1
|
Banerjee A, Dass D, Mukherjee S, Kaul M, Harshithkumar R, Bagchi P, Mukherjee A. The 'Oma's of the Gammas-Cancerogenesis by γ-Herpesviruses. Viruses 2024; 16:1928. [PMID: 39772235 PMCID: PMC11680331 DOI: 10.3390/v16121928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/03/2025] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis. These viral proteins can modulate several cellular pathways, including the NF-κB and JAK/STAT pathways, which play essential roles in cell survival and inflammation. Epigenetic modifications further contribute to EBV- and KSHV-mediated cancerogenesis. Both EBV and KSHV manipulate host cell DNA methylation, histone modification, and chromatin remodeling, the interplay of which contribute to the elevation of oncogene expression and the silencing of the tumor suppressor genes. Immune factors also play a pivotal role in the development of cancer. The γ-herpesviruses have evolved intricate immune evasion strategies, including the manipulation of the major histocompatibility complex (MHC) and the release of cytokines, allowing infected cells to evade immune detection and destruction. In addition, a compromised immune system, such as in HIV/AIDS patients, significantly increases the risk of cancers associated with EBV and KSHV. This review aims to provide a comprehensive overview of the genetic, epigenetic, and immune mechanisms by which γ-herpesviruses drive cancerogenesis, highlighting key molecular pathways and potential therapeutic targets.
Collapse
Affiliation(s)
- Anwesha Banerjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Debashree Dass
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Soumik Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Mollina Kaul
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - R. Harshithkumar
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
| | - Parikshit Bagchi
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anupam Mukherjee
- Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India; (A.B.); (D.D.); (S.M.); (M.K.); (R.H.)
- AcSIR—Academy of Scientific & Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
2
|
Mohammadinasr M, Montazersaheb S, Hosseini V, Kahroba H, Talebi M, Molavi O, Ayromlou H, Hejazi MS. Epstein-Barr virus-encoded BART9 and BART15 miRNAs are elevated in exosomes of cerebrospinal fluid from relapsing-remitting multiple sclerosis patients. Cytokine 2024; 179:156624. [PMID: 38692184 DOI: 10.1016/j.cyto.2024.156624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
Epstein-Barr virus (EBV) infection is approved as the main environmental trigger of multiple sclerosis (MS). In this path, we quantified ebv-miR-BART9-3p and ebv-miR-BART15 in exosomes of cerebrospinal fluid (CSF) of untreated relapsing-remitting MS (RRMS) patients in comparison with the control group. Interestingly, patients displayed significant upregulation of ebv-miR-BART9-3p (18.4-fold) and ebv-miR-BART15 (3.1-fold) expression in CSF exosomes. Moreover, the expression levels of hsa-miR-21-5p and hsa-miR-146a-5p were found to be significantly elevated in the CSF samples obtained from the patient group compared to those obtained from the HC group. The levels of Interferon-gamma (IFN-γ), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-23 (IL-23), transforming growth factor beta (TGF-β), and tumor necrosis factor-alpha (TNF-α) were observed to be significantly elevated in the serum and CSF exosomes of the patients. The highest increase was observed in TGF-β (8.5-fold), followed by IL-23 (3.9-fold) in CSF exosomes. These findings are in agreement with the association between EBV infection and inflammatory cytokines induction. Furthermore, the ratios of TGF-β: TNF-α and TGF-β: IFN-γ attained values of 4 to 16.4 and 1.3 to 3.6, respectively, in the CSF exosomes of the patients, in comparison to those of the control group. These findings show EBV activity in RRMS patients is different from that of healthy ones. Elevation of ebv-miR-BART9-3p, ebv-miR-BART15, and inflammatory cytokines expression in CSF exosomes in RRMS patients provides a substantial link between EBV activity and the onset of the disease, as well as the transition from EBV infection to MS.
Collapse
Affiliation(s)
- Mina Mohammadinasr
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahid Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School of Oncology and Development Biology, Maastricht University, Maastricht, The Netherlands; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Mahnaz Talebi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ommoleila Molavi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hormoz Ayromlou
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Zhang H, Liu X, Shi J, Su X, Xie J, Meng Q, Dong H. Research progress on the mechanism of exosome-mediated virus infection. Front Cell Infect Microbiol 2024; 14:1418168. [PMID: 38988816 PMCID: PMC11233549 DOI: 10.3389/fcimb.2024.1418168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Exosomes are extracelluar vesicles that facilitate intercellular communication and are pivotal in post-transcriptional regulation within cellular gene regulatory networks, impacting pathogen dynamics. These vesicles serve as crucial regulators of immune responses, mediating cellular interactions and enabling the introduction of viral pathogenic regions into host cells. Exosomes released from virus-infected cells harbor diverse microRNAs (miRNAs), which can be transferred to recipient cells, thereby modulating virus infection. This transfer is a critical element in the molecular interplay mediated by exosomes. Additionally, the endosomal sorting complex required for transport (ESCRT) within exosomes plays a vital role in virus infection, with ESCRT components binding to viral proteins to facilitate virus budding. This review elucidates the roles of exosomes and their constituents in the invasion of host cells by viruses, aiming to shed new light on the regulation of viral transmission via exosomes.
