1
|
Cho H, Lai CC, Bonnavion R, Alnouri MW, Wang S, Roquid KA, Kawase H, Campos D, Chen M, Weinstein LS, Martínez A, Looso M, Sanda M, Offermanns S. Endothelial insulin resistance induced by adrenomedullin mediates obesity-associated diabetes. Science 2025; 387:674-682. [PMID: 39913566 DOI: 10.1126/science.adr4731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/17/2024] [Indexed: 04/23/2025]
Abstract
Insulin resistance is a hallmark of obesity-associated type 2 diabetes. Insulin's actions go beyond metabolic cells and also involve blood vessels, where insulin increases capillary blood flow and delivery of insulin and nutrients. We show that adrenomedullin, whose plasma levels are increased in obese humans and mice, inhibited insulin signaling in human endothelial cells through protein-tyrosine phosphatase 1B-mediated dephosphorylation of the insulin receptor. In obese mice lacking the endothelial adrenomedullin receptor, insulin-induced endothelial nitric oxide-synthase activation and skeletal muscle perfusion were increased. Treating mice with adrenomedullin mimicked the effect of obesity and induced endothelial and systemic insulin resistance. Endothelial loss or blockade of the adrenomedullin receptor improved obesity-induced insulin resistance. These findings identify a mechanism underlying obesity-induced systemic insulin resistance and suggest approaches to treat obesity-associated type 2 diabetes.
Collapse
MESH Headings
- Adrenomedullin/blood
- Adrenomedullin/pharmacology
- Adrenomedullin/metabolism
- Animals
- Insulin Resistance
- Obesity/complications
- Obesity/metabolism
- Humans
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Receptor, Insulin/metabolism
- Insulin/metabolism
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism
- Receptors, Adrenomedullin/metabolism
- Receptors, Adrenomedullin/genetics
- Receptors, Adrenomedullin/antagonists & inhibitors
- Signal Transduction
- Male
- Endothelial Cells/metabolism
- Phosphorylation
- Mice, Inbred C57BL
- Endothelium, Vascular/metabolism
- Mice, Obese
Collapse
Affiliation(s)
- Haaglim Cho
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Chien-Cheng Lai
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Rémy Bonnavion
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Mohamad Wessam Alnouri
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - ShengPeng Wang
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kenneth Anthony Roquid
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Haruya Kawase
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Diana Campos
- Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, Germany
| | - Min Chen
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lee S Weinstein
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alfredo Martínez
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, Bioinformatics, Bad Nauheim, Germany
- Cardiopulmonary Institute (CPI), Bad Nauheim, Germany
| | - Miloslav Sanda
- Max Planck Institute for Heart and Lung Research, Biomolecular Mass Spectrometry, Bad Nauheim, Germany
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Cardiopulmonary Institute (CPI), Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt/Rhine-Main, Bad Nauheim, Germany
| |
Collapse
|
2
|
Napoli M, Bauer J, Bonod C, Vadon-Le Goff S, Moali C. PCPE-2 (procollagen C-proteinase enhancer-2): The non-identical twin of PCPE-1. Matrix Biol 2024; 134:59-78. [PMID: 39251075 DOI: 10.1016/j.matbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
PCPE-2 was discovered at the beginning of this century, and was soon identified as a close homolog of PCPE-1 (procollagen C-proteinase enhancer 1). After the demonstration that it could also stimulate the proteolytic maturation of fibrillar procollagens by BMP-1/tolloid-like proteinases (BTPs), PCPE-2 did not attract much attention as it was thought to fulfill the same functions as PCPE-1 which was already well-described. However, the tissue distribution of PCPE-2 shows both common points and significant differences with PCPE-1, suggesting that their activities are not fully overlapping. Also, the recently established connections between PCPE-2 (gene name PCOLCE2) and several important diseases such as atherosclerosis, inflammatory diseases and cancer have highlighted the need for a thorough reappraisal of the in vivo roles of this regulatory protein. In this context, the recent finding that, while retaining the ability to bind fibrillar procollagens and to activate their C-terminal maturation, PCPE-2 can also bind BTPs and inhibit their activity has substantially extended its potential functions. In this review, we describe the current knowledge about PCPE-2 with a focus on collagen fibrillogenesis, lipid metabolism and inflammation, and discuss how we could further advance our understanding of PCPE-2-dependent biological processes.
Collapse
Affiliation(s)
- Manon Napoli
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Julien Bauer
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Christelle Bonod
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France
| | - Catherine Moali
- Universite Claude Bernard Lyon 1, CNRS UMR 5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367 Lyon, France.
| |
Collapse
|
3
|
Konigorski S, Janke J, Patone G, Bergmann MM, Lippert C, Hübner N, Kaaks R, Boeing H, Pischon T. Identification of novel genes whose expression in adipose tissue affects body fat mass and distribution: an RNA-Seq and Mendelian Randomization study. Eur J Hum Genet 2024; 32:1127-1135. [PMID: 35953519 PMCID: PMC11369295 DOI: 10.1038/s41431-022-01161-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022] Open
Abstract
Many studies have shown that abdominal adiposity is more strongly related to health risks than peripheral adiposity. However, the underlying pathways are still poorly understood. In this cross-sectional study using data from RNA-sequencing experiments and whole-body MRI scans of 200 participants in the EPIC-Potsdam cohort, our aim was to identify novel genes whose gene expression in subcutaneous adipose tissue has an effect on body fat mass (BFM) and body fat distribution (BFD). The analysis identified 625 genes associated with adiposity, of which 531 encode a known protein and 487 are novel candidate genes for obesity. Enrichment analyses indicated that BFM-associated genes were characterized by their higher than expected involvement in cellular, regulatory and immune system processes, and BFD-associated genes by their involvement in cellular, metabolic, and regulatory processes. Mendelian Randomization analyses suggested that the gene expression of 69 genes was causally related to BFM and BFD. Six genes were replicated in UK Biobank. In this study, we identified novel genes for BFM and BFD that are BFM- and BFD-specific, involved in different molecular processes, and whose up-/downregulated gene expression may causally contribute to obesity.
