1
|
Yuan Y, Cao K, Gao P, Wang Y, An W, Dong Y. Extracellular vesicles and bioactive peptides for regenerative medicine in cosmetology. Ageing Res Rev 2025; 107:102712. [PMID: 40032214 DOI: 10.1016/j.arr.2025.102712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
As life quality improves and the life pressure increases, people's awareness of maintaining healthy skin and hair grows. However, the use of bioactive peptides in regenerative medical aesthetics is often constrained by the high molecular weight, which impedes skin penetration. In contrast, extracellular vesicles not only possess regenerative properties but also serve as effective carriers for bioactive peptides. Given their anti-inflammatory and bactericidal properties, capacity to promote angiogenesis, optimize collagen alignment, facilitate re-epithelialization and stimulate hair growth, extracellular vesicles become an emerging and promising solution for skin regeneration treatments. The combination of peptides and extracellular vesicles enhances therapeutic efficacy and improves the bioavailability of bioactive peptides. In this review, we summarize the functions of bioactive peptides and plant- and animal-derived extracellular vesicles in regenerative medicine with cosmetology, along with examples of their combined applications. Additionally, we provide an overview of peptides and extracellular vesicles currently available on the market and in clinical practice, discussing the challenges and solutions associated with their use.
Collapse
Affiliation(s)
- Yize Yuan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kailu Cao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peifen Gao
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China
| | - Yinan Wang
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China
| | - Wenlin An
- National Vaccine & Serum Institute, China National Biotech Group, Sinopharm Group, Beijing 101111, China.
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Erasha AM, EL-Gendy H, Aly AS, Fernández-Ortiz M, Sayed RKA. The Role of the Tumor Microenvironment (TME) in Advancing Cancer Therapies: Immune System Interactions, Tumor-Infiltrating Lymphocytes (TILs), and the Role of Exosomes and Inflammasomes. Int J Mol Sci 2025; 26:2716. [PMID: 40141358 PMCID: PMC11942452 DOI: 10.3390/ijms26062716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Understanding how different contributors within the tumor microenvironment (TME) function and communicate is essential for effective cancer detection and treatment. The TME encompasses all the surroundings of a tumor such as blood vessels, fibroblasts, immune cells, signaling molecules, exosomes, and the extracellular matrix (ECM). Subsequently, effective cancer therapy relies on addressing TME alterations, known drivers of tumor progression, immune evasion, and metastasis. Immune cells and other cell types act differently under cancerous conditions, either driving or hindering cancer progression. For instance, tumor-infiltrating lymphocytes (TILs) include lymphocytes of B and T cell types that can invade malignancies, bringing in and enhancing the ability of immune system to recognize and destroy cancer cells. Therefore, TILs display a promising approach to tackling the TME alterations and have the capability to significantly hinder cancer progression. Similarly, exosomes and inflammasomes exhibit a dual effect, resulting in either tumor progression or inhibition depending on the origin of exosomes, type of inflammasome and tumor. This review will explore how cells function in the presence of a tumor, the communication between cancer cells and immune cells, and the role of TILs, exosomes and inflammasomes within the TME. The efforts in this review are aimed at garnering interest in safer and durable therapies for cancer, in addition to providing a promising avenue for advancing cancer therapy and consequently improving survival rates.
Collapse
Affiliation(s)
- Atef M. Erasha
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Hanem EL-Gendy
- Department of Pharmacology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Ahmed S. Aly
- Department of Animal Production, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt;
| | - Marisol Fernández-Ortiz
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| |
Collapse
|
3
|
Guo HW, Ye ZM, Chen SQ, McElwee KJ. Innovative strategies for the discovery of new drugs against alopecia areata: taking aim at the immune system. Expert Opin Drug Discov 2024; 19:1321-1338. [PMID: 39360759 DOI: 10.1080/17460441.2024.2409660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION The autoimmune hair loss condition alopecia areata (AA) exacts a substantial psychological and socioeconomic toll on patients. Biotechnology companies, dermatology clinics, and research institutions are dedicated to understanding AA pathogenesis and developing new therapeutic approaches. Despite recent efforts, many knowledge gaps persist, and multiple treatment development avenues remain unexplored. AREAS COVERED This review summarizes key AA disease mechanisms, current therapeutic methods, and emerging treatments, including Janus Kinase (JAK) inhibitors. The authors determine that innovative drug discovery strategies for AA are still needed due to continued unmet medical needs and the limited efficacy of current and emerging therapeutics. For prospective AA treatment developers, the authors identify the pre-clinical disease models available, their advantages, and limitations. Further, they outline treatment development opportunities that remain largely unmapped. EXPERT OPINION While recent advancements in AA therapeutics are promising, challenges remain, including the lack of consistent treatment efficacy, long-term use and safety issues, drug costs, and patient compliance. Future drug development research should focus on patient stratification utilizing robust biomarkers of AA disease activity and improved quantification of treatment response. Investigating superior modes of drug application and developing combination therapies may further improve outcomes. Spirited innovation will be needed to advance more effective treatments for AA.
Collapse
Affiliation(s)
- Hong-Wei Guo
- Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhi-Ming Ye
- Guangdong Medical University, Zhanjiang, China
| | - Si-Qi Chen
- Guangdong Medical University, Zhanjiang, China
| | - Kevin J McElwee
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, Canada
- Centre for Skin Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
4
|
De A, Chakraborty D, Agarwal I, Sarda A. Present and Future Use of Exosomes in Dermatology. Indian J Dermatol 2024; 69:461-470. [PMID: 39678744 PMCID: PMC11642453 DOI: 10.4103/ijd.ijd_491_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/01/2023] [Indexed: 12/17/2024] Open
Abstract
Exposure to external environmental stimuli can lead to skin aging, pigmentation, hair loss, and various immune-mediated as well as connective tissue diseases. Although conventional treatments are routinely used and favoured, they fail to achieve an adequate balance between clinical and cosmetic outcomes. Exosomes are vesicles with a lipid bilayer released by several cell types. These bioactive vesicles play a crucial role in intercellular communication and in several other physiological and pathological processes. They serve as vehicles for bioactive substances including lipids, nucleic acids, and proteins, making them appealing as cell-free treatments. According to studies, exosomes play a vital role in preventing scarring, and senescence, and promoting wound healing. Moreover, research on the biology of exosomes is growing, which has enabled the creation of specific guidelines and quality control methodologies to support their potential implementation in the future. In this review, we have mainly focused on the role of exosomes in various dermatological diseases, their clinical applications, and the potential for further research pertaining to this.
Collapse
Affiliation(s)
- Abhishek De
- From the Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Disha Chakraborty
- From the Department of Dermatology, Calcutta National Medical College, Kolkata, West Bengal, India
| | - Ishad Agarwal
- Department of Dermatology, Wizderm Specialty Skin and Hair Clinic, Kolkata, West Bengal, India
| | - Aarti Sarda
- Department of Dermatology, Wizderm Specialty Skin and Hair Clinic, Kolkata, West Bengal, India
| |
Collapse
|
5
|
Li T, Zhang G, Zhou X, Guan J, Zhao W, Zheng Y, Lee J, Wang P, Zhao Y. Cedrol in ginger (Zingiber officinale) as a promising hair growth drug: The effects of oral and external administration on hair regeneration and its mechanism. Bioorg Chem 2024; 151:107709. [PMID: 39137599 DOI: 10.1016/j.bioorg.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
Ginger is an important cooking spice and herb worldwide, and scientific research has gradually confirmed the effect of ginger on preventing hair loss. Cedrol (CE) is a small sesquiterpene molecule in ginger and its external administration (EA) has shown hope in promoting hair growth, and alternative administration mode has become a potential treatment scheme to improve the efficacy of CE. The purpose of this study is to evaluate the effects of oral administration (OA) and EA of CE on hair regeneration of C57BL/6 alopecia areata (AA) mice induced by cyclophosphamide (CP) and to clarify the potential hair growth mechanism of CE in AA model in vitro and in vivo. The results showed that CE-OA has a shorter hair-turning black time and faster hair growth rate, and can lessen hair follicle damage induced by CP and promote hair follicle cell proliferation. Its effect is superior to CE-EA. At the same time, CE can increase the cytokines IFN-γ, IL-2, and IL-7 in the serum of mice, and decrease the expression of adhesion factors ICAM-1 and ELAM-1, thus alleviating the immunosuppression induced by CP. Mechanism research shows that CE regulates the JAK3/STAT3 signaling pathway, activates the Wnt3α/β-catenin germinal center, and ameliorates oxidative stress induced by CP, thus promoting the proliferation of hair follicle cells and reversing AA. These results provide a theoretical basis for understanding the anti-AA mechanism of CE-OA, indicating that CE can be used as raw material for developing oral hair growth drugs.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Guiming Zhang
- Liaoning Xinzhong Modern Medicine Co., Ltd., Benxi 117002, China
| | - Xinyang Zhou
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jian Guan
- Liaoning Xinzhong Modern Medicine Co., Ltd., Benxi 117002, China
| | - Wenjie Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yifei Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Peng Wang
- ORxes Therapeutics (Shanghai) Co., Ltd., Shanghai, 200120, China.
