1
|
Jureczek J, Kałwak K, Dzięgiel P. Antibody-Based Immunotherapies for the Treatment of Hematologic Malignancies. Cancers (Basel) 2024; 16:4181. [PMID: 39766080 PMCID: PMC11674729 DOI: 10.3390/cancers16244181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/05/2025] Open
Abstract
Despite the great advancements in treatment strategies for hematological malignancies (HMs) over the years, their effective treatment remains challenging. Conventional treatment strategies are burdened with several serious drawbacks limiting their effectiveness and safety. Improved understanding of tumor immunobiology has provided novel anti-cancer strategies targeting selected immune response components. Currently, immunotherapy is counted as the fourth pillar of oncological treatment (together with surgery, chemo- and radiotherapy) and is becoming standard in the treatment regimen, alone or in combination therapy. Several categories of immunotherapies have been developed and are currently being assessed in clinical trials for the treatment of blood cancers, including immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. However, monoclonal antibodies (mAbs) and their derivatives have achieved the most notable clinical outcome so far. Since the approval of rituximab for treating B-cell malignancies, the availability of mAbs against tumor-specific surface molecules for clinical use has flourished. Antibody-based therapy has become one of the most successful strategies for immunotherapeutic cancer treatment in the last few decades, and many mAbs have already been introduced into standard treatment protocols for some hematologic malignancies. To further increase the efficacy of mAbs, they can be conjugated to radioisotopes or cytostatic drugs, so-called antibody-drug conjugates. Moreover, with the growing recognition of T-cell immunity's role in cancer development, strategies aimed at enhancing T cell activation and inhibiting mechanisms that suppress T cell function are actively being developed. This review provides a comprehensive overview of the current status of immunotherapeutic strategies based on monoclonal antibodies and their derivatives, including antibody-drug conjugates, bispecific T-cell engagers, and checkpoint inhibitors, approved for the treatment of various HMs.
Collapse
Affiliation(s)
- Justyna Jureczek
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Krzysztof Kałwak
- Clinical Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
2
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
3
|
Darwin D, Babu SG, Ajila V, Asan MF. The Multifaceted Role of Monoclonal Antibodies in Oral Cancer Therapy – A Narrative Overview. JOURNAL OF DATTA MEGHE INSTITUTE OF MEDICAL SCIENCES UNIVERSITY 2024; 19:203-208. [DOI: 10.4103/jdmimsu.jdmimsu_536_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 10/07/2023] [Indexed: 01/04/2025]
Abstract
Abstract
Oral cancer, a part of head-and-neck cancer, is associated with a high risk of mortality which necessitates specificity in the cancer therapy. Known as the fourth pillar among various cancer treatment modalities, immunotherapy requires the stimulation of particular immune system components by modulating the counteraction of signals that cause suppression of the immune system. Monoclonal antibodies (mAbs) provide numerous benefits over conventional chemotherapeutic drugs due to their increased target specificity and extended half-life. When delivered, mAbs act as cytotoxic agents with varied pharmacological effects that prove as a potential therapeutic approach for cancer therapy. In the current review, a bibliographic search was done in PubMed and other databases for English articles that were published over the last decade. The aim of this paper is to furnish a substantial review that highlights the immunotherapeutic role of selected mAbs and their mechanisms and clinical applications in the treatment of oral cancers. It also emphasizes the versatile role of antibodies with diverse features which have led to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Deepthi Darwin
- Department of Oral Medicine and Radiology, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Subhas Gogineni Babu
- Department of Oral Medicine and Radiology, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Vidya Ajila
- Department of Oral Medicine and Radiology, AB Shetty Memorial Institute of Dental Sciences, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Mohamed Faizal Asan
- Consultant Maxillofacial Radiologist, Viscan Diagnostics, Madurai, Tamil Nadu, India
| |
Collapse
|
4
|
Ibraheem FQ, Maraie NK, Al-Sudani BT, Raauf AM. Prospective effect of linkers type on the anticancer activity of pemetrexed-monoclonal antibody (atezolizumab) conjugates. F1000Res 2024; 12:1197. [PMID: 39140089 PMCID: PMC11320184 DOI: 10.12688/f1000research.140284.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 08/15/2024] Open
Abstract
Background Conventional chemotherapy results in severe toxic side effects due to affecting normal and cancer cells. The conjugation of chemotherapy with mAb will improve the chemotherapy selectivity towards cancer cells and at the same time will potentiate immune system to detect and kill cancer cells. The aim of the study was to prepare atezolizumab-pemetrexed conjugate using two types of linkers (linker conjugated with -NH2 of lysine amino acid in the mAb). Methods This study utilizes (for the first time) the mAb atezolizumab (AtZ) to prepare a new, selective conjugate carrier for pemetrexed (PMX) by using gamma amino butyric acid (GABA) as linker for the first time in comparison to the commonly used linker polyethylene glycol (PEG) using carbodiimide (EDC) / N-hydroxysulfosuccinimide (Sulfo-NHS) zero length cross linker. Stepwise evaluation for PMX-linkers linkage as well as mAb conjugates was evaluated by FTIR, 1HNMR, DSC, LC-MS, gel-electrophoresis as well as the anticancer activity against lung cells A549. Results The work revealed that two molecules of GABA combined with PMX, which in turn conjugated with an average ratio of 4:1 with mAb, while one molecule of PEG combined with PMX, which in turn conjugated with mAb in the same average ratio. The IC 50 for the prepared PMX-GABA-AtZ conjugate was 0.048 µM, which was much lower than PMX alone, antibody AtZ alone as well as PMX-PEG-AtZ conjugate in a dose and time dependent manner. Conclusions The potential use of such conjugate that selectively directed to the overexpressed lung cells antigen in a low dose leading to reduction of serious side effects of PMX and the cost of therapeutically AtZ mAb used.
Collapse
Affiliation(s)
- Faten Q. Ibraheem
- pharmaceutics, Mustansiriyah University, Baghdad, Baghdad Governorate, 10011, Iraq
| | - Nidhal K. Maraie
- pharmaceutics, Al-Farahidi University, Baghdad, Baghdad Governorate, 10011, Iraq
| | | | - Ayad M.R. Raauf
- pharmaceutical chemistry, Al-Farahidi University, Baghdad, Baghdad Governorate, 10011, Iraq
| |
Collapse
|
5
|
Salama MM, Aborehab NM, El Mahdy NM, Zayed A, Ezzat SM. Nanotechnology in leukemia: diagnosis, efficient-targeted drug delivery, and clinical trials. Eur J Med Res 2023; 28:566. [PMID: 38053150 DOI: 10.1186/s40001-023-01539-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023] Open
Abstract
Leukemia is a group of malignant disorders which affect the blood and blood-forming tissues in the bone marrow, lymphatic system, and spleen. Many types of leukemia exist; thus, their diagnosis and treatment are somewhat complicated. The use of conventional strategies for treatment such as chemotherapy and radiotherapy may develop many side effects and toxicity. Hence, modern research is concerned with the development of specific nano-formulations for targeted delivery of anti-leukemic drugs avoiding toxic effects on normal cells. Nanostructures can be applied not only in treatment but also in diagnosis. In this article, types of leukemia, its causes, diagnosis as well as conventional treatment of leukemia shall be reviewed. Then, the use of nanoparticles in diagnosis of leukemia and synthesis of nanocarriers for efficient delivery of anti-leukemia drugs being investigated in in vivo and clinical studies. Therefore, it may contribute to the discovery of novel and emerging nanoparticles for targeted treatment of leukemia with less side effects and toxicities.