Collapse
Affiliation(s)
- Stefan Konigorski
- Digital Health & Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany.
- Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jürgen Janke
- Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Giannino Patone
- Genetics and Genomics of Cardiovascular Diseases Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Manuela M Bergmann
- German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Christoph Lippert
- Digital Health & Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Norbert Hübner
- Genetics and Genomics of Cardiovascular Diseases Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research) partner site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heiner Boeing
- German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center (MDC) for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research) partner site Berlin, Berlin, Germany.
- Charité Universitätsmedizin Berlin, Berlin, Germany.
- MDC Biobank, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany.
- BIH Biobank, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
4
|
Acharjee A, Wijesinghe SN, Russ D, Gkoutos G, Jones SW. Cross-species transcriptomics identifies obesity associated genes between human and mouse studies. J Transl Med 2024; 22:592. [PMID: 38918843 PMCID: PMC11197204 DOI: 10.1186/s12967-024-05414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Fundamentally defined by an imbalance in energy consumption and energy expenditure, obesity is a significant risk factor of several musculoskeletal conditions including osteoarthritis (OA). High-fat diets and sedentary lifestyle leads to increased adiposity resulting in systemic inflammation due to the endocrine properties of adipose tissue producing inflammatory cytokines and adipokines. We previously showed serum levels of specific adipokines are associated with biomarkers of bone remodelling and cartilage volume loss in knee OA patients. Whilst more recently we find the metabolic consequence of obesity drives the enrichment of pro-inflammatory fibroblast subsets within joint synovial tissues in obese individuals compared to those of BMI defined 'health weight'. As such this present study identifies obesity-associated genes in OA joint tissues which are conserved across species and conditions. METHODS The study utilised 6 publicly available bulk and single-cell transcriptomic datasets from human and mice studies downloaded from Gene Expression Omnibus (GEO). Machine learning models were employed to model and statistically test datasets for conserved gene expression profiles. Identified genes were validated in OA tissues from obese and healthy weight individuals using quantitative PCR method (N = 38). Obese and healthy-weight patients were categorised by BMI > 30 and BMI between 18 and 24.9 respectively. Informed consent was obtained from all study participants who were scheduled to undergo elective arthroplasty. RESULTS Principal component analysis (PCA) was used to investigate the variations between classes of mouse and human data which confirmed variation between obese and healthy populations. Differential gene expression analysis filtered on adjusted p-values of p < 0.05, identified differentially expressed genes (DEGs) in mouse and human datasets. DEGs were analysed further using area under curve (AUC) which identified 12 genes. Pathway enrichment analysis suggests these genes were involved in the biosynthesis and elongation of fatty acids and the transport, oxidation, and catabolic processing of lipids. qPCR validation found the majority of genes showed a tendency to be upregulated in joint tissues from obese participants. Three validated genes, IGFBP2 (p = 0.0363), DOK6 (0.0451) and CASP1 (0.0412) were found to be significantly different in obese joint tissues compared to lean-weight joint tissues. CONCLUSIONS The present study has employed machine learning models across several published obesity datasets to identify obesity-associated genes which are validated in joint tissues from OA. These results suggest obesity-associated genes are conserved across conditions and may be fundamental in accelerating disease in obese individuals. Whilst further validations and additional conditions remain to be tested in this model, identifying obesity-associated genes in this way may serve as a global aid for patient stratification giving rise to the potential of targeted therapeutic interventions in such patient subpopulations.
Collapse
Affiliation(s)
- Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
- MRC Health Data Research UK (HDR UK), Birmingham, UK.
- Institute of Translational Medicine, Foundation Trust, University Hospitals Birmingham NHS, Birmingham, B15 2TT, UK.
- Centre for Health Data Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Susanne N Wijesinghe
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Dominic Russ
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC Health Data Research UK (HDR UK), Birmingham, UK
- Institute of Translational Medicine, Foundation Trust, University Hospitals Birmingham NHS, Birmingham, B15 2TT, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Georgios Gkoutos
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- MRC Health Data Research UK (HDR UK), Birmingham, UK
- Institute of Translational Medicine, Foundation Trust, University Hospitals Birmingham NHS, Birmingham, B15 2TT, UK
- Centre for Health Data Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Zhang X, Hu LG, Lei Y, Stolina M, Homann O, Wang S, Véniant MM, Hsu YH. A transcriptomic and proteomic atlas of obesity and type 2 diabetes in cynomolgus monkeys. Cell Rep 2023; 42:112952. [PMID: 37556324 DOI: 10.1016/j.celrep.2023.112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/16/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) remain major global healthcare challenges, and developing therapeutics necessitates using nonhuman primate models. Here, we present a transcriptomic and proteomic atlas of all the major organs of cynomolgus monkeys with spontaneous obesity or T2D in comparison to healthy controls. Molecular changes occur predominantly in the adipose tissues of individuals with obesity, while extensive expression perturbations among T2D individuals are observed in many tissues such as the liver and kidney. Immune-response-related pathways are upregulated in obesity and T2D, whereas metabolism and mitochondrial pathways are downregulated. Moreover, we highlight some potential therapeutic targets, including SLC2A1 and PCSK1 in obesity as well as SLC30A8 and SLC2A2 in T2D. Our study provides a resource for exploring the complex molecular mechanism of obesity and T2D and developing therapies for these diseases, with limitations including lack of hypothalamus, isolated islets of Langerhans, longitudinal data, and body fat percentage.