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
6
|
Cheng M, Ma C, Chen HD, Wu Y, Xu XG. The Roles of Exosomes in Regulating Hair Follicle Growth. Clin Cosmet Investig Dermatol 2024; 17:1603-1612. [PMID: 38984321 PMCID: PMC11232880 DOI: 10.2147/ccid.s465963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/08/2024] [Indexed: 07/11/2024]
Abstract
Alopecia is considered a widespread yet troubling health issue, with limited treatment options. As membranous structures derived from cells carrying proteins, nucleic acids and lipids, exosomes functionally medicate intercellular communication and alter the responses of recipient cells, resulting in disease restraint or promotion. Exosomes have broad prospects in diagnosis and treatment of diseases. Studies using animal models and at the cellular level have clearly shown that exosomes from several types of cells, including dermal papilla cells and mesenchymal stem cells, have a notable capacity to promote hair growth, suggesting that exosomes may provide a new option to treat alopecia. Here, we present a thorough review of the most recent progress in the application of exosomes to hair growth.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Cong Ma
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
- Department of Dermatology and Sexually Transmitted Diseases, The First Hospital of Inner Mongolia University for Nationalities, Tongliao, 028000, People’s Republic of China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| | - Xue-Gang Xu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110000, People’s Republic of China
- Key Laboratory of Immunodermatology, Ministry of Education and NHC; National Joint Engineering Research Center for Theranostics of Immunological Skin Diseases, Shenyang, 110000, People’s Republic of China
| |
Collapse
|
7
|
Kourosh AS, Santiago Mangual KP, Farah RS, Rao M, Hordinsky MK, Arruda S, Sadick N. Platelet-Rich Plasma: Advances and Controversies in Hair Restoration and Skin Rejuvenation. Dermatol Surg 2024; 50:446-452. [PMID: 38376068 DOI: 10.1097/dss.0000000000004115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
BACKGROUND Platelet-rich plasma (PRP) and its combined therapeutic modalities have catalyzed new possibilities in dermatology; however, limitations in evidence and lack of consensus remain among clinicians regarding optimal composition, protocol, technique, and application. OBJECTIVE To provide an update and analysis of the evidence for PRP in hair restoration and skin rejuvenation through review of recent available data, highlighting controversies and expert insights to guide future studies, and stimulate discourse and innovations benefitting patients. METHODS A structured review and expert analysis of PubMed publications before October 2023, with a focus on recent literature from January 2020 through October 2023. RESULTS AND CONCLUSION Growing literature supports the utility and benefits of PRP and related autologous products for applications for skin and hair, with strongest evidence for androgenetic alopecia and skin rejuvenation. However, this is limited by lack of consensus regarding best practices and protocols. Randomized, controlled trials with uniform metrics comparing outcomes of various compositions of autologous blood products, preparation methods, dosimetry, and frequency of treatments are still required. This will allow the medical discourse to grow beyond the realm of expert opinion into consensus, standardization, and more wide spread adoption of best practices that will benefit patients.
Collapse
Affiliation(s)
- Arianne Shadi Kourosh
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kathyana P Santiago Mangual
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Ronda S Farah
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
- Veteran's Affairs Medical Center, Minneapolis, Minnesota
| | - Medha Rao
- Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Maria K Hordinsky
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
| | | | - Neil Sadick
- Department of Dermatology, University of Minnesota, Minneapolis, Minnesota
- Sadick Dermatology, New York, New York
- Weill Cornell Medical College, New York, New York
| |
Collapse
|
8
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
9
|
Verling SD, Mashoudy K, Gompels M, Goldenberg G. Regenerative Medicine in Clinical and Aesthetic Dermatology. A COMPREHENSIVE GUIDE TO MALE AESTHETIC AND RECONSTRUCTIVE PLASTIC SURGERY 2024:65-79. [DOI: 10.1007/978-3-031-48503-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Dainichi T, Iwata M, Kaku Y. Alopecia areata: What's new in the epidemiology, comorbidities, and pathogenesis? J Dermatol Sci 2023; 112:120-127. [PMID: 37833164 DOI: 10.1016/j.jdermsci.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 09/07/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Alopecia areata (AA) is a common, acquired, and nonscarring type of hair loss that affects people of every generation and is intractable in severe and relapsing cases. Patients with AA, especially those with greater scalp involvement, have poor health-related quality-of-life scores. PURPOSE Following our previous review article in the April 2017 issue of the Journal of Dermatological Science, we aim to provide a pair of review articles on recent progress in multidisciplinary approaches to AA. MAIN FINDINGS We found more than 1800 publications on AA from July 2016 to December 2022. CONCLUSIONS In this review, we focused on the latest information on the epidemiology, comorbidities, and pathogenesis of AA.
Collapse
Affiliation(s)
- Teruki Dainichi
- Department of Dermatology, Kagawa University Faculty of Medicine, Kagawa, Japan.
| | - Masashi Iwata
- Department of Dermatology, Kagawa University Faculty of Medicine, Kagawa, Japan
| | - Yo Kaku
- Department of Dermatology, Kagawa University Faculty of Medicine, Kagawa, Japan; Department of Dermatology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
11
|
Wei C, Sun Y, Zeng F, Chen X, Ma L, Liu X, Qi X, Shi W, Gao H. Exosomal miR-181d-5p Derived from Rapamycin-Conditioned MDSC Alleviated Allograft Rejection by Targeting KLF6. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304922. [PMID: 37870185 PMCID: PMC10700181 DOI: 10.1002/advs.202304922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Indexed: 10/24/2023]
Abstract
Immune rejection and side effects of long-term administration of immunosuppressants are the two major obstacles to allograft acceptance and tolerance. The immunosuppressive extracellular vesicles (EVs)-based approach has been proven to be effective in treating autoimmune/inflammatory disorders. Herein, the anti-rejection advantage of exosomes (Rapa-Exo) from rapamycin-conditioned myeloid-derived suppressor cells (MDSCs) over exosomes (Exo-Nor) from the untreated MDSCs is shown. The exosomal small RNA sequencing and loss-of-function assays reveal that the anti-rejection effect of Rapa-Exo functionally relies on miR-181d-5p. Through target prediction and double-luciferase reporter assay, Kruppel-like factor (KLF) 6 is identified as a direct target of miR-181d-5p. Finally, KLF6 knockdown markedly resolves inflammation and prolongs the survival of corneal allografts. Taken together, these findings support that Rapa-Exo executes an anti-rejection effect, highlighting the immunosuppressive EVs-based treatment as a promising approach in organ transplantation.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Yaru Sun
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Fanxing Zeng
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiunian Chen
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Li Ma
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiaoxue Liu
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
| | - Xiaolin Qi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| | - Weiyun Shi
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| | - Hua Gao
- State Key Laboratory Cultivation BaseShandong Provincial Key Laboratory of OphthalmologyEye Institute of Shandong First Medical UniversityQingdao266071China
- Eye Hospital of Shandong First Medical University (Shandong Eye Hospital)Jinan250117China
- School of OphthalmologyShandong First Medical University & Shandong Academy of Medical ScienceJinan250117China
| |
Collapse
|
12
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Moya-Guzmán MJ, de Solminihac J, Padilla C, Rojas C, Pinto C, Himmel T, Pino-Lagos K. Extracellular Vesicles from Immune Cells: A Biomedical Perspective. Int J Mol Sci 2023; 24:13775. [PMID: 37762077 PMCID: PMC10531060 DOI: 10.3390/ijms241813775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Research on the role of extracellular vesicles (sEV) in physiology has demonstrated their undoubted importance in processes such as the transportation of molecules with significance for cell metabolism, cell communication, and the regulation of mechanisms such as cell differentiation, inflammation, and immunity. Although the role of EVs in the immune response is actively investigated, there is little literature revising, in a comprehensive manner, the role of small EVs produced by immune cells. Here, we present a review of studies reporting the release of sEV by different types of leukocytes and the implications of such observations on cellular homeostasis. We also discuss the function of immune cell-derived sEV and their relationship with pathological states, highlighting their potential application in the biomedical field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Karina Pino-Lagos
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Av. Plaza 2501, Las Condes, Santiago 755000, Chile
| |
Collapse
|
14
|
Gupta AK, Wang T, Rapaport JA. Systematic review of exosome treatment in hair restoration: Preliminary evidence, safety, and future directions. J Cosmet Dermatol 2023; 22:2424-2433. [PMID: 37381168 DOI: 10.1111/jocd.15869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Exosomes are small extracellular vesicles with potential roles in modulating the hair growth cycle and are an emerging therapy for patients with alopecia. In recent years, researchers have made significant progress in deciphering the network of cellular interactions and signaling pathways mediated by the transfer of exosomes. This has opened the door to a wide range of potential therapeutic applications with an increasing focus on its application in precision medicine. AIM To evaluate current published evidence, both preclinical and clinical, on the use of exosomes for hair restoration. METHODS In January 2023, a systematic search was conducted using PubMed, Embase, and the Cochrane Library. Records were identified, screened, and assessed for eligibility as per the PRISMA guideline. RESULTS We identified 16 studies (15 preclinical and 1 clinical) showing varying degrees of efficacy using exosomes derived from sources including adipose-derived stem cells (ADSCs) and dermal papilla cells (DPCs). Applications of exosomes isolated from ADSCs (ADSC-Exo) and DPCs have shown early promising results in preclinical studies corroborated by results obtained from different model systems. Topical ADSC-Exo has been tried successfully in 39 androgenetic alopecia patients demonstrating significant increases in hair density and thickness. No significant adverse reactions associated with exosome treatment have been reported thus far. CONCLUSIONS Although current clinical evidence supporting the use of exosome treatment is limited, there is a growing body of evidence suggesting its therapeutic potential. Further studies are warranted to define its mechanism of action, optimize its delivery and efficacy, and to address important safety concerns.