Collapse
Affiliation(s)
- Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Nihal M El Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), Tanta, 31527, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 12451, Egypt.
| |
Collapse
|
6
|
Ríos-Tamayo R, Soler JA, García-Sánchez R, Pérez Persona E, Arnao M, García-Guiñón A, Domingo A, González-Pardo M, de la Rubia J, Mateos MV. A glimpse into relapsed refractory multiple myeloma treatment in real-world practice in Spain: the GeminiS study. Hematology 2023; 28:2178997. [PMID: 36803194 DOI: 10.1080/16078454.2023.2178997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVES To describe the incorporation of monoclonal antibodies (mAb) in real-world (RW) practice for the treatment of patients with relapsed refractory multiple myeloma (RRMM) in a setting with other treatment alternatives. METHODS This was an observational, multicenter, ambispective study of RRMM treated with or without a mAb. RESULTS A total of 171 patients were included. For the group treated without mAb, the median (95% CI) progression-free survival (PFS) to relapse was 22.4 (17.8-27.0) months; partial response or better (≥PR) and complete response or better (≥CR) was observed in 74.1% and 24.1% of patients, respectively; and median time to first response in first relapse was 2.0 months and in second relapse was 2.5 months. For the group of patients treated with mAb in first or second relapse, the median PFS was 20.9 (95% CI, could not be evaluated) months; the ≥ PR and ≥ CR rates were 76,2% and 28.6%, respectively; and the median time to first response in first relapse was 1.2 month and in second relapse was 1.0 months. The safety profiles for the combinations were consistent with those expected. CONCLUSIONS The incorporation of mAb in RW practice for the treatment of RRMM has shown good quality and speed of response with a similar safety profile shown in randomized clinical trials.
Collapse
Affiliation(s)
- Rafael Ríos-Tamayo
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Juan Alfons Soler
- Department of Hematology, Hospital Universitari Parc Taulí de Sabadell, Catalonia, Spain
| | | | | | - Mario Arnao
- Department of Hematology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Antoni García-Guiñón
- Department of Hematology, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | - Abel Domingo
- Department of Hematology, Hospital General de Granollers, Spain
| | | | - Javier de la Rubia
- Hospital Universitari i Politècnic La Fe, Valencia, Spain.,Hematology Department, Universidad Católica "San Vicente Mártir", Valencia, Spain.,CIBERONC CB16/12/00284, Valencia, Spain
| | - María Victoria Mateos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Centro de Investigación del Cancer (IBMCC-USAL, CSIC), Hospital Universitario de Salamanca, Salamanca, Spain
| | -
- Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| |
Collapse
|
7
|
Joo V, Petrovas C, de Leval L, Noto A, Obeid M, Fenwick C, Pantaleo G. A CD64/FcγRI-mediated mechanism hijacks PD-1 from PD-L1/2 interaction and enhances anti-PD-1 functional recovery of exhausted T cells. Front Immunol 2023; 14:1213375. [PMID: 37622123 PMCID: PMC10446174 DOI: 10.3389/fimmu.2023.1213375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAb) targeting the immune checkpoint inhibitor programmed cell death protein 1 (PD-1) have achieved considerable clinical success in anti-cancer therapy through relieving T cell exhaustion. Blockade of PD-1 interaction with its ligands PD-L1 and PD-L2 is an important determinant in promoting the functional recovery of exhausted T cells. Here, we show that anti-PD-1 mAbs act through an alternative mechanism leading to the downregulation of PD-1 surface expression on memory CD4+ and CD8+ T cells. PD-1 receptor downregulation is a distinct process from receptor endocytosis and occurs in a CD14+ monocyte dependent manner with the CD64/Fcγ receptor I acting as the primary factor for this T cell extrinsic process. Importantly, downregulation of surface PD-1 strongly enhances antigen-specific functional recovery of exhausted PD-1+CD8+ T cells. Our study demonstrates a novel mechanism for reducing cell surface levels of PD-1 and limiting the inhibitory targeting by PD-L1/2 and thereby enhancing the efficacy of anti-PD-1 Ab in restoring T cell functionality.
Collapse
Affiliation(s)
- Victor Joo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Constantinos Petrovas
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Alessandra Noto
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Michel Obeid
- Lausanne Center for Immuno-oncology Toxicities (LCIT), Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Craig Fenwick
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
9
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
10
|
Braun T, Schrader A. Education and Empowering Special Forces to Eradicate Secret Defectors: Immune System-Based Treatment Approaches for Mature T- and NK-Cell Malignancies. Cancers (Basel) 2023; 15:cancers15092532. [PMID: 37173999 PMCID: PMC10177197 DOI: 10.3390/cancers15092532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mature T- and NK-cell leukemia/lymphoma (MTCL/L) constitute a heterogeneous group of, currently, 30 distinct neoplastic entities that are overall rare, and all present with a challenging molecular markup. Thus, so far, the use of first-line cancer treatment modalities, including chemotherapies, achieve only limited clinical responses associated with discouraging prognoses. Recently, cancer immunotherapy has evolved rapidly, allowing us to help patients with, e.g., solid tumors and also relapsed/refractory B-cell malignancies to achieve durable clinical responses. In this review, we systematically unveiled the distinct immunotherapeutic approaches available, emphasizing the special impediments faced when trying to employ immune system defense mechanisms to target 'one of their own-gone mad'. We summarized the preclinical and clinical efforts made to employ the various platforms of cancer immunotherapies including antibody-drug conjugates, monoclonal as well as bispecific antibodies, immune-checkpoint blockades, and CAR T cell therapies. We emphasized the challenges to, but also the goals of, what needs to be done to achieve similar successes as seen for B-cell entities.
Collapse
Affiliation(s)
- Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
| | - Alexandra Schrader
- Department I of Internal Medicine, Center for Integrated Oncology, Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany
- Lymphoma Immuno Biology Team, Equipe Labellisée LIGUE 2023, Centre International de Recherche en Infectiologie, INSERM U1111-CNRS UMR5308, Faculté de Médecine Lyon-Sud, Hospices Civils de Lyon, Université Claude Bernard Lyon I-ENS de Lyon, 69921 Lyon, France
| |
Collapse
|
11
|
Dong Z, Song JY, Thieme E, Anderson A, Oh E, Cheng WA, Kuang BZ, Lee V, Zhang T, Wang Z, Szymura S, Smith DL, Zhang J, Nian W, Zheng X, He F, Zhou Q, Cha SC, Danilov AV, Qin H, Kwak LW. Generation of a humanized afucosylated BAFF-R antibody with broad activity against human B-cell malignancies. Blood Adv 2023; 7:918-932. [PMID: 36469551 PMCID: PMC10027513 DOI: 10.1182/bloodadvances.2022008560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
B-cell activating factor receptor (BAFF-R) is a mature B-cell survival receptor, which is highly expressed in a wide variety of B-cell malignancies but with minimal expression in immature B cells. These properties make BAFF-R an attractive target for therapy of B-cell lymphomas. We generated a novel humanized anti BAFF-R monoclonal antibody (mAb) with high specificity and potent in vitro and in vivo activity against B-cell lymphomas and leukemias. The humanized variants of an original chimeric BAFF-R mAb retained BAFF-R binding affinity and antibody-dependent cellular cytotoxicity (ADCC) against a panel of human cell lines and primary lymphoma samples. Furthermore, 1 humanized BAFF-R mAb clone and its afucosylated version, glycoengineered to optimize the primary mechanism of action, prolonged survival of immunodeficient mice bearing human tumor cell lines or patient-derived lymphoma xenografts in 3 separate models, compared with controls. Finally, the tissue specificity of this humanized mAb was confirmed against a broad panel of normal human tissues. Taken together, we have identified a robust lead-candidate BAFF-R mAb for clinical development.