Collapse
Affiliation(s)
- Hanjia Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuanyi Liu
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiuming Shi
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Xuan Su
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Jiayuan Xie
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
| | - Qingfeng Meng
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, Jilin, China
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Xu Y, Chen Y, Yang Q, Lu Y, Zhou R, Liu H, Tu Y, Shao L. Novel plasma microRNA expression features in diagnostic use for Epstein-Barr virus-associated febrile diseases. Heliyon 2024; 10:e26810. [PMID: 38444478 PMCID: PMC10912469 DOI: 10.1016/j.heliyon.2024.e26810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/01/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Background Epstein-Barr virus (EBV) is widely infected in humans and causes various diseases. Among them, microRNAs of EBV play a key role in the progression of EBV-associated febrile diseases. There're few specific indicators for rapid differential diagnosis of various febrile diseases associated with EBV, and the lack of more reliable screening methods with high diagnostic utility has led to spaces for improvement in the accurate diagnosis and efficient treatment of relevant patients, making EBV infection a complicated clinical problem. With recent advances in plasma microRNA testing, the apparent presence of EBV microRNAs in plasma can help screen for EBV infection. The gene networks targeted by these microRNAs can also indicate potential biomarkers of EBV-associated febrile diseases. This study aimed to identify some novel miRNAs as potential biomarkers for early diagnosis of respectively EBV-associated febrile diseases. Materials and methods A total of 110 participants were recruited for this task. First, we performed high-throughput sequencing and preliminary PCR validation of differentially expressed miRNAs in 15 participants with EBV-associated fever (divided into common EBV carriers), infectious mononucleosis (IM) and chronic active EBV infection (CAEBV), EBV-associated Hemophagocytic Lymphohistiocytosis group (EBV-HLH), and 3 healthy individuals. After a comprehensive analysis, 10 miRNAs with abnormal expression were screened, and then qRT-PCR was performed in the rest of 95 participants to detect the validation of miRNAs expression in plasma samples. Thereafter, we further investigated their potential for clinical application in EBV-related febrile diseases by using a combination of Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Protein-protein interaction network analysis. Results Through identification and detailed analysis of the obtained data, we found significant differences in the expression of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in blood samples from patients with different EBV-related febrile diseases. We found that the expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p in plasma are indicative of determining different disease types of EBV-related febrile diseases, while EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets. Conclusion The expression levels of Hsa-miR-320d, EBV-miR-BART22, and EBV-miR-BART2-3p suggest that they may be used as transcriptional features for early differential diagnosis of EBV-related febrile diseases, and EBV-miR-BART22 and EBV-miR-BART2-3p may be potential therapeutic targets.
Collapse
Affiliation(s)
- YiFei Xu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Ying Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Qingluan Yang
- Department of Infectious Diseases, National Medical Center for InfectiousDiseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety EmergencyResponse, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yuxiang Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Rui Zhou
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Haohua Liu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Yanjie Tu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
- Department of Febrile Disease, School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People‘s Republic of China
| | - Lingyun Shao
- Department of Infectious Diseases, National Medical Center for InfectiousDiseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety EmergencyResponse, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
5
|
Debuysschere C, Nekoua MP, Hober D. Markers of Epstein-Barr Virus Infection in Patients with Multiple Sclerosis. Microorganisms 2023; 11:1262. [PMID: 37317236 DOI: 10.3390/microorganisms11051262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/16/2023] Open
Abstract
Viral infections have been suspected of being involved in the pathogenesis of certain autoimmune diseases for many years. Epstein-Barr virus (EBV), a DNA virus belonging to the Herpesviridae family, is thought to be associated with the onset and/or the progression of multiple sclerosis (MS), systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome and type 1 diabetes. The lifecycle of EBV consists of lytic cycles and latency programmes (0, I, II and III) occurring in infected B-cells. During this lifecycle, viral proteins and miRNAs are produced. This review provides an overview of the detection of EBV infection, focusing on markers of latency and lytic phases in MS. In MS patients, the presence of latency proteins and antibodies has been associated with lesions and dysfunctions of the central nervous system (CNS). In addition, miRNAs, expressed during lytic and latency phases, may be detected in the CNS of MS patients. Lytic reactivations of EBV can occur in the CNS of patients as well, with the presence of lytic proteins and T-cells reacting to this protein in the CNS of MS patients. In conclusion, markers of EBV infection can be found in MS patients, which argues in favour of a relationship between EBV and MS.