Collapse
Affiliation(s)
- Aditya K Gupta
- Department of Medicine, Division of Dermatology, University of Toronto, Toronto, Ontario, Canada
- Mediprobe Research Inc., London, Ontario, Canada
| | - Tong Wang
- Mediprobe Research Inc., London, Ontario, Canada
| | | |
Collapse
|
15
|
Ren Y, Bäcker H, Müller M, Kienzle A. The role of myeloid derived suppressor cells in musculoskeletal disorders. Front Immunol 2023; 14:1139683. [PMID: 36936946 PMCID: PMC10020351 DOI: 10.3389/fimmu.2023.1139683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The immune system is closely linked to bone homeostasis and plays a pivotal role in several pathological and inflammatory conditions. Through various pathways it modulates various bone cells and subsequently sustains the physiological bone metabolism. Myeloid-derived suppressor cells (MDSCs) are a group of heterogeneous immature myeloid-derived cells that can exert an immunosuppressive function through a direct cell-to-cell contact, secretion of anti-inflammatory cytokines or specific exosomes. These cells mediate the innate immune response to chronic stress on the skeletal system. In chronic inflammation, MDSCs act as an inner offset to rebalance overactivation of the immune system. Moreover, they have been found to be involved in processes responsible for bone remodeling in different musculoskeletal disorders, autoimmune diseases, infection, and cancer. These cells can not only cause bone erosion by differentiating into osteoclasts, but also alleviate the immune reaction, subsequently leading to long-lastingly impacted bone remodeling. In this review, we discuss the impact of MDSCs on the bone metabolism under several pathological conditions, the involved modulatory pathways as well as potential therapeutic targets in MDSCs to improve bone health.
Collapse
Affiliation(s)
- Yi Ren
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Henrik Bäcker
- Department of Orthopedics, Auckland City Hospital, Auckland, New Zealand
| | - Michael Müller
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
| | - Arne Kienzle
- Center for Musculoskeletal Surgery, Clinic for Orthopedics, Charité University Hospital, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health, Charité — Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Arne Kienzle,
| |
Collapse
|
16
|
Qian K, Fu W, Li T, Zhao J, Lei C, Hu S. The roles of small extracellular vesicles in cancer and immune regulation and translational potential in cancer therapy. J Exp Clin Cancer Res 2022; 41:286. [PMID: 36167539 PMCID: PMC9513874 DOI: 10.1186/s13046-022-02492-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Extracellular vesicles (EVs) facilitate the extracellular transfer of proteins, lipids, and nucleic acids and mediate intercellular communication among multiple cells in the tumour environment. Small extracellular vesicles (sEVs) are defined as EVs range in diameter from approximately 50 to 150 nm. Tumour-derived sEVs (TDsEVs) and immune cell-derived sEVs have significant immunological activities and participate in cancer progression and immune responses. Cancer-specific molecules have been identified on TDsEVs and can function as biomarkers for cancer diagnosis and prognosis, as well as allergens for TDsEVs-based vaccination. Various monocytes, including but not limited to dendritic cells (DCs), B cells, T cells, natural killer (NK) cells, macrophages, and myeloid-derived suppressor cells (MDSCs), secrete sEVs that regulate immune responses in the complex immune network with either protumour or antitumour effects. After engineered modification, sEVs from immune cells and other donor cells can provide improved targeting and biological effects. Combined with their naïve characteristics, these engineered sEVs hold great potential as drug carriers. When used in a variety of cancer therapies, they can adjunctly enhance the safety and antitumor efficacy of multiple therapeutics. In summary, both naïve sEVs in the tumour environment and engineered sEVs with effector cargoes are regarded as showing promising potential for use in cancer diagnostics and therapeutics.
Collapse
|
17
|
Kost Y, Muskat A, Mhaimeed N, Nazarian RS, Kobets K. Exosome Therapy in Hair Regeneration: A literature review of the evidence, challenges, and future opportunities. J Cosmet Dermatol 2022; 21:3226-3231. [PMID: 35441799 DOI: 10.1111/jocd.15008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Alopecia is a common chief complaint and is challenging to treat. As such, regenerative treatments to promote hair growth are an emerging area of research. Exosomes, which are extracellular vesicles involved in cell communication, homeostasis, differentiation, and organogenesis, have been shown to play a central role in hair morphogenesis and regeneration with potential for use as alopecia treatment. AIMS This review summarizes and assesses the body of literature surrounding exosomes as regenerative therapeutics for alopecia and identifies areas for improvement in future research. METHODS A review was conducted using a comprehensive list of keywords including "exosome," "alopecia," and "hair loss" on PubMed, EMBASE, and Google Scholar databases published from inception to February 2022. Reference lists of identified articles were included. 47 studies were included. Clinical trial databases were searched using the term "exosome," however no trials relevant to hair growth were identified. RESULTS Our updated and comprehensive review details the history of exosome use in medicine, postulated underlying mechanisms in treating hair loss, and current clinical studies. Preclinical studies demonstrate clear benefits of exosome therapeutics in regenerative medicine and for hair loss treatment. Clinical trials demonstrate safety of exosome use in medicine, but data showing efficacy and safety of exosome therapy for alopecia are lacking. We identified several gaps in knowledge required for effective clinical translation including safety, exosome source, and optimal treatment delivery mechanism and dosage. CONCLUSION Exosomes are on the horizon as an exciting therapeutic for the treatment of alopecia. Further studies and clinical trials are required.
Collapse
Affiliation(s)
- Yana Kost
- Albert Einstein College of Medicine, Montefiore Medical Center
| | - Ahava Muskat
- Albert Einstein College of Medicine, Montefiore Medical Center
| | | | - Roya S Nazarian
- Albert Einstein College of Medicine, Montefiore Medical Center
| | - Kseniya Kobets
- Albert Einstein College of Medicine, Montefiore Medical Center
| |
Collapse
|
18
|
Chen Z, Yuan R, Hu S, Yuan W, Sun Z. Roles of the Exosomes Derived From Myeloid-Derived Suppressor Cells in Tumor Immunity and Cancer Progression. Front Immunol 2022; 13:817942. [PMID: 35154134 PMCID: PMC8829028 DOI: 10.3389/fimmu.2022.817942] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor immunity is involved in malignant tumor progression. Myeloid-derived suppressor cells (MDSCs) play an irreplaceable role in tumor immunity. MDSCs are composed of immature myeloid cells and exhibit obvious immunomodulatory functions. Exosomes released by MDSCs (MDSCs-Exos) have similar effects to parental MDSCs in regulating tumor immunity. In this review, we provided a comprehensive description of the characteristics, functions and mechanisms of exosomes. We analyzed the immunosuppressive, angiogenesis and metastatic effects of MDSCs-Exos in different tumors through multiple perspectives. Immunotherapy targeting MDSCs-Exos has demonstrated great potential in cancers and non-cancerous diseases.