Collapse
Affiliation(s)
- Zhenyuan Dong
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Joo Y. Song
- Department of Pathology, City of Hope Medical Center, Duarte, CA
| | - Elana Thieme
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Aaron Anderson
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Elizabeth Oh
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Wesley A. Cheng
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Benjamin Z. Kuang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Vincent Lee
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Tiantian Zhang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Zhe Wang
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Szymon Szymura
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - D. Lynne Smith
- Clinical and Translational Project Development, City of Hope Medical Center, Duarte, CA
| | | | - Weihong Nian
- Shanghai Escugen Biotechnology Co, Ltd, Shanghai, China
| | - Xintong Zheng
- Shanghai Escugen Biotechnology Co, Ltd, Shanghai, China
| | - Feng He
- Shanghai Escugen Biotechnology Co, Ltd, Shanghai, China
| | - Qing Zhou
- Shanghai Escugen Biotechnology Co, Ltd, Shanghai, China
| | - Soung-chul Cha
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Alexey V. Danilov
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Hong Qin
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| | - Larry W. Kwak
- Toni Stephenson Lymphoma Center, Department of Hematology and Hematopoietic Stem Cell Transplantation, Beckman Research Institute of City of Hope, Duarte, CA
| |
Collapse
|
12
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Tommy Gambles M, Li J, Christopher Radford D, Sborov D, Shami P, Yang J, Kopeček J. Simultaneous crosslinking of CD20 and CD38 receptors by drug-free macromolecular therapeutics enhances B cell apoptosis in vitro and in vivo. J Control Release 2022; 350:584-599. [PMID: 36037975 PMCID: PMC9561060 DOI: 10.1016/j.jconrel.2022.08.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Drug-Free Macromolecular Therapeutics (DFMT) is a new paradigm in macromolecular therapeutics that induces apoptosis in target cells by crosslinking receptors without the need of low molecular weight drugs. Programmed cell death is initiated via a biomimetic receptor crosslinking strategy using a two-step approach: i) recognition of cell surface antigen by a morpholino oligonucleotide-modified antibody Fab' fragment (Fab'-MORF1), ii) followed by crosslinking with a multivalent effector motif - human serum albumin (HSA) grafted with multiple complementary morpholino oligonucleotides (HSA-(MORF2)x). This approach is effective in vitro, in vivo, and ex vivo on cells from patients diagnosed with various B cell malignancies. We have previously demonstrated DFMT can be applied to crosslink CD20 and CD38 receptors to successfully initiate apoptosis. Herein, we show simultaneous engagement, and subsequent crosslinking of both targets ("heteroreceptor crosslinking"), can further enhance the apoptosis induction capacity of this system. To accomplish this, we incubated Raji (CD20+; CD38+) cells simultaneously with anti-CD20 and anti-CD38 Fab'-MORF1 conjugates, followed by addition of the macromolecular crosslinker, HSA-(MORF2)x to co-cluster the bound receptors. Fab' fragments from Rituximab and Obinutuzumab were employed in the synthesis of anti-CD20 bispecific engagers (Fab'RTX-MORF1 and Fab'OBN-MORF1), whereas Fab' fragments from Daratumumab and Isatuximab (Fab'DARA-MORF1 and Fab'ISA-MORF1) targeted CD38. All heteroreceptor crosslinking DFMT combinations demonstrated potent apoptosis induction and exhibited synergistic effects as determined by Chou-Talalay combination index studies (CI < 1). In vitro fluorescence resonance energy transfer (FRET) experiments confirmed the co-clustering of the two receptors on the cell surface in response to the combination treatment. The source of this synergistic therapeutic effect was further explored by evaluating the effect of combination DFMT on key apoptosis signaling events such as mitochondrial depolarization, caspase activation, lysosomal enlargement, and homotypic cell adhesion. Finally, a xenograft mouse model of CD20+/CD38+ Non Hodgkin lymphoma was employed to demonstrate in vivo the enhanced efficacy of the heteroreceptor-crosslinking DFMT design versus single-target systems.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - D Christopher Radford
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Paul Shami
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
14
|
Dias JNR, Almeida A, André AS, Aguiar SI, Bule P, Nogueira S, Oliveira SS, Carrapiço B, Gil S, Tavares L, Aires-da-Silva F. Characterization of the canine CD20 as a therapeutic target for comparative passive immunotherapy. Sci Rep 2022; 12:2678. [PMID: 35177658 PMCID: PMC8854400 DOI: 10.1038/s41598-022-06549-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Anti-CD20 therapies have revolutionized the treatment of B-cell malignancies. Despite these advances, relapsed and refractory disease remains a major treatment challenge. The optimization of CD20-targeted immunotherapies is considered a promising strategy to improve current therapies. However, research has been limited by the scarcity of preclinical models that recapitulate the complex interaction between the immune system and cancers. The addition of the canine lymphoma (cNHL) model in the development of anti-CD20 therapies may provide a clinically relevant approach for the translation of improved immunotherapies. Still, an anti-CD20 therapy for cNHL has not been established stressing the need of a comprehensive target characterization. Herein, we performed an in-depth characterization on canine CD20 mRNA transcript and protein expression in a cNHL biobank and demonstrated a canine CD20 overexpression in B-cell lymphoma samples. Moreover, CD20 gene sequencing analysis identified six amino acid differences in patient samples (C77Y, L147F, I159M, L198V, A201T and G273E). Finally, we reported the use of a novel strategy for the generation of anti-CD20 mAbs, with human and canine cross-reactivity, by exploring our rabbit derived single-domain antibody platform. Overall, these results support the rationale of using CD20 as a target for veterinary settings and the development of novel therapeutics and immunodiagnostics.
Collapse
Affiliation(s)
- Joana N R Dias
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - André Almeida
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Ana S André
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Sandra I Aguiar
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Sara Nogueira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Soraia S Oliveira
- Technophage SA, Avenida Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisbon, Portugal
| | - Belmira Carrapiço
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Solange Gil
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Luís Tavares
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
| |
Collapse
|
15
|
Mi J, Xu J, Zhou J, Zhao W, Chen Z, Melenhorst JJ, Chen S. CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies. Front Med 2021; 15:783-804. [DOI: 10.1007/s11684-021-0904-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
|
16
|
Noori S, Verkleij CPM, Zajec M, Langerhorst P, Bosman PWC, de Rijke YB, Zweegman S, VanDuijn M, Luider T, van de Donk NWCJ, Jacobs JFM. Monitoring the M-protein of multiple myeloma patients treated with a combination of monoclonal antibodies: the laboratory solution to eliminate interference. Clin Chem Lab Med 2021; 59:1963-1971. [PMID: 34392637 DOI: 10.1515/cclm-2021-0399] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The therapeutic monoclonal antibody (t-mAb) daratumumab, used to treat multiple myeloma (MM) patients, interferes with routine, electrophoretic based M-protein diagnostics. Electrophoretic response assessment becomes increasingly difficult when multiple t-mAbs are combined for use in a single patient. This is the first study to address the analytical challenges of M-protein monitoring when multiple t-mAbs are combined. METHODS In this proof-of-principle study we evaluate two different methods to monitor M-protein responses in three MM patients, who receive both daratumumab and nivolumab. The double hydrashift assay aims to resolve t-mAb interference on immunofixation. The MS-MRD (mass spectrometry minimal residual disease) assay measures clonotypic peptides to quantitate both M-protein and t-mAb concentrations. RESULTS After exposure to daratumumab and nivolumab, both t-mAbs become visible on immunofixation electrophoresis (IFE) as two IgG-kappa bands that migrate close to each other at the cathodal end of the γ-region. In case the M-protein co-migrates with these t-mAbs, the observed interference was completely abolished with the double IFE hydrashift assay. In all three patients the MS-MRD assay was also able to distinguish the M-protein from the t-mAbs. Additional advantage of the MS-MRD assay is that this multiplex assay is more sensitive and allows quantitative M-protein-, daratumumab- and nivolumab-monitoring. CONCLUSIONS Daratumumab and nivolumab interfere with electrophoretic M-protein diagnostics. However, the M-protein can be distinguished from both t-mAbs by use of a double hydrashift assay. The MS-MRD assay provides an alternative method that allows sensitive and simultaneous quantitative monitoring of both the M-protein and t-mAbs.