Collapse
Affiliation(s)
- Xianglong Zhang
- Center for Research Acceleration by Digital Innovation (CRADI), Amgen Research, South San Francisco, CA 94080, USA
| | | | - Ying Lei
- Research China, Amgen Research, Shanghai 200020, China
| | - Marina Stolina
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Oliver Homann
- Center for Research Acceleration by Digital Innovation (CRADI), Amgen Research, South San Francisco, CA 94080, USA
| | - Songli Wang
- Research Biomics, Amgen Research, South San Francisco, CA 94080, USA
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Thousand Oaks, CA 91320, USA.
| | - Yi-Hsiang Hsu
- Marcus Institute for Aging Research and Harvard Medical School, Boston, MA 02131, USA.
| |
Collapse
|
6
|
Kim HH, Shim YR, Kim HN, Yang K, Ryu T, Kim K, Choi SE, Kim MJ, Woo C, Chung KPS, Hong SH, Shin H, Suh JM, Jung Y, Hwang GS, Kim W, Kim SH, Eun HS, Seong JK, Jeong WI. xCT-mediated glutamate excretion in white adipocytes stimulates interferon-γ production by natural killer cells in obesity. Cell Rep 2023; 42:112636. [PMID: 37310859 DOI: 10.1016/j.celrep.2023.112636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Obesity-mediated hypoxic stress underlies inflammation, including interferon (IFN)-γ production by natural killer (NK) cells in white adipose tissue. However, the effects of obesity on NK cell IFN-γ production remain obscure. Here, we show that hypoxia promotes xCT-mediated glutamate excretion and C-X-C motif chemokine ligand 12 (CXCL12) expression in white adipocytes, resulting in CXCR4+ NK cell recruitment. Interestingly, this spatial proximity between adipocytes and NK cells induces IFN-γ production in NK cells by stimulating metabotropic glutamate receptor 5 (mGluR5). IFN-γ then triggers inflammatory activation of macrophages and augments xCT and CXCL12 expression in adipocytes, forming a bidirectional pathway. Genetic or pharmacological inhibition of xCT, mGluR5, or IFN-γ receptor in adipocytes or NK cells alleviates obesity-related metabolic disorders in mice. Consistently, patients with obesity showed elevated levels of glutamate/mGluR5 and CXCL12/CXCR4 axes, suggesting that a bidirectional pathway between adipocytes and NK cells could be a viable therapeutic target in obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hee-Hoon Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Life Science Research Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Young-Ri Shim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea; Life Science Research Institute, KAIST, Daejeon 34141, Republic of Korea
| | - Ha Neul Kim
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Keungmo Yang
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Tom Ryu
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kyurae Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Sung Eun Choi
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Min Jeong Kim
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Chaerin Woo
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Katherine Po Sin Chung
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Song Hwa Hong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyemi Shin
- Life Science Research Institute, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul 07061, Republic of Korea
| | - Seok-Hwan Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyuk Soo Eun
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC) and BK21 Program for Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
7
|
Liao L, Zhang F, Zhuo Z, Huang C, Zhang X, Liu R, Gao B, Ding S. Regulation of Fatty Acid Metabolism and Inhibition of Colorectal Cancer Progression by Erchen Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:9557720. [PMID: 37078067 PMCID: PMC10110375 DOI: 10.1155/2023/9557720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 04/21/2023]
Abstract
Erchen decoction (ECD) is a traditional Chinese prescription widely used in the treatment of various diseases such as obesity, fatty liver, diabetes, and hypertension. In this study, we investigated the effect of ECD on fatty acid metabolism in a colorectal cancer (CRC) mouse model fed a high-fat (HF) diet. The HF-CRC mouse model was established by azoxymethane (AOM)/dextran sulphate sodium (DSS) combined with a high-fat diet. Mice were then gavaged with ECD. Change in the body weight was recorded every two weeks for 26 weeks. Changes in blood glucose (GLU), total cholesterol (TC), total triglycerides (TG), and C-reactive protein (CRP) were measured. Colorectal tissues were collected to observe changes in colorectal length and tumorigenesis. Hematoxylin-eosin (HE) staining and immunohistochemical staining were performed to observe changes in intestinal structure and inflammatory markers. Fatty acids and the expression of related genes in colorectal tissues were also studied. ECD gavage inhibited HF-induced weight gain. CRC induction and HF diet intake resulted in increased GLU, TC, TG, and CRP, where ECD gavage reduced these elevated indicators. ECD gavage also increased colorectal length and inhibited tumorigenesis. HE staining revealed that ECD gavage suppressed inflammatory infiltration of colorectal tissues. ECD gavage suppressed the fatty acid metabolism abnormalities caused by HF-CRC in colorectal tissues. Consistently, ECD gavage lowered ACSL4, ACSL1, CPT1A, and FASN levels in colorectal tissues. Conclusions. ECD inhibited HF-CRC progression through the regulation of fatty acid metabolism.
