1
|
Zhao C, Hao M, Bian T, Zhao X, Chi X, Chen Z, Fu G, Zhu Z, Fang T, Yu C, Li J, Chen W. Screening of Neutralizing Antibodies Targeting Gc Protein of RVFV. Viruses 2025; 17:559. [PMID: 40285002 PMCID: PMC12031069 DOI: 10.3390/v17040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-transmitted bunyavirus that can cause substantial morbidity and mortality in livestock and humans, for which there are no currently available licensed human therapeutics or vaccines. Therefore, the development of safe and effective antivirals is both necessary and urgent. The Gc protein is the primary target of the neutralizing antibody response related to Rift Valley fever virus. Here, we report one Gc-specific neutralizing antibody (NA137) isolated from an alpaca and one bispecific antibody (E2-NA137), the protective efficacies of which we evaluated in A129 mice. In this prophylactic study, the survival rates of the NA137 and E2-NA137 groups were both 80%, and in the treatment study, the survival rates were 20% and 60%, respectively. Altogether, our results emphasize that NA137 and E2-NA137 provide a potential approach for treating RVFV either prophylactically or therapeutically.
Collapse
Affiliation(s)
- Chuanyi Zhao
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Meng Hao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Ting Bian
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Xiaofan Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Xiangyang Chi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Zhengshan Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Guangcheng Fu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Zheng Zhu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Ting Fang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Changming Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Jianmin Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| | - Wei Chen
- School of Medicine, Zhejiang University, Hangzhou 310058, China;
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing 100071, China; (M.H.); (T.B.); (X.Z.); (X.C.); (Z.C.); (G.F.); (Z.Z.); (T.F.); (C.Y.)
| |
Collapse
|
2
|
Mahboob A, Fatma N, Faraz A, Pervez M, Khan MA, Husain A. Advancements in the conservation of the conformational epitope of membrane protein immunogens. Front Immunol 2025; 16:1538871. [PMID: 40093005 PMCID: PMC11906443 DOI: 10.3389/fimmu.2025.1538871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Generating antibodies targeting native membrane proteins presents various challenges because these proteins are often embedded in the lipid bilayer, possess various extracellular and intracellular domains, and undergo post-translational modifications. These properties of MPs make it challenging to preserve their stable native conformations for immunization or antibody generation outside of the membranes. In addition, MPs are often hydrophobic due to their membrane-spanning regions, making them difficult to solubilize and purify in their native form. Therefore, employing purified MPs for immunogen preparation may result in denaturation or the loss of native structure, rendering them inadequate for producing antibodies recognizing native conformations. Despite these obstacles, various new approaches have emerged to address these problems. We outline recent advancements in designing and preparing immunogens to produce antibodies targeting MPs. Strategies outlined here are relevant for producing antibodies for research, diagnostics, and therapies and designing immunogens for vaccination purposes.
Collapse
Affiliation(s)
- Aisha Mahboob
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Nishat Fatma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Ahmed Faraz
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Muntaha Pervez
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mohammad Afeef Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Lorenz H, Menzel S, Roshchyna N, Albrecht B, Gebhardt AJ, Schneider E, Haag F, Rissiek B, Oheim R, Koch-Nolte F, Winzer R, Tolosa E. ENPP1/CD203a-targeting heavy-chain antibody reveals cell-specific expression on human immune cells. Cell Mol Life Sci 2024; 82:6. [PMID: 39694917 DOI: 10.1007/s00018-024-05539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
ENPP1/CD203a is a membrane-bound ectonucleotidase capable of hydrolyzing ATP, cGAMP and other substrates. Its enzymatic activity plays an important role in the balance of extracellular adenine nucleotides and the modulation of purinergic signaling, in soft tissue calcification, and in the regulation of the cGAS/STING pathway. However, a detailed analysis of ENPP1 surface expression on human immune cells has not been performed. Here, we selected VHH domains from human ENPP1-immunized alpacas to generate heavy-chain antibodies targeting ENPP1, and analyzed cell surface expression on all circulating immune cell subsets using flow cytometry. We find high expression of ENPP1 in CD141high conventional dendritic cells (cDC1), while ENPP1 was not detectable on other dendritic cells and monocytes. In the lymphocytic compartment, only CD56bright natural killer cells and mucosal-associated invariant T cells (MAIT) express ENPP1. In contrast, all other T cell subpopulations, CD56dim natural killer cells and B lymphocytes do not or only minimally express ENPP1. In summary, we describe highly cell type-specific expression of ENPP1 in the immune system using a newly generated heavy-chain antibody. This reagent will help to decipher the function of ENPP1 in the regulation of the immune response, allow a quick identification of ENPP1-deficiency and of ENPP1-positive tumors, and constitutes the basis for targeted anti-tumor intervention.
Collapse
Affiliation(s)
- Hannah Lorenz
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Innate Immunity, Core Facility Nanobodies, University Hospital Bonn, Bonn, Germany
| | - Nataliia Roshchyna
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birte Albrecht
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Josephine Gebhardt
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Deutschland
| | - Enja Schneider
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Oheim
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Hamburg, Hamburg, Deutschland.
| |
Collapse
|
4
|
Koch‐Nolte F. Nanobody-based heavy chain antibodies and chimeric antibodies. Immunol Rev 2024; 328:466-472. [PMID: 39212236 PMCID: PMC11659929 DOI: 10.1111/imr.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Nanobodies are the products of an intriguing invention in the evolution of immunoglobulins. This invention can be traced back approximately 45 million years to the common ancestor of extant dromedaries, camels, llamas, and alpacas. Next to conventional heterotetrameric H2L2 antibodies, these camelids produce homodimeric nanobody-based heavy chain antibodies, composed of shortened heavy chains that a lack the CH1 domain. Nanobodies against human target antigens are derived from immunized animals and/or synthetic nanobody libraries. As a robust, highly soluble, single immunoglobulin domain, a nanobody can easily be fused to another protein, for example to another nanobody and/or the hinge and constant domains of other immunoglobulins. Nanobody-derived heavy chain antibodies hold promise as a new form of immunotherapeutics.