Collapse
Affiliation(s)
- Cyril Debuysschere
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| | | | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, 59000 Lille, France
| |
Collapse
|
6
|
Ortega-Hernandez OD, Martínez-Cáceres EM, Presas-Rodríguez S, Ramo-Tello C. Epstein-Barr Virus and Multiple Sclerosis: A Convoluted Interaction and the Opportunity to Unravel Predictive Biomarkers. Int J Mol Sci 2023; 24:ijms24087407. [PMID: 37108566 PMCID: PMC10138841 DOI: 10.3390/ijms24087407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Since the early 1980s, Epstein-Barr virus (EBV) infection has been described as one of the main risk factors for developing multiple sclerosis (MS), and recently, new epidemiological evidence has reinforced this premise. EBV seroconversion precedes almost 99% of the new cases of MS and likely predates the first clinical symptoms. The molecular mechanisms of this association are complex and may involve different immunological routes, perhaps all running in parallel (i.e., molecular mimicry, the bystander damage theory, abnormal cytokine networks, and coinfection of EBV with retroviruses, among others). However, despite the large amount of evidence available on these topics, the ultimate role of EBV in the pathogenesis of MS is not fully understood. For instance, it is unclear why after EBV infection some individuals develop MS while others evolve to lymphoproliferative disorders or systemic autoimmune diseases. In this regard, recent studies suggest that the virus may exert epigenetic control over MS susceptibility genes by means of specific virulence factors. Such genetic manipulation has been described in virally-infected memory B cells from patients with MS and are thought to be the main source of autoreactive immune responses. Yet, the role of EBV infection in the natural history of MS and in the initiation of neurodegeneration is even less clear. In this narrative review, we will discuss the available evidence on these topics and the possibility of harnessing such immunological alterations to uncover predictive biomarkers for the onset of MS and perhaps facilitate prognostication of the clinical course.
Collapse
Affiliation(s)
- Oscar-Danilo Ortega-Hernandez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Eva M Martínez-Cáceres
- Department of Immunology, Hospital Universitari Germans Trias i Pujol-IGTP, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Silvia Presas-Rodríguez
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| | - Cristina Ramo-Tello
- Multiple Sclerosis Unit, Department of Neurosciences, Hospital Universitari Germans Trias i Pujol-IGTP, 08916 Badalona, Spain
| |
Collapse
|
7
|
Shen D, Hong Y, Feng Z, Chen X, Cai Y, Peng Q, Tu J. Development of dynamical network biomarkers for regulation in Epstein-Barr virus positive peripheral T cell lymphoma unspecified type. Front Genet 2022; 13:966247. [PMID: 36544484 PMCID: PMC9760704 DOI: 10.3389/fgene.2022.966247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: This study was performed to identify key regulatory network biomarkers including transcription factors (TFs), miRNAs and lncRNAs that may affect the oncogenesis of EBV positive PTCL-U. Methods: GSE34143 dataset was downloaded and analyzed to identify differentially expressed genes (DEGs) between EBV positive PTCL-U and normal samples. Gene ontology and pathway enrichment analyses were performed to illustrate the potential function of the DEGs. Then, key regulators including TFs, miRNAs and lncRNAs involved in EBV positive PTCL-U were identified by constructing TF-mRNA, lncRNA-miRNA-mRNA, and EBV encoded miRNA-mRNA regulatory networks. Results: A total of 96 DEGs were identified between EBV positive PTCL-U and normal tissues, which were related to immune responses, B cell receptor signaling pathway, chemokine activity. Pathway analysis indicated that the DEGs were mainly enriched in cytokine-cytokine receptor interaction and chemokine signaling pathway. Based on the TF network, hub TFs were identified regulate the target DEGs. Afterwards, a ceRNA network was constructed, in which miR-181(a/b/c/d) and lncRNA LINC01744 were found. According to the EBV-related miRNA regulatory network, CXCL10 and CXCL11 were found to be regulated by EBV-miR-BART1-3p and EBV-miR-BHRF1-3, respectively. By integrating the three networks, some key regulators were found and may serve as potential network biomarkers in the regulation of EBV positive PTCL-U. Conclusion: The network-based approach of the present study identified potential biomarkers including transcription factors, miRNAs, lncRNAs and EBV-related miRNAs involved in EBV positive PTCL-U, assisting us in understanding the molecular mechanisms that underlie the carcinogenesis and progression of EBV positive PTCL-U.
Collapse
Affiliation(s)
- Dan Shen
- Department of Oncology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Hong
- Department of Cardiothoracic Surgery, Suzhou BenQ Hospital, Suzhou, China
| | - Zhengyang Feng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiangying Chen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxing Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qiliang Peng
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Jian Tu, ; Qiliang Peng,
| | - Jian Tu
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Jian Tu, ; Qiliang Peng,
| |
Collapse
|
8
|
Atri-Schuller A, Abushukair H, Cavalcante L, Hentzen S, Saeed A, Saeed A. Tumor Molecular and Microenvironment Characteristics in EBV-Associated Malignancies as Potential Therapeutic Targets: Focus on Gastric Cancer. Curr Issues Mol Biol 2022; 44:5756-5767. [PMID: 36421674 PMCID: PMC9689242 DOI: 10.3390/cimb44110390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 09/30/2023] Open
Abstract
Although most people are infected with Epstein-Barr Virus (EBV) during their lifetime, only a minority of them develop an EBV-associated malignancy. EBV acts in both direct and indirect ways to transform infected cells into tumor cells. There are multiple ways in which the EBV, host, and tumor environment interact to promote malignant transformation. This paper focuses on some of the mechanisms that EBV uses to transform the tumor microenvironment (TME) of EBV-associated gastric cancer (EBVaGC) for its benefit, including overexpression of Indoleamine 2,3-Dioxygenase 1 (IDO1), synergism between H. pylori and EBV co-infection, and M1 to M2 switch. In this review, we expand on different modalities and combinatorial approaches to therapeutically target this mechanism.