Collapse
Affiliation(s)
- Linghong Liao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Fei Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Zewei Zhuo
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Chengbao Huang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Xiaofang Zhang
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Ruifang Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Bizhen Gao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shanshan Ding
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of TCM Health State, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
8
|
Kasprzak A. Autophagy and the Insulin-like Growth Factor (IGF) System in Colonic Cells: Implications for Colorectal Neoplasia. Int J Mol Sci 2023; 24:ijms24043665. [PMID: 36835075 PMCID: PMC9959216 DOI: 10.3390/ijms24043665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies worldwide. Along with apoptosis and inflammation, autophagy is one of three important mechanisms in CRC. The presence of autophagy/mitophagy in most normal mature intestinal epithelial cells has been confirmed, where it has mainly protective functions against reactive oxygen species (ROS)-induced DNA and protein damage. Autophagy regulates cell proliferation, metabolism, differentiation, secretion of mucins and/or anti-microbial peptides. Abnormal autophagy in intestinal epithelial cells leads to dysbiosis, a decline in local immunity and a decrease in cell secretory function. The insulin-like growth factor (IGF) signaling pathway plays an important role in colorectal carcinogenesis. This is evidenced by the biological activities of IGFs (IGF-1 and IGF-2), IGF-1 receptor type 1 (IGF-1R) and IGF-binding proteins (IGF BPs), which have been reported to regulate cell survival, proliferation, differentiation and apoptosis. Defects in autophagy are found in patients with metabolic syndrome (MetS), inflammatory bowel diseases (IBD) and CRC. In neoplastic cells, the IGF system modulates the autophagy process bidirectionally. In the current era of improving CRC therapies, it seems important to investigate the exact mechanisms not only of apoptosis, but also of autophagy in different populations of tumor microenvironment (TME) cells. The role of the IGF system in autophagy in normal as well as transformed colorectal cells still seems poorly understood. Hence, the aim of the review was to summarize the latest knowledge on the role of the IGF system in the molecular mechanisms of autophagy in the normal colon mucosa and in CRC, taking into account the cellular heterogeneity of the colonic and rectal epithelium.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Swiecicki Street 6, 60-781 Poznan, Poland
| |
Collapse
|
9
|
Guo Y, Wang M, Zou Y, Jin L, Zhao Z, Liu Q, Wang S, Li J. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer. J Nanobiotechnology 2022; 20:371. [PMID: 35953863 PMCID: PMC9367166 DOI: 10.1186/s12951-022-01586-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Colorectal cancer is considered one of the major malignancies that threaten the lives and health of people around the world. Patients with CRC are prone to post-operative local recurrence or metastasis, and some patients are advanced at the time of diagnosis and have no chance for complete surgical resection. These factors make chemotherapy an indispensable and important tool in treating CRC. However, the complex composition of the tumor microenvironment and the interaction of cellular and interstitial components constitute a tumor tissue with high cell density, dense extracellular matrix, and high osmotic pressure, inevitably preventing chemotherapeutic drugs from entering and acting on tumor cells. As a result, a novel drug carrier system with targeted nanoparticles has been applied to tumor therapy. It can change the physicochemical properties of drugs, facilitate the crossing of drug molecules through physiological and pathological tissue barriers, and increase the local concentration of nanomedicines at lesion sites. In addition to improving drug efficacy, targeted nanoparticles also reduce side effects, enabling safer and more effective disease diagnosis and treatment and improving bioavailability. In this review, we discuss the mechanisms by which infiltrating cells and other stromal components of the tumor microenvironment comprise barriers to chemotherapy in colorectal cancer. The research and application of targeted nanoparticles in CRC treatment are also classified.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Yongbo Zou
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Longhai Jin
- Department of Radiology, Jilin University Second Hospital, Changchun, 130000, China
| | - Zeyun Zhao
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, 130000, China.
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, 130000, China.
| |
Collapse
|
10
|
Hu J, He Y, Liao K, Yang Q, Xu Y, Cao G, Wang X. Identification of inflammatory factor-related genes associated with the prognostic and immune cell infiltration in colorectal cancer patients. Genes Dis 2022. [PMID: 37492736 PMCID: PMC10363590 DOI: 10.1016/j.gendis.2022.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study aims to identify the inflammatory factor-related genes which help to predict the prognosis of patients with colorectal cancer. GSEA (Gene Set Enrichment Analysis) was used to acquire inflammation-related genes and the corresponding expression information was collected from TCGA database to determine the DEGs (differentially-expressed genes) in CRC patients. We conducted enrichment analysis and PPI (protein-protein interaction) of these DEGs. Besides, key genes that are both differentially-expressed and prognosis-related were screened out, which were used to establish the prognostic model. We obtained 79 DEGs and 19 prognostic genes, 10 prognostic-related differential genes were eventually screened. These genes were used to construct the prognostic model. We also identified that the immune infiltration score of macrophages between different risk groups was significantly different and similar distinction was witnessed in immune function score of APC (antigen-presenting cell) co-stimulation and type I IFN (interferon) response.
