1
|
Li LN, Wu JM, Zheng ZJ, Li SX, Cai MY, Zou MC. N6-methyladenosine modification of THBS1 induced by affluent WTAP promotes Graves' ophthalmopathy progression through glycolysis to affect Th17/Treg balance. Autoimmunity 2025; 58:2433628. [PMID: 39689341 DOI: 10.1080/08916934.2024.2433628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 11/17/2024] [Indexed: 12/19/2024]
Abstract
Graves' ophthalmopathy (GO) obvious manifestation is the imbalance of Th17/Treg. N6-methyladenosine (m6A) methylation is an important regulator of Th17/Treg balance. However, few reports narrate how m6A regulators mediate the role of genes in GO progression. We explored the m6A modification of THBS1 mediated by WTAP, and the mechanism by which THBS1 regulated glycolysis and Th17/Treg balance. A total of 12 peripheral blood (4 GO samples, 4 GH samples, and 4 health samples) were collected to measure the percentage of Th17/Treg in monocytes by flow cytometry. RNA sequencing (RNA-seq) combined with MeRIP sequencing (MeRIP-seq) was used to screen differentially expressed and methylated genes. MeRIP-qPCR was performed to evaluate the m6A abundance of THBS1 after WTAP silencing. Glycolysis of CD4+ T cells was reflected by the lactate content and glucose uptake. The number of Th17 cells was increased in GO peripheral blood, whereas the Treg cells decreased. RNA-seq acquired 679 differentially expressed genes (308 up-regulated, and 371 down-regulated) in the CD4+ T cells of GO compared to healthy control. MeRIP-seq identified 3277 m6A peaks between the GO group and the healthy control group, corresponding with 2744 genes (1143 hypermethylated and 1601 hypomethylated). Combined analysis of RNA-seq and MeRIP-seq showed 81 hypermethylated and up-regulated genes. Among the six candidate genes in the PI3K-signaling pathway, THBS1 was the most significantly differentially expressed and hypermethylated. THBS1 silencing resulted in decreased lactate content and glucose uptake in CD4+ T cells. WTAP was significantly upregulated in CD4+ T cells of GO, and WTAP silencing significantly reduced m6A abundance and expression of THBS1. Upregulated and hypermethylated THBS1 mediated by WTAP promoted glycolysis of CD4+ T cells, affected Th17/Treg balance, and facilitated GO progression. We provided a novel potential target for GO treatment and revealed the molecular mechanism of WTAP and THBS1 in GO under the m6A perspective.
Collapse
Affiliation(s)
- Lin-Na Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jie-Man Wu
- Department of Health Management, Nanfang Hospital Zengcheng Campus, Guangzhou, China
| | - Zong-Ji Zheng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu-Xian Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng-Yi Cai
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng-Chen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Zhang MJ, Wen Y, Sun ZJ. The impact of metabolic reprogramming on tertiary lymphoid structure formation: enhancing cancer immunotherapy. BMC Med 2025; 23:217. [PMID: 40223062 PMCID: PMC11995586 DOI: 10.1186/s12916-025-04037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has achieved unprecedented success in the field of cancer therapy. However, its potential is constrained by a low therapeutic response rate. MAIN BODY Tertiary lymphoid structure (TLS) plays a crucial role in antitumor immunity and is associated with a good prognosis. Metabolic reprogramming, as a hallmark of the tumor microenvironment, can influence tumor immunity and promote the formation of follicular helper T cells and germinal centers. However, many current studies focus on the correlation between metabolism and TLS formation factors, and there is insufficient direct evidence to suggest that metabolism drives TLS formation. This review provided a comprehensive summary of the relationship between metabolism and TLS formation, highlighting glucose metabolism, lipid metabolism, amino acid metabolism, and vitamin metabolism. CONCLUSIONS In the future, an in-depth exploration of how metabolism affects cell interactions and the role of microorganisms in TLS will significantly advance our understanding of metabolism-enhanced antitumor immunity.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Yan Wen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Carnazzo V, Rigante D, Restante G, Basile V, Pocino K, Basile U. The entrenchment of NLRP3 inflammasomes in autoimmune disease-related inflammation. Autoimmun Rev 2025; 24:103815. [PMID: 40233890 DOI: 10.1016/j.autrev.2025.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Autoinflammation and autoimmunity are almost "opposite" phenomena characterized by chronic activation of the immune system, 'innate' in the first and 'adaptive' in the second, leading to inflammation of several tissues with specific protean effectors of tissue damage. The mechanism of involvement of multiprotein complexes called 'inflammasomes' within autoimmune pictures, differently from autoinflammatory conditions, is yet undeciphered. In this review we provide a comprehensive overview on NLRP3 inflammasome contribution into the pathogenesis of some autoimmune diseases. In response to autoantibodies against nucleic acids or tissue-specific antigens the NLRP3 inflammasome is activated within dendritic cells and macrophages of patients with systemic lupus erythematosus. Crucial is NLRP3 inflammasome to amplify tissue inflammation with interleukin-1 overexpression and matrix metalloproteinase production at the joint level in rheumatoid arthritis. A deregulated NLRP3 inflammasome activation occurs in the serous acini of salivary and lacrimal glands prone to Sjogren's syndrome, but also in the inflammatory process involving endothelial cells, leucocyte recruitment, and platelet plugging of vasculitides. Furthermore, organ-specific autoimmune diseases such as thyroiditis and hepatitis may display hyperactive NLRP3 inflammasomes at the level of resident immune cells within thyroid or liver, respectively. Therefore, it is not unexpected that preclinical studies have shown how specific inflammasome inhibitors may significantly overthrow the severity of different autoimmune diseases and slow down their trend towards an ominous progression. Specific markers of inflammasome activation could also reveal subclinical inflammatory components escaping conventional diagnostic approaches or improve monitoring of autoimmune diseases and personalizing their treatment.
Collapse
Affiliation(s)
- Valeria Carnazzo
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica Sacro Cuore, Rome, Italy.
| | - Giuliana Restante
- Department of Experimental Medicine, University "La Sapienza", Rome, Italy
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Krizia Pocino
- Unit of Clinical Pathology, Ospedale San Pietro Fatebenefratelli, Rome, Italy
| | - Umberto Basile
- Department of Clinical Pathology, Santa Maria Goretti Hospital, Latina, Italy.
| |
Collapse
|
4
|
Zhu Q, Han Y, Li X, Huang S, Zhao K, Xie Z, Fan Y, Zhao T. Study on the mechanism of Jieduquyuziyin prescription improving the condition of MRL/lpr mice by regulating T cell metabolic reprogramming through the AMPK/mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119584. [PMID: 40043826 DOI: 10.1016/j.jep.2025.119584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Systemic lupus erythematosus (SLE) is an autoimmune disease associated with T cell metabolic reprogramming. The traditional Chinese medicine Jieduquyuziyin prescription (JP) has demonstrated therapeutic efficacy in SLE, yet its mechanisms remain unclear. This study evaluates the therapeutic effects of JP on SLE, focusing on T cell metabolic reprogramming. AIM OF THE STUDY To assess JP's therapeutic effects on SLE and its role in regulating T cell metabolism. MATERIALS AND METHODS MRL/lpr mice were treated with JP and assessed for spleen index, serum biochemistry, autoantibodies, urine protein levels, and histopathology. Th17 and Treg proportions were analyzed via flow cytometry. CD4+T cells were evaluated for the Th17/Treg transcription factors and glucose metabolism indicators through ELISA, quantitative real-time PCR, and assay kits. The AMPK/mTOR pathway was investigated using Compound C in vivo and in vitro. RESULTS JP alleviated SLE symptoms, promoted Treg differentiation, and inhibited Th17 differentiation, restoring immune balance. JP reduced glycolysis-related metabolites and enzymes in CD4+T cells, including glucose, pyruvate, lactate, Glucose transporters1 (Glut1), Hexokinase2 (HK2), Pyruvate kinase isozyme typeM2 (PKM2), lactic dehydrogenase A (LDHA). JP decreased RORC expression, a key transcription factor for Th17 cells, and increased Foxp3 expression, a key regulator of Treg cells. JP activated AMPK and inhibited mTOR signaling in both mouse and Jurkat cell models. CONCLUSIONS JP alleviates SLE symptoms by modulating T cell metabolic reprogramming, primarily through inhibiting glycolysis and restoring the Th17/Treg balance via the AMPK/mTOR pathway. These findings underscore the significance of targeting metabolic pathways in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Qingmiao Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Yaxue Han
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaolong Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Shuo Huang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Kai Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Yongsheng Fan
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| |
Collapse
|
5
|
Liu B, Yin X, Wei H, Zhang X, Peng Y, Bi H, Guo D. MiR-30b-5p ameliorates experimental autoimmune uveitis by inhibiting the Atg5/Atg12/Becn1 Axis. Int Immunopharmacol 2025; 151:114370. [PMID: 40020463 DOI: 10.1016/j.intimp.2025.114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
CONTEXT Uveitis is a severe autoimmune eye disease that poses a significant threat to visual health. Autophagy is essential for maintaining cellular homeostasis and becomes dysregulated in autoimmune conditions like uveitis. MicroRNAs (miRNAs) can influence autophagy and apoptosis by targeting autophagy-related genes (Atg). OBJECTIVE This study aimed to investigate the role of miR-30b-5p in regulating autophagy-related genes and to explore its therapeutic potential in experimental autoimmune uveitis (EAU). MATERIALS AND METHODS EAU was induced and RT(Vega-Tapia et al., 2021 [2]) Profiler PCR Arrays were used to identify significant interactions among Atg genes and their role in uveitic pathogenesis. Both in vitro and in vivo experiments were used to assess the expression of Atg-related genes. Additionally, miR-30b-5p-carrying lentivirus injections were administered, and the levels of Atg5, Atg12, and Becn1 were measured, along with autophagosome formation through electron microscopy. Meanwhile, we also assessed inflammatory markers (i.e., IL-10, IL-17), the Th17/Treg ratio, and apoptosis. RESULTS In vitro experiments demonstrated that miR-30b-5p led to decreased expression of Atg5, Atg12, and Becn1, which resulted in a lower number of autophagosomes. In vivo validation confirmed these outcomes, showing reduced mRNA and protein levels of Atg-related molecules and diminished autophagosome formation after the injection of miR-30b-5p. Furthermore, miR-30b-5p exhibited anti-inflammatory effects by increasing IL-10 levels and decreasing IL-17, thereby improving the balance of the Th17/Treg ratio. CONCLUSION This study highlights the importance of autophagy in the pathogenesis of uveitis and identifies miR-30b-5p as a regulator of autophagy and inflammation. Targeting miR-30b-5p presents a promising therapeutic approach for treating uveitis.