Collapse
Affiliation(s)
- Friedrich Koch‐Nolte
- Institute of ImmunologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
5
|
Eden T, Schaffrath AZ, Wesolowski J, Stähler T, Tode N, Richter N, Schäfer W, Hambach J, Hermans-Borgmeyer I, Woens J, Le Gall CM, Wendler S, Linke-Winnebeck C, Stobbe M, Budnicki I, Wanney A, Heitz Y, Schimmelpfennig L, Schweitzer L, Zimmer D, Stahl E, Seyfried F, Gebhardt AJ, Dieckow L, Riecken K, Fehse B, Bannas P, Magnus T, Verdoes M, Figdor CG, Hartlepp KF, Schleer H, Füner J, Tomas NM, Haag F, Rissiek B, Mann AM, Menzel S, Koch-Nolte F. Generation of nanobodies from transgenic 'LamaMice' lacking an endogenous immunoglobulin repertoire. Nat Commun 2024; 15:4728. [PMID: 38830864 PMCID: PMC11148044 DOI: 10.1038/s41467-024-48735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Due to their exceptional solubility and stability, nanobodies have emerged as powerful building blocks for research tools and therapeutics. However, their generation in llamas is cumbersome and costly. Here, by inserting an engineered llama immunoglobulin heavy chain (IgH) locus into IgH-deficient mice, we generate a transgenic mouse line, which we refer to as 'LamaMouse'. We demonstrate that LamaMice solely express llama IgH molecules without association to Igκ or λ light chains. Immunization of LamaMice with AAV8, the receptor-binding domain of the SARS-CoV-2 spike protein, IgE, IgG2c, and CLEC9A enabled us to readily select respective target-specific nanobodies using classical hybridoma and phage display technologies, single B cell screening, and direct cloning of the nanobody-repertoire into a mammalian expression vector. Our work shows that the LamaMouse represents a flexible and broadly applicable platform for a facilitated selection of target-specific nanobodies.
Collapse
Affiliation(s)
- Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessa Z Schaffrath
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janusz Wesolowski
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Tode
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Richter
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jannis Woens
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Camille M Le Gall
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sabrina Wendler
- ChromoTek GmbH, Martinsried, Germany - A part of Proteintech Group, Martinsried, Germany
| | | | - Martina Stobbe
- ChromoTek GmbH, Martinsried, Germany - A part of Proteintech Group, Martinsried, Germany
| | | | | | | | | | | | | | | | - Fabienne Seyfried
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna J Gebhardt
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lynn Dieckow
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Bannas
- Department of Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martijn Verdoes
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Klaus F Hartlepp
- ChromoTek GmbH, Martinsried, Germany - A part of Proteintech Group, Martinsried, Germany
| | | | | | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna M Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
6
|
Menzel S, Duan Y, Hambach J, Albrecht B, Wendt-Cousin D, Winzer R, Tolosa E, Rissiek A, Guse AH, Haag F, Magnus T, Koch-Nolte F, Rissiek B. Generation and characterization of antagonistic anti-human CD39 nanobodies. Front Immunol 2024; 15:1328306. [PMID: 38590528 PMCID: PMC11000232 DOI: 10.3389/fimmu.2024.1328306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
CD39 is the major enzyme controlling the levels of extracellular adenosine triphosphate (ATP) via the stepwise hydrolysis of ATP to adenosine diphosphate (ADP) and adenosine monophosphate (AMP). As extracellular ATP is a strong promoter of inflammation, monoclonal antibodies (mAbs) blocking CD39 are utilized therapeutically in the field of immune-oncology. Though anti-CD39 mAbs are highly specific for their target, they lack deep penetration into the dense tissue of solid tumors, due to their large size. To overcome this limitation, we generated and characterized nanobodies that targeted and blocked human CD39. From cDNA-immunized alpacas we selected 16 clones from seven nanobody families that bind to two distinct epitopes of human CD39. Among these, clone SB24 inhibited the enzymatic activity of CD39. Of note, SB24 blocked ATP degradation by both soluble and cell surface CD39 as a 15kD monomeric nanobody. Dimerization via fusion to an immunoglobulin Fc portion further increased the blocking potency of SB24 on CD39-transfected HEK cells. Finally, we confirmed the CD39 blocking properties of SB24 on human PBMCs. In summary, SB24 provides a new small biological antagonist of human CD39 with potential application in cancer therapy.
Collapse
Affiliation(s)
- Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
| | - Yinghui Duan
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birte Albrecht
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorte Wendt-Cousin
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Rissiek
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Cytometry und Cell Sorting Core Unit, Dept. of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas H. Guse
- Department of Biochemistry and Molecular Cell Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Demeules M, Scarpitta A, Hardet R, Gondé H, Abad C, Blandin M, Menzel S, Duan Y, Rissiek B, Magnus T, Mann AM, Koch-Nolte F, Adriouch S. Evaluation of nanobody-based biologics targeting purinergic checkpoints in tumor models in vivo. Front Immunol 2022; 13:1012534. [PMID: 36341324 PMCID: PMC9626963 DOI: 10.3389/fimmu.2022.1012534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) represents a danger signal that accumulates in injured tissues, in inflammatory sites, and in the tumor microenvironment. ATP promotes tumor growth but also anti-tumor immune responses notably via the P2X7 receptor. ATP can also be catabolized by CD39 and CD73 ecto-enzymes into immunosuppressive adenosine. P2X7, CD39 and CD73 have attracted much interest in cancer as targets offering the potential to unleash anti-tumor immune responses. These membrane proteins represent novel purinergic checkpoints that can be targeted by small drugs or biologics. Here, we investigated nanobody-based biologics targeting mainly P2X7, but also CD73, alone or in combination therapies. Blocking P2X7 inhibited tumor growth and improved survival of mice in cancer models that express P2X7. P2X7-potentiation by a nanobody-based biologic was not effective alone to control tumor growth but enhanced tumor control and immune responses when used in combination with oxaliplatin chemotherapy. We also evaluated a bi-specific nanobody-based biologic that targets PD-L1 and CD73. This novel nanobody-based biologic exerted a potent anti-tumor effect, promoting tumor rejection and improving survival of mice in two tumor models. Hence, this study highlights the importance of purinergic checkpoints in tumor control and open new avenues for nanobody-based biologics that may be further exploited in the treatment of cancer.