Collapse
|
11
|
Del Cornò M, Varì R, Scazzocchio B, Varano B, Masella R, Conti L. Dietary Fatty Acids at the Crossroad between Obesity and Colorectal Cancer: Fine Regulators of Adipose Tissue Homeostasis and Immune Response. Cells 2021; 10:cells10071738. [PMID: 34359908 PMCID: PMC8304920 DOI: 10.3390/cells10071738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is among the major threatening diseases worldwide, being the third most common cancer, and a leading cause of death, with a global incidence expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is a major risk factor for the development of several tumours, including CRC, and represents an important indicator of incidence, survival, prognosis, recurrence rates, and response to therapy. The obesity-associated low-grade chronic inflammation is thought to be a key determinant in CRC development, with the adipocytes and the adipose tissue (AT) playing a significant role in the integration of diet-related endocrine, metabolic, and inflammatory signals. Furthermore, AT infiltrating immune cells contribute to local and systemic inflammation by affecting immune and cancer cell functions through the release of soluble mediators. Among the factors introduced with diet and enriched in AT, fatty acids (FA) represent major players in inflammation and are able to deeply regulate AT homeostasis and immune cell function through gene expression regulation and by modulating the activity of several transcription factors (TF). This review summarizes human studies on the effects of dietary FA on AT homeostasis and immune cell functions, highlighting the molecular pathways and TF involved. The relevance of FA balance in linking diet, AT inflammation, and CRC is also discussed. Original and review articles were searched in PubMed without temporal limitation up to March 2021, by using fatty acid as a keyword in combination with diet, obesity, colorectal cancer, inflammation, adipose tissue, immune cells, and transcription factors.
Collapse
|
12
|
Obesity-induced changes in human islet G protein-coupled receptor expression: Implications for metabolic regulation. Pharmacol Ther 2021; 228:107928. [PMID: 34174278 DOI: 10.1016/j.pharmthera.2021.107928] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that are the targets for many different classes of pharmacotherapy. The islets of Langerhans are central to appropriate glucose homeostasis through their secretion of insulin, and islet function can be modified by ligands acting at the large number of GPCRs that islets express. The human islet GPCRome is not a static entity, but one that is altered under pathophysiological conditions and, in this review, we have compared expression of GPCR mRNAs in human islets obtained from normal weight range donors, and those with a weight range classified as obese. We have also considered the likely outcomes on islet function that the altered GPCR expression status confers and the possible impact that adipokines, secreted from expanded fat depots, could have at those GPCRs showing altered expression in obesity.
Collapse
|
13
|
The Role of Dyslipidemia in Colitis-Associated Colorectal Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6640384. [PMID: 33628242 PMCID: PMC7895570 DOI: 10.1155/2021/6640384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/12/2022]
Abstract
Dyslipidemia, characterized by metabolic abnormalities, has become an important participant in colorectal cancer (CRC). Dyslipidemia aggravates intestinal inflammation, destroys the protective mucous layer, and disrupts the balance between injury and recovery. On the other hand, antioxidants induced by oxidative stress enhance glycolysis to maintain the acquisition of ATP allowing epithelial cells with damaged genomes to survive. In the repetitive phase of colitis, survival factors enable these epithelial cells to continuously proliferate. The main purpose is to restore and rebuild damaged mucosa, mainly aiming to recover mucosal damage and reconstruct mucosa, but it is also implicated in the occurrence and malignancy of CRC. The metabolic reprogramming of aerobic glycolysis and lipid synthesis enables these transformed epithelial cells to convert raw carbohydrate and amino acid substrates, thereby synthesizing protein and phospholipid biomass. Stearoyl-CoA desaturase, responsible for the fatty acid desaturation, improves the fluidity and permeability of cell membranes, which is one of the key factors affecting metabolic rate. In response to available fat, tumor cells reprogram their metabolism to better plunder energy-rich lipids and rapidly scavenge these lipids through continuous proliferation. However, lipid metabolic disorders inhibit the function of immune-infiltrating cells in the tumor microenvironment through the cross-talk between tumor cells and immunosuppressive stromal cells, thereby providing opportunities for tumor progress. Nonsteroidal anti-inflammatory drugs and lipid-lowering drugs can decrease the formation of aberrant crypt foci, lower the burden of the adenomatous polyp, and reduce the incidence of CRC. This review provides a comprehensive understanding of dyslipidemia on tumorigenesis and tumor progression and a development prospect of lipid disorders on tumor immunity.
Collapse
|
14
|
Sárvári AK, Van Hauwaert EL, Markussen LK, Gammelmark E, Marcher AB, Ebbesen MF, Nielsen R, Brewer JR, Madsen JGS, Mandrup S. Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metab 2021; 33:437-453.e5. [PMID: 33378646 DOI: 10.1016/j.cmet.2020.12.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/18/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022]
Abstract
Adipose tissues display a remarkable ability to adapt to the dietary status. Here, we have applied single-nucleus RNA-seq to map the plasticity of mouse epididymal white adipose tissue at single-nucleus resolution in response to high-fat-diet-induced obesity. The single-nucleus approach allowed us to recover all major cell types and to reveal distinct transcriptional stages along the entire adipogenic trajectory from preadipocyte commitment to mature adipocytes. We demonstrate the existence of different adipocyte subpopulations and show that obesity leads to disappearance of the lipogenic subpopulation and increased abundance of the stressed lipid-scavenging subpopulation. Moreover, obesity is associated with major changes in the abundance and gene expression of other cell populations, including a dramatic increase in lipid-handling genes in macrophages at the expense of macrophage-specific genes. The data provide a powerful resource for future hypothesis-driven investigations of the mechanisms of adipocyte differentiation and adipose tissue plasticity.
Collapse
Affiliation(s)
- Anitta Kinga Sárvári
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Elvira Laila Van Hauwaert
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Lasse Kruse Markussen
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ellen Gammelmark
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ann-Britt Marcher
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Morten Frendø Ebbesen
- Danish Molecular Biomedical Imaging Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Ronni Nielsen
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Jonathan Richard Brewer
- Danish Molecular Biomedical Imaging Center, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark
| | - Jesper Grud Skat Madsen
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark.