Collapse
Affiliation(s)
- Bin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Xuewei Yin
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Huixia Wei
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Yuan Peng
- Shandong University of Traditional Chinese Medicine, No. 4655#, Daxue Road, Jinan 250355, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, No. 48#, Yingxiongshan Road, Jinan 250002, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, No. 48#, Yingxiongshan Road, Jinan 250002, China.
| |
Collapse
|
6
|
Hong Y, Wang D, Qian H, Jiang X, Wang Y, Liang X, Gao S, Hua C. Exploring the molecular mechanism of Tripterygium Wilfordii Hook F in treating systemic lupus erythematosus via network pharmacology and molecular docking. Clin Rheumatol 2025; 44:1549-1569. [PMID: 39934490 DOI: 10.1007/s10067-025-07311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND Tripterygium wilfordii Hook F (TwHF) is a prominent Chinese herbal formula. It exhibits significant clinical efficacy in treating systemic lupus erythematosus (SLE), though its mechanisms remain unclear. Our study employs network pharmacology and molecular docking to explore active compounds of TwHF and their associated targets for SLE treatment. METHODS Primary active compounds of TwHF and their targets were sourced from the TCMSP, SwissTargetPrediction, and UniProt databases. SLE-relevant target proteins were identified from the OMIM and GeneCards databases. Enrichment analyses were conducted to reveal results of common TwHF-SLE targets. STRING and Cytoscape software were used to systematically analyze and construct protein-protein interaction (PPI) networks, compound-target-pathway, and target-organ networks. Molecular docking was utilized to confirm the binding of key targets to the top active compounds. RESULTS A total of 14 active compounds and 300 overlapping targets between TwHF and SLE were identified. PPI network analysis revealed 29 core targets. Several pathways were found to contribute to the potential therapeutic effects of TwHF in SLE, including PI3K-Akt signaling pathway, Th17 cell differentiation, chemokine signaling, and T cell receptor signaling. Disease Ontology (DO) analysis highlighted the involvement of TwHF in genes associated with myocardial infarction (MI), atherosclerosis (AS), breast carcinoma, and ischemia. Molecular docking results demonstrated strong binding affinities, with 37 signal molecule-receptor interactions in SLE and 97 interactions in SLE-related MI and AS showing binding energies lower than -7 kJ/mol. CONCLUSIONS This research effectively anticipates the potent constituents, probable targets, and pathways implicated in treating SLE with TwHF, specifically addressing complications such as MI and AS. Comprehending the precise molecular mechanism targeting SLE of TwHF and its efficacious bioactive components furnishes a theoretical groundwork for enhancing its clinical utilization. Key Points •SLE is characterized by aberrant immune activation and persistent inflammation. •TwHF exerts immunomodulatory and anti-inflammatory effects. •TwHF exhibits prospects in the treatment of SLE with unknown molecular mechanisms. •Network pharmacology and molecular docking reveal promise in the mechanism of TwHF.
Collapse
Affiliation(s)
- Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Deqi Wang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China
| | - Hengrong Qian
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Xiaoyang Jiang
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Yi Wang
- The First School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China
| | - Xinyue Liang
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Sheng Gao
- Laboratory Animal Center, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| | - Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
7
|
Chen B, Zhang C, Zhou M, Deng H, Xu J, Yin J, Chen C, Zhang D, Pu Y, Zheng L, Wang B, Fu J. CD4+ T-cell metabolism in the pathogenesis of Sjogren's syndrome. Int Immunopharmacol 2025; 150:114320. [PMID: 39970711 DOI: 10.1016/j.intimp.2025.114320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The abnormal effector function of CD4+ T cells plays a key role in the pathogenesis of Sjogren's syndrome (SS) and its associated systematic autoimmune response. Cellular metabolism, including glucose metabolism, lipid metabolism and amino acid metabolism, supports proliferation, migration, survival and differentiation into distinct CD4+ T-cell subsets. Different subtypes of T cells have significantly different demands for related metabolic processes, which enables us to finely regulate CD4+ T cells through different metabolic processes in autoimmune diseases such as SS. In this review, we summarize the effects of disturbances in distinct metabolic processes, such as glycolysis, fatty acid metabolism, glutamine decomposition, mitochondrial dynamics, and ferroptosis, on how to support the effector functions of CD4+ T cells in the SS. We also discuss potential drugs with high value in the treatment of SS through metabolic normalization in CD4+ T cells. Finally, we propose possible directions for future targeted therapy for immunometabolism in SS.
Collapse
Affiliation(s)
- Baixi Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China; Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chenji Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Mengyuan Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Hongyu Deng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Jiabao Xu
- Würzburg Institute of Systems Immunology, Max Planck Research Group, Julius-Maximilians University of Würzburg, Würzburg 97255, Germany
| | - Junhao Yin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China
| | - Changyu Chen
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai 200001, China
| | - Dahe Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Yiping Pu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology & National Clinical Research Center of Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai 200001, China.
| | - Jiayao Fu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Prothodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai 200072, China.
| |
Collapse
|
8
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
9
|
Liu Y, Luo Q, Li J, Yang C, Huang F, Xu G, Liang F. Acupuncture improves the symptoms, gut microbiota, metabolomics, and inflammation of patients with chronic obstructive pulmonary disease: a multicenter, randomized, sham-controlled trial protocol. Front Med (Lausanne) 2025; 12:1511275. [PMID: 40098933 PMCID: PMC11911195 DOI: 10.3389/fmed.2025.1511275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a common chronic respiratory disease. The occurrence of COPD is associated with gut microbiota, meticulous metabolism and inflammation. Acupuncture may be effective as an adjunctive therapy for COPD, but the available evidence is limited. This study aims to confirm whether acupuncture therapy has an adjunctive therapeutic effect on COPD and to investigate the relationship between the efficacy and the gut microbiota, metabolomics and inflammation. Methods This study is a multicenter randomized controlled trial. A total of 72 patients with stable COPD eligible will be randomized in a 1:1 ratio to receive either manual acupuncture (MA) or sham acupuncture (SA) without puncturing the skin. There will be no changes to the essential medicines used for all patients. The intervention will be 12 weeks, 3 times per week and follow-up will be 52 weeks. The primary outcome will be the change in COPD Assessment Test (CAT) score before and after treatment. Secondary outcomes will include modified Medical Research Council (mMRC), St. George's Respiratory Questionnaire (SGRQ), 6-min walk test (6MWT), and the number of moderate or severe acute exacerbations during follow-up. A total of 36 healthy volunteers will also be recruited as normal control. In addition, feces and blood will be collected from each participant to characterize the gut microbiota, metabolomics, immune cells and inflammatory cytokines. Differences between COPD patients and healthy participants will be observed, as well as changes before and after treatment in MA and SA groups. Ultimately, the correlation among gut microbiota, metabolomics, immune cells, inflammatory cytokines and clinical efficacy in COPD patients will be analyzed. Discussion This study will evaluate the efficacy and provide preliminary possible mechanisms of acupuncture as an adjunctive therapy in treating COPD. In addition, it will identify biomarkers of the gut microbiota, metabolites, immune cells, and inflammatory cytokines associated with therapeutic efficacy. The results of this study will be published in a peer-reviewed journal.
Collapse
Affiliation(s)
- Yilin Liu
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine/Clinical Research Center for Acupuncture and Moxibustion in Sichuan Province, Chengdu, China
| | - Qin Luo
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine/Clinical Research Center for Acupuncture and Moxibustion in Sichuan Province, Chengdu, China
| | - Junqi Li
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine/Clinical Research Center for Acupuncture and Moxibustion in Sichuan Province, Chengdu, China
| | - Chunyan Yang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine/Clinical Research Center for Acupuncture and Moxibustion in Sichuan Province, Chengdu, China
| | - Fengyuan Huang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine/Clinical Research Center for Acupuncture and Moxibustion in Sichuan Province, Chengdu, China
| | - Guixing Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fanrong Liang
- Acupuncture and Tuina School/The 3rd Teaching Hospital, Chengdu University of Traditional Chinese Medicine/Clinical Research Center for Acupuncture and Moxibustion in Sichuan Province, Chengdu, China
| |
Collapse
|
10
|
Hu MX, Li JQ, Zhang HW, Ma YK, Zhao BJ, Xiao L, Liang W, Wang Y, Wang C, Wu CG, Liu TT. 1-benzyl-6-nitro-4-phenyl-4-(methoxycarbonyl)-2(1H)-pyridinone, a novel pirfenidone derivative, alleviate hepatic fibrosis through T cells. Biomed Pharmacother 2025; 184:117907. [PMID: 39978030 DOI: 10.1016/j.biopha.2025.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025] Open
Abstract
Hepatic fibrosis (HF) is a pathological process in many liver diseases, which lack of specific agents. Pirfenidone (PFD) derivatives are potential new drug. The purpose of this study was to investigate the effect and immunological mechanism of PFD derivatives on HF. A total of 11 PFD derivatives were designed, synthesized and screened. 1-benzyl-6-nitro-4-phenyl-4-(methoxycarbonyl)-2(1 H)-pyridinone (code: Compound 5) had optimal effect on inhibiting nitric oxide release, hepatic stellate cells (HSCs) and T cell proliferation, which suggested that Compound 5 showed anti-inflammatory, anti-fibrosis and immunoregulation effects. Compound 5 inhibited the proliferation of HSC-T6 and T cell in dose-dependent manner, the IC50 was 10.19 μM and 17.16 μM, respectively. Compound 5 inhibited the differentiation of CD8+T cells and promoted the differentiation of Tregs in the splenic T lymphocyte of CCl4-induced mouse HF model. Besides, Compound 5 promoted HSC-T6 apoptosis in dose-dependent manner, accompanied by the down-regulation of α-smooth muscle actin (α-SMA) and collagen-I (Col-I). In terms of mechanism, Compound 5 had no significant effect on glucose uptake of T cells. But it inhibited non-esterified fatty acid (NEFA) secretion of T cell by inhibiting the phosphorylation of PI3K-AKT-mTOR signal, which related to the metabolism of T cell. Subsequently, Compound 5 affected α-SMA and Col-I expression of HSC-T6 by T cell modulating in cell co-culture. CONCLUSION: Compound 5 is a promising new drug against HF by the dual role of inhibiting HSCs and modulating T cells lipid metabolism, which affects the immune microenvironment of HF.
Collapse
Affiliation(s)
- Meng-Xue Hu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Jia-Qi Li
- School of Pharmacy, South-Central Minzu University, Wuhan, China
| | - Hong-Wei Zhang
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Yu-Kun Ma
- Department of Pharmacy, the 902nd Hospital of the PLA Joint Logistics Support Force, Bengbu, China
| | - Bao-Jing Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lei Xiao
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Wei Liang
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| | - Yamin Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, the Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Cheng-Gui Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.
| | - Ting-Ting Liu
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China.
| |
Collapse
|
11
|
Deng S, Zhang Y, Shen S, Li C, Qin C. Immunometabolism of Liver Xenotransplantation and Prospective Solutions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407610. [PMID: 39912334 PMCID: PMC11884532 DOI: 10.1002/advs.202407610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Indexed: 02/07/2025]
Abstract
End-stage liver diseases, such as hepatocellular carcinoma or acute liver failure, critically necessitate liver transplantation. However, the shortage of available organ donors fails to meet the rapidly growing transplantation demand. Due to the high similarity of liver tissue structure and metabolism between miniature pigs and humans, xenotransplantation of pig livers is considered as a potentially viable solution to organ scarcity. In the 2024, teams from China first time have successfully transplanted a genetically modified Bama miniature pig liver into a clinically brain-dead man lasting for 10 days. This milestone in human xenotransplantation research not only confirms the feasibility of clinical application of xenotransplantation, but also underscores the daunting and protracted nature of this pathway. Despite advanced gene-editing technologies theoretically circumventing the occurrence of most transplant rejection reactions, patients still face challenges such as chronic immune rejection, coagulation disorders, and thrombotic microangiopathy after receiving xenografts. Moreover, prolonged use of immunosuppressive drugs may induce irreversible immune dysfunction, leading to opportunistic infections and metabolic disorders. This article compares the similarities and differences in livers between humans and pigs, summarizes the immunometabolism of xenotransplantation based on current findings, and provides research perspectives on pre-transplantation and post-transplantation strategies for prolonging the survival time of xenografts.