Collapse
Affiliation(s)
- Mélanie Demeules
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Allan Scarpitta
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Romain Hardet
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Henri Gondé
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Catalina Abad
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Marine Blandin
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Core Facility Nanobodies, University of Bonn, Bonn, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Marei Mann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- University of Rouen, INSERM, U1234, Pathophysiology Autoimmunity and Immunotherapy (PANTHER), Normandie Univ, Rouen, France
- *Correspondence: Sahil Adriouch,
| |
Collapse
|
8
|
Moliner-Morro A, McInerney GM, Hanke L. Nanobodies in the limelight: Multifunctional tools in the fight against viruses. J Gen Virol 2022; 103. [PMID: 35579613 DOI: 10.1099/jgv.0.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibodies are natural antivirals generated by the vertebrate immune system in response to viral infection or vaccination. Unsurprisingly, they are also key molecules in the virologist's molecular toolbox. With new developments in methods for protein engineering, protein functionalization and application, smaller antibody-derived fragments are moving in focus. Among these, camelid-derived nanobodies play a prominent role. Nanobodies can replace full-sized antibodies in most applications and enable new possible applications for which conventional antibodies are challenging to use. Here we review the versatile nature of nanobodies, discuss their promise as antiviral therapeutics, for diagnostics, and their suitability as research tools to uncover novel aspects of viral infection and disease.
Collapse
Affiliation(s)
- Ainhoa Moliner-Morro
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gerald M McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
9
|
Li Q, Zhang F, Lu Y, Hu H, Wang J, Guo C, Deng Q, Liao C, Wu Q, Hu T, Chen Z, Lu J. Highly potent multivalent VHH antibodies against Chikungunya isolated from an alpaca naïve phage display library. J Nanobiotechnology 2022; 20:231. [PMID: 35568912 PMCID: PMC9107221 DOI: 10.1186/s12951-022-01417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background Chikungunya virus (CHIKV) is a re-emerged mosquito-borne alphavirus that can cause musculoskeletal diseases, imposing a substantial threat to public health globally. High-affinity antibodies are need for diagnosis and treatment of CHIKV infections. As a potential diagnostic and therapeutic agent, the multivalent VHH antibodies is a promising tookit in nanomedicine. Here, we developed potent multivalent VHH antibodies from an alpaca naïve phage display library targeting the E2 glycoprotein of the CHIKV virus. Results In the present study, we generated 20 VHH antibodies using a naïve phage display library for binders to the CHIKV E2 glycoprotein. Of these, multivalent VHH antibodies Nb-2E8 and Nb-3C5 had specific high-affinity binding to E2 protein within the nanomolar range. The equilibrium dissociation constant (KD) was between 2.59–20.7 nM, which was 100-fold stronger than the monovalent antibodies’ affinity. Moreover, epitope mapping showed that Nb-2E8 and Nb-3C5 recognized different linear epitopes located on the E2 glycoprotein domain C and A, respectively. A facile protocol of sandwich ELISA was established using BiNb-2E8 as a capture antibody and HRP-conjugated BiNb-3C5 as a detection antibody. A good linear correlation was achieved between the OD450 value and the E2 protein concentration in the 5–1000 ng/mL range (r = 0.9864, P < 0.0001), indicating its potential for quantitative detection of the E2 protein. Conclusions Compared to monovalent antibodies, multivalent VHH antibodies Nb-2E8 and Nb-3C5 showed high affinity and are potential candidates for diagnostic applications to better detect CHIKV virions in sera. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01417-6.
Collapse
Affiliation(s)
- Qianlin Li
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Fuqiang Zhang
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, 510060, People's Republic of China
| | - Yi Lu
- Health Effects Institute, Boston, 02169, USA
| | - Huan Hu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Jin Wang
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Qiang Deng
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Conghui Liao
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Qin Wu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China.,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| | - Tingsong Hu
- Center for Disease Control and Prevention of Southern Theater Command, Guangzhou, 510060, People's Republic of China.
| | - Zeliang Chen
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China. .,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China.
| | - Jiahai Lu
- One Health Center of Excellence for Research and Training, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China. .,NMPA Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China. .,Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Trempe F, Rossotti MA, Maqbool T, MacKenzie CR, Arbabi-Ghahroudi M. Llama DNA Immunization and Isolation of Functional Single-Domain Antibody Binders. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2446:37-70. [PMID: 35157268 DOI: 10.1007/978-1-0716-2075-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic immunization is a simple, cost-effective, and powerful tool for inducing innate and adaptive immune responses to combat infectious diseases and difficult-to-treat illnesses. DNA immunization is increasingly used in the generation of monoclonal antibodies against targets for which pure proteins are unavailable or are difficult to express and purify (e.g., ion channels and receptors, transmembrane proteins, and emerging infectious pathogens). Genetic immunization has been successfully utilized in small inbred laboratory animals (mostly rodents); however, low immunogenicity of DNA/RNA injected into large mammals, including humans, is still a major challenge. Here, we provide a method for the genetic immunization of llamas, using a combination of biolistic transfection with a gene gun and intradermal injection with a DERMOJET® device, to elicit heavy-chain IgG responses against epidermal growth factor receptor (EGFR). We show the technique can be used to generate single-domain antibodies (VHHs) with nanomolar affinities to EGFR. We provide methods for gene gun bullet preparation, llama immunization, serology, phage-display library construction and panning, and VHH characterization.