Collapse
Affiliation(s)
- Aviva Atri-Schuller
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Hassan Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ludimila Cavalcante
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Stijn Hentzen
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Azhar Saeed
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, University of Kansas Cancer Center, 2330 Shawnee Mission Pkwy, Kansas City, KS 66205, USA
| |
Collapse
|
9
|
Are Viral Infections Key Inducers of Autoimmune Diseases? Focus on Epstein–Barr Virus. Viruses 2022; 14:v14091900. [PMID: 36146707 PMCID: PMC9506567 DOI: 10.3390/v14091900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022] Open
Abstract
It is generally accepted that certain viral infections can trigger the development of autoimmune diseases. However, the exact mechanisms by which these viruses induce autoimmunity are still not understood. In this review, we first describe hypothetical mechanisms by which viruses induce some representative autoimmune diseases. Then, we focus on Epstein–Barr virus (EBV) and discuss its role in the pathogenesis of rheumatoid arthritis (RA). The discussion is mainly based on our own previous findings that (A) EBV DNA and its products EBV-encoded small RNA (EBER) and latent membrane protein 1 (LMP1) are present in the synovial lesions of RA, (B) mRNA expression of the signaling lymphocytic activation molecule-associated protein (SAP)/SH2D1A gene that plays a critical role in cellular immune responses to EBV is reduced in the peripheral T cells of patients with RA, and (C) EBV infection of mice reconstituted with human immune system components (humanized mice) induced erosive arthritis that is pathologically similar to RA. Additionally, environmental factors may contribute to EBV reactivation as follows: Porphyromonas gingivalis peptidylarginine deiminase (PAD), an enzyme required for citrullination, engenders antigens leading to the production of citrullinated peptides both in the gingiva and synovium. Anti-citrullinated peptides autoantibody is an important marker for diagnosis and disease activity of RA. These findings, as well as various results obtained by other researchers, strongly suggest that EBV is directly involved in the pathogenesis of RA, a typical autoimmune disease.
Collapse
|
10
|
Wyżewski Z, Mielcarska MB, Gregorczyk-Zboroch KP, Myszka A. Virus-Mediated Inhibition of Apoptosis in the Context of EBV-Associated Diseases: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2022; 23:ijms23137265. [PMID: 35806271 PMCID: PMC9266970 DOI: 10.3390/ijms23137265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Epstein-Barr virus (EBV), the representative of the Herpesviridae family, is a pathogen extensively distributed in the human population. One of its most characteristic features is the capability to establish latent infection in the host. The infected cells serve as a sanctuary for the dormant virus, and therefore their desensitization to apoptotic stimuli is part of the viral strategy for long-term survival. For this reason, EBV encodes a set of anti-apoptotic products. They may increase the viability of infected cells and enhance their resistance to chemotherapy, thereby contributing to the development of EBV-associated diseases, including Burkitt’s lymphoma (BL), Hodgkin’s lymphoma (HL), gastric cancer (GC), nasopharyngeal carcinoma (NPC) and several other malignancies. In this paper, we have described the molecular mechanism of anti-apoptotic actions of a set of EBV proteins. Moreover, we have reviewed the pro-survival role of non-coding viral transcripts: EBV-encoded small RNAs (EBERs) and microRNAs (miRNAs), in EBV-carrying malignant cells. The influence of EBV on the expression, activity and/or intracellular distribution of B-cell lymphoma 2 (Bcl-2) protein family members, has been presented. Finally, we have also discussed therapeutic perspectives of targeting viral anti-apoptotic products or their molecular partners.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
- Correspondence: ; Tel.: +48-728-208-338
| | - Matylda Barbara Mielcarska
- Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 166, 02-787 Warsaw, Poland; (M.B.M.); (K.P.G.-Z.)
| | | | - Anna Myszka
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University, Dewajtis 5, 01-815 Warsaw, Poland;
| |
Collapse
|
11
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
12
|
Xu L, Guo X, Guan H. Serious consequences of Epstein-Barr virus infection: Hemophagocytic lymphohistocytosis. Int J Lab Hematol 2021; 44:74-81. [PMID: 34709704 DOI: 10.1111/ijlh.13736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
Human is the host of the Epstein-Barr virus (EBV) especially in childhood and adolescence. Most of them are asymptomatic infection and self-limiting. However, for those patients who suffer from immune dysfunction, EBV infection will be life-threatening. Epstein-Barr virus-associated hemophagocytic lymphohistocytosis (EBV-HLH) is one of the severe effects. The diagnosis and differential diagnosis of EBV-HLH and other EBV infectious diseases are mentioned in this paper. The molecular biology mechanism and complications of EBV-HLH are equally briefly presented. It also provides a practical method for the genetic diagnosis of such diseases and the differential diagnosis with other human immunodeficiency diseases for medical scientists in routine clinical practice.