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M 5230, Denmark.
| |
Collapse
|
15
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
16
|
Lee SH, Choi NH, Koh IU, Kim BJ, Lee S, Kim SC, Choi SS. Putative positive role of inflammatory genes in fat deposition supported by altered gene expression in purified human adipocytes and preadipocytes from lean and obese adipose tissues. J Transl Med 2020; 18:433. [PMID: 33183332 PMCID: PMC7664034 DOI: 10.1186/s12967-020-02611-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/05/2020] [Indexed: 01/08/2023] Open
Abstract
Background Obesity is a chronic low-grade inflammatory disease that is generally characterized by enhanced inflammation in obese adipose tissue (AT). Here, we investigated alterations in gene expression between lean and obese conditions using mRNA-Seq data derived from human purified adipocytes (ACs) and preadipocytes (preACs). Results Total mRNA-seq data were generated with 27 AC and 21 preAC samples purified from human visceral AT collected during resection surgery in cancer patients, where the samples were classified into lean and obese categories by BMI > 25 kg/m2. We defined four classes of differentially expressed genes (DEGs) by comparing gene expression between (1) lean and obese ACs, (2) lean and obese preACs, (3) lean ACs and lean preACs, and 4) obese ACs and obese preACs. Based on an analysis of comparison 1, numerous canonical obesity-related genes, particularly inflammatory genes including IL-6, TNF-α and IL-1β, i.e., the genes that are expected to be upregulated in obesity conditions, were found to be expressed at significantly lower levels in obese ACs than in lean ACs. In contrast, some inflammatory genes were found to be expressed at higher levels in obese preACs than lean preACs in the analysis of comparison 2. The analysis of comparisons 3 and 4 showed that inflammatory gene classes were expressed at higher levels in differentiated ACs than undifferentiated preACs under both lean and obese conditions; however, the degree of upregulation was significantly greater for lean than for obese conditions. We validated our observations using previously published microarray transcriptome data deposited in the GEO database (GSE80654). Conclusions Taken together, our analyses suggest that inflammatory genes are expressed at lower levels in obese ACs than in lean ACs because lean adipogenesis involves even greater enhancement of inflammatory responses than does obese adipogenesis.
Collapse
Affiliation(s)
- Sang-Hyeop Lee
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Korea
| | - Nak-Hyeon Choi
- Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chuncheongbuk-do, 28159, Korea
| | - In-Uk Koh
- Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chuncheongbuk-do, 28159, Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chuncheongbuk-do, 28159, Korea
| | - Song Lee
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Song-Cheol Kim
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sun Shim Choi
- Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon, Gangwon-do, 24341, Korea.
| |
Collapse
|
17
|
Sun W, Yu Z, Yang S, Jiang C, Kou Y, Xiao L, Tang S, Zhu T. A Transcriptomic Analysis Reveals Novel Patterns of Gene Expression During 3T3-L1 Adipocyte Differentiation. Front Mol Biosci 2020; 7:564339. [PMID: 33195411 PMCID: PMC7525235 DOI: 10.3389/fmolb.2020.564339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Obesity is characterized by increased adipose tissue mass that results from increased fat cell size (hypertrophy) and number (hyperplasia). The molecular mechanisms that govern the regulation and differentiation of adipocytes play a critical role for better understanding of the pathological mechanism of obesity. However, the mechanism of adipocyte differentiation is still unclear. Objective The present study aims to compare the gene expression changes during adipocyte differentiation in the transcriptomic level, which may help to better understand the mechanism of adipocyte differentiation. Methods RNA sequencing (RNA-seq) technology, GO and KEGG analysis, quantitative RT-PCR, and oil red O staining methods were used in this study. Results A lot of genes were up- or down-regulated between each two differentiation stages of 3T3-L1 cells. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that lipid metabolism and oxidation–reduction reaction were mainly involved in the whole process of adipocyte differentiation. Decreased immune response and cell cycle adhesion occurred in the late phase of adipocyte differentiation, which was demonstrated by divergent expression pattern analysis. Moreover, quantitative RT-PCR results showed that the mRNA expression levels of Trpv4, Trpm4, Trpm5, and Trpm7 were significantly decreased in the differentiated adipocytes. On the other hand, the mRNA expression levels of Trpv1, Trpv2, Trpv6, and Trpc1 were significantly increased in the differentiated adipocytes. Besides, the mRNA expressions of TRPV2 and TRPM7 were also significantly increased in subcutaneous white adipose tissue from diet-induced mice. In addition, the activation of TRPM7, TRPV1, and TRPV2 suppressed the differentiation of adipocytes. Conclusion These data present the description of transcription profile changes during adipocyte differentiation and provides an in-depth analysis of the possible mechanisms of adipocyte differentiation. These data offer new insight into the understanding of the mechanisms of adipocyte differentiation.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Municipal Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tao Zhu
- Department of Respiratory Medicine, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Aleksandrova K, Egea Rodrigues C, Floegel A, Ahrens W. Omics Biomarkers in Obesity: Novel Etiological Insights and Targets for Precision Prevention. Curr Obes Rep 2020; 9:219-230. [PMID: 32594318 PMCID: PMC7447658 DOI: 10.1007/s13679-020-00393-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Omics-based technologies were suggested to provide an advanced understanding of obesity etiology and its metabolic consequences. This review highlights the recent developments in "omics"-based research aimed to identify obesity-related biomarkers. RECENT FINDINGS Recent advances in obesity and metabolism research increasingly rely on new technologies to identify mechanisms in the development of obesity using various "omics" platforms. Genetic and epigenetic biomarkers that translate into changes in transcriptome, proteome, and metabolome could serve as targets for obesity prevention. Despite a number of promising candidate biomarkers, there is an increased demand for larger prospective cohort studies to validate findings and determine biomarker reproducibility before they can find applications in primary care and public health. "Omics" biomarkers have advanced our knowledge on the etiology of obesity and its links with chronic diseases. They bring substantial promise in identifying effective public health strategies that pave the way towards patient stratification and precision prevention.