Collapse
Affiliation(s)
- Somayya Noori
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Christie P M Verkleij
- Department of Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marina Zajec
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Pieter Langerhorst
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Patricia W C Bosman
- Department of Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yolanda B de Rijke
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sonja Zweegman
- Department of Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martijn VanDuijn
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Theo Luider
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Joannes F M Jacobs
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Patnaik MM, Mughal TI, Brooks C, Lindsay R, Pemmaraju N. Targeting CD123 in hematologic malignancies: identifying suitable patients for targeted therapy. Leuk Lymphoma 2021; 62:2568-2586. [PMID: 33999767 DOI: 10.1080/10428194.2021.1927021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Following the observation of interleukin 3 receptor α chain (IL-3Rα; CD123) upregulation on leukemia stem cells (LSCs) almost two decades ago, targeted treatment via CD123-diptheria toxin conjugates has now been tested in patients with diverse myeloid malignancies. Targeted eradication of LSCs could result in effective treatments for many challenging diseases initiated by these cells. Consequently, considerable effort has been directed toward targeting CD123 as a potential strategy for treating patients with hematologic malignancies in which CD123 is overexpressed. However, these therapies have had limited success so far, highlighting the need for suitable criteria to identify patients who could benefit from them. Given the diversity in CD123 expression across different hematologic malignancies, understanding CD123 expression patterns and the functional pathogenetic significance is crucial. Here, we review the methodologies available for CD123 assessment and discuss the biological and clinical characteristics of patients for whom CD123-targeting therapies may have a clinical impact.
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tariq I Mughal
- Division of Hematology-Oncology, Tufts University School of Medicine, Boston, MA, USA.,Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Christopher Brooks
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Ross Lindsay
- Research & Clinical Drug Development, Stemline Therapeutics, New York, NY, USA
| | - Naveen Pemmaraju
- Division of Cancer Medicine, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Luker GD, Yang J, Richmond A, Scala S, Festuccia C, Schottelius M, Wester HJ, Zimmermann J. At the Bench: Pre-clinical evidence for multiple functions of CXCR4 in cancer. J Leukoc Biol 2021; 109:969-989. [PMID: 33104270 PMCID: PMC8254203 DOI: 10.1002/jlb.2bt1018-715rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Signaling through chemokine receptor, C-X-C chemokine receptor type 4 (CXCR4) regulates essential processes in normal physiology, including embryogenesis, tissue repair, angiogenesis, and trafficking of immune cells. Tumors co-opt many of these fundamental processes to directly stimulate proliferation, invasion, and metastasis of cancer cells. CXCR4 signaling contributes to critical functions of stromal cells in cancer, including angiogenesis and multiple cell types in the tumor immune environment. Studies in animal models of several different types of cancers consistently demonstrate essential functions of CXCR4 in tumor initiation, local invasion, and metastasis to lymph nodes and distant organs. Data from animal models support clinical observations showing that integrated effects of CXCR4 on cancer and stromal cells correlate with metastasis and overall poor prognosis in >20 different human malignancies. Small molecules, Abs, and peptidic agents have shown anticancer efficacy in animal models, sparking ongoing efforts at clinical translation for cancer therapy. Investigators also are developing companion CXCR4-targeted imaging agents with potential to stratify patients for CXCR4-targeted therapy and monitor treatment efficacy. Here, pre-clinical studies demonstrating functions of CXCR4 in cancer are reviewed.
Collapse
Affiliation(s)
- Gary D Luker
- Departments of Radiology, Biomedical Engineering, and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jinming Yang
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Ann Richmond
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Stefania Scala
- Research Department, Microenvironment Molecular Targets, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Napoli, Italy
| | - Claudio Festuccia
- Department of Applied Clinical Science and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy
| | - Margret Schottelius
- Department of Nuclear Medicine, Centre Hospitalier Universitaire Vaudois, and Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Hans-Jürgen Wester
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
19
|
Activation of plasmacytoid dendritic cells promotes AML-cell fratricide. Oncotarget 2021; 12:878-890. [PMID: 33953842 PMCID: PMC8092344 DOI: 10.18632/oncotarget.27949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid blasts and a suppressed immune state. Interferons have been previously shown to aid in the clearance of AML cells. Type I interferons are produced primarily by plasmacytoid dendritic cells (pDCs). However, these cells exist in a quiescent state in AML. Because pDCs express TLR 7–9, we hypothesized that the TLR7/8 agonist R848 would be able to reprogram them toward a more active, IFN-producing phenotype. Consistent with this notion, we found that R848-treated pDCs from patients produced significantly elevated levels of IFNβ. In addition, they showed increased expression of the immune-stimulatory receptor CD40. We next tested whether IFNβ would influence antibody-mediated fratricide among AML cells, as our recent work showed that AML cells could undergo cell-to cell killing in the presence of the CD38 antibody daratumumab. We found that IFNβ treatment led to a significant, IRF9-dependent increase in CD38 expression and a subsequent increase in daratumumab-mediated cytotoxicity and decreased colony formation. These findings suggest that the tolerogenic phenotype of pDCs in AML can be reversed, and also demonstrate a possible means of enhancing endogenous Type I IFN production that would promote daratumumab-mediated clearance of AML cells.
Collapse
|
20
|
Giudice V, Vecchione C, Selleri C. Cardiotoxicity of Novel Targeted Hematological Therapies. Life (Basel) 2020; 10:life10120344. [PMID: 33322351 PMCID: PMC7763613 DOI: 10.3390/life10120344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy-related cardiac dysfunction, also known as cardiotoxicity, is a group of drug-related adverse events negatively affecting myocardial structure and functions in patients who received chemotherapy for cancer treatment. Clinical manifestations can vary from life-threatening arrythmias to chronic conditions, such as heart failure or hypertension, which dramatically reduce quality of life of cancer survivors. Standard chemotherapy exerts its toxic effect mainly by inducing oxidative stress and genomic instability, while new targeted therapies work by interfering with signaling pathways important not only in cancer cells but also in myocytes. For example, Bruton’s tyrosine kinase (BTK) inhibitors interfere with class I phosphoinositide 3-kinase isoforms involved in cardiac hypertrophy, contractility, and regulation of various channel forming proteins; thus, off-target effects of BTK inhibitors are associated with increased frequency of arrhythmias, such as atrial fibrillation, compared to standard chemotherapy. In this review, we summarize current knowledge of cardiotoxic effects of targeted therapies used in hematology.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672-493
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- IRCCS Neuromed (Mediterranean Neurological Institute), 86077 Pozzilli, Italy
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (C.V.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
21
|
Szymonowicz KA, Chen J. Biological and clinical aspects of HPV-related cancers. Cancer Biol Med 2020; 17:864-878. [PMID: 33299640 PMCID: PMC7721094 DOI: 10.20892/j.issn.2095-3941.2020.0370] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer-related diseases represent the second overall cause of death worldwide. Human papilloma virus (HPV) is an infectious agent which is mainly sexually transmitted and may lead to HPV-associated cancers in both men and women. Almost all cervical cancers are HPV-associated, however, an increasing number of head and neck cancers (HNCs), especially oropharyngeal cancer, can be linked to HPV infection. Moreover, anogenital cancers, including vaginal, vulvar, penial, and anal cancers, represent a subset of HPV-related cancers. Whereas testing and prevention of cervical cancer have significantly improved over past decades, anogenital cancers remain more difficult to confirm. Current clinical trials including patients with HPV-related cancers focus on finding proper testing for all HPV-associated cancers as well as improve the currently applied treatments. The HPV viral oncoproteins, E6 and E7, lead to degradation of, respectively, p53 and pRb resulting in entering the S phase without G1 arrest. These high-risk HPV viral oncogenes alter numerous cellular processes, including DNA repair, angiogenesis, and/or apoptosis, which eventually result in carcinogenesis. Additionally, a comprehensive analysis of gene expression and alteration among a panel of DNA double strand breaks (DSB) repair genes in HPV-negative and HPV-positive HNC cancers reveals differences pointing to HPV-dependent modifications of DNA repair processes in these cancers. In this review, we discuss the current knowledge regarding HPV-related cancers, current screening, and treatment options as well as DNA damage response-related biological aspects of the HPV infection and clinical trials.