Collapse
Affiliation(s)
- Shoulong Deng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| | - Yi Zhang
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Shasha Shen
- Department of MedicinePanzhihua UniversitySichuan61700China
| | - Chongyang Li
- Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Chuan Qin
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, National Health Commission of China (NHC) Key Laboratory of Comparative Medicine, Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences and Comparative Medicine CenterPeking Union Medical CollegeBeijing100021China
| |
Collapse
|
12
|
Luo Z, Zhang T, Wang P, Yuan D, Jin S, Di J, Ma R, Yang L, Wang X, Liu J. Activation of V-Domain Immunoglobulin Suppressor of T-Cell Activation by Baloxavir Marboxil Ameliorates Systemic Lupus Erythematosus through Inhibiting Lysophosphatidylcholine/CD40 Ligand. Chem Res Toxicol 2025; 38:193-205. [PMID: 39772456 DOI: 10.1021/acs.chemrestox.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Deficiency of the V-domain immunoglobulin suppressor of T-cell activation (VISTA) accelerates disease progression in lupus-prone mice, and activation of VISTA shows therapeutic effects in mouse models of a lupus-like disease. Metabolic reprogramming of T cells in systemic lupus erythematosus (SLE) patients is important in regulating T-cell function and disease progression. However, the mechanism by which VISTA affects the immunometabolism in SLE remains unclear. Here, we demonstrated that the deficiency of VISTA promoted the synthesis of the metabolite lysophosphatidylcholine (LPC) using untargeted metabolomics and increased the protein expression of the CD40 ligand (CD40L). Furthermore, baloxavir marboxil (BXM), a small molecule agonist of VISTA, significantly ameliorated autoantibody production, renal damage, and imbalance of immune cell subpopulations in the models of a lupus-like disease in mice (chronic graft-versus-host disease and MRL/MpJ-Faslpr/J mice) possibly by inhibiting LPC synthesis to downregulate CD40L protein expression and inhibiting aberrant activation of noncanonical nuclear factor-κB pathway. Our results indicated that BXM targeting VISTA ameliorated lupus-like symptoms by altering lipid metabolism and CD40L expression, which offers novel mechanisms and a promising therapy for SLE.
Collapse
Affiliation(s)
- Zhijie Luo
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Tingting Zhang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Penglu Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Dingyi Yuan
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Shasha Jin
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jianwen Di
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixue Ma
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Yang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xinzhi Wang
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Liu
- State Key Laboratory of Natural Medicines, New Drug Screening and Pharmacodynamics Evaluation Center, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Liao W, Zhang X, Jia C, Chen W, Cai Y, Zhang H, Wei J, Chen T. Lactobacillus rhamnosus LC-STH-13 ameliorates the progression of SLE in MRL/lpr mice by inhibiting the TLR9/NF-κB signaling pathway. Food Funct 2025; 16:475-486. [PMID: 39744924 DOI: 10.1039/d4fo03966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease often treated with glucocorticoids, which can lead to complications such as osteoporosis and an increased infection risk. Hence, identifying safe and effective treatment strategies is crucial. Lactobacillus has shown promise in improving immune disorders. We investigated Lactobacillus rhamnosus LC-STH-13 for its probiotic properties. Female MRL/lpr mice, prone to lupus, were used to assess its impact on SLE development. The results showed that the intervention with L. rhamnosus LC-STH-13 significantly reduced the level of circulating anti-autoantibodies (p < 0.05) and rebalanced Th17/Treg cells (p < 0.05). Kidney tissue analysis revealed reduced immune cell infiltration and immune complex deposition in glomeruli. L. rhamnosus LC-STH-13 mitigated kidney inflammation via the TLR9/NF-κB pathway (p < 0.05) and attenuated complement-induced renal damage (p < 0.05). Furthermore, 16S rRNA sequencing data analysis indicated that L. rhamnosus LC-STH-13 can restore intestinal microecological imbalance caused by the development of SLE. These findings suggested that L. rhamnosus LC-STH-13 improves the development of SLE by regulating the TLR9/NF-κB pathway and intestinal microbiota, offering a foundation for exploring safe and effective treatments.
Collapse
Affiliation(s)
- Wen Liao
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xinyi Zhang
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Chunjian Jia
- Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Wenjing Chen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yujie Cai
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Hongyan Zhang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17, Yongwai Zhengjie, Nanchang, 330006, China.
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Tingtao Chen
- School of Life Sciences, Nanchang University, Nanchang 330031, China.
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
14
|
张 玉, 万 磊, 方 昊, 李 方, 王 丽, 李 柯, 闫 佩, 姜 辉. Inhibiting miR-155-5p promotes proliferation of human submandibular gland epithelial cells in primary Sjogren's syndrome by negatively regulating the PI3K/AKT signaling pathway via PIK3R1. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2025; 45:65-71. [PMID: 39819714 PMCID: PMC11744292 DOI: 10.12122/j.issn.1673-4254.2025.01.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 01/19/2025]
Abstract
OBJECTIVES To investigate the mechanism mediating the regulatory effect of miR-155-5p on proliferation of human submandibular gland epithelial cells (HSGECs) in primary Sjogren's syndrome (pSS). METHODS Dual luciferase reporter assay was used to verify the targeting relationship between miR-155-5p and the PI3K/AKT pathway. In a HSGEC model of pSS induced by simulation with TRAIL and INF-γ, the effects of miR-155-inhibitor-NC or miR-155 inhibitor on cell viability, cell cycle, apoptosis and proliferation were evaluated using CKK8 assay, flow cytometry and colony formation assay. ELISA and RT-PCR were used to detect the expressions of inflammatory cytokines and miR-155-5p mRNA in the cells; Western blotting was performed to detect the expressions of proteins in the PI3K/AKT signaling pathway. RESULTS Dual luciferase assay showed that miR-155-5p targets the PI3K/AKT pathway via PIK3R1 mRNA. The HSGEC model of pSS showed significantly decreased cell viability, cell clone formation ability and expressions IL-10 and IL-4 and increased cell apoptosis, cell percentage in G2 phase, expressions of TNF‑α, IL-6, miR-155-5p and PIK3R1 mRNA, p-PI3K/PI3K ratio, p-Akt/AKT ratio, and PIK3R1 protein expression. Treatment of the cell models with miR-155 inhibitor significantly increased the cell viability, G1 phase cell percentage, colony formation ability, and expressions of IL-10 and IL-4 levels, and obviously reduced cell apoptosis rate, G2 phase cell percentage, expressions of TNF-α, IL-6, miR-155-5p and PIK3R1 mRNA, p-PI3K/PI3K ratio, p-AKT/AKT ratio, and PIK3R1 protein expression. CONCLUSIONS In HSGEC model of pSS, inhibition of miR-155-5p can promote cell proliferation and reduced cell apoptosis by targeting PI3K1 mRNA to negatively regulate the overexpression of PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
| | - 磊 万
- 万 磊,博士,主任医师,特聘教授,博士生导师,E-mail:
| | | | | | | | | | | | | |
Collapse
|
15
|
Pramanik R, Chattopadhyay S, Bishayi B. Dual neutralization of TGF-β and IL-21 regulates Th17/Treg balance by suppressing inflammatory signalling in the splenic lymphocytes of Staphylococcus aureus infection-induced septic arthritic mice. Immunol Res 2025; 73:38. [PMID: 39831928 DOI: 10.1007/s12026-024-09586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Septic arthritis (SA) caused by Staphylococcus aureus is a severe inflammatory joint disease, characterized by synovitis accompanied with cartilage destruction and bone erosion. The available antibiotic treatment alone is insufficient to resolve the inflammation that leads to high rates of morbidity and mortality. Among the CD4+ T helper lymphocytes, the Th17 and Tregs are key regulators of immune homeostasis. A high Th17 could lead to autoimmunity, whereas an increase in Tregs indicates immunosuppression. Depending on the external cytokine milieu, naïve CD4+ T cells transform into either Th17 or Treg cell lineage. TGF-β in the presence of IL-21 produces Th17 cells and drives the inflammatory cascade of reactions. We studied the effects of in vivo neutralization of TGF-β and IL-21 in septic arthritic mice to control arthritic inflammation, which has not been studied before. The arthritic index showed maximum severity in the SA group which substantially reduced in the Ab-treated groups. Flow cytometric analyses of peripheral blood collected from mice at 9DPI revealed the highest Th17/Treg ratio in the SA group but least in the combined-antibody-treated group. TGF-β1 and IL-21 cytokine production from serum, spleen, and synovial tissue homogenates was significantly reduced in the dual Ab-treated group than in the untreated SA group. From the Western blot analyses obtained from splenic lymphocytes at 9 DPI, we elucidated the possible underlying mechanism of interplay in downstream signalling involving the interaction between different STAT proteins and SOCS, NF-κB, RANKL, mTOR, iNOS, and COX-2 in regulating inflammation and osteoclastogenesis. On endogenous blockade with TGF-β and IL-21, the Th17/Treg ratio and resultant arthritic inflammation in SA were found to be reduced. Therefore, maintaining the Th17/Treg balance is critical to eradicate infection as well as suppress excessive inflammation and neutralization of TGF-β and IL-21 could provide a novel therapeutic strategy to treat staphylococcal SA.
Collapse
Affiliation(s)
- Rochana Pramanik
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Sreya Chattopadhyay
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University Colleges of Science and Technology, University of Calcutta, 92 APC Road, Calcutta, 700009, West Bengal, India.
| |
Collapse
|
16
|
Wang H, Tang R, Pan Q, Yin Q, Feng J, Deng L. Mitochondria dysfunction: A trigger for cardiovascular diseases in systemic lupus erythematosus. Int Immunopharmacol 2025; 144:113722. [PMID: 39622131 DOI: 10.1016/j.intimp.2024.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 12/15/2024]
Abstract
Cardiovascular disease (CVD), including pericarditis, myocarditis, sudden cardiac death, coronary heart disease, and stroke, are leading contributors to morbidity and mortality in systemic lupus erythematosus (SLE) patients. Emerging evidence highlights mitochondrial dysfunction as a key driver of cardiovascular pathology in SLE, with impaired oxidative phosphorylation, altered membrane potential, and disrupted metabolic processes promoting oxidative stress, inflammatory activation, and endothelial dysfunction. This review critically examines mitochondrial contributions to CVD in SLE, comparing these mechanisms with those in non-SLE CVD to highlight SLE-specific mitochondrial vulnerabilities. Furthermore, we discuss preclinical and clinical findings supporting mitochondrial pathways as potential therapeutic targets, aiming to bridge gaps in current understanding and outline future research directions. By synthesizing current knowledge of mitochondrial dysregulation, this review proposes therapeutic strategies to improve cardiovascular outcomes and advance patient care in SLE.
Collapse
Affiliation(s)
- Haitao Wang
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Tang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinyu Pan
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiuyan Yin
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Li Deng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Fan Y, Ma K, Lin Y, Ren J, Peng H, Yuan L, Nasser MI, Jiang X, Wang K. Immune imbalance in Lupus Nephritis: The intersection of T-Cell and ferroptosis. Front Immunol 2024; 15:1520570. [PMID: 39726588 PMCID: PMC11669548 DOI: 10.3389/fimmu.2024.1520570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Ferroptosis is a novel form of cell death characterized by unlimited accumulation of iron-dependent lipid peroxides. It is often accompanied by disease, and the relationship between ferroptosis of immune cells and immune regulation has been attracting increasing attention. Initially, it was found in cancer research that the inhibition of regulatory T cell (Treg) ferroptosis and the promotion of CD8+ T cell ferroptosis jointly promoted the formation of an immune-tolerant environment in tumors. T-cell ferroptosis has subsequently been found to have immunoregulatory effects in other diseases. As an autoimmune disease characterized by immune imbalance, T-cell ferroptosis has attracted attention for its potential in regulating immune balance in lupus nephritis. This article reviews the metabolic processes within different T-cell subsets in lupus nephritis (LN), including T follicular helper (TFH) cells, T helper (Th)17 cells, Th1 cells, Th2 cells, and Treg cells, and reveals that these cellular metabolisms not only facilitate the formation of a T-cell immune imbalance but are also closely associated with the occurrence of ferroptosis. Consequently, we hypothesize that targeting the metabolic pathways of ferroptosis could become a novel research direction for effectively treating the immune imbalance in lupus nephritis by altering T-cell differentiation and the incidence of ferroptosis.
