure that we have not missed any important concepts.
Collapse
Affiliation(s)
- Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Bhavani Nagarajan
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ezek Mathew
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.,Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA. .,Departments of Physiology/Anatomy and Pediatrics, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
49
|
Gholkar AA, Schmollinger S, Velasquez EF, Lo YC, Cohn W, Capri J, Dharmarajan H, Deardorff WJ, Gao LW, Abdusamad M, Whitelegge JP, Torres JZ. Regulation of Iron Homeostasis through Parkin-Mediated Lactoferrin Ubiquitylation. Biochemistry 2020; 59:2916-2921. [PMID: 32786404 PMCID: PMC7803182 DOI: 10.1021/acs.biochem.0c00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Somatic mutations that perturb Parkin ubiquitin ligase activity and the misregulation of iron homeostasis have both been linked to Parkinson's disease. Lactotransferrin (LTF) is a member of the family of transferrin iron binding proteins that regulate iron homeostasis, and increased levels of LTF and its receptor have been observed in neurodegenerative disorders like Parkinson's disease. Here, we report that Parkin binds to LTF and ubiquitylates LTF to influence iron homeostasis. Parkin-dependent ubiquitylation of LTF occurred most often on lysines (K) 182 and 649. Substitution of K182 or K649 with alanine (K182A or K649A, respectively) led to a decrease in the level of LTF ubiquitylation, and substitution at both sites led to a major decrease in the level of LTF ubiquitylation. Importantly, Parkin-mediated ubiquitylation of LTF was critical for regulating intracellular iron levels as overexpression of LTF ubiquitylation site point mutants (K649A or K182A/K649A) led to an increase in intracellular iron levels measured by ICP-MS/MS. Consistently, RNAi-mediated depletion of Parkin led to an increase in intracellular iron levels in contrast to overexpression of Parkin that led to a decrease in intracellular iron levels. Together, these results indicate that Parkin binds to and ubiquitylates LTF to regulate intracellular iron levels. These results expand our understanding of the cellular processes that are perturbed when Parkin activity is disrupted and more broadly the mechanisms that contribute to Parkinson's disease.
Collapse
Affiliation(s)
- Ankur A. Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Stefan Schmollinger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095, USA
| | - Erick F. Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yu-Chen Lo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90095, USA
| | - Joseph Capri
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90095, USA
| | - Harish Dharmarajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - William J. Deardorff
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Lucy W. Gao
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90095, USA
| | - Mai Abdusamad
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
50
|
Campione E, Cosio T, Rosa L, Lanna C, Di Girolamo S, Gaziano R, Valenti P, Bianchi L. Lactoferrin as Protective Natural Barrier of Respiratory and Intestinal Mucosa against Coronavirus Infection and Inflammation. Int J Mol Sci 2020; 21:E4903. [PMID: 32664543 PMCID: PMC7402319 DOI: 10.3390/ijms21144903] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
Recently, the world has been dealing with a devastating global pandemic coronavirus infection, with more than 12 million infected worldwide and over 300,000 deaths as of May 15th 2020, related to a novel coronavirus (2019-nCoV), characterized by a spherical morphology and identified through next-generation sequencing. Although the respiratory tract is the primary portal of entry of SARS-CoV-2, gastrointestinal involvement associated with nausea, vomiting and diarrhoea may also occur. No drug or vaccine has been approved due to the absence of evidence deriving from rigorous clinical trials. Increasing interest has been highlighted on the possible preventative role and adjunct treatment of lactoferrin, glycoprotein of human secretions part of a non-specific defensive system, known to play a crucial role against microbial and viral infections and exerting anti-inflammatory effects on different mucosal surfaces and able to regulate iron metabolism. In this review, analysing lactoferrin properties, we propose designing a clinical trial to evaluate and verify its effect using a dual combination treatment with local, solubilized intranasal spray formulation and oral administration. Lactoferrin could counteract the coronavirus infection and inflammation, acting either as natural barrier of both respiratory and intestinal mucosa or reverting the iron disorders related to the viral colonization.
Collapse
Affiliation(s)
- Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Luigi Rosa
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Caterina Lanna
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| | - Stefano Di Girolamo
- Department of Otorhinolaryngology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Roberta Gaziano
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Piera Valenti
- Department of Public Health and Infectious Diseases, University of Rome La Sapienza, 00185 Rome, Italy; (L.R.); (P.V.)
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (T.C.); (C.L.); (L.B.)
| |
Collapse
|