Collapse
Affiliation(s)
- Klaudia Anna Szymonowicz
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Bordron A, Bagacean C, Tempescul A, Berthou C, Bettacchioli E, Hillion S, Renaudineau Y. Complement System: a Neglected Pathway in Immunotherapy. Clin Rev Allergy Immunol 2020; 58:155-171. [PMID: 31144209 DOI: 10.1007/s12016-019-08741-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Approved for the treatment of autoimmune diseases, hematological malignancies, and solid cancers, several monoclonal antibodies (mAb) make use of complement in their mechanism of action. Such an assessment is based on comprehensive investigations that used mouse models, in vitro studies, and analyses from patients at initiation (basal level to highlight deficiencies) and after treatment initiation (mAb impact on complement), which have further provided key insights into the importance of the complement activation and/or complement deficiencies in mAb activity. Accordingly, new approaches can now be developed with the final objective of increasing the clinical efficacy of mAb. These improvements include (i) the concurrent administration of fresh frozen plasma during mAb therapy; (ii) mAb modifications such as immunoglobulin G subclass switching, Fc mutation, or IgG hexamerization to improve the fixation and activation of C1q; (iii) optimization of the target recognition to induce a higher complement-dependent cytotoxicity (CDC) and/or complement-dependant cellular cytotoxicity (CDCC); and (iv) the control of soluble and cellular complement inhibitors.
Collapse
Affiliation(s)
- Anne Bordron
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Cristina Bagacean
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Adrian Tempescul
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | - Christian Berthou
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Service d'Hématologie, CHU de Brest, Brest, France
| | | | - Sophie Hillion
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France
| | - Yves Renaudineau
- Inserm UMR1227, B lymphocytes and autoimmunity, University of Brest, Brest, France. .,Laboratory of Immunology and Immunotherapy, CHU de Brest, Brest, France.
| |
Collapse
|
23
|
Aldoss I, Clark M, Song JY, Pullarkat V. Targeting the alpha subunit of IL-3 receptor (CD123) in patients with acute leukemia. Hum Vaccin Immunother 2020; 16:2341-2348. [PMID: 32692611 DOI: 10.1080/21645515.2020.1788299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The IL-3 alpha chain receptor (CD123) is a cell surface protein that is widely expressed by various subtypes of acute leukemia, including acute myeloid leukemia (AML), acute lymphoblastic leukemia and blastic plasmacytoid dendritic cell neoplasm. Notably, CD123 is preferentially overexpressed in leukemia stem cells (LSC) in contrast to normal hematopoietic stem cells, and this differential expression allows for the selective eradication of LSC and leukemic blasts through therapeutic targeting of CD123, with less impact on hematopoietic cells. The level of CD123 expression in AML correlates with both treatment response and outcomes. Therefore, targeting CD123 represents a promising universal therapeutic target in advanced acute leukemias irrespective of the individual leukemia phenotype. There are currently 31 ongoing clinical trials examining the utility of CD123-based targeted therapies. Here we focus our review on current efforts to target CD123 in acute leukemia through various therapeutic constructs.
Collapse
Affiliation(s)
- Ibrahim Aldoss
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center , Duarte, CA, USA
| | - Mary Clark
- Department of Clinical and Translational Project Development, City of Hope National Medical Center , Duarte, CA, USA
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center , Duarte, CA, USA
| | - Vinod Pullarkat
- Gehr Family Center for Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Center , Duarte, CA, USA
| |
Collapse
|
24
|
Popkova T, Hajek R, Jelinek T. Monoclonal antibodies in the treatment of AL amyloidosis: co-targetting the plasma cell clone and amyloid deposits. Br J Haematol 2020; 189:228-238. [PMID: 32072615 DOI: 10.1111/bjh.16436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immunoglobulin light-chain amyloidosis (AL amyloidosis) is a rare disease in which a small plasma cell clone produces toxic misfolded proteins that deposit in organs and impair their function. Currently, the only available treatment approach is the elimination of clonal plasma cells. However, a rapid strike that halts and possibly reverses organ damage is crucial. The development of agents that facilitate the clearance of pathological fibrillar deposits, therefore reducing the frailty of patients, is the needed supplement to plasma cell-directed therapy. Monoclonal antibodies provide therapy against malignant plasma cells (daratumumab, isatuximab, elotuzumab) but they are also able to target and eliminate the amyloid from organs (NEOD001, CAEL-101, dezamizumab). From the plasma cell-directed group, daratumumab in monotherapy has proved to be extremely efficient in relapsed AL amyloidosis, exceeding its results in multiple myeloma. Compared to other agents, monoclonal antibodies possess the advantage of high selectivity and low toxicity and could potentially become future game-changers in this field. Co-targetting of the plasma cell clone and amyloid deposits shall together be translated in the revolutionary improved outcome of potentially curable AL amyloidosis.