Collapse
Affiliation(s)
- Yunhe Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyi Ren
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Haoyu Peng
- University of Electronic Science and Technology of China, School of Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Moussa Ide Nasser
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Xuan Jiang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Ke Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
18
|
Chen X, Zhu L, Xu J, Cheng Q, Dong Y, Xie Y, Hua L, Du Y. Semaphorin 5A promotes Th17 differentiation via PI3K-Akt-mTOR in systemic lupus erythematosus. Arthritis Res Ther 2024; 26:204. [PMID: 39563449 PMCID: PMC11575155 DOI: 10.1186/s13075-024-03437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Previously, we reported that serum Semaphorin 5 A (Sema5A) levels were increased in systemic lupus erythematosus (SLE) patients compared with healthy controls (HC), and elevated Sema5A correlated with disease activity and lupus nephritis in SLE patients. In this study, we aimed to further understand the role of Sema5A in promoting Th17 cells differentiation in SLE. METHODS Sema5A, interferon gamma (IFN-γ), interleukin 4 (IL-4), interleukin 17 A (IL-17 A) and interleukin 10 (IL-10) were measured by Enzyme Linked Immunosorbent Assay (ELISA). RNA and protein were isolated from peripheral blood mononuclear cells (PBMCs) in SLE patients and HC. Expression of PlexinA1 and PlexinB3 were measured by quantitative RT-PCR (qRT-PCR) and Western Blot. Th cell subsets were detected by flow cytometry. Treatment with recombinant human Sema5A (rhSema5A) and small interfering RNA (siRNA) were employed to examine the in vitro effect of Sema5A in CD4+T cell differentiation in SLE patients. RESULTS IL-17 A elevated in SLE patients and positively correlated with Sema5A. PlexinA1 was upregulated and mainly expressed in CD4+ T cells of SLE; Sema5A treatment induced the differentiation of Th17 cells, while did not affect the Th1 and Th2 skewing. These effects were associated with an upregulation of the transcription factor RORγt by Th17 cells, but not T-bet or GATA3 in Th1 and Th2 cells, respectively. Knock down PlexinA1 regulates IL-17 A production by CD4+T cells. Functional assays showed that Sema5A-PlexinA1 axis promoted Th17 cells differentiation via PI3K/Akt/mTOR signaling. CONCLUSIONS These findings demonstrated that Sema5A-PlexinA1 axis acts as a key mediator on Th17 differentiation, suggesting that Sema5A might be a novel therapeutic target in SLE.
Collapse
Affiliation(s)
- Xin Chen
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
- Department of Rheumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Lingjiang Zhu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jieying Xu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yuanji Dong
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Li Hua
- Department of Rheumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
19
|
Ji W, Sun L, Wang D, Zhu W. Mesenchymal stem cells alleviate inflammatory responses through regulation of T-cell subsets. Eur J Pharmacol 2024; 983:176996. [PMID: 39277095 DOI: 10.1016/j.ejphar.2024.176996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/01/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Immune-mediated inflammatory disease (IMID) is a complex disorder characterized by excessive immune responses involving T cells and their subsets, leading to direct tissue damage. T cells can be broadly categorized into CD4+ T cells and CD8+ T cells. CD4+ T cells are composed of several subsets, including T helper (Th)1, Th2, Th9, Th17, Th22, follicular helper T cells (Tfhs), and regulatory T cells (Tregs), while effector CD8+ T cells consist mainly of cytotoxic T cells (CTLs). Current therapies for IMID are ineffective, prompting exploration into mesenchymal stem cells (MSCs) as a promising clinical treatment due to their immunomodulatory effects and self-renewal potential. Recent studies have shown that MSCs can suppress T cells through direct cell-to-cell contact or secretion of soluble cytokines. Nevertheless, the precise effects of MSCs on T cell subsets remain inadequately defined. In this review, we summarize the most recent studies that have examined how MSCs modulate one or more effector T-cell subsets and the mechanisms behind these modifications in vitro and several mouse models of clinical inflammation. This also provides theoretical support and novel insights into the efficacy of clinical treatments involving MSCs. However, the efficacy of MSC therapies in clinical models of inflammation varies, showing effective remission in most cases, but also with exacerbation of T-cell-mediated inflammatory damage in some instances.
Collapse
Affiliation(s)
- Weimeng Ji
- Department of Oncology, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212001, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013,China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital Ofjiangsu University, Suzhou, Jiangsu, 215399, China
| | - Deqiang Wang
- Department of Oncology, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212001, China.
| | - Wei Zhu
- Department of Oncology, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, 212001, China; School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013,China.
| |
Collapse
|
20
|
Xiang J, Leary SC, Wu Z, Yu M. Molecular basis and pathways of the Yin-Yang theory in T cell immunity. Front Immunol 2024; 15:1463399. [PMID: 39611157 PMCID: PMC11602496 DOI: 10.3389/fimmu.2024.1463399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Affiliation(s)
- Jim Xiang
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scot C. Leary
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zhaojia Wu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michelle Yu
- Cancer Research Cluster, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Yapar R, Gündüz ÖS, Kurt FÖ, Korkmaz M. The Effect of Boric Acid and Calcium Fructoborate on T Helper Cell Differentiation by Influencing Foxp3 and Ror-γt in Rheumatoid Arthritis and Systemic Lupus Erythematosus. Biol Trace Elem Res 2024:10.1007/s12011-024-04425-9. [PMID: 39446208 DOI: 10.1007/s12011-024-04425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Many animal and human studies indicate that boric acid and calcium fructoborate have effects on helper T cells in immunity. The aim of our study is to evaluate the effects of boric acid and calcium fructoborate on Treg (CD4+Foxp3+) and Th17 (CD4+Ror-γt+) cell populations and related cytokine levels in mononuclear cells isolated from peripheral blood samples of rheumatoid arthritis and systemic lupus erythematosus patients. Newly diagnosed rheumatoid arthritis (n = 10) patients, systemic lupus erythematosus (n = 5) patients, and healthy individuals (n = 9) were included in this study. Consent forms were obtained from all individuals participating the study, blood samples were taken, and peripheral blood mononuclear cells were isolated. Isolated cells were exposed to low-dose and high-dose boric acid and calcium fructoborate in cell culture. Treg and Th17 cell populations were analyzed by flow cytometry after 48 h of exposure. IL-2, IL-6, IL-17, IL-23, TNF-α, and TGF-β levels in the culture medium were tested by ELISA method. At the end of the study, in healthy controls, high-dose BA improved the Treg/Th17 population but could not display similar effects on RA and SLE group. However, both boric acid and calcium fructoborate at different doses showed an increasing effect on Ror-γt in RA and SLE group. Different doses of BA and CaF treatment found to have a variable effect on cytokine. Both BA and CaF in low doses decreased TNF-α levels in RA group which shows that these boron compounds could contribute positively to the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Rehime Yapar
- Department of Internal Medicine, Faculty of Medicine, Pamukkale University, Denizli, Turkey.
| | - Özgül Soysal Gündüz
- Department of Rheumatology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Feyzan Özdal Kurt
- Department of Molecular Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa, Turkey
| | - Mehmet Korkmaz
- Department of Medical Biology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
22
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
24
|
Chang S, Wang Z, An T. T-Cell Metabolic Reprogramming in Atherosclerosis. Biomedicines 2024; 12:1844. [PMID: 39200308 PMCID: PMC11352190 DOI: 10.3390/biomedicines12081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Atherosclerosis is a key pathological basis for cardiovascular diseases, significantly influenced by T-cell-mediated immune responses. T-cells differentiate into various subtypes, such as pro-inflammatory Th1/Th17 and anti-inflammatory Th2/Treg cells. The imbalance between these subtypes is critical for the progression of atherosclerosis (AS). Recent studies indicate that metabolic reprogramming within various microenvironments can shift T-cell differentiation towards pro-inflammatory or anti-inflammatory phenotypes, thus influencing AS progression. This review examines the roles of pro-inflammatory and anti-inflammatory T-cells in atherosclerosis, focusing on how their metabolic reprogramming regulates AS progression and the associated molecular mechanisms of mTOR and AMPK signaling pathways.
Collapse
Affiliation(s)
| | | | - Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.C.); (Z.W.)
| |
Collapse
|
25
|
Quilis N, Mesa-Del-Castillo Bermejo P, Boix P, Juanola O, Bernabeu P, Francés R, Andrés M. Peripheral blood regulatory T cells and disease activity, quality of life, and outcomes in children with juvenile idiopathic arthritis. Pediatr Rheumatol Online J 2024; 22:69. [PMID: 39090751 PMCID: PMC11293029 DOI: 10.1186/s12969-024-01006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/20/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVES To measure regulatory T cell (Treg) levels in the peripheral blood of children with juvenile idiopathic arthritis (JIA) and analyse the association of this measure with disease activity, quality of life, adjustment of treatment, and hospitalisation. METHODS We conducted a two-phase study (cross-sectional and prospective), including consecutive children with a JIA diagnosis according to ILAR criteria. Our independent variables were Tregs, Th1, Th2, and cytokines in peripheral blood, and our dependent variables in the cross-sectional phase were arthritis category, JIA activity, and patient-reported outcomes. To test associations, we used Spearman's correlation coefficient and the Mann-Whitney U test. In the prospective phase, we explored the probability of treatment adjustment and hospitalisation for JIA during follow-up according to Tregs levels at baseline, using Cox proportional regression. RESULTS Our sample included 87 participants (median age 11 years, 63.2% girls). Tregs were not associated with most variables of interest. However, we found that higher Tregs concentration was associated with lower erythrocyte sedimentation rate (ESR) and better subjective disease status and course, while higher IL-10 and TGF-β levels were associated with lower ESR, less pain, and better subjective disease status We found no association between Tregs and treatment adjustments or hospitalisation. CONCLUSIONS Higher baseline Treg levels in the peripheral blood of children with JIA may be associated with reduced disease activity and better quality of life, though were not informative on the inflammatory progression on the follow-up.