Collapse
Affiliation(s)
- Frédéric Trempe
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | | | - C Roger MacKenzie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Mehdi Arbabi-Ghahroudi
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada. .,Department of Biology, Carleton University, Ottawa, ON, Canada.
| |
Collapse
|
11
|
Stähler T, Danquah W, Demeules M, Gondé H, Hardet R, Haag F, Adriouch S, Koch-Nolte F, Menzel S. Development of Antibody and Nanobody Tools for P2X7. Methods Mol Biol 2022; 2510:99-127. [PMID: 35776322 DOI: 10.1007/978-1-0716-2384-8_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Antibodies that recognize the ATP-gated P2X7 ion channel are etablished research tools. Nanobodies correspond to the antigen-binding variable immunoglobulin domain (VHH) of heavy chain antibodies that naturally occur in camelids. Nanobodies display better solubility than the variable domains (VH) of conventional antibodies. Therefore, it is much easier to construct bivalent and multivalent fusion proteins with nanobodies than with VH domains or with paired VH-VL domains. Moreover, nanobodies can bind functional crevices that are poorly accessbile to conventional VH-VL domains. This makes nanobodies particulary well suited as functional modulators. Here we provide protocols to raise antibodies and nanobodies against mouse and human P2X7 using cDNA-immunization. This approach evokes antibodies and nanobodies that recognize the P2X7 ion channel in native confirmation, some of which inhibit or potentiate gating of P2X7 by extracellular ATP. Furthermore, we developed protocols for producing P2X7-specific nanobodies and antibodies in vivo using rAAV vectors (AAVnano). This approach can be used either to durably inhibit or potentiate P2X7 function in vivo, or to deplete P2X7-expressing cells.
Collapse
Affiliation(s)
- Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Welbeck Danquah
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Demeules
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, aNd immunoTHERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Henri Gondé
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, aNd immunoTHERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Romain Hardet
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, aNd immunoTHERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sahil Adriouch
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, aNd immunoTHERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Brauneck F, Seubert E, Wellbrock J, Schulze zur Wiesch J, Duan Y, Magnus T, Bokemeyer C, Koch-Nolte F, Menzel S, Fiedler W. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML. Int J Mol Sci 2021; 22:ijms222312919. [PMID: 34884723 PMCID: PMC8657570 DOI: 10.3390/ijms222312919] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 01/17/2023] Open
Abstract
This study aimed to characterize different natural killer (NK) cell phenotypes on bone marrow and peripheral blood cells from acute myeloid leukemia (AML) patients and healthy donors (HDs). Our data show that CD56dimCD16− and CD56brightCD16− NK cells represent the predominant NK cell subpopulations in AML, while the CD56dimCD16+ NK cells are significantly reduced compared to HDs. Moreover, TIGIT+ and PVRIG+ cells cluster on the CD56dimCD16+ subset whereas CD39+ and CD38+ cells do so on CD56brightCD16− NK cells in AML. Furthermore, functional effects of (co-)blockade of TIGIT and CD39 or A2AR on NK cell functionality were analyzed. These experiments revealed that the single blockade of the TIGIT receptor results in an increased NK-92 cell-mediated killing of AML cells in vitro. Combined targeting of CD39 or A2AR significantly augments the anti-TIGIT-mediated lysis of AML cells. Our data indicate that distinct NK cell subsets in AML exhibit different immunosuppressive patterns (via the TIGIT/PVRIG receptors and the purinergic pathway). In summary, we conclude that TIGIT, CD39, and A2AR constitute relevant inhibitory checkpoints of NK cells in AML patients. A combinatorial blockade synergistically strengthens NK-92 cell-mediated cytotoxicity. As inhibitors of TIGIT, CD39, and A2AR are clinically available, studies on their combined use could be conducted in the near future.
Collapse
Affiliation(s)
- Franziska Brauneck
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Elisa Seubert
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (Y.D.); (T.M.)
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (Y.D.); (T.M.)
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Stephan Menzel
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; (F.B.); (E.S.); (J.W.); (C.B.)
- Correspondence:
| |
Collapse
|
13
|
Wagner TR, Rothbauer U. Nanobodies - Little helpers unravelling intracellular signaling. Free Radic Biol Med 2021; 176:46-61. [PMID: 34536541 DOI: 10.1016/j.freeradbiomed.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022]
Abstract
The identification of diagnostic and therapeutic targets requires a comprehensive understanding of cellular processes, for which advanced technologies in biomedical research are needed. The emergence of nanobodies (Nbs) derived from antibody fragments of camelid heavy chain-only antibodies as intracellular research tools offers new possibilities to study and modulate target antigens in living cells. Here we summarize this rapidly changing field, beginning with a brief introduction of Nbs, followed by an overview of how target-specific Nbs can be generated, and introduce the selection of intrabodies as research tools. Intrabodies, by definition, are intracellular functional Nbs that target ectopic or endogenous intracellular antigens within living cells. Such binders can be applied in various formats, e.g. as chromobodies for live cell microscopy or as biosensors to decipher complex intracellular signaling pathways. In addition, protein knockouts can be achieved by target-specific Nbs, while modulating Nbs have the potential as future therapeutics. The development of fine-tunable and switchable Nb-based systems that simultaneously provide spatial and temporal control has recently taken the application of these binders to the next level.