Collapse
Affiliation(s)
- Lingyue Xu
- Department of Clinical Hematology, Qingdao University School of Medicine, Qingdao, China
| | - Xiaofang Guo
- Department of Clinical Hematology, Qingdao University School of Medicine, Qingdao, China
| | - Hongzai Guan
- Department of Clinical Hematology, Qingdao University School of Medicine, Qingdao, China
| |
Collapse
|
13
|
Brinkmeyer-Langford C, Amstalden K, Konganti K, Hillhouse A, Lawley K, Perez-Gomez A, Young CR, Welsh CJ, Threadgill DW. Resilience in Long-Term Viral Infection: Genetic Determinants and Interactions. Int J Mol Sci 2021; 22:ijms222111379. [PMID: 34768809 PMCID: PMC8584141 DOI: 10.3390/ijms222111379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-induced neurological sequelae resulting from infection by Theiler's murine encephalomyelitis virus (TMEV) are used for studying human conditions ranging from epileptic seizures to demyelinating disease. Mouse strains are typically considered susceptible or resistant to TMEV infection based on viral persistence and extreme phenotypes, such as demyelination. We have identified a broader spectrum of phenotypic outcomes by infecting strains of the genetically diverse Collaborative Cross (CC) mouse resource. We evaluated the chronic-infection gene expression profiles of hippocampi and thoracic spinal cords for 19 CC strains in relation to phenotypic severity and TMEV persistence. Strains were clustered based on similar phenotypic profiles and TMEV levels at 90 days post-infection, and we categorized distinct TMEV response profiles. The three most common profiles included "resistant" and "susceptible," as before, as well as a "resilient" TMEV response group which experienced both TMEV persistence and mild neurological phenotypes even at 90 days post-infection. Each profile had a distinct gene expression signature, allowing the identification of pathways and networks specific to each TMEV response group. CC founder haplotypes for genes involved in these pathways/networks revealed candidate response-specific alleles. These alleles demonstrated pleiotropy and epigenetic (miRNA) regulation in long-term TMEV infection, with particular relevance for resilient mouse strains.
Collapse
Affiliation(s)
- Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Correspondence:
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Andrew Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
| | - Koedi Lawley
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Aracely Perez-Gomez
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA; (K.A.); (K.L.); (A.P.-G.); (C.R.Y.); (C.J.W.)
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA; (K.K.); (A.H.); (D.W.T.)
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
14
|
Charostad J, Nakhaei M, Azaran A, Kaydani GA, Astani A, Motamedfar A, Makvandi M. MiRNA-218 Is Frequently Downregulated in Malignant Breast Tumors: A Footprint of Epstein-Barr Virus Infection. IRANIAN JOURNAL OF PATHOLOGY 2021; 16:376-385. [PMID: 34567186 PMCID: PMC8463758 DOI: 10.30699/ijp.20201.521107.2550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/07/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND & OBJECTIVE The role of Epstein-Barr Virus in development of breast cancer is frequently studied. In this regard, miRNAs are among the contributing elements in the molecular pathophysiology of EBV-related diseases. In addition, a growing number of host miRNAs are believed to be implicated in pathogenesis of breast cancer. MiR-218 is a tumor suppressive miRNA that is subjected to dysregulation in various EBV-associated cancers. We aimed to investigate the frequency of EBV and its relationship with expression status of tumor suppressive miR-218 in breast cancer and adjacent normal tissue. METHODS A total number of 51 fresh malignant breast cancer tissues (cases) and their adjacent normal tissues (controls) were collected. Nested-PCR and RT-qPCR were set to identify EBV frequency and miR-218 expression in cases and controls, respectively. RESULTS Out of all samples, 6.8% (7/102) comprising 11.6% (6/51) in malignant tissues and 1.9% (1/51) in normal control tissues were positive for EBV (P<0.05). Quantitative data showed that miR-218 was significantly downregulated in malignant tissues compared to control tissues (P<0.0001). In addition, reduced expression of miR-218 was associated with adverse clinical outcomes, metastasis, and higher grades of malignancy. Given the presence of EBV, lower expression of miR-218 was observed in breast cancer group in comparison with normal group (P<0.05). CONCLUSION Our results raise the possibility of the relation between EBV infection and miR-218 downregulation in breast cancer and propose further investigations in this regard.