Collapse
Affiliation(s)
- Neus Quilis
- Rheumatology Unit, Hospital Universitario Vinalopó, Servicio de Reumatología, C/ Tonico Sansano Mora 14. ZIP: 03293, Elche, Alicante, Spain.
| | | | - Paula Boix
- Alicante Institute for Health and Biomedical Research (ISABIAL), Dr Balmis General University Hospital, Alicante, Spain
- Clinical Medicine Department, Miguel Hernández University, San Juan de Alicante, Spain
| | - Oriol Juanola
- Alicante Institute for Health and Biomedical Research (ISABIAL), Dr Balmis General University Hospital, Alicante, Spain
- Clinical Medicine Department, Miguel Hernández University, San Juan de Alicante, Spain
| | - Pilar Bernabeu
- Alicante Institute for Health and Biomedical Research (ISABIAL), Dr Balmis General University Hospital, Alicante, Spain
- Rheumatology Department, Dr Balmis General University Hospital, Alicante, Spain
| | - Rubén Francés
- Alicante Institute for Health and Biomedical Research (ISABIAL), Dr Balmis General University Hospital, Alicante, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Carlos III Health Institute, Madrid, Spain
- Clinical Medicine Department, Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDIBE), Miguel Hernández University, San Juan de Alicante, Spain
| | - Mariano Andrés
- Alicante Institute for Health and Biomedical Research (ISABIAL), Dr Balmis General University Hospital, Alicante, Spain
- Clinical Medicine Department, Miguel Hernández University, San Juan de Alicante, Spain
- Rheumatology Department, Dr Balmis General University Hospital, Alicante, Spain
| |
Collapse
|
26
|
Lu H, Sun X, Yang C, Zheng M, Ni B, Han Z, Tao J, Ju X, Tan R, Shen B, Gu M, Wang Z. Iguratimod ameliorates antibody-mediated rejection after renal transplant by modulating the Th17/Treg paradigm. Int Immunopharmacol 2024; 136:112409. [PMID: 38850789 DOI: 10.1016/j.intimp.2024.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Iguratimod (IGU) is widely used in clinical practice due to its stable anti-inflammatory effects. Our previous studies have confirmed that the proportion of Th17/Treg balance in patients taking IGU altered significantly. This study aims to explore the role of IGU in antibody-mediated rejection (ABMR) and its potential mechanisms. METHODS We conducted bioinformatics analysis of sequencing data from the GEO database to analyze the abundance of immune cell infiltration in transplanted kidney tissues. In vivo, IGU was intervened in a mice secondary skin transplantation model and a mice kidney transplantation ABMR model, and histological morphology of the grafts were examined by pathological staining, while relevant indicators were determined through qRT-PCR, immunohistochemistry, and enzyme-linked immunosorbent assay, observed T cell differentiation by flow cytometry, and preliminarily assessed the immunosuppressive effect of IGU. In vitro, we established Th17 and Treg cell induction and stimulation differentiation culture systems and added IGU for intervention to explore its effects on their differentiation. RESULTS Through bioinformatics analysis, we found that Th17 and Treg may play important roles in the occurrence and development of ABMR. In vivo, we found that IGU could effectively reduce the damage caused by ABMR to the grafts, alleviate the infiltration of inflammatory cells in the graft tissues, and reduce the deposition of C4d in the grafts. Moreover, it is also found that IGU regulated the differentiation of Th17 and Treg cells in the spleen and peripheral blood and reduced the expression of IL-17A in the grafts and serum. In addition, same changes were observed in the induction and differentiation culture system of Th17 and Treg cells in vitro after the addition of IGU. CONCLUSION IGU can inhibit the progression of ABMR by regulating the differentiation of Th17 and Treg cells, providing novel insights for optimizing clinical immunosuppressive treatment regimens.
Collapse
Affiliation(s)
- Hongcheng Lu
- Department of Urology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, Jiangsu, People's Republic of China
| | - Xulin Sun
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121# Jiangjiayuan Road, Nanjing, Jiangsu, People's Republic of China
| | - Chengcheng Yang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121# Jiangjiayuan Road, Nanjing, Jiangsu, People's Republic of China
| | - Ming Zheng
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121# Jiangjiayuan Road, Nanjing, Jiangsu, People's Republic of China
| | - Bin Ni
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121# Jiangjiayuan Road, Nanjing, Jiangsu, People's Republic of China
| | - Zhijian Han
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - Jun Tao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - Xiaobin Ju
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - Ruoyun Tan
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - Baixin Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121# Jiangjiayuan Road, Nanjing, Jiangsu, People's Republic of China.
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, 121# Jiangjiayuan Road, Nanjing, Jiangsu, People's Republic of China; Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, Jiangsu, People's Republic of China.
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
27
|
Ou LP, Liu YJ, Qiu ST, Yang C, Tang JX, Li XY, Liu HF, Ye ZN. Glutaminolysis is a Potential Therapeutic Target for Kidney Diseases. Diabetes Metab Syndr Obes 2024; 17:2789-2807. [PMID: 39072347 PMCID: PMC11283263 DOI: 10.2147/dmso.s471711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Metabolic reprogramming contributes to the progression and prognosis of various kidney diseases. Glutamine is the most abundant free amino acid in the body and participates in more metabolic processes than other amino acids. Altered glutamine metabolism is a prominent feature in different kidney diseases. Glutaminolysis converts glutamine into the TCA cycle metabolite, alpha-ketoglutarate, via a cascade of enzymatic reactions. This metabolic pathway plays pivotal roles in inflammation, maladaptive repair, cell survival and proliferation, redox homeostasis, and immune regulation. Given the crucial role of glutaminolysis in bioenergetics and anaplerotic fluxes in kidney pathogenesis, studies on this cascade could provide a better understanding of kidney diseases, thus inspiring the development of potential methods for targeted therapy. Emerging evidence has shown that targeting glutaminolysis is a promising therapeutic strategy for ameliorating kidney disease. In this narrative review, equation including keywords related to glutamine, glutaminolysis and kidney are subjected to an exhaustive search on Pubmed database, we identified all relevant articles published before 1 April, 2024. Afterwards, we summarize the regulation of glutaminolysis in major kidney diseases and its underlying molecular mechanisms. Furthermore, we highlight therapeutic strategies targeting glutaminolysis and their potential clinical applications.
Collapse
Affiliation(s)
- Li-Ping Ou
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Yong-Jian Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shi-Tong Qiu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Chen Yang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Ji-Xin Tang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Xiao-Yu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Hua-Feng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen-Nan Ye
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|
28
|
Huang J, Li X, Zhu Q, Wang M, Xie Z, Zhao T. Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: a meta-analysis. Front Immunol 2024; 15:1425847. [PMID: 39086480 PMCID: PMC11288813 DOI: 10.3389/fimmu.2024.1425847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Objective This article aims to investigate the changes of T helper 17 (Th17) cells, regulatory T (Treg) cells and their associated cytokines in patients with systemic lupus erythematosus (SLE). Methods Multiple databases were investigated to identify articles that explored Th17 cells, Treg cells and relevant cytokines in SLE patients. A random effects model was used for calculating pooled standardized mean differences. Stata version 15.0 was utilized to conduct the meta-analysis. Results The levels of Th17 cells, IL-17, IL-6, IL-21 and IL-10 were higher in SLE patients than in healthy controls (HCs), but the TGF-β levels were lower. The percentage of Treg cells was lower than HCs in SLE individuals older than 33. Among studies that had 93% or lower females, the percentage of Th17 cells was greater in patients than in HCs. However, the percentage of Treg cells was lower when the proportion of females was less than 90%. Patients with lupus nephritis or active SLE had an increased proportion of Th17 cells and a decreased proportion of Treg cells. Conclusions The increased level of Th17 cells and related cytokines could be the main reason for the elevated Th17/Treg ratio in SLE. The percentages of Th17 and Treg cells were associated with gender, age, disease activity and kidney function. Furthermore, the reduced proportions of Treg cells may primarily result in a rise in the Th17/Treg ratio in older or active SLE patients. Systematic Review Registration https://www.crd.york.ac.uk/prospero, identifier CRD42023454937.
Collapse
Affiliation(s)
- Jinge Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiaolong Li
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qingmiao Zhu
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meijiao Wang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, Research Institute of Chinese Medical Clinical Foundation and Immunology, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
29
|
Jiang J, Sheng Y, Zheng Z, Qin F, Jiang B. Agrimonolide mitigated DSS-induced colitis by modulating the balance between Treg and Th17 cells through the suppression of the Notch and JAK2/STAT3 signaling pathways. Heliyon 2024; 10:e33803. [PMID: 39071599 PMCID: PMC11283111 DOI: 10.1016/j.heliyon.2024.e33803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose The objective of this study was to investigate the effects of agrimonolide (AM) on mice with dextran sulfate sodium (DSS)-induced colitis and elucidate its protective mechanisms. Methods A 3 % DSS solution was used to induce colitis, and intragastric administration of AM at doses of 25 and 50 mg/kg was performed. A comprehensive assessment was conducted to evaluate inflammatory responses and mucosal integrity in the colon. Inflammatory factors were quantified using enzyme-linked immunosorbent assay (ELISA). The proportions of T helper cell 17 (Th17) and regulatory T cells (Treg) cells in mesenteric lymph nodes (MLNs) was analyzed through RT-qPCR and flow cytometry. Proteins associated with the Notch and JAK2/STAT3 pathways were examined via RT-qPCR, western blotting, and immunofluorescence. Additionally, the impact of AM on Treg and Th17 cell differentiation was investigated in vitro. Results Pre-treatment with AM significantly alleviated colon inflammation in mice, as evidenced by reduced body weight loss, shorter colon length, lower disease activity index (DAI) score, and decreased myeloperoxidase (MPO) content. Notably, AM pre-treatment attenuated the production of pro-inflammatory cytokines, including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, and IL-6, in mice with DSS-induced colitis. Additionally, AM pre-treatment significantly enhanced the expression of tight junction proteins (Occludin and ZO-1), thereby preserving gut barrier function. Moreover, we observed that AM administration decreased the ratio of Th17 cells while increasing the frequency of colonic Treg cells, thus modulating the Th17/Treg balance both in vivo and in vitro. Furthermore, in the AM-treated group, the expression of Notch-1, Jagged1, delta like 4 (DLL4), phospho-janus kinases 2 (p-JAK2)/JAK2, and p-signal transducer and activator of transcription 3 (STAT3)/STAT3 in colonic tissue was reduced compared to the DSS group. Remarkably, the therapeutic effects of AM in colitis mice were blocked by a Notch activator. Conclusion These findings underscore the effectiveness of AM in alleviating symptoms and pathological damage in DSS-induced colitis mice by rebalancing Th17/Treg cell homeostasis through modulation of the Notch and JAK2/STAT3 signaling pathways. These insights into AM's mechanisms of action offer potential avenues for novel therapeutic strategies.
Collapse
Affiliation(s)
- Jie Jiang
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, PR China
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yuxiang Sheng
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Zheng Zheng
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Fuhao Qin
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Bin Jiang
- Institute of Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
30
|
Sasaki T, Fujiwara-Tani R, Luo Y, Ogata R, Sasaki R, Ikemoto A, Nishiguchi Y, Nakashima C, Kishi S, Fujii K, Ohmori H, Oue N, Kuniyasu H. Effects of High-Mobility Group Box-1 on Mucosal Immunity and Epithelial Differentiation in Colitic Carcinoma. Int J Mol Sci 2024; 25:6846. [PMID: 38999957 PMCID: PMC11241214 DOI: 10.3390/ijms25136846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
Abnormalities in mucosal immunity are involved in the onset and progression of ulcerative colitis (UC), resulting in a high incidence of colorectal cancer (CRC). While high-mobility group box-1 (HMGB1) is overexpressed during colorectal carcinogenesis, its role in UC-related carcinogenesis remains unclear. In the present study, we investigated the role of HMGB1 in UC-related carcinogenesis and sporadic CRC. Both the azoxymethane colon carcinogenesis and dextran sulfate sodium colitis carcinogenesis models demonstrated temporal increases in mucosal HMGB1 levels. Activated CD8+ cells initially increased and then decreased, whereas exhausted CD8+ cells increased. Additionally, we observed increased regulatory CD8+ cells, decreased naïve CD8+ cells, and decreased mucosal epithelial differentiation. In the in vitro study, HMGB1 induced energy reprogramming from oxidative phosphorylation to glycolysis in CD8+ cells and intestinal epithelial cells. Furthermore, in UC dysplasia, UC-related CRC, and hyperplastic mucosa surrounding human sporadic CRC, we found increased mucosal HMGB1, decreased activated CD8+ cells, and suppressed mucosal epithelial differentiation. However, we observed increased activated CD8+ cells in active UC mucosa. These findings indicate that HMGB1 plays an important role in modulating mucosal immunity and epithelial dedifferentiation in both UC-related carcinogenesis and sporadic CRC.