Collapse
Affiliation(s)
- Teresa R Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
14
|
Nanamiya R, Takei J, Asano T, Tanaka T, Sano M, Nakamura T, Yanaka M, Hosono H, Kaneko MK, Kato Y. Development of Anti-Human CC Chemokine Receptor 9 Monoclonal Antibodies for Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2021; 40:101-106. [PMID: 34161159 DOI: 10.1089/mab.2021.0007] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CC chemokine receptor 9 (CCR9) belongs to the beta chemokine receptor family and is mainly distributed on the surface of immature T lymphocytes and enterocytes. This receptor is highly expressed in rheumatoid arthritis, colitis, type 2 diabetes, and various tumors. Therefore, more sensitive monoclonal antibodies (mAbs) need to be developed to predict the prognosis of many high CCR9 expression diseases. Because CCR9 is a structurally unstable G protein-coupled receptor, it has been difficult to develop anti-CCR9 mAbs using the traditional method. This study developed anti-human CCR9 (hCCR9) mAbs for flow cytometry using a Cell-Based Immunization and Screening (CBIS) method. Two mice were immunized with hCCR9-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/hCCR9), and hybridomas showing strong signals from CHO/hCCR9 and no signals from CHO-K1 cells were selected by flow cytometry. We established an anti-hCCR9 mAb, C9Mab-1 (IgG1, kappa), which detected hCCR9 in MOLT-4 leukemia T lymphoblast cells and CHO/hCCR9 cells by flow cytometry. Our study showed that an anti-hCCR9 mAb was developed more rapidly by the CBIS method than the previous method.
Collapse
Affiliation(s)
- Ren Nanamiya
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junko Takei
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masato Sano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuro Nakamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Miyuki Yanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Hosono
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan.,New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| |
Collapse
|
15
|
Hambach J, Stähler T, Eden T, Wendt D, Tode N, Haag F, Tolosa E, Altfeld M, Fathi A, Dahlke C, Addo MM, Menzel S, Koch-Nolte F. A simple, sensitive, and low-cost FACS assay for detecting antibodies against the native SARS-CoV-2 spike protein. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:905-917. [PMID: 33979020 PMCID: PMC8239943 DOI: 10.1002/iid3.446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Background: Hamburg is a city state of approximately 1.9 Mio inhabitants in Northern Germany. Currently, the COVID‐19 epidemic that had largely subsided during last summer is resurging in Hamburg and in other parts of the world, underlining the need for additional tools to monitor SARS‐CoV‐2 antibody responses. Aim: We aimed to develop and validate a simple, low‐cost assay for detecting antibodies against the native coronavirus 2 spike protein (CoV‐2 S) that does not require recombinant protein or virus. Method: We transiently co‐transfected HEK cells or CHO cells with expression vectors encoding CoV‐2 S and nuclear GFP. Spike protein‐specific antibodies in human serum samples bound to transfected cells were detected with fluorochrome conjugated secondary antibodies by flow cytometry orimmunofluorescence microscopy. We applied this assay to monitor antibody development in COVID‐19 patients, household contacts, and hospital personnel during the ongoing epidemic in the city state of Hamburg. Results: All recovered COVID‐19 patients showed high levels of CoV‐2 S‐specific antibodies. With one exception, all household members that did not develop symptoms also did not develop detectable antibodies. Similarly, lab personnel that worked during the epidemic and followed social distancing guidelines remained antibody‐negative. Conclusion: We conclude that high‐titer CoV‐2 S‐specific antibodies are found in most recovered COVID‐19 patients and in symptomatic contacts, but only rarely in asymptomatic contacts. The assay may help health care providers to monitor disease progression and antibody responses in vaccination trials, to identify health care personnel that likely are resistant to re‐infection, and recovered individuals with high antibody titers that may be suitable asplasma and/or antibody donors.
Collapse
Affiliation(s)
- Julia Hambach
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Stähler
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eden
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dorte Wendt
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Tode
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Anahita Fathi
- Section Infectious Diseases, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Clinical Immunology of Infectious Diseases, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christine Dahlke
- Section Infectious Diseases, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Clinical Immunology of Infectious Diseases, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M Addo
- Section Infectious Diseases, I. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Clinical Immunology of Infectious Diseases, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Piramoon M, Khodadust F, Hosseinimehr SJ. Radiolabeled nanobodies for tumor targeting: From bioengineering to imaging and therapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188529. [PMID: 33647388 DOI: 10.1016/j.bbcan.2021.188529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
So far, numerous molecules and biomolecules have been evaluated for tumor targeting purposes for radionuclide-based imaging and therapy modalities. Due to the high affinity and specificity against tumor antigens, monoclonal antibodies are appropriate candidates for tumor targeting. However, their large size prevents their comprehensive application in radionuclide-based tumor imaging or therapy, since it leads to their low tumor penetration, low blood clearance, and thus inappropriate tumor-to-background ratio. Nowadays, the variable domain of heavy-chain antibodies from the Camelidae family, known as nanobodies (Nbs), turn into exciting candidates for medical research. Considering several innate advantages of these new tumor-targeting agents, including excellent affinity and specificity toward antigen, high solubility, high stability, fast washout from blood, convenient production, ease of selection, and low immunogenicity, it assumes that they may overcome generic problems of monoclonal antibodies, their fragments, and other vectors used for tumor imaging/therapy. After three decades of Nbs discovery, the increasing number of their preclinical and clinical investigations, which have led to outstanding results, confirm their application for tumor targeting purposes. This review describes Nbs characteristics, the diagnostic and therapeutic application of their radioconjugates, and their recent advances.