Collapse
Affiliation(s)
- Krasimira Aleksandrova
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
| | - Caue Egea Rodrigues
- Nutrition, Immunity and Metabolism Senior Scientist Group, Department of Nutrition and Gerontology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Anna Floegel
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
| | - Wolfgang Ahrens
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology-BIPS, Bremen, Germany
- Faculty of Mathematics and Computer Science, University of Bremen, Bremen, Germany
| |
Collapse
|
19
|
Renin angiotensin system inhibition attenuates adipocyte-breast cancer cell interactions. Exp Cell Res 2020; 394:112114. [DOI: 10.1016/j.yexcr.2020.112114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/24/2020] [Accepted: 05/24/2020] [Indexed: 12/21/2022]
|
20
|
Sodhi K, Denvir J, Liu J, Sanabria JR, Chen Y, Silverstein R, Xie Z, Abraham NG, Shapiro JI. Oxidant-Induced Alterations in the Adipocyte Transcriptome: Role of the Na,K-ATPase Oxidant Amplification Loop. Int J Mol Sci 2020; 21:ijms21165923. [PMID: 32824688 PMCID: PMC7460641 DOI: 10.3390/ijms21165923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/15/2020] [Indexed: 12/22/2022] Open
Abstract
(1) Background: Recently we have noted that adipocyte specific expression of the peptide, NaKtide, which was developed to attenuate the Na,K-ATPase oxidant amplification loop, could ameliorate the phenotypical features of uremic cardiomyopathy. We performed this study to better characterize the cellular transcriptomes that are involved in various biological pathways associated with adipocyte function occurring with renal failure. (2) Methods: RNAseq was performed on the visceral adipose tissue of animals subjected to partial nephrectomy. Specific expression of NaKtide in adipocytes was achieved using an adiponectin promoter. To better understand the cause of gene expression changes in vivo, 3T3L1 adipocytes were exposed to indoxyl sulfate (IS) or oxidized low density lipoprotein (oxLDL), with and without pNaKtide (the cell permeant form of NaKtide). RNAseq was also performed on these samples. (3) Results: We noted a large number of adipocyte genes were altered in experimental renal failure. Adipocyte specific NaKtide expression reversed most of these abnormalities. High correlation with some cardiac specific phenotypical features was noted amongst groups of these genes. In the murine adipocytes, both IS and oxLDL induced similar pathway changes as were noted in vivo, and pNaKtide appeared to reverse these changes. Network analysis demonstrated tremendous similarities between the network revealed by gene expression analysis with IS compared with oxLDL, and the combined in vitro dataset was noted to also have considerable similarity to that seen in vivo with experimental renal failure. (4) Conclusions: This study suggests that the myriad of phenotypical features seen with experimental renal failure may be fundamentally linked to oxidant stress within adipocytes.
Collapse
Affiliation(s)
- Komal Sodhi
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - James Denvir
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Jiang Liu
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Juan R. Sanabria
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.C.); (R.S.)
| | - Roy Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (Y.C.); (R.S.)
| | - Zijian Xie
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
| | - Nader G. Abraham
- Departments of Medicine and Pharmacology, New York Medical College, Valhalla, NY 10595, USA;
| | - Joseph I. Shapiro
- Departments of Medicine, Surgery, and Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA; (K.S.); (J.D.); (J.L.); (J.R.S.)
- Correspondence: ; Tel.: +1-(304)-691-1704
| |
Collapse
|
21
|
Adenosine and adenosine receptors in colorectal cancer. Int Immunopharmacol 2020; 87:106853. [PMID: 32755765 DOI: 10.1016/j.intimp.2020.106853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/24/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022]
Abstract
CD39 (nucleoside triphosphate diphosphohydrolase) and Ecto-5-nucleotidase (CD73) have been recognized as important factors mediating various pathological and physiological responses in the tumor microenvironment. Elevated expression of CD73 and CD39 is correlated with the over-production of adenosine in the tumor region. This increase is associated with an immunosuppressive state in the tumor site that enhances various tumor hallmarks such as metastasis, angiogenesis, and cell proliferation. Adenosine promotes these behaviors through interaction with four adenosine receptors, including A3R, A2BR, A2AR, and A1R. Signaling of these receptors reduces the function of immune effector cells and enhances the expansion and function of tumor-associated immune cells. Several studies have been shown the important role of adenosine/CD73/CD39/ARs axis in the immunopathogenesis of colorectal cancer. These findings imply that components of this axis can be considered as a worthy target for colorectal cancer immunotherapy. In this review, we summarized the role of CD73/CD39/adenosine/ARs in the immunopathogenesis of colorectal cancer.