Collapse
Affiliation(s)
- Tereza Popkova
- Department of Haematooncology, University Hospital Ostrava and Faculty of Medicine, Ostrava, Czech Republic
| | - Roman Hajek
- Department of Haematooncology, University Hospital Ostrava and Faculty of Medicine, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Tomas Jelinek
- Department of Haematooncology, University Hospital Ostrava and Faculty of Medicine, Ostrava, Czech Republic.,Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
25
|
Singh A, Myklebust NN, Furevik SMV, Haugse R, Herfindal L. Immunoliposomes in Acute Myeloid Leukaemia Therapy: An Overview of Possible Targets and Obstacles. Curr Med Chem 2019; 26:5278-5292. [PMID: 31099318 DOI: 10.2174/0929867326666190517114450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022]
Abstract
Acute Myeloid Leukaemia (AML) is the neoplastic transformation of Hematopoietic Stem Cells (HSC) and relapsed disease is a major challenge in the treatment. Despite technological advances in the field of medicine and our heightened knowledge regarding the pathogenesis of AML, the initial therapy of "7+3" Cytarabine and Daunorubicin has remained mainly unchanged since 1973. AML is a disease of the elderly, and increased morbidity in this patient group does not allow the full use of the treatment and drug-resistant relapse is common. Nanocarriers are drug-delivery systems that can be used to transport drugs to the bone marrow and target Leukemic Stem Cells (LSC), conferring less side-effects compared to the free-drug alternative. Nanocarriers also can be used to favour the transport of drugs that otherwise would not have been used clinically due to toxicity and poor efficacy. Liposomes are a type of nanocarrier that can be used as a dedicated drug delivery system, which can also have active ligands on the surface in order to interact with antigens on the target cells or tissues. In addition to using small molecules, it is possible to attach antibodies to the liposome surface, generating so-called immunoliposomes. By using immunoliposomes as a drug-delivery system, it is possible to minimize the toxic side effects caused by the chemotherapeutic drug on healthy organs, and at the same time direct the drugs towards the remaining AML blasts and stem cells. This article aims to explore the possibilities of using immunoliposomes as a drug carrier in AML therapy. Emphasis will be on possible target molecules on the AML cells, leukaemic stem cells, as well as bone marrow constituents relevant to AML therapy. Further, some conditions and precautions that must be met for immunoliposomes to be used in AML therapy will be discussed.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Sarah Marie Vie Furevik
- Hospital pharmacies enterprise, Western Norway, Bergen, Norway.,Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ragnhild Haugse
- Hospital pharmacies enterprise, Western Norway, Bergen, Norway.,Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
Kubasch AS, Schulze F, Giagounidis A, Götze KS, Krönke J, Sockel K, Middeke JM, Chermat F, Gloaguen S, Puttrich M, Weigt C, William D, Fenaux P, Schlenk RF, Thiede C, Stasik S, Mies A, Adès L, Oelschlägel U, Platzbecker U. Single agent talacotuzumab demonstrates limited efficacy but considerable toxicity in elderly high-risk MDS or AML patients failing hypomethylating agents. Leukemia 2019; 34:1182-1186. [PMID: 31796915 DOI: 10.1038/s41375-019-0645-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Anne Sophie Kubasch
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, Leipzig University Hospital, Leipzig, Germany.,German MDS Study Group (D-MDS), Leipzig, Germany.,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany
| | - Freya Schulze
- German MDS Study Group (D-MDS), Leipzig, Germany.,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Aristoteles Giagounidis
- German MDS Study Group (D-MDS), Leipzig, Germany.,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department for Oncology, Hematology and Palliative Care, Marien Hospital Düsseldorf, Düsseldorf, Germany
| | - Katharina S Götze
- German MDS Study Group (D-MDS), Leipzig, Germany.,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department of Medicine III, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Jan Krönke
- German MDS Study Group (D-MDS), Leipzig, Germany.,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department of Internal Medicine III, University Hospital Ulm, Ulm, Germany
| | - Katja Sockel
- German MDS Study Group (D-MDS), Leipzig, Germany.,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Jan Moritz Middeke
- German MDS Study Group (D-MDS), Leipzig, Germany.,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Fatiha Chermat
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Groupe Francophone des Myélodysplasies, Paris, France
| | - Silke Gloaguen
- German MDS Study Group (D-MDS), Leipzig, Germany.,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany
| | - Martin Puttrich
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,GWT-TUD GmbH, Dresden, Germany
| | - Carmen Weigt
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,GWT-TUD GmbH, Dresden, Germany
| | - Doreen William
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Pierre Fenaux
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Groupe Francophone des Myélodysplasies, Paris, France.,Service d'Hématologie Seniors, Assistance Publique-Hôpitaux de Paris and Paris University, Paris, France
| | - Richard F Schlenk
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Thiede
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Sebastian Stasik
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Anna Mies
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Lionel Adès
- The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Groupe Francophone des Myélodysplasies, Paris, France.,Service d'Hématologie Seniors, Assistance Publique-Hôpitaux de Paris and Paris University, Paris, France
| | - Uta Oelschlägel
- German MDS Study Group (D-MDS), Leipzig, Germany.,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.,Department of Internal Medicine I, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Uwe Platzbecker
- Medical Clinic and Policlinic I, Hematology and Cellular Therapy, Leipzig University Hospital, Leipzig, Germany. .,German MDS Study Group (D-MDS), Leipzig, Germany. .,The European Myelodysplastic Syndromes Cooperative Group (EMSCO), Leipzig, Germany.
| |
Collapse
|
27
|
Vaisitti T, Arruga F, Guerra G, Deaglio S. Ectonucleotidases in Blood Malignancies: A Tale of Surface Markers and Therapeutic Targets. Front Immunol 2019; 10:2301. [PMID: 31636635 PMCID: PMC6788384 DOI: 10.3389/fimmu.2019.02301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Leukemia develops as the result of intrinsic features of the transformed cell, such as gene mutations and derived oncogenic signaling, and extrinsic factors, such as a tumor-friendly, immunosuppressed microenvironment, predominantly in the lymph nodes and the bone marrow. There, high extracellular levels of nucleotides, mainly NAD+ and ATP, are catabolized by different ectonucleotidases, which can be divided in two families according to substrate specificity: on one side those that metabolize NAD+, including CD38, CD157, and CD203a; on the other, those that convert ATP, namely CD39 (and other ENTPDases) and CD73. They generate products that modulate intracellular calcium levels and that activate purinergic receptors. They can also converge on adenosine generation with profound effects, both on leukemic cells, enhancing chemoresistance and homing, and on non-malignant immune cells, polarizing them toward tolerance. This review will first provide an overview of ectonucleotidases expression within the immune system, in physiological and pathological conditions. We will then focus on different hematological malignancies, discussing their role as disease markers and possibly pathogenic agents. Lastly, we will describe current efforts aimed at therapeutic targeting of this family of enzymes.
Collapse
Affiliation(s)
- Tiziana Vaisitti
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Arruga
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulia Guerra
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Sarmento-Ribeiro AB, Scorilas A, Gonçalves AC, Efferth T, Trougakos IP. The emergence of drug resistance to targeted cancer therapies: Clinical evidence. Drug Resist Updat 2019; 47:100646. [PMID: 31733611 DOI: 10.1016/j.drup.2019.100646] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022]
Abstract
For many decades classical anti-tumor therapies included chemotherapy, radiation and surgery; however, in the last two decades, following the identification of the genomic drivers and main hallmarks of cancer, the introduction of therapies that target specific tumor-promoting oncogenic or non-oncogenic pathways, has revolutionized cancer therapeutics. Despite the significant progress in cancer therapy, clinical oncologists are often facing the primary impediment of anticancer drug resistance, as many cancer patients display either intrinsic chemoresistance from the very beginning of the therapy or after initial responses and upon repeated drug treatment cycles, acquired drug resistance develops and thus relapse emerges, resulting in increased mortality. Our attempts to understand the molecular basis underlying these drug resistance phenotypes in pre-clinical models and patient specimens revealed the extreme plasticity and adaptive pathways employed by tumor cells, being under sustained stress and extensive genomic/proteomic instability due to the applied therapeutic regimens. Subsequent efforts have yielded more effective inhibitors and combinatorial approaches (e.g. the use of specific pharmacologic inhibitors with immunotherapy) that exhibit synergistic effects against tumor cells, hence enhancing therapeutic indices. Furthermore, new advanced methodologies that allow for the early detection of genetic/epigenetic alterations that lead to drug chemoresistance and prospective validation of biomarkers which identify patients that will benefit from certain drug classes, have started to improve the clinical outcome. This review discusses emerging principles of drug resistance to cancer therapies targeting a wide array of oncogenic kinases, along with hedgehog pathway and the proteasome and apoptotic inducers, as well as epigenetic and metabolic modulators. We further discuss mechanisms of resistance to monoclonal antibodies, immunomodulators and immune checkpoint inhibitors, potential biomarkers of drug response/drug resistance, along with possible new therapeutic avenues for the clinicians to combat devastating drug resistant malignancies. It is foreseen that these topics will be major areas of focused multidisciplinary translational research in the years to come.