Collapse
Affiliation(s)
- Zhuang Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Tumino N, Besi F, Martini S, Di Pace AL, Munari E, Quatrini L, Pelosi A, Fiore PF, Fiscon G, Paci P, Scordamaglia F, Covesnon MG, Bogina G, Mingari MC, Moretta L, Vacca P. Polymorphonuclear Myeloid-Derived Suppressor Cells Are Abundant in Peripheral Blood of Cancer Patients and Suppress Natural Killer Cell Anti-Tumor Activity. Front Immunol 2022; 12:803014. [PMID: 35116033 PMCID: PMC8805733 DOI: 10.3389/fimmu.2021.803014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/28/2021] [Indexed: 12/25/2022] Open
Abstract
Tumor microenvironment (TME) includes a wide variety of cell types and soluble factors capable of suppressing immune-responses. While the role of NK cells in TME has been analyzed, limited information is available on the presence and the effect of polymorphonuclear (PMN) myeloid-derived suppressor cells, (MDSC). Among the immunomodulatory cells present in TME, MDSC are potentially efficient in counteracting the anti-tumor activity of several effector cells. We show that PMN-MDSC are present in high numbers in the PB of patients with primary or metastatic lung tumor. Their frequency correlated with the overall survival of patients. In addition, it inversely correlated with low frequencies of NK cells both in the PB and in tumor lesions. Moreover, such NK cells displayed an impaired anti-tumor activity, even those isolated from PB. The compromised function of NK cells was consequent to their interaction with PMN-MDSC. Indeed, we show that the expression of major activating NK receptors, the NK cytolytic activity and the cytokine production were inhibited upon co-culture with PMN-MDSC through both cell-to-cell contact and soluble factors. In this context, we show that exosomes derived from PMN-MDSC are responsible of a significant immunosuppressive effect on NK cell-mediated anti-tumor activity. Our data may provide a novel useful tool to implement the tumor immunoscore. Indeed, the detection of PMN-MDSC in the PB may be of prognostic value, providing clues on the presence and extension of both adult and pediatric tumors and information on the efficacy not only of immune response but also of immunotherapy and, possibly, on the clinical outcome.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Francesca Besi
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Stefania Martini
- Unità Operativa (UO) Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Laura Di Pace
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Enrico Munari
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Linda Quatrini
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Andrea Pelosi
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Piera Filomena Fiore
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science “Antonio Ruberti”, National Research Council, Rome, Italy
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | | | - Maria Grazia Covesnon
- Struttura Complessa (SC) Pneumologia Ospedale Villa Scassi, ASL3 Genovese, Genoa, Italy
| | - Giuseppe Bogina
- Pathology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - Maria Cristina Mingari
- Unità Operativa (UO) Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
- Experimental Medicine Department (DIMES), University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
- *Correspondence: Lorenzo Moretta,
| | - Paola Vacca
- Immunology Research Area, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Bambino Gesù Children’s Hospital, Rome, Italy
| |
Collapse
|
20
|
Tumino N, Weber G, Besi F, Del Bufalo F, Bertaina V, Paci P, Quatrini L, Antonucci L, Sinibaldi M, Quintarelli C, Maggi E, De Angelis B, Locatelli F, Moretta L, Vacca P, Caruana I. Polymorphonuclear myeloid-derived suppressor cells impair the anti-tumor efficacy of GD2.CAR T-cells in patients with neuroblastoma. J Hematol Oncol 2021; 14:191. [PMID: 34772439 PMCID: PMC8588686 DOI: 10.1186/s13045-021-01193-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
The outcome of patients affected by high-risk or metastatic neuroblastoma (NB) remains grim, with ≥ 50% of the children experiencing relapse or progression of the disease despite multimodal, intensive treatment. In order to identify new strategies to improve the overall survival and the quality of life of these children, we recently developed and optimized a third-generation GD2-specific chimeric antigen receptor (CAR) construct, which is currently under evaluation in our Institution in a phase I/II clinical trial (NCT03373097) enrolling patients with relapsed/refractory NB. We observed that our CAR T-cells are able to induce marked tumor reduction and even achieve complete remission with a higher efficiency than that of other CAR T-cells reported in previous studies. However, often responses are not sustained and relapses occur. Here, we demonstrate for the first time a mechanism of resistance to GD2.CAR T-cell treatment, showing how polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) increase in the peripheral blood (PB) of NB patients after GD2.CAR T-cell treatment in case of relapse and loss of response. In vitro, isolated PMN-MDSC demonstrate to inhibit the anti-tumor cytotoxicity of different generations of GD2.CAR T-cells. Gene-expression profiling of GD2.CAR T-cells "conditioned" with PMN-MDSC shows downregulation of genes involved in cell activation, signal transduction, inflammation and cytokine/chemokine secretion. Analysis of NB gene-expression dataset confirms a correlation between expression of these genes and patient outcome. Moreover, in patients treated with GD2.CAR T-cells, the frequency of circulating PMN-MDSC inversely correlates with the levels of GD2.CAR T-cells, resulting more elevated in patients who did not respond or lost response to the treatment. The presence and the frequency of PMN-MDSC in PB of high-risk and metastatic NB represents a useful prognostic marker to predict the response to GD2.CAR T-cells and other adoptive immunotherapy. This study underlines the importance of further optimization of both CAR T-cells and clinical trial in order to target elements of the tumor microenvironment.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Gerrit Weber
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy.,Department of Pediatric Hematology, Oncology and Stem Cell Transplantation University Children's Hospital of Würzburg, 97080, Würzburg, Germany
| | - Francesca Besi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Linda Quatrini
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Laura Antonucci
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Matilde Sinibaldi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Enrico Maggi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy. .,Department of Maternal, Infantile, and Urological Sciences, Sapienza University of Rome, Rome, Italy.
| | - Lorenzo Moretta
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy.
| | - Paola Vacca
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy.,Department of Pediatric Hematology, Oncology and Stem Cell Transplantation University Children's Hospital of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
21
|
Awadasseid A, Wu Y, Zhang W. Extracellular Vesicles (Exosomes) as Immunosuppressive Mediating Variables in Tumor and Chronic Inflammatory Microenvironments. Cells 2021; 10:cells10102533. [PMID: 34685513 PMCID: PMC8533882 DOI: 10.3390/cells10102533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are extracellular vesicles released by most of the eukaryotic cells. Exosomes’ components include proteins, lipids, microRNA, circular RNA, long noncoding RNA, DNA, etc. Exosomes may carry both pro and anti-inflammatory cargos; however, exosomes are predominantly filled with immunosuppressive cargos such as enzymes and microRNAs in chronic inflammation. Exosomes have surfaced as essential participants in physiological and pathological intercellular communication. Exosomes may prevent or promote the formation of an aggressive tumor and chronic inflammatory microenvironments, thus influencing tumor and chronic inflammatory progression as well as clinical prognosis. Exosomes, which transmit many signals that may either enhance or constrain immunosuppression of lymphoid and myeloid cell populations in tumors, are increasingly becoming recognized as significant mediators of immune regulation in cancer. In this review, we outline the function of exosomes as mediators of immunosuppression in tumor and chronic inflammatory microenvironments, with the aim to improve cancer therapy.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China;
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid 51111, Sudan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Correspondence: (Y.W.); (W.Z.); Tel.: +86-571-8711-5282 (Y.W.); +86-571-8887-1507 (W.Z.)
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China;
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (Y.W.); (W.Z.); Tel.: +86-571-8711-5282 (Y.W.); +86-571-8887-1507 (W.Z.)
| |
Collapse
|
22
|
Li Y, Xiao Q, Tang J, Xiong L, Li L. Extracellular Vesicles: Emerging Therapeutics in Cutaneous Lesions. Int J Nanomedicine 2021; 16:6183-6202. [PMID: 34522095 PMCID: PMC8434831 DOI: 10.2147/ijn.s322356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
Extracellular vesicles (EVs), as nanoscale membranous vesicles containing DNAs, RNAs, lipids and proteins, have emerged as promising diagnostic and therapeutic agents for skin diseases. Here, we summarize the basic physiology of the skin and the biological characteristic of EVs. Further, we describe the applications of EVs in the treatment of dermatological conditions such as skin infection, inflammatory skin diseases, skin repair and rejuvenation and skin cancer. In particular, plant-derived EVs and clinical trials are discussed. In addition, challenges and perspectives related to the preclinical and clinical applications of EVs are highlighted.
Collapse
Affiliation(s)
- Yu Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China
| | - Qing Xiao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China
| | - Jie Tang
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China.,Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, 610041, People's Republic of China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China.,Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, 610041, People's Republic of China
| | - Li Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.,NMPA Key Laboratory for Human Evaluation and Big Data of Cosmetics, Chengdu, 610041, People's Republic of China.,Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, 610041, People's Republic of China
| |
Collapse
|
23
|
Targeting immunosuppressor cells with nanoparticles in autoimmunity: How far have we come to? Cell Immunol 2021; 368:104412. [PMID: 34340162 DOI: 10.1016/j.cellimm.2021.104412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022]
Abstract
Autoimmunity is the assault of immune response towards self-antigens, resulting to inflammation and tissue injury. It is staged into three phases and caused by malfunction of immune tolerance. In our body, immune tolerance is synchronized by several immunosuppressor cells such as regulatory T cells and B cells as well as myeloid-derived suppressor cells, which are prominently dysregulated in autoimmunity. Hence, targeting these cell populations serve as a significant potential in the therapy of autoimmunity. Nanotechnology with its advantageous properties is shown to be a remarkable tool as drug delivery system in this field. This review focused on the development of therapeutics in autoimmune diseases utilizing various nanoparticles formulation based on two targeting approaches in autoimmunity, passive and active targeting. Lastly, this review outlined the approved present nanomedicines as well as in clinical evaluations and issues regarding the lack of translation of these nanomedicines into the market, despite the abundant of positive experimental observations.
Collapse
|
24
|
Li M, Li X, Wang D, Gao X, Li S, Cheng X, Shen Y, Li S, Jia Q, Liu Q. Inhibition of exosome release augments neuroinflammation following intracerebral hemorrhage. FASEB J 2021; 35:e21617. [PMID: 33982343 DOI: 10.1096/fj.202002766r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype without effective pharmacological treatment. Following ICH, peripheral leukocytes infiltrate into the brain and contribute to neuroinflammation and brain edema. However, the intercellular machinery controlling the initiation and propagation of leukocyte infiltration remains elusive. Exosomes are small extracellular vesicles released from donor cells and bridge intercellular communication. In this study, we investigated the effects of inhibition of exosome release on neuroinflammation and ICH injury. Using a mouse model of ICH induced by collagenase injection, we found that ICH induced an increase of exosome level in the brain. Inhibition of exosome release using GW4869 augmented neurological deficits and brain edema after ICH. The exacerbation of ICH injury was accompanied by increased barrier disruption and brain infiltration of leukocytes. The detrimental effects of GW4869 were ablated in ICH mice receiving antibody depletion of Gr-1+ myeloid cells. Extracted exosomes from the ICH brains suppressed the production of inflammatory factors by splenocytes. Additionally, exosomes extracted from brain tissues of donor ICH mice reduced ICH injury in recipient mice. These results demonstrate that inhibition of exosome release augments neuroinflammation and ICH injury. The impact of exosomes released from the ICH brain on the immune system deserves further investigation.