Collapse
|
22
|
Tait S, Baldassarre A, Masotti A, Calura E, Martini P, Varì R, Scazzocchio B, Gessani S, Del Cornò M. Integrated Transcriptome Analysis of Human Visceral Adipocytes Unravels Dysregulated microRNA-Long Non-coding RNA-mRNA Networks in Obesity and Colorectal Cancer. Front Oncol 2020; 10:1089. [PMID: 32714872 PMCID: PMC7351520 DOI: 10.3389/fonc.2020.01089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity, and the obesity-associated inflammation, represents a major risk factor for the development of chronic diseases, including colorectal cancer (CRC). Dysfunctional visceral adipose tissue (AT) is now recognized as key player in obesity-associated morbidities, although the biological processes underpinning the increased CRC risk in obese subjects are still a matter of debate. Recent findings have pointed to specific alterations in the expression pattern of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), and long non-coding RNAs (lncRNAs), as mechanisms underlying dysfunctional adipocyte phenotype in obesity. Nevertheless, the regulatory networks and interrelated processes relevant for adipocyte functions, that may contribute to a tumor-promoting microenvironment, are poorly known yet. To this end, based on RNA sequencing data, we identified lncRNAs and miRNAs, which are aberrantly expressed in visceral adipocytes from obese and CRC subjects, as compared to healthy lean control, and validated a panel of modulated ncRNAs by real-time qPCR. Furthermore, by combining the differentially expressed lncRNA and miRNA profiles with the transcriptome analysis dataset of adipocytes from lean and obese subjects affected or not by CRC, lncRNA-miRNA-mRNA adipocyte networks were defined for obese and CRC subjects. This analysis highlighted several ncRNAs modulation that are common to both obesity and CRC or unique of each disorder. Functional enrichment analysis of network-related mRNA targets, revealed dysregulated pathways associated with metabolic processes, lipid and energy metabolism, inflammation, and cancer. Moreover, adipocytes from obese subjects affected by CRC exhibited a higher complexity, in terms of number of genes, lncRNAs, miRNAs, and biological processes found to be dysregulated, providing evidence that the transcriptional and post-transcriptional program of adipocytes from CRC patients is deeply affected by obesity. Overall, this study adds further evidence for a central role of visceral adipocyte dysfunctions in the obesity-cancer relationship.
Collapse
Affiliation(s)
- Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Research Laboratories, Rome, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| | - Paolo Martini
- Department of Biology, University of Padua, Padua, Italy
| | - Rosaria Varì
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Del Cornò
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Mol Metab 2020; 34:27-42. [PMID: 32180558 PMCID: PMC6997501 DOI: 10.1016/j.molmet.2019.12.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The diminished glucose lowering effect of insulin in obesity, called "insulin resistance," is associated with glucose intolerance, type 2 diabetes, and other serious maladies. Many publications on this topic have suggested numerous hypotheses on the molecular and cellular disruptions that contribute to the syndrome. However, significant uncertainty remains on the mechanisms of its initiation and long-term maintenance. SCOPE OF REVIEW To simplify insulin resistance analysis, this review focuses on the unifying concept that adipose tissue is a central regulator of systemic glucose homeostasis by controlling liver and skeletal muscle metabolism. Key aspects of adipose function related to insulin resistance reviewed are: 1) the modes by which specific adipose tissues control hepatic glucose output and systemic glucose disposal, 2) recently acquired understanding of the underlying mechanisms of these modes of regulation, and 3) the steps in these pathways adversely affected by obesity that cause insulin resistance. MAJOR CONCLUSIONS Adipocyte heterogeneity is required to mediate the multiple pathways that control systemic glucose tolerance. White adipocytes specialize in sequestering triglycerides away from the liver, muscle, and other tissues to limit toxicity. In contrast, brown/beige adipocytes are very active in directly taking up glucose in response to β adrenergic signaling and insulin and enhancing energy expenditure. Nonetheless, white, beige, and brown adipocytes all share the common feature of secreting factors and possibly exosomes that act on distant tissues to control glucose homeostasis. Obesity exerts deleterious effects on each of these adipocyte functions to cause insulin resistance.
Collapse
Affiliation(s)
- Michael P Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
24
|
Nozato Y, Takami Y, Yamamoto K, Nagasawa M, Nozato S, Imaizumi Y, Takeshita H, Wang C, Ito Y, Takeda S, Takeya Y, Sugimoto K, Nakagami H, Hanayama R, Rakugi H. Novel properties of myoferlin in glucose metabolism via pathways involving modulation of adipose functions. FASEB J 2020; 34:2792-2811. [PMID: 31912559 DOI: 10.1096/fj.201901539rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 11/11/2022]
Abstract
While adipose tissue is required to maintain glucose metabolism, excessive calorie intake induces obesity via mechanisms including accelerated proliferation and differentiation of preadipocytes, leading to insulin resistance. Here, we investigated the role of myoferlin (MYOF), a ferlin family protein, in regulating glucose metabolism by mainly focusing on its unknown role in adipose tissue. Whereas young MYOF knockout (KO) mice on a normal diet showed aggravated glucose tolerance and insulin sensitivity, those on a high-fat diet (HFD) showed preserved glucose tolerance with an attenuated gain of body weight, reduced visceral fat deposits, and less severe fatty liver. The Adipose MYOF expression was reduced by aging but was restored by an HFD along with the retained expression of NFAT transcription factors. Loss-of-function of MYOF in preadipocytes suppressed proliferation and differentiation into mature adipocytes along with the decreased expression of genes involved in adipogenesis. The MYOF expression in preadipocytes was reduced with differentiation. Attenuated obesity in MYOF KO mice on an HFD was also accompanied with increased oxygen consumption by an unidentified mechanism and with reduced adipose inflammation due to less inflammatory macrophages. These insights suggest that the multifunctional roles of MYOF involve the regulation of preadipocyte function and affect glucose metabolism bidirectionally depending on consumed calories.
Collapse
Affiliation(s)
- Yoichi Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motonori Nagasawa
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoko Nozato
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Imaizumi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hikari Takeshita
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Cheng Wang
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yuki Ito
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ken Sugimoto
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Rikinari Hanayama
- Department of Immunology, Graduate School of Medicine & WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|