Collapse
Affiliation(s)
- Javad Charostad
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Nakhaei
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azarakhsh Azaran
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholam Abbas Kaydani
- Department of Laboratory Sciences, School of Allied Health Sciences, Ahvaz Jundishapur University of Medical sciences Ahvaz, Iran
| | - Akram Astani
- Department of Microbiology, Shahid Sadoghi University of Medical Sciences, Yazd, Iran
| | - Azim Motamedfar
- Department of Nuclear Medicine, School of Medicine, Golestan Hospital, Ahvaz Jundishapur University of Medical sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Luan X, Zhou X, Fallah P, Pandya M, Lyu H, Foyle D, Burch D, Diekwisch TGH. MicroRNAs: Harbingers and shapers of periodontal inflammation. Semin Cell Dev Biol 2021; 124:85-98. [PMID: 34120836 DOI: 10.1016/j.semcdb.2021.05.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Periodontal disease is an inflammatory reaction of the periodontal tissues to oral pathogens. In the present review we discuss the intricate effects of a regulatory network of gene expression modulators, microRNAs (miRNAs), as they affect periodontal morphology, function and gene expression during periodontal disease. These miRNAs are small RNAs involved in RNA silencing and post-transcriptional regulation and affect all stages of periodontal disease, from the earliest signs of gingivitis to the regulation of periodontal homeostasis and immunity and to the involvement in periodontal tissue destruction. MiRNAs coordinate periodontal disease progression not only directly but also through long non-coding RNAs (lncRNAs), which have been demonstrated to act as endogenous sponges or decoys that regulate the expression and function of miRNAs, and which in turn suppress the targeting of mRNAs involved in the inflammatory response, cell proliferation, migration and differentiation. While the integrity of miRNA function is essential for periodontal health and immunity, miRNA sequence variations (genetic polymorphisms) contribute toward an enhanced risk for periodontal disease progression and severity. Several polymorphisms in miRNA genes have been linked to an increased risk of periodontitis, and among those, miR-146a, miR-196, and miR-499 polymorphisms have been identified as risk factors for periodontal disease. The role of miRNAs in periodontal disease progression is not limited to the host tissues but also extends to the viruses that reside in periodontal lesions, such as herpesviruses (human herpesvirus, HHV). In advanced periodontal lesions, HHV infections result in the release of cytokines from periodontal tissues and impair antibacterial immune mechanisms that promote bacterial overgrowth. In turn, controlling the exacerbation of periodontal disease by minimizing the effect of periodontal HHV in periodontal lesions may provide novel avenues for therapeutic intervention. In summary, this review highlights multiple levels of miRNA-mediated control of periodontal disease progression, (i) through their role in periodontal inflammation and the dysregulation of homeostasis, (ii) as a regulatory target of lncRNAs, (iii) by contributing toward periodontal disease susceptibility through miRNA polymorphism, and (iv) as periodontal microflora modulators via viral miRNAs.
Collapse
Affiliation(s)
- Xianghong Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Xiaofeng Zhou
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA
| | - Pooria Fallah
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Mirali Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Huling Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA; Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Deborah Foyle
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA
| | - Dan Burch
- Department of Pedodontics, TAMU College of Dentistry, 75246 Dallas, TX, USA
| | - Thomas G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, 75246 Dallas, TX USA.
| |
Collapse
|
16
|
Afrasiabi A, Fewings NL, Schibeci SD, Keane JT, Booth DR, Parnell GP, Swaminathan S. The Interaction of Human and Epstein-Barr Virus miRNAs with Multiple Sclerosis Risk Loci. Int J Mol Sci 2021; 22:ijms22062927. [PMID: 33805769 PMCID: PMC8000127 DOI: 10.3390/ijms22062927] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
Although the causes of Multiple Sclerosis (MS) still remain largely unknown, multiple lines of evidence suggest that Epstein–Barr virus (EBV) infection may contribute to the development of MS. Here, we aimed to identify the potential contribution of EBV-encoded and host cellular miRNAs to MS pathogenesis. We identified differentially expressed host miRNAs in EBV infected B cells (LCLs) and putative host/EBV miRNA interactions with MS risk loci. We estimated the genotype effect of MS risk loci on the identified putative miRNA:mRNA interactions in silico. We found that the protective allele of MS risk SNP rs4808760 reduces the expression of hsa-mir-3188-3p. In addition, our analysis suggests that hsa-let-7b-5p may interact with ZC3HAV1 differently in LCLs compared to B cells. In vitro assays indicated that the protective allele of MS risk SNP rs10271373 increases ZC3HAV1 expression in LCLs, but not in B cells. The higher expression for the protective allele in LCLs is consistent with increased IFN response via ZC3HAV1 and so decreased immune evasion by EBV. Taken together, this provides evidence that EBV infection dysregulates the B cell miRNA machinery, including MS risk miRNAs, which may contribute to MS pathogenesis via interaction with MS risk genes either directly or indirectly.
Collapse
Affiliation(s)
- Ali Afrasiabi
- Systems Biology and Health Data Analytics Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia;
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia; (N.L.F.); (S.D.S.); (J.T.K.)
| | - Nicole L. Fewings
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia; (N.L.F.); (S.D.S.); (J.T.K.)
| | - Stephen D. Schibeci
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia; (N.L.F.); (S.D.S.); (J.T.K.)
| | - Jeremy T. Keane
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia; (N.L.F.); (S.D.S.); (J.T.K.)
| | - David R. Booth
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia; (N.L.F.); (S.D.S.); (J.T.K.)
- Correspondence: (D.R.B.); (G.P.P.); (S.S.)
| | - Grant P. Parnell
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia; (N.L.F.); (S.D.S.); (J.T.K.)
- Correspondence: (D.R.B.); (G.P.P.); (S.S.)
| | - Sanjay Swaminathan
- EBV Molecular Lab, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW 2145, Australia; (N.L.F.); (S.D.S.); (J.T.K.)