Collapse
Affiliation(s)
- Minshu Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China
| | - Xiuping Li
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Dan Wang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaolin Gao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyao Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaojing Cheng
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiming Shen
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China.,Preclinical Multimodal Molecular Imaging Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Shenghui Li
- Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China.,Preclinical Multimodal Molecular Imaging Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China.,Preclinical Multimodal Molecular Imaging Center, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Post-neurotrauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin, China.,Preclinical Multimodal Molecular Imaging Center, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
25
|
Asgarzade A, Ziyabakhsh A, Asghariazar V, Safarzadeh E. Myeloid-derived suppressor cells: Important communicators in systemic lupus erythematosus pathogenesis and its potential therapeutic significance. Hum Immunol 2021; 82:782-790. [PMID: 34272089 DOI: 10.1016/j.humimm.2021.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023]
Abstract
Systemic lupus erythematosus (SLE) is a recognized chronic condition associated with immune system disorders that affect women nine times more commonly than men. SLE is characterized by over-secretion and release of autoantibodies in response to different cellular compartments and self-tolerance breaks to its own antigens. The detailed immunological dysregulation as an associated event that elicits the onset of clinical manifestations of SLE has not been clarified yet. Though, research using several animal models in the last two decades has indicated the role of the immune system in the pathogenesis of this disease. Myeloid-derived suppressor cells (MDSCs) as heterogeneous myeloid cells, are responsible for severe pathological conditions, including infection, autoimmunity, and cancer, by exerting considerable immunosuppressive effects on T-cells responses. It has been reported that these cells are involved in the regulation process of the immune response in several autoimmune diseases, particularly SLE. The function of MDSC is deleterious in infection and cancer diseases, though their role is more complicated in autoimmune diseases. In this review, we summarized the role and function of MDSCs in the pathogenesis and progression of SLE and its possible therapeutic approach.
Collapse
Affiliation(s)
- Ali Asgarzade
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Alireza Ziyabakhsh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran; Immunology Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Department of Microbiology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
26
|
Adipose-Derived Stem Cell Exosomes Promoted Hair Regeneration. Tissue Eng Regen Med 2021; 18:685-691. [PMID: 34173219 DOI: 10.1007/s13770-021-00347-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Some scholars have found that dermal papilla spheroid-derived exosomes could promote the development of hair follicles. However, whether adipose-derived stem cell exosomes (ADSC-Exos) have a similar effect on hair growth has not been determined yet. Thus, the purpose of this article was to detect whether ADSC-Exos could promote hair regeneration. METHODS Adipose-derived stem cells (ADSCs) were isolated from 6-week-old C57BL/6 mice. Then, ADSC-Exos were isolated from the ADSCs. Western blotting was used to detect specific exosome markers. The particle size and distribution of the exosomes were analyzed by NanoSight dynamic light scattering. A total of 12 nude mice were randomly divided into two groups (n = 6 each): the ADSC-Exos group and the control group. For the control group, a mixture of freshly isolated dermal cells (DCs) and epidermal cells (ECs) was grafted. For the ADSC-Exos group, a mixture of DCs, ECs, and 50 μg/ml of ADSC-Exos was grafted. Gross evaluation of the hair regeneration was carried out 2-3 weeks after the transplantation, and the graft site was harvested for histology at the third week. RESULTS The existence of exosomes derived from ADSCs was evidenced by CD63, ALX1, and CD9 expression. Two or three weeks after the grafting, the number of regenerated hairs in the ADSC-Exos group was higher than that in the control group (p < 0.001). Histologically, the terminal hairs were remarkable in the ADSC-Exos group, whereas the hair follicles observed in the control group were comparatively immature. The ADSC-Exos group had a higher number of regenerated follicles than the control group (p < 0.001). In addition, we found that the skin tissues in the ADSC-Exos group had higher PDGF and vascular endothelial growth factor expressions and lower transforming growth factor beta 1 levels than those in the control group. CONCLUSION Our results indicated that ADSC-Exos could promote in vivo hair follicle regeneration.
Collapse
|
27
|
Immune-Associated Proteins Are Enriched in Lung Tissue-Derived Extracellular Vesicles during Allergen-Induced Eosinophilic Airway Inflammation. Int J Mol Sci 2021; 22:ijms22094718. [PMID: 33946872 PMCID: PMC8125637 DOI: 10.3390/ijms22094718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/09/2023] Open
Abstract
Studying the proteomes of tissue-derived extracellular vesicles (EVs) can lead to the identification of biomarkers of disease and can provide a better understanding of cell-to-cell communication in both healthy and diseased tissue. The aim of this study was to apply our previously established tissue-derived EV isolation protocol to mouse lungs in order to determine the changes in the proteomes of lung tissue-derived EVs during allergen-induced eosinophilic airway inflammation. A mouse model for allergic airway inflammation was used by sensitizing the mice intraperitoneal with ovalbumin (OVA), and one week after the final sensitization, the mice were challenged intranasal with OVA or PBS. The animals were sacrificed 24 h after the final challenge, and their lungs were removed and sliced into smaller pieces that were incubated in culture media with DNase I and Collagenase D for 30 min at 37 °C. Vesicles were isolated from the medium by ultracentrifugation and bottom-loaded iodixanol density cushions, and the proteomes were determined using quantitative mass spectrometry. More EVs were present in the lungs of the OVA-challenged mice compared to the PBS-challenged control mice. In total, 4510 proteins were quantified in all samples. Among them, over 1000 proteins were significantly altered (fold change >2), with 614 proteins being increased and 425 proteins being decreased in the EVs from OVA-challenged mice compared to EVs from PBS-challenged animals. The associated cellular components and biological processes were analyzed for the altered EV proteins, and the proteins enriched during allergen-induced airway inflammation were mainly associated with gene ontology (GO) terms related to immune responses. In conclusion, EVs can be isolated from mouse lung tissue, and the EVs’ proteomes undergo changes in response to allergen-induced airway inflammation. This suggests that the composition of lung-derived EVs is altered in diseases associated with inflammation of the lung, which may have implications in type-2 driven eosinophilic asthma pathogenesis.
Collapse
|
28
|
Cross-Talk among Polymorphonuclear Neutrophils, Immune, and Non-Immune Cells via Released Cytokines, Granule Proteins, Microvesicles, and Neutrophil Extracellular Trap Formation: A Novel Concept of Biology and Pathobiology for Neutrophils. Int J Mol Sci 2021; 22:ijms22063119. [PMID: 33803773 PMCID: PMC8003289 DOI: 10.3390/ijms22063119] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are traditionally regarded as professional phagocytic and acute inflammatory cells that engulf the microbial pathogens. However, accumulating data have suggested that PMNs are multi-potential cells exhibiting many important biological functions in addition to phagocytosis. These newly found novel activities of PMN include production of different kinds of cytokines/chemokines/growth factors, release of neutrophil extracellular traps (NET)/ectosomes/exosomes and trogocytosis (membrane exchange) with neighboring cells for modulating innate, and adaptive immune responses. Besides, PMNs exhibit potential heterogeneity and plasticity in involving antibody-dependent cellular cytotoxicity (ADCC), cancer immunity, autoimmunity, inflammatory rheumatic diseases, and cardiovascular diseases. Interestingly, PMNs may also play a role in ameliorating inflammatory reaction and wound healing by a subset of PMN myeloid-derived suppressor cells (PMN-MDSC). Furthermore, PMNs can interact with other non-immune cells including platelets, epithelial and endothelial cells to link hemostasis, mucosal inflammation, and atherogenesis. The release of low-density granulocytes (LDG) from bone marrow initiates systemic autoimmune reaction in systemic lupus erythematosus (SLE). In clinical application, identification of certain PMN phenotypes may become prognostic factors for severe traumatic patients. In the present review, we will discuss these newly discovered biological and pathobiological functions of the PMNs.
Collapse
|
29
|
Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L. Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT. Front Immunol 2021; 12:638841. [PMID: 33679798 PMCID: PMC7928402 DOI: 10.3389/fimmu.2021.638841] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloid derived suppressor cells (MDSC) are heterogeneous populations that through the release of soluble factors and/or by cell-to-cell interactions suppress both innate and adaptive immune effector cells. In pathological conditions, characterized by the presence of inflammation, a partial block in the differentiation potential of myeloid precursors causes an accumulation of these immunosuppressive cell subsets both in peripheral blood and in tissues. On the contrary, NK cells represent a major player of innate immunity able to counteract tumor growth. The anti-tumor activity of NK cells is primarily related to their cytolytic potential and to the secretion of soluble factors or cytokines that may act on tumors either directly or indirectly upon the recruitment of other cell types. NK cells have been shown to play a fundamental role in haploidentical hemopoietic stem cell transplantation (HSCT), for the therapy of high-risk leukemias. A deeper analysis of MDSC functional effects demonstrated that these cells are capable, through several mechanisms, to reduce the potent GvL activity exerted by NK cells. It is conceivable that, in this transplantation setting, the MDSC-removal or -inactivation may represent a promising strategy to restore the anti-leukemia effect mediated by NK cells. Thus, a better knowledge of the cellular interactions occurring in the tumor microenvironment could promote the development of novel therapeutic strategies for the treatment of solid and hematological malignances.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Anna Laura Di Pace
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Besi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Linda Quatrini
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
30
|
The role of myeloid-derived suppressor cells in rheumatoid arthritis: An update. Life Sci 2021; 269:119083. [PMID: 33482191 DOI: 10.1016/j.lfs.2021.119083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that generally affects the joints. In the late stages of the disease, it can be associated with several complications. Although the exact etiology of RA is unknown, various studies have been performed to understand better the immunological mechanisms involved in the pathogenesis of RA. At the onset of the disease, various immune cells migrate to the joints and increase the recruitment of immune cells to the joints by several immunological mediators such as cytokines and chemokines. The function of specific immune cells in RA is well-established. The shift of immune responses to Th1 or Th17 is one of the most essential factors in the development of RA. Myeloid-derived suppressor cells (MDSCs), as a heterogeneous population of myeloid cells, play a regulatory role in the immune system that inhibits T cell activity through several mechanisms. Various studies have been performed on the function of these cells in RA, which in some cases have yielded conflicting results. Therefore, the purpose of this review article is to comprehensively understand the pro-inflammatory and anti-inflammatory functions of MDSCs in the pathogenesis of RA.