Collapse
Grants
- 22K11396 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 23K19900 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Yi Luo
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Rika Sasaki
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Ayaka Ikemoto
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Shingo Kishi
- Pathology Laboratory, Research Institute, Tokushukai Nozaki Hospital, 2-10-50 Tanigawa, Daito 574-0074, Osaka, Japan;
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| | - Naohide Oue
- Pathology Laboratory, Miyoshi Central Hospital, 10531 Higashi-Sakaya, Miyoshi 728-8502, Hiroshima, Japan;
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, 840 Shijo-Cho, Kashihara 634-8521, Nara, Japan; (T.S.); (Y.L.); (R.O.); (R.S.); (A.I.); (Y.N.); (C.N.); (K.F.); (H.O.)
| |
Collapse
|
31
|
Takeuchi M, Nishio Y, Someya H, Sato T, Yoshimura A, Ito M, Harimoto K. Autoimmune uveitis attenuated in diabetic mice through imbalance of Th1/Th17 differentiation via suppression of AP-1 signaling pathway in Th cells. Front Immunol 2024; 15:1347018. [PMID: 38887289 PMCID: PMC11180723 DOI: 10.3389/fimmu.2024.1347018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 06/20/2024] Open
Abstract
Purpose Inflammation is involved in the pathogenesis of diabetes, however the impact of diabetes on organ-specific autoimmune diseases remains unexplored. Experimental autoimmune uveoretinitis (EAU) is a widely accepted animal model of human endogenous uveitis. In this study, we investigated the effects of diabetic conditions on the development of EAU using a mouse diabetes model. Methods EAU was induced in wild-type C57BL/6 (WT) mice and Ins2Akita (Akita) mice with spontaneous diabetes by immunization with IRBP peptide. Clinical and histopathological examinations, and analysis of T cell activation state were conducted. In addition, alternations in the composition of immune cell types and gene expression profiles of relevant immune functions were identified using single-cell RNA sequencing. Results The development of EAU was significantly attenuated in immunized Akita (Akita-EAU) mice compared with immunized WT (WT-EAU) mice, although T cells were fully activated in Akita-EAU mice, and the differentiation into Th17 cells and regulatory T (Treg) cells was promoted. However, Th1 cell differentiation was inhibited in Akita-EAU mice, and single-cell analysis indicated that gene expression associated AP-1 signaling pathway (JUN, FOS, and FOSB) was downregulated not only in Th1 cells but also in Th17, and Treg cells in Akita-EAU mice at the onset of EAU. Conclusions In diabetic mice, EAU was significantly attenuated. This was related to selective inhibition of Th1 cell differentiation and downregulated AP-1 signaling pathway in both Th1 and Th17 cells.
Collapse
Affiliation(s)
- Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hideaki Someya
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kozo Harimoto
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
32
|
Wang C, Oishi K, Kobayashi T, Fujii K, Horii M, Fushida N, Kitano T, Maeda S, Ikawa Y, Komuro A, Hamaguchi Y, Matsushita T. The Role of TLR7 and TLR9 in the Pathogenesis of Systemic Sclerosis. Int J Mol Sci 2024; 25:6133. [PMID: 38892317 PMCID: PMC11172923 DOI: 10.3390/ijms25116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The bleomycin-induced scleroderma model is a well-established and dependable method for creating a mouse model of SSc (systemic sclerosis). In the field of skin connective tissue diseases, increasing evidence from clinical and animal experiments suggests that TLRs (Toll-like receptors) play an important role in several diseases. This study aimed to determine the role of TLR7 (Toll-like receptor 7) and TLR9 (Toll-like receptor 9) in the mechanisms of immune abnormalities and fibrosis in SSc. This study used TLR7-KO mice (TLR7-knockout mice with a balb/c background) and TLR9-KO mice (TLR9-knockout mice with a balb/c background) as well as WT mice (wild-type balb/c mice). All three kinds of mice were induced by BLM (bleomycin) in a scleroderma model as the experimental group; meanwhile, WT mice treated with PBS (phosphate-buffered saline) were used as the control group. We analyzed the fibrotic phenotype and the immunological abnormality phenotype of TLR7-deficient and TLR9-deficient mice in the SSc disease model using flow cytometry, RT-PCR (reverse transcription-polymerase chain reaction), a histological examination, and IHC (immunohistochemical staining). In a mouse model of SSc disease, the deletion of TLR7 attenuated skin and lung fibrosis, while the deletion of TLR9 exacerbated skin and lung fibrosis. The deletion of TLR7 resulted in a relative decrease in the infiltration and expression of various pro-inflammatory and fibrotic cells and cytokines in the skin. On the other hand, the deletion of TLR9 resulted in a relative increase in the infiltration and expression of various pro-inflammatory and cytokine-inhibiting cells and cytokines in the skin. Under the influence of pDCs (plasmacytoid dendritic cells), the balances of Beff/Breg (IL-6 + CD19 + B cell/IL-10 + CD19 + B cell), Th17/Treg (IL-17A + CD4 + T cell/Foxp3 + CD25 + CD4 + T cell), M1/M2 (CD86 + macrophage/CD206 + macrophage), and Th1/Th2 (TNFα + CD3 + CD4 + T cell/IL-4 + CD3 + CD4 + T cell) were biased towards the suppression of inflammation and fibrosis as a result of the TLR7 deletion. Comparatively, the balance was biased towards promoting inflammation and fibrosis due to the TLR9 deletion. In the SSc model, TLR7 promoted inflammation and fibrosis progression, while TLR9 played a protective role. These results suggest that TLR7 and TLR9 play opposite roles in triggering SSc to produce immune system abnormalities and skin fibrosis.
Collapse
Affiliation(s)
- Chenyang Wang
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Kyosuke Oishi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tadahiro Kobayashi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Ko Fujii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Motoki Horii
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Natsumi Fushida
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Tasuku Kitano
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Shintaro Maeda
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Yuichi Ikawa
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Akito Komuro
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
- Department of Plastic Surgery, Kanazawa University Hospital, Kanazawa 920-8641, Japan
| | - Yasuhito Hamaguchi
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| | - Takashi Matsushita
- Department of Dermatology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8641, Japan; (C.W.)
| |
Collapse
|
33
|
Sircana MC, Erre GL, Castagna F, Manetti R. Crosstalk between Inflammation and Atherosclerosis in Rheumatoid Arthritis and Systemic Lupus Erythematosus: Is There a Common Basis? Life (Basel) 2024; 14:716. [PMID: 38929699 PMCID: PMC11204900 DOI: 10.3390/life14060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with rheumatoid arthritis and systemic lupus erythematosus. Traditional cardiovascular risk factors, although present in lupus and rheumatoid arthritis, do not explain such a high burden of early cardiovascular disease in the context of these systemic connective tissue diseases. Over the past few years, our understanding of the pathophysiology of atherosclerosis has changed from it being a lipid-centric to an inflammation-centric process. In this review, we examine the pathogenesis of atherosclerosis in systemic lupus erythematosus and rheumatoid arthritis, the two most common systemic connective tissue diseases, and consider them as emblematic models of the effect of chronic inflammation on the human body. We explore the roles of the inflammasome, cells of the innate and acquired immune system, neutrophils, macrophages, lymphocytes, chemokines and soluble pro-inflammatory cytokines in rheumatoid arthritis and systemic lupus erythematosus, and the roles of certain autoantigens and autoantibodies, such as oxidized low-density lipoprotein and beta2-glycoprotein, which may play a pathogenetic role in atherosclerosis progression.
Collapse
Affiliation(s)
| | | | | | - Roberto Manetti
- Department of Medical, Surgical and Pharmacology, University of Sassari, 07100 Sassari, Italy; (G.L.E.); (F.C.)
| |
Collapse
|
34
|
Xiao ZX, Liang R, Olsen N, Zheng SG. Roles of IRF4 in various immune cells in systemic lupus erythematosus. Int Immunopharmacol 2024; 133:112077. [PMID: 38615379 DOI: 10.1016/j.intimp.2024.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Interferon regulatory factor 4 (IRF4) is a member of IRF family of transcription factors which mainly regulates the transcription of IFN. IRF4 is restrictively expressed in immune cells such as T and B cells, macrophages, as well as DC. It is essential for the development and function of these cells. Since these cells take part in the homeostasis of the immune system and dysfunction of them contributes to the initiation and progress of systemic lupus erythematosus (SLE), the roles of IRF4 in the SLE development becomes an important topic. Here we systemically discuss the biological characteristics of IRF4 in various immune cells and analyze the pathologic effects of IRF4 alteration in SLE and the potential targeting therapeutics of SLE.
Collapse
Affiliation(s)
- Ze Xiu Xiao
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China; Department of Clinical Immunology, the Third Affiliated Hospital at the Sun Yat-sen University, Guangzhou 510630, China
| | - Rongzhen Liang
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Song Guo Zheng
- Department of Immunology, the School of Cell and Gene Therapy, Songjiang Research Institute and Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201600, China.
| |
Collapse
|
35
|
Yang Y, Zhang H, Xiao X, Guo M. Identification of EPSTI1 as a new potential biomarker for SLE based on GEO database. Clin Rheumatol 2024; 43:1531-1540. [PMID: 38507132 DOI: 10.1007/s10067-024-06881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with highly heterogeneous. The aim of this study is to find the key genes in peripheral blood mononuclear cells (PBMCs) of SLE patients and to provide a new direction for the diagnosis and treatment of lupus. METHODS GSE121239, GSE50772, GSE81622, and GSE144390 mRNA expression profiles were obtained from the website of Gene Expression Omnibus (GEO), and differential expressed genes (DEGs) analysis was performed by R. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to elucidate signaling pathways for the DEGs. Real-time qPCR (RT-qPCR) was used to verify the key gene EPSTI1 in PBMCs of SLE patients. Finally, the correlation analysis and ROC curve analysis of EPSTI1 for SLE were performed. RESULTS A total of 12 upregulated DEGs were identified, including MMP8, MX1, IFI44, EPSTI1, OAS1, OAS3, HERC5, IFIT1, RSAD2, USP18, IFI44L, and IFI27. GO and KEGG pathway enrichment analysis showed that those DEGs were mainly concentrated in the response to virus and IFN signaling pathways. Real-time qPCR (RT-qPCR) revealed that EPSTI1 was increased in PBMCs of SLE. EPSTI1 was positively correlated with SLEDAI score in SLE patients. Besides, EPSTI1 was positively correlated with T cell activation- or differentiation-associated genes (BCL6 and RORC). Furthermore, ROC analyses proved EPSTI1 may have diagnostic value for SLE. CONCLUSION Together, EPSTI1 was found to be a potential biomarker for SLE, closely related to T cell immune imbalance. Key Points • EPSTI1 expression was significantly increased in PBMCs of SLE patients. • EPSTI1 was positively correlated with disease activity and T cell activation- or differentiation-associated genes in SLE patients. • EPSTI1 might have a good diagnostic value for SLE.