- Department of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- Correspondence: (D.R.B.); (G.P.P.); (S.S.)
| |
Collapse
|
17
|
Soltani S, Zakeri A, Tabibzadeh A, Zakeri AM, Zandi M, Siavoshi S, Seifpour S, Farahani A. A review on EBV encoded and EBV-induced host microRNAs expression profile in different lymphoma types. Mol Biol Rep 2021; 48:1801-1817. [PMID: 33523370 DOI: 10.1007/s11033-021-06152-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 01/10/2023]
Abstract
Previous literature supports the variations in microRNAs expression levels among lymphoma patients due to EBV infection. These alterations can be observed in both EBV-encoded-microRNAs and EBV-induced cellular microRNAs. Moreover, changes in the microRNA profile could be significant in disease progression. This study aimed to assess published literature to obtain a microRNA profile for both EBV-encoded microRNAs and EBV-induced cellular microRNAs among lymphoma patients. We searched common available electronic databases by using relevant keywords. The result demonstrated that EBV infection could alter the microRNA expression levels among lymphoma patients. In Burkitt lymphoma, hsa-miR197 and miR510 were most frequently assessed human micro RNAs. Also, miR-BART6-3P and miR-BART17-5P were the most frequent viral micro RNAs in Burkitt lymphoma. Other human important micro RNAs were hsa-miR155 (in Diffuse large B cell lymphoma (DLBCL)), hsa-miR145 (in Nasal natural killer T cell lymphoma (NNKTCL)), miR-96, miR-128a, miR-128b, miR-129, and miR-205 (in Classic Hodgkin lymphoma (CHL)), miR-21, miR-142-3P, miR-126, miR-451 and miR-494-3P (in Nasal natural killer cell lymphoma (NNKCL)). Also, viral assessed micro RNAs were miR-BART1-5P (in DLBCL and NNKTCL), miR-BART-5 (in CHL), and EBV-miR-BART20-5P (in NNKCL). In conclusion, it could be suggested that EBV-encoded-microRNAs and EBV-induced cellular-microRNAs can be utilized as helpful factors for different types of lymphoma diagnoses or prognostic factors. Moreover, the mentioned microRNAs can also be promising therapeutic targets and can be used to modulate the oncogenes.
Collapse
Affiliation(s)
- Saber Soltani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Zakeri
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Mohammad Zakeri
- Pediatric Surgery Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Siavoshi
- Razi Vaccine and Serum Research Institute, Karaj, Iran
| | - Saba Seifpour
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Farahani
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
18
|
Domínguez-Mozo MI, Nieto-Guerrero A, Pérez-Pérez S, García-Martínez MÁ, Arroyo R, Álvarez-Lafuente R. MicroRNAs of Human Herpesvirus 6A and 6B in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients. Front Immunol 2020; 11:2142. [PMID: 33072077 PMCID: PMC7531184 DOI: 10.3389/fimmu.2020.02142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
Human herpesvirus-6A (HHV-6A) and −6B (HHV-6B) might be involved in the etiopathogenesis of multiple sclerosis (MS), especially the HHV-6A. We aim at assessing, for the first time in the scientific literature, the HHV-6A/B microRNAs in MS patients. We analyzed the miRNAs of HHV-6A: miR-U86, and −6B: hhv6b-miR-Ro6-1, −2, −3-3p, −3-5p, and −4 in paired samples of serum and CSF of 42 untreated MS patients and 23 patients with other neurological diseases (OND), using Taqman MicroRNA Assays. Intrathecal HHV-6A/B antibody production and anti-HHV-6A/B IgG/IgM levels in serum were measured. MS clinical data were available. We detected the following miRNAs: hhv6b-miR-Ro6-2 (serum: MS:97.7%, OND:95.7%; CSF: MS:81%, OND:86.4%), 3-3p (serum: MS:4.8%, OND:0%; CSF: MS:2.4%, OND:4.5%), −3-5p (serum: MS:95.2%, OND:91.3%; CSF: MS:50%, OND:54.5%), and miR-U86 (serum: MS:54.8%, OND:47.8%; CSF: MS:11.9%, OND:9.1%). In the serum of the whole population (MS and OND patients) we found a significant correlation between the levels of hhv6b-miR-Ro6-2 and −3-5p (Spearman r = 0.839, pcorr = 3E-13), −2 and miR-U86 (Spearman r = 0.578, pcorr = 0.001) and −3-5p and miR-U86 (Spearman r = 0.698, pcorr = 1.34E-5); also in the CSF, between hhv6b-miR-Ro6-2 and −3-5p (Spearman r = 0.626, pcorr = 8.52E-4). These correlations remained statistically significant when both populations were considered separately. The anti-HHV-6A/B IgG levels in CSF and the intrathecal antibody production in positive MS patients for hhv6b-miR-Ro6-3-5p were statistically significant higher than in the negative ones (pcorr = 0.006 and pcorr = 0.036). The prevalence of miR-U86 (30.8%) in the CSF of individuals without gadolinium-enhancing lesions was higher (p = 0.035) than in the ones with these lesions (0%); however, the difference did not withstand Bonferroni correction (pcorr = 0.105). We propose a role of HHV-6A/B miRNAs in the maintenance of the viral latency state. Further investigations are warranted to validate these results and clarify the function of these viral miRNAs.