Collapse
|
31
|
Cao L, Tian T, Huang Y, Tao S, Zhu X, Yang M, Gu J, Feng G, Ma Y, Xia R, Xu W, Wang L. Neural progenitor cell-derived nanovesicles promote hair follicle growth via miR-100. J Nanobiotechnology 2021; 19:20. [PMID: 33430889 PMCID: PMC7802142 DOI: 10.1186/s12951-020-00757-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Accumulating evidence shows that mesenchymal stem cell-derived extracellular vesicles (EVs) hold great promise to promote hair growth. However, large-scale production of EVs is still a challenge. Recently, exosome-mimetic nanovesicles (NV) prepared by extruding cells have emerged as an alternative strategy for clinical-scale production. Here, ReNcell VM (ReN) cells, a neural progenitor cell line was serially extruded to produce NV. RESULTS ReN-NV were found to promote dermal papilla cell (DPC) proliferation. In addition, in a mouse model of depilation-induced hair regeneration, ReN-NV were injected subcutaneously, resulting in an acceleration of hair follicle (HF) cycling transition at the site. The underlying mechanism was indicated to be the activation of Wnt/β-catenin signaling pathway. Furthermore, miR-100 was revealed to be abundant in ReN-NV and significantly up-regulated in DPCs receiving ReN-NV treatment. miR-100 inhibition verified its important role in ReN-NV-induced β-catenin signaling activation. CONCLUSION These results provide an alternative agent to EVs and suggest a strategy for hair growth therapy.
Collapse
Affiliation(s)
- Lei Cao
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuanbo Huang
- Department of Dermatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Shiqin Tao
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Xiaohong Zhu
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Mifang Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Institute of Stomatology, The Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Jing Gu
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Guangdong Feng
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Yinni Ma
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Rushan Xia
- Department of Dermatology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| | - Wenrong Xu
- Department of Dermatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| | - Lei Wang
- Department of Dermatology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
32
|
Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L. Interaction Between MDSC and NK Cells in Solid and Hematological Malignancies: Impact on HSCT. Front Immunol 2021. [PMID: 33679798 DOI: 10.3389/fimmu.2021.638841.pmid:33679798;pmcid:pmc7928402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Myeloid derived suppressor cells (MDSC) are heterogeneous populations that through the release of soluble factors and/or by cell-to-cell interactions suppress both innate and adaptive immune effector cells. In pathological conditions, characterized by the presence of inflammation, a partial block in the differentiation potential of myeloid precursors causes an accumulation of these immunosuppressive cell subsets both in peripheral blood and in tissues. On the contrary, NK cells represent a major player of innate immunity able to counteract tumor growth. The anti-tumor activity of NK cells is primarily related to their cytolytic potential and to the secretion of soluble factors or cytokines that may act on tumors either directly or indirectly upon the recruitment of other cell types. NK cells have been shown to play a fundamental role in haploidentical hemopoietic stem cell transplantation (HSCT), for the therapy of high-risk leukemias. A deeper analysis of MDSC functional effects demonstrated that these cells are capable, through several mechanisms, to reduce the potent GvL activity exerted by NK cells. It is conceivable that, in this transplantation setting, the MDSC-removal or -inactivation may represent a promising strategy to restore the anti-leukemia effect mediated by NK cells. Thus, a better knowledge of the cellular interactions occurring in the tumor microenvironment could promote the development of novel therapeutic strategies for the treatment of solid and hematological malignances.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Anna Laura Di Pace
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Besi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Linda Quatrini
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Paola Vacca
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
33
|
Dietz S, Schwarz J, Rühle J, Schaller M, Fehrenbacher B, Marmé A, Schmid E, Peter A, Poets CF, Gille C, Köstlin-Gille N. Extracellular vesicles released by myeloid-derived suppressor cells from pregnant women modulate adaptive immune responses. Cell Immunol 2020; 361:104276. [PMID: 33517124 DOI: 10.1016/j.cellimm.2020.104276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022]
Abstract
Immunological pregnancy complications are a main challenge in reproductive medicine. Mechanisms regulating the adaptation of the maternal immune system to pregnancy are incompletely understood and therapeutic options limited. Myeloid derived suppressor cells (MDSC) are immune-modulatory cells expanding during healthy pregnancy and seem to play a crucial role for maternal-fetal tolerance. Recent studies showed that exosomes produced by MDSC have immune-modulatory effects corresponding to their parental cells under different pathological conditions. Here, we investigated immunological effects of exosomes of GR-MDSC during pregnancy. Isolated GR-MDSC exosomes from peripheral blood of pregnant women were tested for functionality in different in vitro assays. We show that GR-MDSC exosomes exhibited profound immune-modulatory effects such as suppression of T-cell proliferation, T helper 2 (Th2)-cell polarization, induction of regulatory T-cells and inhibition of lymphocyte cytotoxicity. Our results confirm that MDSC-derived exosomes functionally correspond to their parental cells and identify them as an interesting therapeutic target for immunological pregnancy complications.
Collapse
Affiliation(s)
- Stefanie Dietz
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Julian Schwarz
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Jessica Rühle
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tuebingen, Tuebingen, Germany
| | | | | | - Evi Schmid
- Department of Pediatric Surgery & Pediatric Urology, University of Tuebingen, Germany
| | - Andreas Peter
- German Centre for Diabetes Research (DZD), Tuebingen, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tuebingen, Tuebingen, Germany; Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Germany
| | - Christian F Poets
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany
| | - Christian Gille
- Tuebingen University Children's Hospital, Department of Neonatology, Tuebingen, Germany.
| | | |
Collapse
|
34
|
Khan AQ, Akhtar S, Prabhu KS, Zarif L, Khan R, Alam M, Buddenkotte J, Ahmad A, Steinhoff M, Uddin S. Exosomes: Emerging Diagnostic and Therapeutic Targets in Cutaneous Diseases. Int J Mol Sci 2020; 21:9264. [PMID: 33291683 PMCID: PMC7730213 DOI: 10.3390/ijms21239264] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/28/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Skin is the largest human organ and is continuously exposed to various exogenous and endogenous trigger factors affecting body homeostasis. A number of mechanisms, including genetic, inflammatory and autoimmune ones, have been implicated in the pathogenesis of cutaneous diseases. Recently, there has been considerable interest in the role that extracellular vesicles, particularly exosomes, play in human diseases, through their modulation of multiple signaling pathways. Exosomes are nano-sized vesicles secreted by all cell types. They function as cargo carriers shuttling proteins, nucleic acids, lipids etc., thus impacting the cell-cell communications and transfer of vital information/moieties critical for skin homeostasis and disease pathogenesis. This review summarizes the available knowledge on how exosomes affect pathogenesis of cutaneous diseases, and highlights their potential as future targets for the therapy of various skin diseases.
Collapse
Affiliation(s)
- Abdul Q. Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
| | - Sabah Akhtar
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (S.A.); (L.Z.)
| | - Kirti S. Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
| | - Lubna Zarif
- Department of Biological and Environmental Sciences, Qatar University, Doha 2713, Qatar; (S.A.); (L.Z.)
| | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India;
| | - Majid Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Aamir Ahmad
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar
- Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- College of Medicine, Qatar University, Doha 2713, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; (A.Q.K.); (K.S.P.); (M.A.); (J.B.)