Collapse
Affiliation(s)
- Yiying Yang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
- Postdoctoral Research Station of Basic Medicine, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Huali Zhang
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathophysiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
- Sepsis Translational Medicine Key Lab of Hunan Province, Changsha, Hunan, China
| | - Xiaoyu Xiao
- Department of Nutrition, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| | - Muyao Guo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
36
|
Ding M, Jin L, Zhao J, Yang L, Cui S, Wang X, He J, Chang F, Shi M, Ma J, Song S, Jin H, Liu A. Add-on sirolimus for the treatment of mild or moderate systemic lupus erythematosus via T lymphocyte subsets balance. Lupus Sci Med 2024; 11:e001072. [PMID: 38351097 PMCID: PMC10868177 DOI: 10.1136/lupus-2023-001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
OBJECTIVE The efficacy of sirolimus in treating severe or refractory systemic lupus erythematosus (SLE) has been confirmed by small-scale clinical trials. However, few studies focused on mild or moderate SLE. Therefore, in this study we elucidated clinical efficacy of add-on sirolimus in patients with mild or moderate SLE. METHODS Data of 17 consecutive patients with SLE were retrospectively collected. SLE Disease Activity Index-2000 (SLEDAI-2K), clinical manifestation, laboratory data and peripheral T lymphocyte subsets with cytokines were collected before and 6 months after sirolimus add-on treatment. T cell subsets were detected by flow cytometry and cytokines were determined by multiplex bead-based flow fluorescent immunoassay simultaneously. Twenty healthy controls matched with age and sex were also included in our study. RESULTS (1) The numbers of peripheral blood lymphocytes, T cells, T helper (Th) cells, regulatory T (Treg) cells, Th1 cells, Th2 cells and Treg/Th17 ratios in patients with SLE were significantly lower, while the numbers of Th17 cells were evidently higher than those of healthy control (p<0.05). (2) After 6 months of sirolimus add-on treatment, urinary protein, pancytopenia, immunological indicators and SLEDAI-2K in patients with SLE were distinctively improved compared with those before sirolimus treatment (p<0.05). (3) The numbers of peripheral blood lymphocytes, T cells, Th cells, Treg cells, Th2 cells and the ratios of Treg/Th17 in patients with SLE after treatment were clearly higher than those before (p<0.05). (4) The levels of plasma interleukin (IL)-5, IL-6 and IL-10 in patients with SLE decreased notably, conversely the IL-4 levels increased remarkably compared with pretreatment (p<0.05). CONCLUSIONS (1) Patients with SLE presented imbalanced T cell subsets, especially the decreased ratio of Treg/Th17. (2) Sirolimus add-on treatment ameliorated clinical involvement, serological abnormalities and disease activity without adverse reactions in patients with SLE. (3) The multi-target therapy facilitates the enhanced numbers of Treg cells, Treg/Th17 imbalance and anti-inflammatory cytokines, simultaneously, reducing inflammatory cytokines.
Collapse
Affiliation(s)
- Meng Ding
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lu Jin
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinwen Zhao
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lin Yang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shaoxin Cui
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoping Wang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingjing He
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Chang
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Shi
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Ma
- Department of Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, China
| | - Shuran Song
- Department of Clinical Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongtao Jin
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Aijing Liu
- Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Shijiazhuang, Hebei, China
| |
Collapse
|
37
|
Wu Y, Pu X, Wang X, Xu M. Reprogramming of lipid metabolism in the tumor microenvironment: a strategy for tumor immunotherapy. Lipids Health Dis 2024; 23:35. [PMID: 38302980 PMCID: PMC10832245 DOI: 10.1186/s12944-024-02024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Lipid metabolism in cancer cells has garnered increasing attention in recent decades. Cancer cells thrive in hypoxic conditions, nutrient deficiency, and oxidative stress and cannot be separated from alterations in lipid metabolism. Therefore, cancer cells exhibit increased lipid metabolism, lipid uptake, lipogenesis and storage to adapt to a progressively challenging environment, which contribute to their rapid growth. Lipids aid cancer cell activation. Cancer cells absorb lipids with the help of transporter and translocase proteins to obtain energy. Abnormal levels of a series of lipid synthases contribute to the over-accumulation of lipids in the tumor microenvironment (TME). Lipid reprogramming plays an essential role in the TME. Lipids are closely linked to several immune cells and their phenotypic transformation. The reprogramming of tumor lipid metabolism further promotes immunosuppression, which leads to immune escape. This event significantly affects the progression, treatment, recurrence, and metastasis of cancer. Therefore, the present review describes alterations in the lipid metabolism of immune cells in the TME and examines the connection between lipid metabolism and immunotherapy.
Collapse
Affiliation(s)
- Yuting Wu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xi Pu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China
| | - Xu Wang
- Department of Radiation Oncology, Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China.
| | - Min Xu
- Department of Gastroenterology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Jingkou, Zhenjiang, Jiangsu, 212001, P. R. China.
- Digestive Disease Research Institute of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
38
|
Yu JL, Li Z, Zhang B, Huang YN, Zhao TY. Case report: Kikuchi-Fujimoto disease: unveiling a case of recurrent fever and enlarged cervical lymph nodes in a young female patient with a literature review of the immune mechanism. Front Immunol 2024; 14:1279592. [PMID: 38313434 PMCID: PMC10837848 DOI: 10.3389/fimmu.2023.1279592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
The inflammatory response to viral infection is an important component of the antiviral response, a process that involves the activation and proliferation of CD8+ T, CD4+ T, and dendritic cells; thus, viral infection disrupts the immune homeostasis of the organism, leading to an increased release of inflammatory factors. Kikuchi-Fujimoto disease (KFD) is an inflammatory self-limited disorder of unknown etiology, and it is generally believed that the pathogenesis of this disease includes two aspects: viral infection and autoimmune response. Various immune cells, such as CD8+ T lymphocytes, CD4+ T lymphocytes, and CD123+ plasmacytoid dendritic cells, as well as the cytokines they induce and secrete, such as interferons, interleukins, and tumor necrosis factors, play a crucial role in the pathogenesis of KFD. In this article, we present a case study of a young female patient from China who exhibited typical symptoms of lymph node inflammation and fever. The diagnosis of KFD was confirmed through a lymph node biopsy. She presented with elevated ESR, IL-6, and IFN-γ. Viral markers showed elevated IgG and IgM of cytomegalovirus (CMV) and elevated IgG of Epstein-Barr virus (EBV), while changes occurred in the CD4+ T and CD8+ T cell counts. Eventually, the patient achieved disease relief through steroid treatment. Based on these findings, we conducted a comprehensive review of the involvement of viral infection-induced inflammatory response processes and autoimmunity in the pathogenesis of Kikuchi-Fujimoto disease.
Collapse
Affiliation(s)
- Jia-Li Yu
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhen Li
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ya-Nan Huang
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tian-Yu Zhao
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
39
|
Lin SQ, Wang K, Pan XH, Ruan GP. Mechanisms of Stem Cells and Their Secreted Exosomes in the Treatment of Autoimmune Diseases. Curr Stem Cell Res Ther 2024; 19:1415-1428. [PMID: 38311916 DOI: 10.2174/011574888x271344231129053003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 02/06/2024]
Abstract
Stem cells play a therapeutic role in many diseases by virtue of their strong self-renewal and differentiation abilities, especially in the treatment of autoimmune diseases. At present, the mechanism of the stem cell treatment of autoimmune diseases mainly relies on their immune regulation ability, regulating the number and function of auxiliary cells, anti-inflammatory factors and proinflammatory factors in patients to reduce inflammation. On the other hand, the stem cell- derived secretory body has weak immunogenicity and low molecular weight, can target the site of injury, and can extend the length of its active time in the patient after combining it with the composite material. Therefore, the role of secretory bodies in the stem cell treatment of autoimmune diseases is increasingly important.
Collapse
Affiliation(s)
- Shu-Qian Lin
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Kai Wang
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| | - Guang-Ping Ruan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| |
Collapse
|
40
|
Huang H. Immunotherapeutic approaches for systemic lupus erythematosus: early overview and future potential. MEDICAL REVIEW (2021) 2023; 3:452-464. [PMID: 38282801 PMCID: PMC10808868 DOI: 10.1515/mr-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/16/2023] [Indexed: 01/30/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease. Current SLE therapies include immunosuppressants, antimalarial drugs, non-steroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, but these treatments can cause substantial toxicities to organs and may not be effective for all patients. In recent years, significant progress has been made in the treatment of SLE using immunotherapy, including Benlysta and Saphnelo. These advances in immunotherapy hold promise for SLE patients, providing new therapeutic options that may offer better clinical benefit and effectiveness. Simultaneously, several new biological therapies focusing on cytokines, peptides, targeted antibodies, and cell-based approaches are under clinical evaluation and have shown immense potential for the treatment of SLE. However, the complexity of SLE immunopathogenesis and disease heterogeneity present significant challenges in the development of effective immunological therapies. This review aims to discuss past experiences and understanding of diverse immunological targeting therapies for SLE and highlight future perspectives for the development of novel immunological therapies.
Collapse
Affiliation(s)
- Hongpeng Huang
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
41
|
Zukowski E, Sannella M, Rockhold JD, Kalantar GH, Yu J, SantaCruz‐Calvo S, Kuhn MK, Hah N, Ouyang L, Wang T, Murphy L, Marszalkowski H, Gibney K, Drummond MJ, Proctor EA, Hasturk H, Nikolajczyk BS, Bharath LP. STAT3 modulates CD4 + T mitochondrial dynamics and function in aging. Aging Cell 2023; 22:e13996. [PMID: 37837188 PMCID: PMC10652300 DOI: 10.1111/acel.13996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/15/2023] Open
Abstract
Aging promotes numerous intracellular changes in T cells that impact their effector function. Our data show that aging promotes an increase in the localization of STAT3 to the mitochondria (mitoSTAT3), which promotes changes in mitochondrial dynamics and function and T-cell cytokine production. Mechanistically, mitoSTAT3 increased the activity of aging T-cell mitochondria by increasing complex II. Limiting mitoSTAT3 using a mitochondria-targeted STAT3 inhibitor, Mtcur-1 lowered complex II activity, prevented age-induced changes in mitochondrial dynamics and function, and reduced Th17 inflammation. Exogenous expression of a constitutively phosphorylated form of STAT3 in T cells from young adults mimicked changes in mitochondrial dynamics and function in T cells from older adults and partially recapitulated aging-related cytokine profiles. Our data show the mechanistic link among mitoSTAT3, mitochondrial dynamics, function, and T-cell cytokine production.
Collapse
Affiliation(s)
- Emelia Zukowski
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Marco Sannella
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Jack Donato Rockhold
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Gabriella H. Kalantar
- Department of Microbiology, Immunology and Molecular GeneticsUniversity of KentuckyLexingtonKentuckyUSA
| | - Jingting Yu
- Razavi Newman Integrative Genomics and Bioinformatics CoreThe Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Sara SantaCruz‐Calvo
- Departments of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Barnstable Brown Diabetes and Obesity CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Madison K. Kuhn
- Departments of Neurosurgery, Pharmacology, and Biomedical Engineering and Center for Neural EngineeringPennsylvania State UniversityHersheyPennsylvaniaUSA
| | - Nasun Hah
- Next Generation Sequencing CoreThe Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Ling Ouyang
- Next Generation Sequencing CoreThe Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Tzu‐Wen Wang
- Next Generation Sequencing CoreThe Salk Institute for Biological StudiesLa JollaCaliforniaUSA
| | - Lyanne Murphy
- Department of BiologyMerrimack CollegeNorth AndoverMassachusettsUSA
| | | | - Kaleigh Gibney
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| | - Micah J. Drummond
- Department of Physical Therapy and Athletic TrainingUniversity of UtahSalt Lake CityUtahUSA
| | - Elizabeth A. Proctor
- Departments of Neurosurgery, Pharmacology, and Biomedical Engineering and Center for Neural EngineeringPennsylvania State UniversityHersheyPennsylvaniaUSA
- Department of Engineering Science & MechanicsPennsylvania State UniversityHersheyPennsylvaniaUSA
| | | | - Barbara S. Nikolajczyk
- Departments of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Barnstable Brown Diabetes and Obesity CenterUniversity of KentuckyLexingtonKentuckyUSA
| | - Leena P. Bharath
- Department of Nutrition and Public HealthMerrimack CollegeNorth AndoverMassachusettsUSA
| |
Collapse
|
42
|
Chen H, Su Z, Pan X, Zheng X, Li H, Ye Z, Tang B, Lu Y, Zheng G, Lu C. Phytochemicals: Targeting autophagy to treat psoriasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155041. [PMID: 37678054 DOI: 10.1016/j.phymed.2023.155041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by well-defined erythema and white scales, which affects approximately 2% of the worldwide population and causes long-term distress to patients. Therefore, development of safe and effective therapeutic drugs is imminent. Autophagy, an evolutionarily conserved catabolic process, degrades intracellular constituents to maintain cellular energy homeostasis. Numerous studies have revealed that autophagy is closely related to immune function, such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development. Phytochemicals derived from natural plants are often used to treat psoriasis due to their unique therapeutic properties and favorable safety. So far, a mass of phytochemicals have been proven to be able to activate autophagy and thus alleviate psoriasis. This review aimed to provide directions for finding phytochemicals that target autophagy to treat psoriasis. METHODS The relevant literatures were collected from classical TCM books and a variety of databases (PubMed, Google Scholar, ScienceDirect, Springer Link, Web of Science and China National Knowledge Infrastructure) till December 2022. Search terms were "Phytochemical", "Psoriasis" and "Autophagy". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS Phytochemicals treat psoriasis mainly through regulating immune cell function, inhibiting excessive inflammatory response, and reducing oxidative stress. While the role and mechanism of autophagy in the pathogenesis of psoriasis have been confirmed in human trials, most of the evidence for phytochemicals that target autophagy to treat psoriasis comes from animal studies. The research focusing on the role of phytochemical-mediated autophagy in the prevention and treatment of psoriasis is limited, and the definite relationship between phytochemical-regulated autophagy and treatment of psoriasis still deserves further experimental confirmation. CONCLUSIONS Phytochemicals with autophagic activities will provide new insights into the therapeutic intervention for psoriasis.