Collapse
Affiliation(s)
- Majid Piramoon
- Department of Medicinal Chemistry and Radiopharmacy, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fatemeh Khodadust
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
17
|
Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TW. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules 2021; 11:63. [PMID: 33418902 PMCID: PMC7825061 DOI: 10.3390/biom11010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane transport proteins. This review paper focuses on methodologies to generate cell plasma membrane transport protein-targeting nanobodies, and the advantages and pitfalls while generating these small antibody-derivatives, and discusses several therapeutic nanobodies directed towards transmembrane proteins, including channels and pores, adenosine triphosphate-powered pumps and porters.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Timo W.M. De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| |
Collapse
|
18
|
Eggers M, Rühl F, Haag F, Koch-Nolte F. Nanobodies as probes to investigate purinergic signaling. Biochem Pharmacol 2021; 187:114394. [PMID: 33388283 DOI: 10.1016/j.bcp.2020.114394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
Nanobodies (VHHs) are the single variable immunoglobulin domains of heavy chain antibodies (hcAbs) that naturally occur in alpacas and other camelids. The two variable domains of conventional antibodies typically interact via a hydrophobic interface. In contrast, the corresponding surface area of nanobodies is hydrophilic, rendering these single immunoglobulin domains highly soluble, robust to harsh environments, and exceptionally easy to format into bispecific reagents. In homage to Geoffrey Burnstock, the pioneer of purinergic signaling, we provide a brief history of nanobody-mediated modulation of purinergic signaling, using our nanobodies targeting P2X7 and the NAD+-metabolizing ecto-enzymes CD38 and ARTC2.2 as examples.
Collapse
Affiliation(s)
- Marie Eggers
- Institute of Immunology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix Rühl
- Institute of Immunology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
19
|
Soetens E, Ballegeer M, Saelens X. An Inside Job: Applications of Intracellular Single Domain Antibodies. Biomolecules 2020; 10:biom10121663. [PMID: 33322697 PMCID: PMC7764588 DOI: 10.3390/biom10121663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Sera of camelid species contain a special kind of antibody that consists only of heavy chains. The variable antigen binding domain of these heavy chain antibodies can be expressed as a separate entity, called a single domain antibody that is characterized by its small size, high solubility and oftentimes exceptional stability. Because of this, most single domain antibodies fold correctly when expressed in the reducing environment of the cytoplasm, and thereby retain their antigen binding specificity. Single domain antibodies can thus be used to target a broad range of intracellular proteins. Such intracellular single domain antibodies are also known as intrabodies, and have proven to be highly useful tools for basic research by allowing visualization, disruption and even targeted degradation of intracellular proteins. Furthermore, intrabodies can be used to uncover prospective new therapeutic targets and have the potential to be applied in therapeutic settings in the future. In this review we provide a brief overview of recent advances in the field of intracellular single domain antibodies, focusing on their use as research tools and potential therapeutic applications. Special attention is given to the available methods that allow delivery of single domain antibodies into cells.
Collapse
Affiliation(s)
- Eline Soetens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, B-9052 Ghent, Belgium; (E.S.); (M.B.)
- Department of Biochemistry and Microbiology, Ghent University, B-9000 Ghent, Belgium
- Correspondence:
| |
Collapse
|
20
|
Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. Exploring cellular biochemistry with nanobodies. J Biol Chem 2020; 295:15307-15327. [PMID: 32868455 PMCID: PMC7650250 DOI: 10.1074/jbc.rev120.012960] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Reagents that bind tightly and specifically to biomolecules of interest remain essential in the exploration of biology and in their ultimate application to medicine. Besides ligands for receptors of known specificity, agents commonly used for this purpose are monoclonal antibodies derived from mice, rabbits, and other animals. However, such antibodies can be expensive to produce, challenging to engineer, and are not necessarily stable in the context of the cellular cytoplasm, a reducing environment. Heavy chain-only antibodies, discovered in camelids, have been truncated to yield single-domain antibody fragments (VHHs or nanobodies) that overcome many of these shortcomings. Whereas they are known as crystallization chaperones for membrane proteins or as simple alternatives to conventional antibodies, nanobodies have been applied in settings where the use of standard antibodies or their derivatives would be impractical or impossible. We review recent examples in which the unique properties of nanobodies have been combined with complementary methods, such as chemical functionalization, to provide tools with unique and useful properties.
Collapse
Affiliation(s)
- Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
21
|
Lin Y, Chen Z, Hu C, Chen ZS, Zhang L. Recent progress in antitumor functions of the intracellular antibodies. Drug Discov Today 2020; 25:1109-1120. [DOI: 10.1016/j.drudis.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
22
|
Ferreira JM, Santos LDS, Oliveira SP, Dos Santos BRC, Dos Santos ACM, de Moura EL, de Souza EVM, de Lima Filho JL. Chikungunya Virus Infection Outcome: A Systematic Review of Host Genetics. Immunol Invest 2020; 50:58-79. [PMID: 32204641 DOI: 10.1080/08820139.2020.1733011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Chikungunya virus (CHIKV) is a global concern, inducing chikungunya fever and trigging an arthritogenic chronic phase beyond some severe forms. Outcomes of CHIKV infections in humans are dependent on genetic variations. Here, a systematic review was performed to show evidence of genetic variations on infection outcomes of patients. Methods: Searches were performed in Scopus, SciELO, MEDLINE/PubMed, Web of Science, OneFile (GALE), Periódicos CAPES and ScienceDirect Journals databases. The PICOS approach was used to assess the eligibility of records. A meta-analysis was also conducted to show an association between described alleles/genes and CHIKV infection outcome. Results: Reviews of genetic variants were conducted on genes: CD 209, OAS1, OAS2, OAS3, MIF, TLR-3, TLR-7, TLR-8, MYD-88, KIR, HLA-B; HLA-C; DRB1 and DQB1. Studies were performed on Gabon, Singapore, and India, including Indians, Malay, Gabonese and Chinese ethnicities and published between 2009-2017. The meta-analysis was performed with DRB1 *01; *03; *04; *07; *10; *11; *13; *14 and *15 and DQB1 *02; *03; *05 and *06 alleles with Indian population sample. Sampling power was >80% and a significant positive association between DRB1*14 and CHIKV infection was found (OR = 1.67, 95% CI = 1.04-2.67; p = .03). Conclusion: Majority of the studies were conducted in India. Meta-analysis suggests that DRB1*14 is related to the susceptibility of symptomatic CHIKV infection in Indian population. The literature about CHIKV infection and genetic variations is scarce. The precise role of genetic variation in CHIKV is not clear yet. Further studies are necessary to provide more concrete evidences.