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
- Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
35
|
Wu X, Zhu D, Tian J, Tang X, Guo H, Ma J, Xu H, Wang S. Granulocytic Myeloid-Derived Suppressor Cell Exosomal Prostaglandin E2 Ameliorates Collagen-Induced Arthritis by Enhancing IL-10 + B Cells. Front Immunol 2020; 11:588500. [PMID: 33329572 PMCID: PMC7734343 DOI: 10.3389/fimmu.2020.588500] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/02/2020] [Indexed: 01/22/2023] Open
Abstract
The results of recent studies have shown that granulocytic-myeloid derived suppressor cells (G-MDSCs) can secrete exosomes that transport various biologically active molecules with regulatory effects on immune cells. However, their roles in autoimmune diseases such as rheumatoid arthritis remain to be further elucidated. In the present study, we investigated the influence of exosomes from G-MDSCs on the humoral immune response in murine collagen-induced arthritis (CIA). G-MDSCs exosomes-treated mice showed lower arthritis index values and decreased inflammatory cell infiltration. Treatment with G-MDSCs exosomes promoted splenic B cells to secrete IL-10 both in vivo and in vitro. In addition, a decrease in the proportion of plasma cells and follicular helper T cells was observed in drainage lymph nodes from G-MDSCs exosomes-treated mice. Moreover, lower serum levels of IgG were detected in G-MDSCs exosomes-treated mice, indicating an alteration of the humoral environment. Mechanistic studies showed that exosomal prostaglandin E2 (PGE2) produced by G-MDSCs upregulated the phosphorylation levels of GSK-3β and CREB, which play a key role in the production of IL-10+ B cells. Taken together, our findings demonstrated that G-MDSC exosomal PGE2 attenuates CIA in mice by promoting the generation of IL-10+ Breg cells.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Dongwei Zhu
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Hongye Guo
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jie Ma
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
36
|
Xu Z, Zeng S, Gong Z, Yan Y. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer 2020; 19:160. [PMID: 33183286 PMCID: PMC7661275 DOI: 10.1186/s12943-020-01278-3] [Citation(s) in RCA: 314] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
In the era of the rapid development of cancer immunotherapy, there is a high level of interest in the application of cell-released small vesicles that stimulate the immune system. As cell-derived nanovesicles, exosomes show great promise in cancer immunotherapy because of their immunogenicity and molecular transfer function. The cargoes carried on exosomes have been recently identified with improved technological advances and play functional roles in the regulation of immune responses. In particular, exosomes derived from tumor cells and immune cells exhibit unique composition profiles that are directly involved in anticancer immunotherapy. More importantly, exosomes can deliver their cargoes to targeted cells and thus influence the phenotype and immune-regulation functions of targeted cells. Accumulating evidence over the last decade has further revealed that exosomes can participate in multiple cellular processes contributing to cancer development and therapeutic effects, showing the dual characteristics of promoting and suppressing cancer. The potential of exosomes in the field of cancer immunotherapy is huge, and exosomes may become the most effective cancer vaccines, as well as targeted antigen/drug carriers. Understanding how exosomes can be utilized in immune therapy is important for controlling cancer progression; additionally, exosomes have implications for diagnostics and the development of novel therapeutic strategies. This review discusses the role of exosomes in immunotherapy as carriers to stimulate an anti-cancer immune response and as predictive markers for immune activation; furthermore, it summarizes the mechanism and clinical application prospects of exosome-based immunotherapy in human cancer.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
37
|
Hejrati A, Hasani B, Esmaili M, Bashash D, Tavakolinia N, Zafari P. Role of exosome in autoimmunity, with a particular emphasis on rheumatoid arthritis. Int J Rheum Dis 2020; 24:159-169. [PMID: 33159418 DOI: 10.1111/1756-185x.14021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/01/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Abstract
Cell-derived exosomes are identified as carriers of lipids, proteins, and genetic materials that participate in cell-cell signal communication, biological process, and cell signaling. Also, their involvement has been reported in a vast array of disorders and inflammatory conditions such as autoimmune diseases. Rheumatoid arthritis (RA), a common cause of joint disorder, is an inflammation-based disease in which the precise understanding of its pathogenesis needs to be further investigated. Also, there is only a palliative care approach for the alleviation of RA symptoms. This paper discusses the recent advances in the biology of exosomes in autoimmune disorders especially in RA, and also provides a new line of research for arthritis therapy using exosomes.
Collapse
Affiliation(s)
- Alireza Hejrati
- Department of Internal Medicine, Hazrate-Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Hasani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Esmaili
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naeimeh Tavakolinia
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
38
|
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Centre for Dermatology Research, University of Manchester, and NIHR Biomedical Research Centre, Manchester, United Kingdom; Monasterium Laboratory, Muenster, Germany.
| |
Collapse
|
39
|
Bertolini M, McElwee K, Gilhar A, Bulfone‐Paus S, Paus R. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol 2020; 29:703-725. [DOI: 10.1111/exd.14155] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Affiliation(s)
| | - Kevin McElwee
- Monasterium Laboratory Münster Germany
- Centre for Skin Sciences University of Bradford Bradford UK
- Department of Dermatology and Skin Science University of British Columbia Vancouver British Columbia Canada
| | - Amos Gilhar
- Laboratory for Skin Research Rappaport Faculty of Medicine Technion‐Israel Institute of Technology Haifa Israel
| | - Silvia Bulfone‐Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
| | - Ralf Paus
- Monasterium Laboratory Münster Germany
- Centre for Dermatology Research University of Manchester and NIHR Manchester Biomedical Research Centre Manchester UK
- Dr. Philip Frost Department of Dermatology & Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
40
|
Salminen A, Kaarniranta K, Kauppinen A. Exosomal vesicles enhance immunosuppression in chronic inflammation: Impact in cellular senescence and the aging process. Cell Signal 2020; 75:109771. [PMID: 32896608 DOI: 10.1016/j.cellsig.2020.109771] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Exosomes represent an evolutionarily conserved signaling pathway which can act as an alarming mechanism in responses to diverse stresses, e.g. chronic inflammation activates the budding of exosomal vesicles in both immune and non-immune cells. Exosomes can contain both pro- and anti-inflammatory cargos but in chronic inflammation, exosomes mostly carry immunosuppressive cargos, e.g. enzymes and miRNAs. The aging process is associated with chronic low-grade inflammation and the accumulation of pro-inflammatory senescent cells into tissues. There is clear evidence that aging increases the number of exosomes in both the circulation and tissues. Especially, the secretion of immunosuppressive exosomes robustly increases from senescent cells. There are observations that the exosomes from senescent cells are involved in the expansion of senescence into neighbouring cells. Interestingly, the age-related exosomes contain immune suppressive cargos which enhance the immunosuppression within recipient immune cells, i.e. tissue-resident and recruited immune cells including M2 macrophages, myeloid-derived suppressor cells (MDSC), and regulatory T cells (Treg). It seems that increased immunosuppression with aging impairs the clearance of senescent cells and their accumulation within tissues augments the aging process.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
41
|
Hu W, Song X, Yu H, Sun J, Zhao Y. Therapeutic Potentials of Extracellular Vesicles for the Treatment of Diabetes and Diabetic Complications. Int J Mol Sci 2020; 21:ijms21145163. [PMID: 32708290 PMCID: PMC7404127 DOI: 10.3390/ijms21145163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are nano-to-micrometer vesicles released from nearly all cellular types. EVs comprise a mixture of bioactive molecules (e.g., mRNAs, miRNAs, lipids, and proteins) that can be transported to the targeted cells/tissues via the blood or lymph circulation. Recently, EVs have received increased attention, owing to their emerging roles in cell-to-cell communication, or as biomarkers with the therapeutic potential to replace cell-based therapy. Diabetes comprises a group of metabolic disorders characterized by hyperglycemia that cause the development of life-threatening complications. The impacts of conventional clinical treatment are generally limited and are followed by many side effects, including hypoglycemia, obesity, and damage to the liver and kidney. Recently, several studies have shown that EVs released by stem cells and immune cells can regulate gene expression in the recipient cells, thus providing a strategy to treat diabetes and its complications. In this review, we summarize the results from currently available studies, demonstrating the therapeutic potentials of EVs in diabetes and diabetic complications. Additionally, we highlight recommendations for future research.
Collapse
Affiliation(s)
- Wei Hu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Xiang Song
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
| | - Haibo Yu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
| | - Jingyu Sun
- Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA;
| | - Yong Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA; (W.H.); (X.S.); (H.Y.)
- Correspondence: ; Tel.: +1-201-880-3460
| |
Collapse
|
42
|
Kriek M, Monyai K, Magcwebeba TU, Du Plessis N, Stoychev SH, Tabb DL. Interrogating Fractionation and Other Sources of Variability in Shotgun Proteomes Using Quality Metrics. Proteomics 2020; 20:e1900382. [PMID: 32415754 DOI: 10.1002/pmic.201900382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/04/2020] [Indexed: 12/14/2022]
Abstract
The increasing amount of publicly available proteomics data creates opportunities for data scientists to investigate quality metrics in novel ways. QuaMeter IDFree is used to generate quality metrics from 665 RAW files and 97 WIFF files representing publicly available "shotgun" mass spectrometry datasets. These experiments are selected to represent Mycobacterium tuberculosis lysates, mouse MDSCs, and exosomes derived from human cell lines. Machine learning techniques are demonstrated to detect outliers within experiments and it is shown that quality metrics may be used to distinguish sources of variability among these experiments. In particular, the findings demonstrate that according to nested ANOVA performed on an SDS-PAGE shotgun principal component analysis, runs of fractions from the same gel regions cluster together rather than technical replicates, close temporal proximity, or even biological samples. This indicates that the individual fraction may have had a higher impact on the quality metrics than other factors. In addition, sample type, instrument type, mass analyzer, fragmentation technique, and digestion enzyme are identified as sources of variability. From a quality control perspective, the importance of study design and in particular, the run order, is illustrated in seeking ways to limit the impact of technical variability.