Collapse
Affiliation(s)
- Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology and University Clinic of Hematology and Coimbra Institute for Clinical and Biomedical Research - Group of Environment Genetics and Oncobiology (iCBR/CIMAGO), Faculty of Medicine, University of Coimbra (FMUC), Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
29
|
Abadir E, Gasiorowski RE, Lai K, Kupresanin F, Romano A, Silveira PA, Lo TH, Fromm PD, Kennerson ML, Iland HJ, Ho PJ, Hogarth PM, Bradstock K, Hart DNJ, Clark GJ. CD300f epitopes are specific targets for acute myeloid leukemia with monocytic differentiation. Mol Oncol 2019; 13:2107-2120. [PMID: 31338922 PMCID: PMC6763785 DOI: 10.1002/1878-0261.12549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/09/2019] [Accepted: 07/23/2019] [Indexed: 12/03/2022] Open
Abstract
Antibody‐based therapy in acute myeloid leukemia (AML) has been marred by significant hematologic toxicity due to targeting of both hematopoietic stem and progenitor cells (HSPCs). Achieving greater success with therapeutic antibodies requires careful characterization of the potential target molecules on AML. One potential target is CD300f, which is an immunoregulatory molecule expressed predominantly on myeloid lineage cells. To confirm the value of CD300f as a leukemic target, we showed that CD300f antibodies bind to AML from 85% of patient samples. While one CD300f monoclonal antibody (mAb) reportedly did not bind healthy hematopoietic stem cells, transcriptomic analysis found that CD300f transcripts are expressed by healthy HSPC. Several CD300f protein isoforms exist as a result of alternative splicing. Importantly for antibody targeting, the extracellular region of CD300f can be present with or without the exon 4‐encoded sequence. This results in CD300f isoforms that are differentially bound by CD300f‐specific antibodies. Furthermore, binding of one mAb, DCR‐2, to CD300f exposes a structural epitope recognized by a second CD300f mAb, UP‐D2. Detailed analysis of publicly available transcriptomic data indicated that CD34+HSPC expressed fewer CD300f transcripts that lacked exon 4 compared to AML with monocytic differentiation. Analysis of a small cohort of AML cells revealed that the UP‐D2 conformational binding site could be induced in cells from AML patients with monocytic differentiation but not those from other AML or HSPC. This provides the opportunity to develop an antibody‐based strategy to target AMLs with monocytic differentiation but not healthy CD34+HSPCs. This would be a major step forward in developing effective anti‐AML therapeutic antibodies with reduced hematologic toxicity.
Collapse
Affiliation(s)
- Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Robin E Gasiorowski
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia.,Department of Haematology, Concord Repatriation General Hospital, Sydney, Australia
| | - Kaitao Lai
- Sydney Medical School, University of Sydney, Australia.,ANZAC Research Institute, Sydney, Australia.,Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, Australia
| | - Fiona Kupresanin
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
| | - Adelina Romano
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia
| | - Pablo A Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Tsun-Ho Lo
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Phillip D Fromm
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| | - Marina L Kennerson
- Sydney Medical School, University of Sydney, Australia.,Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, Australia.,Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, Australia
| | - Harry J Iland
- Sydney Medical School, University of Sydney, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, Australia
| | - P Joy Ho
- Sydney Medical School, University of Sydney, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, Australia
| | - P Mark Hogarth
- Immune Therapies, Burnet Institute, Melbourne, Australia
| | | | - Derek N J Hart
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia.,Institute of Haematology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Georgina J Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, Australia.,Sydney Medical School, University of Sydney, Australia
| |
Collapse
|
30
|
Kocik J, Machula M, Wisniewska A, Surmiak E, Holak TA, Skalniak L. Helping the Released Guardian: Drug Combinations for Supporting the Anticancer Activity of HDM2 (MDM2) Antagonists. Cancers (Basel) 2019; 11:E1014. [PMID: 31331108 PMCID: PMC6678622 DOI: 10.3390/cancers11071014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 01/22/2023] Open
Abstract
The protein p53, known as the "Guardian of the Genome", plays an important role in maintaining DNA integrity, providing protection against cancer-promoting mutations. Dysfunction of p53 is observed in almost every cancer, with 50% of cases bearing loss-of-function mutations/deletions in the TP53 gene. In the remaining 50% of cases the overexpression of HDM2 (mouse double minute 2, human homolog) protein, which is a natural inhibitor of p53, is the most common way of keeping p53 inactive. Disruption of HDM2-p53 interaction with the use of HDM2 antagonists leads to the release of p53 and expression of its target genes, engaged in the induction of cell cycle arrest, DNA repair, senescence, and apoptosis. The induction of apoptosis, however, is restricted to only a handful of p53wt cells, and, generally, cancer cells treated with HDM2 antagonists are not efficiently eliminated. For this reason, HDM2 antagonists were tested in combinations with multiple other therapeutics in a search for synergy that would enhance the cancer eradication. This manuscript aims at reviewing the recent progress in developing strategies of combined cancer treatment with the use of HDM2 antagonists.
Collapse
Affiliation(s)
- Justyna Kocik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Monika Machula
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Aneta Wisniewska
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
31
|
Therapeutic Targeting of Notch Signaling Pathway in Hematological Malignancies. Mediterr J Hematol Infect Dis 2019; 11:e2019037. [PMID: 31308913 PMCID: PMC6613627 DOI: 10.4084/mjhid.2019.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The Notch pathway plays a key role in several processes, including stem-cell self-renewal, proliferation, and cell differentiation. Several studies identified recurrent mutations in hematological malignancies making Notch one of the most desirable targets in leukemia and lymphoma. The Notch signaling mediates resistance to therapy and controls cancer stem cells supporting the development of on-target therapeutic strategies to improve patients’ outcome. In this brief review, we outline the therapeutic potential of targeting Notch pathway in T-cell acute jlymphoblastic leukemia, chronic lymphocytic leukemia, and mantle cell lymphoma.
Collapse
|
32
|
Chowdury MA, Heileman KL, Moore TA, Young EWK. Biomicrofluidic Systems for Hematologic Cancer Research and Clinical Applications. SLAS Technol 2019; 24:457-476. [PMID: 31173533 DOI: 10.1177/2472630319846878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A persistent challenge in developing personalized treatments for hematologic cancers is the lack of patient specific, physiologically relevant disease models to test investigational drugs in clinical trials and to select therapies in a clinical setting. Biomicrofluidic systems and organ-on-a-chip technologies have the potential to change how researchers approach the fundamental study of hematologic cancers and select clinical treatment for individual patient. Here, we review microfluidics cell-based technology with application toward studying hematologic tumor microenvironments (TMEs) for the purpose of drug discovery and clinical treatment selection. We provide an overview of state-of-the-art microfluidic systems designed to address questions related to hematologic TMEs and drug development. Given the need to develop personalized treatment platforms involving this technology, we review pharmaceutical drugs and different modes of immunotherapy for hematologic cancers, followed by key considerations for developing a physiologically relevant microfluidic companion diagnostic tool for mimicking different hematologic TMEs for testing with different drugs in clinical trials. Opportunities lie ahead for engineers to revolutionize conventional drug discovery strategies of hematologic cancers, including integrating cell-based microfluidics technology with machine learning and automation techniques, which may stimulate pharma and regulatory bodies to promote research and applications of microfluidics technology for drug development.