Collapse
Affiliation(s)
- Jean Moisés Ferreira
- Laboratório de Imunopatologia Keizo Asami - LIKA, Centro de Biociências, Universidade Federal de Pernambuco (UFPE) , Recife, Pernambuco, Brazil
| | - Leandro Douglas Silva Santos
- Laboratório de Biologia Molecular E Expressão Gênica - LABMEG, Universidade Federal de Alagoas (UFAL) - Campus Arapiraca , Arapiraca, Alagoas, Brazil
| | - Susana Paiva Oliveira
- Laboratório de Biologia Molecular E Expressão Gênica - LABMEG, Universidade Federal de Alagoas (UFAL) - Campus Arapiraca , Arapiraca, Alagoas, Brazil
| | - Bárbara Rayssa Correia Dos Santos
- Laboratório de Biologia Molecular E Expressão Gênica - LABMEG, Universidade Federal de Alagoas (UFAL) - Campus Arapiraca , Arapiraca, Alagoas, Brazil
| | - Ana Caroline Melo Dos Santos
- Laboratório de Biologia Molecular E Expressão Gênica - LABMEG, Universidade Federal de Alagoas (UFAL) - Campus Arapiraca , Arapiraca, Alagoas, Brazil
| | - Edilson Leite de Moura
- Laboratório de Biologia Molecular E Expressão Gênica - LABMEG, Universidade Federal de Alagoas (UFAL) - Campus Arapiraca , Arapiraca, Alagoas, Brazil
| | - Elaine Virginia Martins de Souza
- Laboratório de Biologia Molecular E Expressão Gênica - LABMEG, Universidade Federal de Alagoas (UFAL) - Campus Arapiraca , Arapiraca, Alagoas, Brazil
| | - José Luiz de Lima Filho
- Laboratório de Imunopatologia Keizo Asami - LIKA, Centro de Biociências, Universidade Federal de Pernambuco (UFPE) , Recife, Pernambuco, Brazil
| |
Collapse
|
23
|
Roth L, Krah S, Klemm J, Günther R, Toleikis L, Busch M, Becker S, Zielonka S. Isolation of Antigen-Specific VHH Single-Domain Antibodies by Combining Animal Immunization with Yeast Surface Display. Methods Mol Biol 2020; 2070:173-189. [PMID: 31625096 DOI: 10.1007/978-1-4939-9853-1_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In addition to conventional hetero-tetrameric antibodies, the adaptive immune repertoire of camelids comprises the so-called heavy chain-only antibodies devoid of light chains. Consequently, antigen binding is mediated solely by the variable domain of the heavy chain, referred to as VHH. In recent years, these single-domain moieties emerged as promising tools for biotechnological and biomedical applications. In this chapter, we describe the generation of VHH antibody yeast surface display libraries from immunized Alpacas and Lamas as well as the facile isolation of antigen-specific molecules in a convenient fluorescence-activated cell sorting (FACS)-based selection process.
Collapse
Affiliation(s)
- Lukas Roth
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Janina Klemm
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Ralf Günther
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Michael Busch
- Discovery Pharmacology, Merck KGaA, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies (PEAT), Merck KGaA, Darmstadt, Germany.
| |
Collapse
|
24
|
Bergmann P, Garcia de Paco E, Rissiek B, Menzel S, Dubberke G, Hua J, Rassendren F, Ulmann L, Koch-Nolte F. Generation and Characterization of Specific Monoclonal Antibodies and Nanobodies Directed Against the ATP-Gated Channel P2X4. Front Cell Neurosci 2019; 13:498. [PMID: 31798414 PMCID: PMC6861843 DOI: 10.3389/fncel.2019.00498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
The P2X4 channel is involved in different physiological and pathological conditions and functions in the nervous system. Despite the existence of several mouse models for which the expression of the gene was manipulated, there is still little information on the expression of the protein at the cellular level. In particular, supposedly specific available antibodies have often proved to recognize unrelated proteins in P2X4-deficient mice. Here, we used an in vivo DNA vaccine approach to generate a series of monoclonal antibodies and nanobodies specific for human, mouse, and rat P2X4 channels. We further characterized these antibodies and show that they solely recognize the native form of the proteins both in biochemical and cytometric applications. Some of these antibodies prove to specifically recognize P2X4 channels by immunostaining in brain or sensory ganglia slices, as well as at the cellular and subcellular levels. Due to their clonality, these different antibodies should represent versatile tools for further characterizing the cellular functions of P2X4 in the nervous system as well as at the periphery.
Collapse
Affiliation(s)
- Philine Bergmann
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elvira Garcia de Paco
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gudrun Dubberke
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Hua
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - François Rassendren
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - Lauriane Ulmann
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France.,Laboratoire d'Excellence Canaux Ioniques d'Intérêt Thérapeutique (LabEx ICST), Montpellier, France
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Jayathilake C, Kumachi S, Arai H, Motohashi M, Terai T, Murakami A, Nemoto N. In vitro selection of anti-gliadin single-domain antibodies from a naïve library for cDNA-display mediated immuno-PCR. Anal Biochem 2019; 589:113490. [PMID: 31678363 DOI: 10.1016/j.ab.2019.113490] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
Gluten intolerance, or adverse intestinal reactions to gluten, is a fairly common problem among certain groups of people. Celiac disease is the most severe form of gluten intolerance, which can lead to permanent damage in the digestive system. Since lifelong avoidance of gluten is the only available treatment, development of reliable techniques to identify gluten contamination in food is important. Gliadin, a component of gluten, is known to play a major role in gluten toxicity. In this study, cDNA display method was used to select specific single-domain antibodies against toxic gliadin from an alpaca-derived naïve VHH library. The cDNA display method is a promising in vitro display technique, which uniquely converts an unstable mRNA-protein fusion molecule to a stable mRNA/cDNA-protein fusion molecule using a well-designed puromycin linker. Three candidate VHHs were selected and the affinities of the VHHs were observed by pulldown assay and indirect ELISA method. In addition, a novel cDNA display mediated immuno-PCR method (cD-IPCR) was successfully applied to detect gliadin in food. We believe this work demonstrates the potential application of the cDNA display method in selecting binders against toxic and heterogeneous targets such as gliadin with an immunization-free preparation manner.