Collapse
Affiliation(s)
- Marina Kriek
- SATBBI (South African Tuberculosis Bioinformatics Initiative), Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, 7505, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Koena Monyai
- Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - Tandeka U Magcwebeba
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Nelita Du Plessis
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| | - Stoyan H Stoychev
- Council for Scientific and Industrial Research, Pretoria, 0001, South Africa
| | - David L Tabb
- SATBBI (South African Tuberculosis Bioinformatics Initiative), Centre for Bioinformatics and Computational Biology, Stellenbosch University, Cape Town, 7505, South Africa.,DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Cape Town, 7505, South Africa.,South African Medical Research Council Centre for Tuberculosis Research, Cape Town, 7505, South Africa.,Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, 7505, South Africa
| |
Collapse
|
43
|
Han M, Cheng H, Wang J, Yu Y, Wang F, Zhu R, Wang W, Yang S, Li H. Abnormal aggregation of myeloid-derived suppressor cells in a mouse model of cyclophosphamide-induced premature ovarian failure. Gynecol Endocrinol 2019; 35:985-990. [PMID: 31124382 DOI: 10.1080/09513590.2019.1616173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Oocytes are extremely sensitive to radiation and chemotherapy, and premature ovarian failure (POF) is one of the side effects of anti-tumor therapy. The pathogenesis of POF is very complex and still not fully elucidated. A mouse POF model was established after 14 days of cyclophosphamide injection. POF mice presented ovarian atrophy, destroyed follicular structure, a reduction in the number of primordial and mature follicles, and an decrease in the number of corpora luteal along with increased level of follicle-stimulating hormone (FSH), decreased levels of estradiol (E2), and anti-Mullerian hormone (AMH). Additionally, the proportion of bone marrow myeloid-derived suppressor cells (MDSCs) in peripheral blood, spleen, and ovarian tissue increased. MDSCs were mainly distributed around follicles and corpora luteal. Levels of mTOR and p-mTOR increased in ovarian tissue and inhibition of mTOR with rapamycin reduced the aggregation of MDSCs in peripheral blood, spleen, and ovarian tissue. This investigation sheds new light on the modulatory role of mTOR and demonstrates that an increase in MDSC number may play a key role in the pathological reaction during POF. Inhibition of mTOR and reduction of MDSCs in the ovary may represent a novel strategy for the treatment of POF.
Collapse
Affiliation(s)
- Mutian Han
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Hongbo Cheng
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Jiaxiong Wang
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Yi Yu
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Fuxin Wang
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Rui Zhu
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Wei Wang
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Shenmin Yang
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| | - Hong Li
- Center for Reproduction and Genetics, Nanjing Medical University Affiliated Suzhou Hospital , Suzhou , China
| |
Collapse
|
44
|
Small extracellular vesicles containing arginase-1 suppress T-cell responses and promote tumor growth in ovarian carcinoma. Nat Commun 2019; 10:3000. [PMID: 31278254 PMCID: PMC6611910 DOI: 10.1038/s41467-019-10979-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Tumor-driven immune suppression is a major barrier to successful immunotherapy in ovarian carcinomas (OvCa). Among various mechanisms responsible for immune suppression, arginase-1 (ARG1)-carrying small extracellular vesicles (EVs) emerge as important contributors to tumor growth and tumor escape from the host immune system. Here, we report that small EVs found in the ascites and plasma of OvCa patients contain ARG1. EVs suppress proliferation of CD4+ and CD8+ T-cells in vitro and in vivo in OvCa mouse models. In mice, ARG1-containing EVs are transported to draining lymph nodes, taken up by dendritic cells and inhibit antigen-specific T-cell proliferation. Increased expression of ARG1 in mouse OvCa cells is associated with accelerated tumor progression that can be blocked by an arginase inhibitor. Altogether, our studies show that tumor cells use EVs as vehicles to carry over long distances and deliver to immune cells a metabolic checkpoint molecule – ARG1, mitigating anti-tumor immune responses. Cancer cells employ a variety of ways to escape the immune system. Here, the authors show that ovarian cancer cells produce small extracellular vescicles containing arginase 1 that are taken up by dendritic cells in the draining lymph nodes, resulting in inhibition of antigen-specific T-cell proliferation.
Collapse
|
45
|
Yan D, Adeshakin AO, Xu M, Afolabi LO, Zhang G, Chen YH, Wan X. Lipid Metabolic Pathways Confer the Immunosuppressive Function of Myeloid-Derived Suppressor Cells in Tumor. Front Immunol 2019; 10:1399. [PMID: 31275326 PMCID: PMC6593140 DOI: 10.3389/fimmu.2019.01399] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play crucial roles in tumorigenesis and their inhibition is critical for successful cancer immunotherapy. MDSCs undergo metabolic reprogramming from glycolysis to fatty acid oxidation (FAO) and oxidative phosphorylation led by lipid accumulation in tumor. Increased exogenous fatty acid uptake by tumor MDSCs enhance their immunosuppressive activity on T-cells thus promoting tumor progression. Tumor-infiltrating MDSCs in mice may prefer FAO over glycolysis as a primary source of energy while treatment with FAO inhibitors improved anti-tumor immunity. This review highlights the immunosuppressive functions of lipid metabolism and its signaling pathways on MDSCs in the tumor microenvironment. The manipulation of these pathways in MDSCs is relevant to understand the tumor microenvironment therefore, could provide novel therapeutic approaches to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Dehong Yan
- Shenzhen Laboratory for Human Antibody Engineering, Center for Antibody Drug Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Adeleye O Adeshakin
- Shenzhen Laboratory for Human Antibody Engineering, Center for Antibody Drug Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Meichen Xu
- Shenzhen Laboratory for Human Antibody Engineering, Center for Antibody Drug Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lukman O Afolabi
- Shenzhen Laboratory for Human Antibody Engineering, Center for Antibody Drug Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guizhong Zhang
- Shenzhen Laboratory for Human Antibody Engineering, Center for Antibody Drug Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Youhai H Chen
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaochun Wan
- Shenzhen Laboratory for Human Antibody Engineering, Center for Antibody Drug Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
46
|
Xu H, Jia S, Xu H. Potential therapeutic applications of exosomes in different autoimmune diseases. Clin Immunol 2019; 205:116-124. [PMID: 31228581 DOI: 10.1016/j.clim.2019.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases are caused by self-immune responses to autoantigens, which damage body tissues and severely affect the patient's quality of life. Therapeutic drugs are associated with adverse side effects and their beneficial effects are limited to specific populations. Evidence indicates that exosomes which are small vesicles secreted by most cell types and body fluids, and may play roles in both immune stimulation and tolerance since they are involved in many processes such as immune signaling, inflammation and angiogenesis. Exosomes have also emerged as promising tools for therapeutic delivery, given their intrinsic features such as stability, biocompatibility and a capacity for stealth. In this review, we summarize existing literature regarding the production, efficacy, action mechanism, and potential therapeutic uses of exosomes in the contexts of autoimmune diseases such as type 1 diabetes mellitus, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and Sjogren's syndrome.
Collapse
Affiliation(s)
- Hui Xu
- The Engineering Research Center of polypeptide Drug Discovery and Evaluation of Jiangsu Province, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Shaochang Jia
- Department of Bio-Treatment, Jinling Hospital, Nanjing, PR China.
| | - Hanmei Xu
- The Engineering Research Center of polypeptide Drug Discovery and Evaluation of Jiangsu Province, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
47
|
Consonni FM, Porta C, Marino A, Pandolfo C, Mola S, Bleve A, Sica A. Myeloid-Derived Suppressor Cells: Ductile Targets in Disease. Front Immunol 2019; 10:949. [PMID: 31130949 PMCID: PMC6509569 DOI: 10.3389/fimmu.2019.00949] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells with major regulatory functions and rise during pathological conditions, including cancer, infections and autoimmune conditions. MDSC expansion is generally linked to inflammatory processes that emerge in response to stable immunological stress, which alter both magnitude and quality of the myelopoietic output. Inability to reinstate physiological myelopoiesis would fall in an “emergency state” that perpetually reprograms myeloid cells toward suppressive functions. While differentiation and reprogramming of myeloid cells toward an immunosuppressive phenotype can be considered the result of a multistep process that originates in the bone marrow and culminates in the tumor microenvironment, the identification of its driving events may offer potential therapeutic approaches in different pathologies. Indeed, whereas expansion of MDSCs, in both murine and human tumor bearers, results in reduced immune surveillance and antitumor cytotoxicity, placing an obstacle to the effectiveness of anticancer therapies, adoptive transfer of MDSCs has shown therapeutic benefits in autoimmune disorders. Here, we describe relevant mechanisms of myeloid cell reprogramming leading to generation of suppressive MDSCs and discuss their therapeutic ductility in disease.
Collapse
Affiliation(s)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Arianna Marino
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Chiara Pandolfo
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Silvia Mola
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Augusto Bleve
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Antonio Sica
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| |
Collapse
|
48
|
Meng W, Hao Y, He C, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer 2019; 18:57. [PMID: 30925935 PMCID: PMC6441221 DOI: 10.1186/s12943-019-0982-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hypoxic tumor microenvironment is a common feature of solid tumors and is associated with aggressiveness and poor patient outcomes. A continuous interference between cancer cells and stromal cells within the hypoxic microenvironment has been uncovered for its importance in cancer development and treatment responsiveness. Exosomes, initially considered as “garbage bins” for unwanted material from cells, are now elucidated to perform a variety of functions that involve interactions within the cellular microenvironment due to their ability to carry numerous cargoes, including lipids, proteins, nucleic acids, and metabolites. Exosome-mediated continuous interference between cancer cells and stroma are believed to regulate hypoxia-adaptation and to rebuild the microenvironment in return. In this review, we will discuss the knowledge in literature with respect to the exosome-mediated multi-directional and mutual signal transmission among the variety of cell types within hypoxic cancer microenvironment.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Yaying Hao
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Chuanshi He
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Ling Li
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China.
| | - Guiquan Zhu
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|