Collapse
Affiliation(s)
- Mosfera A Chowdury
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Khalil L Heileman
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Thomas A Moore
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Dong S, Ghobrial IM. Immunotherapy for hematological malignancies. JOURNAL OF LIFE SCIENCES (WESTLAKE VILLAGE, CALIF.) 2019; 1:46-52. [PMID: 31453573 PMCID: PMC6709701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tumor immune tolerance remains a major barrier for effective anti-cancer therapy. A growing number of pathways whereby solid tumors escape immune surveillance have been characterized (1). This progress led us to revisit the "hallmarks of cancer" and brought forward many promising immunotherapies. Every growing bodies of research have brought forward many exciting treatment strategies for hematological cancers like chimeric antigen receptor T cells (CAR-T cells) and immune checkpoint inhibitors. Given the distinct characteristics of the different cancers, some benefited profoundly from such therapies while some remain challenging for scientists and physicians. Here, we discuss the unique aspect of hematological malignancies, and briefly review the history, existing and future of immunotherapies for this group of cancer.
Collapse
Affiliation(s)
- Shuai Dong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA Harvard Institute of Medicine Room 237, 4 Blackfan Circle, Boston MA 02115
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA Harvard Institute of Medicine Room 237, 4 Blackfan Circle, Boston MA 02115
| |
Collapse
|
34
|
Redondo-Muñoz J, García-Pardo A, Teixidó J. Molecular Players in Hematologic Tumor Cell Trafficking. Front Immunol 2019; 10:156. [PMID: 30787933 PMCID: PMC6372527 DOI: 10.3389/fimmu.2019.00156] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
The trafficking of neoplastic cells represents a key process that contributes to progression of hematologic malignancies. Diapedesis of neoplastic cells across endothelium and perivascular cells is facilitated by adhesion molecules and chemokines, which act in concert to tightly regulate directional motility. Intravital microscopy provides spatio-temporal views of neoplastic cell trafficking, and is crucial for testing and developing therapies against hematologic cancers. Multiple myeloma (MM), chronic lymphocytic leukemia (CLL), and acute lymphoblastic leukemia (ALL) are hematologic malignancies characterized by continuous neoplastic cell trafficking during disease progression. A common feature of these neoplasias is the homing and infiltration of blood cancer cells into the bone marrow (BM), which favors growth and survival of the malignant cells. MM cells traffic between different BM niches and egress from BM at late disease stages. Besides the BM, CLL cells commonly home to lymph nodes (LNs) and spleen. Likewise, ALL cells also infiltrate extramedullary organs, such as the central nervous system, spleen, liver, and testicles. The α4β1 integrin and the chemokine receptor CXCR4 are key molecules for MM, ALL, and CLL cell trafficking into and out of the BM. In addition, the chemokine receptor CCR7 controls CLL cell homing to LNs, and CXCR4, CCR7, and CXCR3 contribute to ALL cell migration across endothelia and the blood brain barrier. Some of these receptors are used as diagnostic markers for relapse and survival in ALL patients, and their level of expression allows clinicians to choose the appropriate treatments. In CLL, elevated α4β1 expression is an established adverse prognostic marker, reinforcing its role in the disease expansion. Combining current chemotherapies with inhibitors of malignant cell trafficking could represent a useful therapy against these neoplasias. Moreover, immunotherapy using humanized antibodies, CAR-T cells, or immune check-point inhibitors together with agents targeting the migration of tumor cells could also restrict their survival. In this review, we provide a view of the molecular players that regulate the trafficking of neoplastic cells during development and progression of MM, CLL, and ALL, together with current therapies that target the malignant cells.
Collapse
Affiliation(s)
- Javier Redondo-Muñoz
- Department of Immunology, Ophthalmology and ERL, Hospital 12 de Octubre Health Research Institute (imas12), School of Medicine, Complutense University, Madrid, Spain.,Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Angeles García-Pardo
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Joaquin Teixidó
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| |
Collapse
|
35
|
Talotta R, Rucci F, Canti G, Scaglione F. Pros and cons of the immunogenicity of monoclonal antibodies in cancer treatment: a lesson from autoimmune diseases. Immunotherapy 2019; 11:241-254. [DOI: 10.2217/imt-2018-0081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The aim of this review is to report the current evidence on immunogenicity of monoclonal antibodies (moAbs) used in cancer compared with autoimmune diseases, focusing on local microenvironment. English abstracts were identified in Medline and www.clinicaltrials.gov . A total of 82 papers were selected. The percentage of immunogenicity of moAbs used for cancer therapy, evaluated as the serum concentration of antidrug antibodies, is significantly lower than that of moAbs used for the treatment of autoimmune diseases. This condition may rely on a different immunologic background characterized by a hyperactivation of immune cells in autoimmune diseases. The formation of complexes between antidrug antibodies and non-neutralizing moAbs bound to neoplastic antigens may allow more efficient elimination of cancer cells, but additional studies are needed.
Collapse
Affiliation(s)
- Rossella Talotta
- Postgraduate School of Clinical Pharmacology & Toxicology, University of Milan, 20162, Milan, Italy
- Laboratory of Genetics, ASST ‘Grande Ospedale Metropolitano Niguarda’, 20162, Milan, Italy
| | - Francesco Rucci
- Postgraduate School of Clinical Pharmacology & Toxicology, University of Milan, 20162, Milan, Italy
- Laboratory of Genetics, ASST ‘Grande Ospedale Metropolitano Niguarda’, 20162, Milan, Italy
| | - Gianfranco Canti
- Department of Medical Biotechnology & Traslational Medicine, University of Milan, 20129, Milan, Italy
| | - Francesco Scaglione
- Department of Oncology & Onco-Hematology, University of Milan, 20162, Milan, Italy
- Clinical Pharmacology Unit, ASST ‘Grande Ospedale Metropolitano Niguarda’, 20162, Milan, Italy
| |
Collapse
|
36
|
Lee SSY, Bindokas VP, Kron SJ. Multiplex Three-Dimensional Mapping of Macromolecular Drug Distribution in the Tumor Microenvironment. Mol Cancer Ther 2019; 18:213-226. [PMID: 30322947 PMCID: PMC6318001 DOI: 10.1158/1535-7163.mct-18-0554] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/30/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Macromolecular cancer drugs such as therapeutic antibodies and nanoparticles are well known to display slow extravasation and incomplete penetration into tumors, potentially protecting cancer cells from therapeutic effects. Conventional assays to track macromolecular drug delivery are poorly matched to the heterogeneous tumor microenvironment, but recent progress on optical tissue clearing and three-dimensional (3D) tumor imaging offers a path to quantitative assays with cellular resolution. Here, we apply transparent tissue tomography (T3) as a tool to track perfusion and delivery in the tumor and to evaluate target binding and vascular permeability. Using T3, we mapped anti-programmed cell death protein-ligand 1 (PD-L1) antibody distribution in whole mouse tumors. By measuring 3D penetration distances of the antibody drug out from the blood vessel boundaries into the tumor parenchyma, we determined spatial pharmacokinetics of anti-PD-L1 antibody drugs in mouse tumors. With multiplex imaging of tumor components, we determined the distinct distribution of anti-PD-L1 antibody drug in the tumor microenvironment with different PD-L1 expression patterns. T3 imaging revealed CD31+ capillaries are more permeable to anti-PD-L1 antibody transport compared with the blood vessels composed of endothelium supported by vascular fibroblasts and smooth muscle cells. T3 analysis also confirmed that isotype IgG antibody penetrates more deeply into tumor parenchyma than anti-Her2 or anti-EGFR antibody, which were restrained by binding to their respective antigens on tumor cells. Thus, T3 offers simple and rapid access to 3D, quantitative maps of macromolecular drug distribution in the tumor microenvironment, offering a new tool for development of macromolecular cancer therapeutics.
Collapse
Affiliation(s)
- Steve Seung-Young Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| | - Vytautas P Bindokas
- Integrated Light Microscopy Facility, The University of Chicago, Chicago, Illinois
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois.
- Ludwig Center for Metastasis Research, The University of Chicago, Chicago, Illinois
| |
Collapse
|