Collapse
Affiliation(s)
- Chathuni Jayathilake
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | | | - Hidenao Arai
- Epsilon Molecular Engineering, Inc, Saitama, 338-8570, Japan
| | - Maiko Motohashi
- Epsilon Molecular Engineering, Inc, Saitama, 338-8570, Japan
| | - Takuya Terai
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Akikazu Murakami
- Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan; Epsilon Molecular Engineering, Inc, Saitama, 338-8570, Japan.
| |
Collapse
|
26
|
Eichhoff AM, Börner K, Albrecht B, Schäfer W, Baum N, Haag F, Körbelin J, Trepel M, Braren I, Grimm D, Adriouch S, Koch-Nolte F. Nanobody-Enhanced Targeting of AAV Gene Therapy Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:211-220. [PMID: 31687421 PMCID: PMC6819893 DOI: 10.1016/j.omtm.2019.09.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
A limiting factor for the use of adeno-associated viruses (AAVs) as vectors in gene therapy is the broad tropism of AAV serotypes, i.e., the parallel infection of several cell types. Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Their small size and high solubility allow easy reformatting into fusion proteins. Herein we show that a membrane protein-specific nanobody can be inserted into a surface loop of the VP1 capsid protein of AAV2. Using three structurally distinct membrane proteins—a multispan ion channel, a single-span transmembrane protein, and a glycosylphosphatidylinositol (GPI)-anchored ectoenzyme—we show that this strategy can dramatically enhance the transduction of specific target cells by recombinant AAV2. Moreover, we show that the nanobody-VP1 fusion of AAV2 can be incorporated into the capsids of AAV1, AAV8, and AAV9 and thereby effectively redirect the target specificity of other AAV serotypes. Nanobody-mediated targeting provides a highly efficient AAV targeting strategy that is likely to open up new avenues for genetic engineering of cells.
Collapse
Affiliation(s)
- Anna Marei Eichhoff
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Research and Innovation in Biomedicine, INSERM U1234, Normandy University, Rouen, France
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - Birte Albrecht
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Schäfer
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Natalie Baum
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob Körbelin
- Center for Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Trepel
- Center for Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingke Braren
- Institute of Pharmacology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany.,BioQuant, Heidelberg University, Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - Sahil Adriouch
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute for Research and Innovation in Biomedicine, INSERM U1234, Normandy University, Rouen, France
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Liu S, Wang S, Lu S. Using DNA Immunization to Elicit Monoclonal Antibodies in Mice, Rabbits, and Humans. Hum Gene Ther 2019; 29:997-1003. [PMID: 30027758 DOI: 10.1089/hum.2018.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In recent vaccine studies, DNA immunization was found to effectively stimulate both innate and adaptive immunities to elicit high levels of antigen-specific antibody responses. The DNA molecule itself can activate multiple pathways of innate immunity. The in vivo production of antigens allows for presentation by major histocompatibility complexes, so that T-cell responses are generated to help in the development of antigen-specific B cells, leading to high-affinity antibody response. By using the same process, DNA immunization should also be effective at producing functionally potent monoclonal antibodies (mAbs). Furthermore, the in vivo expressed proteins can maximally maintain the native structures and go through appropriate post-transcriptional modifications. By combining such advantages, DNA immunization can be expected to play more important roles in the future to elicit mAbs against difficult targets from a wide range of host systems. The current report shares our group's experience in using DNA immunization to elicit mAbs in the mouse, rabbit, and human models.
Collapse
Affiliation(s)
| | - Shixia Wang
- 2 Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Shan Lu
- 2 Department of Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
28
|
del Rio B, Redruello B, Fernandez M, Martin MC, Ladero V, Alvarez MA. Lactic Acid Bacteria as a Live Delivery System for the in situ Production of Nanobodies in the Human Gastrointestinal Tract. Front Microbiol 2019. [PMCID: PMC6346216 DOI: 10.3389/fmicb.2018.03179] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
29
|
Jank L, Pinto-Espinoza C, Duan Y, Koch-Nolte F, Magnus T, Rissiek B. Current Approaches and Future Perspectives for Nanobodies in Stroke Diagnostic and Therapy. Antibodies (Basel) 2019; 8:antib8010005. [PMID: 31544811 PMCID: PMC6640704 DOI: 10.3390/antib8010005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
Antibody-based biologics are the corner stone of modern immunomodulatory therapy. Though highly effective in dampening systemic inflammatory processes, their large size and Fc-fragment mediated effects hamper crossing of the blood brain barrier (BBB). Nanobodies (Nbs) are single domain antibodies derived from llama or shark heavy-chain antibodies and represent a new generation of biologics. Due to their small size, they display excellent tissue penetration capacities and can be easily modified to adjust their vivo half-life for short-term diagnostic or long-term therapeutic purposes or to facilitate crossing of the BBB. Furthermore, owing to their characteristic binding mode, they are capable of antagonizing receptors involved in immune signaling and of neutralizing proinflammatory mediators, such as cytokines. These qualities combined make Nbs well-suited for down-modulating neuroinflammatory processes that occur in the context of brain ischemia. In this review, we summarize recent findings on Nbs in preclinical stroke models and how they can be used as diagnostic and therapeutic reagents. We further provide a perspective on the design of innovative Nb-based treatment protocols to complement and improve stroke therapy.
Collapse
Affiliation(s)
- Larissa Jank
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Carolina Pinto-Espinoza
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Yinghui Duan
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| |
Collapse
|