Collapse
Affiliation(s)
- María I Domínguez-Mozo
- Environmental Factors in Degenerative Diseases Research Group, Instituto Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Alejandro Nieto-Guerrero
- Environmental Factors in Degenerative Diseases Research Group, Instituto Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Silvia Pérez-Pérez
- Environmental Factors in Degenerative Diseases Research Group, Instituto Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - María Á García-Martínez
- Environmental Factors in Degenerative Diseases Research Group, Instituto Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Rafael Arroyo
- Neurology Department, Hospital Universitario Quirónsalud Madrid, Madrid, Spain
| | - Roberto Álvarez-Lafuente
- Environmental Factors in Degenerative Diseases Research Group, Instituto Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
19
|
Ashraf S, Al-Maweri SA, Alaizari N, Umair A, Ariffin Z, Alhajj MN, Kassim S, Awan KH. The association between Epstein-Barr virus and oral lichen planus: A systematic review and meta-analysis. J Oral Pathol Med 2020; 49:969-976. [PMID: 32746493 DOI: 10.1111/jop.13093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is a relatively common inflammatory disease, with unclear etiology. A number of studies have linked Epstein-Barr virus (EBV) with OLP. The present systematic review and meta-analysis aimed to evaluate the available evidence regarding the potential association between EBV and OLP. METHODS Online databases (PubMed, Scopus, Web of Science, ProQuest, and Google Scholar) were searched from date of inception till May 2020. Studies were included if they met the following criteria: 1) observational studies that assessed the relationship between EBV and OLP, 2) the study comprised OLP patients and control subjects, 3) diagnosis of OLP was confirmed histopathologically, and 4) articles were in English. Studies without control groups, experimental studies, case reports, and reviews were excluded. The fixed-effects model was performed for meta-analyses using RevMan 5.3 software. RESULTS A total of 10 studies comprising 386 OLP cases and 304 controls were included. Of these, only 8 studies were eligible for the meta-analysis. The results of the quality assessment showed that only 2 studies were of high quality, while the remaining studies were of moderate quality. The results of the pooled eight studies revealed a significant positive association between EBV and OLP (OR = 4.41, 95% CI: [2.74, 7.11], P < .0001). CONCLUSION The results of the present systematic review suggest that EBV infection is statistically associated with increased risk of OLP. However, these results are preliminary, and high-quality, large-scale studies are warranted to further explore the potential role of EBV in the pathogenesis of OLP.
Collapse
Affiliation(s)
- Sajna Ashraf
- Department of Oral Medicine and Diagnostic Sciences, AlFarabi Colleges of Dentistry and Nursing, Riyadh, Saudi Arabia
| | - Sadeq A Al-Maweri
- Department of Oral Medicine and Diagnostic Sciences, AlFarabi Colleges of Dentistry and Nursing, Riyadh, Saudi Arabia.,Department of Oral Medicine, Oral Pathology and Oral Radiology, Faculty of Dentistry, Sana'a University, Yemen, Yemen
| | - Nader Alaizari
- Department of Oral Medicine and Diagnostic Sciences, AlFarabi Colleges of Dentistry and Nursing, Riyadh, Saudi Arabia
| | - Ayesha Umair
- Department of Oral Medicine and Diagnostic Sciences, AlFarabi Colleges of Dentistry and Nursing, Riyadh, Saudi Arabia
| | - Zaihan Ariffin
- Prosthodontics Unit, School of Dental Sciences, Universiti Sains Malaysia, Heath Campus, Kelantan, Malaysia
| | - Mohammed N Alhajj
- Prosthodontics Unit, School of Dental Sciences, Universiti Sains Malaysia, Heath Campus, Kelantan, Malaysia
| | - Saba Kassim
- Department of Preventive Dental Sciences, Taibah University Dental College & Hospital, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Kamran Habib Awan
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, Utah, Utah, USA
| |
Collapse
|
20
|
Ferreira HB, Neves B, Guerra IM, Moreira A, Melo T, Paiva A, Domingues MR. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Mult Scler Relat Disord 2020; 44:102189. [PMID: 32516740 DOI: 10.1016/j.msard.2020.102189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system, and it is one of the most common neurological cause of disability in young adults. It is known that several factors contribute to increase the risk of development and pathogenesis of multiple sclerosis, nonetheless, but the true etiology of this pathology remains unknown. Similar to other inflammatory diseases, oxidative stress and lipid peroxidation are also associated to multiple sclerosis. Alterations in the lipid profile seem to be a hallmark of this pathology which can contribute to the dysregulation of lipid homeostasis and lipid metabolism in multiple sclerosis. Lipidomic studies analysed in this review clearly demonstrate the role of lipids in inflammatory processes, in immunity, and in the onset and development of multiple sclerosis. Several investigations reported alterations of some molecular lipid species, in particular, with decrease of fatty acids (FA) 18:2 and 20:4 and total polyunsaturated FA, with compensatory increases of saturated FA with shorter carbon chains. Oxidized phospholipids were reported in few studies as well. Also, it was shown that clinical lipidomics has potential as a tool to aid both in multiple sclerosis diagnosis and therapeutics by allowing a detailed lipidome profiling of the patients suffering with this disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês M Guerra
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Moreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.; Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal.
| |
Collapse
|