Collapse
Affiliation(s)
- Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuqing Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin Pan
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuwei Zheng
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongxia Li
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zeting Ye
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
43
|
Gao Y, Wang Y, Li M, Gao C. Bioinformatics analysis of potential common pathogenic mechanisms for systemic lupus erythematosus and acute myocardial infarction. Lupus 2023; 32:1296-1309. [PMID: 37800460 DOI: 10.1177/09612033231202659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) patients have a higher risk of acute myocardial infarction (AMI) compared to the general population. However, the underlying common mechanism of this association is not fully understood. This study aims to investigate the molecular mechanism of this complication. METHODS Gene expression profiles of SLE (GSE50772) and AMI (GSE66360) were obtained from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (DEGs) in SLE and AMI were identified, and functional annotation, protein-protein interaction (PPI) network analysis, module construction, and hub gene identification were performed. Additionally, transcription factor (TF)-gene regulatory network and TF-miRNA regulatory network were constructed for the hub genes. RESULTS 70 common DEGs (7 downregulated genes and 63 upregulated genes) were identified and were mostly enriched in signaling pathways such as the IL-17 signaling pathway, TNF signaling pathway, lipid metabolism, and atherosclerosis. Using cytoHubba, 12 significant hub genes were identified, including IL1B, TNF, FOS, CXCL8, JUN, PTGS2, FN1, EGR1, CXCL1, DUSP1, MMP9, and ZFP36. CONCLUSIONS This study reveals a common pathogenesis of SLE and AMI and provides new perspectives for further mechanism research. The identified common pathways and hub genes may have important clinical implications for the prevention and treatment of AMI in SLE patients.
Collapse
Affiliation(s)
- Yang Gao
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Yunxia Wang
- Department of Radiology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Muwei Li
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Chuanyu Gao
- Department of Cardiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| |
Collapse
|
44
|
Ma S, Feng G, Li L, Li Z, Zhou X, Zhou Y, Zhang R. Downregulation of circETS1 disrupts Th17/Treg homeostasis by inhibiting FOXP3 transcription: A new potential biomarker in systemic lupus erythematosus. Lupus 2023; 32:1430-1439. [PMID: 37852297 DOI: 10.1177/09612033231207545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with an imbalance of T helper 17 (Th17) to regulatory T cells (Tregs). However, the underlying mechanism remains unclear. Increasing evidence suggests that circular RNAs play a crucial role in SLE. Although circETS1 was discovered 30 years ago, detailed exploration of its functions remains limited. In this study, we measured the expression levels of circETS1 in peripheral blood mononuclear cells (PBMCs) and CD4+ T cells of patients with SLE by quantitative polymerase chain reaction. The impact of circETS1 expression on the Th17/Treg balance and underlying mechanism were evaluated using double-luciferase reporter, gain-/loss-of-function, and rescue assays. Receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic value of circETS1. Both circETS1 and FOXP3 expression were downregulated in the PBMCs and CD4+ T cells of patients with SLE (n = 28) compared with those in the cells of healthy controls (n = 20). Mechanistically, we found that circETS1 can bind directly to the microRNA miR-1205, acting as a sponge to upregulate the transcription of FOXP3, thereby maintaining the Th17/Treg balance. Notably, ROC analysis showed that the expression level of circETS1 in PBMCs had an area under the curve of 0.873 (95% confidence interval: 0.771-0.976; p < .001) for diagnosing SLE, with a sensitivity of 80.00% and a specificity of 89.29%. Finally, we found negative correlations between the level of circETS1 in PBMCs and disease severity (according to the Systemic Lupus Erythematosus Disease Activity Index) in patients with SLE (r = -0.7712, 95% CI: -0.8910 to -0.5509; p < .001). The imbalance in Th17/Treg cells in SLE may be attributed, in part, to the circETS1/miR-1205/FOXP3 pathway. CircETS1 has potential to serve as a valuable biomarker for the diagnosis and evaluation of SLE.
Collapse
Affiliation(s)
- Sha Ma
- Department of Rheumatology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Guofu Feng
- Department of Disease Control and Prevention, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Li Li
- School of Public Health, Dali University, Dali, China
| | - Zi Li
- Quality Management Department, Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Xiaoyu Zhou
- Department of Disease Control and Prevention, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yan Zhou
- Department of Nephrology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ruixian Zhang
- Department of Disease Control and Prevention, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
45
|
Spinelli FR, Berti R, Farina G, Ceccarelli F, Conti F, Crescioli C. Exercise-induced modulation of Interferon-signature: a therapeutic route toward management of Systemic Lupus Erythematosus. Autoimmun Rev 2023; 22:103412. [PMID: 37597604 DOI: 10.1016/j.autrev.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is a multisystemic autoimmune disorder characterized by flares-ups/remissions with a complex clinical picture related to disease severity and organ/tissue injury, which, if left untreated, may result in permanent damage. Enhanced fatigue and pain perception, worsened quality of life (QoL) and outcome are constant, albeit symptoms may differ. An aberrant SLE immunoprofiling, note as "interferon (IFN)α-signature", is acknowledged to break immunotolerance. Recently, a deregulated "IFNγ-signature" is suggested to silently precede/trigger IFNα profile before clinical manifestations. IFNα- and IFNγ-over-signaling merge in cytokine/chemokine overexpression exacerbating autoimmunity. Remission achievement and QoL improvement are the main goals. The current therapy (i.e., corticosteroids, immunosuppressants) aims to downregulate immune over-response. Exercise could be a safe treatment due to its ever-emerging ability to shape and re-balance immune system without harmful side-effects; in addition, it improves cardiorespiratory capacity and musculoskeletal strength/power, usually impaired in SLE. Nevertheless, exercise is not yet included in SLE care plans. Furthermore, due to the fear to worsening pain/fatigue, SLE subjects experience kinesiophobia and sedentary lifestyle, worsening physical health. Training SLE patients to exercise is mandatory to fight inactive behavior and ameliorate health. This review aims to focus the attention on the role of exercise as a non-pharmacological therapy in SLE, considering its ability to mitigate IFN-signature and rebalance (auto)immune response. To this purpose, the significance of IFNα- and IFNγ-signaling in SLE etiopathogenesis will be addressed first and discussed thereafter as biotarget of exercise. Comments are addressed on the need to make aware all SLE care professional figures to promote exercise for health patients.
Collapse
Affiliation(s)
- Francesca Romana Spinelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Riccardo Berti
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Gabriele Farina
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy
| | - Fulvia Ceccarelli
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Fabrizio Conti
- Sapienza Università di Roma, Dipartimento di Scienze Cliniche Internistiche, Anestesiologiche e Cardiovascolari-Reumatologia, Roma, Italy
| | - Clara Crescioli
- University of Rome Foro Italico, Department of Movement, Human and Health Sciences, Rome, Italy.
| |
Collapse
|
46
|
Maeda S, Hashimoto H, Maeda T, Tamechika SY, Isogai S, Naniwa T, Niimi A. High-dimensional analysis of T-cell profiling variations following belimumab treatment in systemic lupus erythematosus. Lupus Sci Med 2023; 10:e000976. [PMID: 37802602 PMCID: PMC10565340 DOI: 10.1136/lupus-2023-000976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study sought to elucidate the molecular impacts of belimumab (BEL) treatment on T-cell immune profiling in SLE. METHODS We used mass cytometry with 25 marker panels for T-cell immune profiling in peripheral blood T cells (CD3+) from 22 patients with BEL-treated SLE and 20 controls with non-BEL-treated SLE. An unsupervised machine-learning clustering, FlowSOM, was used to identify 39 T-cell clusters (TCLs; TCL01-TCL39). TCLs (% of CD3+) showing significant (p<0.05) associations with BEL treatment (BEL-TCL) were selected by a linear mixed-effects model for comparing groups of time-series data. Furthermore, we analysed the association between BEL treatment and variations in regulatory T-cell (Treg) phenotypes, and the ratio of other T-cell subsets to Treg as secondary analysis. RESULTS Clinical outcomes: BEL treatment was associated with a decrease in daily prednisolone use (coef=-0.1769, p=0.00074), and an increase in serum CH50 (coef=0.4653, p=0.003), C3 (coef=1.1047, p=0.00001) and C4 (coef=0.2990, p=0.00157) levels. Molecular effects: five distinct BEL-TCLs (TCL 04, 07, 11, 12 and 27) were identified. Among these, BEL-treated patients exhibited increased proportions in the Treg-like cluster TCL11 (coef=0.404, p=0.037) and two naïve TCLs (TCL04 and TCL07). TCL27 showed increased levels (coef=0.222, p=0.037) inversely correlating with baseline C3 levels. Secondary analyses revealed associations between BEL treatment and an increase in Tregs (coef=1.749, p=0.0044), elevated proportions of the fraction of Tregs with inhibitory function (fTregs, coef=0.7294, p=0.0178) and changes in peripheral helper T cells/fTreg (coef=-4.475, p=0.0319) and T helper 17/fTreg ratios (coef=-6.7868, p=0.0327). Additionally, BEL was linked to variations in T-cell immunoglobulin and mucin domain-containing protein-3 expression (coef=0.2422, p=0.039). CONCLUSIONS The study suggests an association between BEL treatment and variations in T cells, particularly Tregs, in SLE pathologies involving various immune cells.
Collapse
Affiliation(s)
- Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroya Hashimoto
- Clinical Research Management Center, Nagoya City University Hospital, Nagoya, Japan
| | - Tomoyo Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shin-Ya Tamechika
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Taio Naniwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
47
|
Li W, Ling Z, Wang J, Su Z, Lu J, Yang X, Cheng B, Tao X. ASCT2-mediated glutamine uptake promotes Th1 differentiation via ROS-EGR1-PAC1 pathway in oral lichen planus. Biochem Pharmacol 2023; 216:115767. [PMID: 37634599 DOI: 10.1016/j.bcp.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Oral lichen planus (OLP) is a T cell-mediated autoimmune disease of oral mucosa concerning with the redox imbalance. Although glutamine uptake mediated by alanine-serine-cysteine transporter 2 (ASCT2) is critical to T cell differentiation, the exact mechanism remains ambiguous. Here, we elucidate a novel regulatory mechanism of ASCT2-mediated uptake in the differentiation and proliferation of T cells through maintaining redox balance in OLP. The results of immunohistochemistry (IHC) showed that both ASCT2 and glutaminase (GLS) were obviously upregulated compared to controls in OLP. Moreover, correlation analyses indicated that ASCT2 expression was significantly related to GLS level. Interestingly, the upregulation of glutamine metabolism in epithelial layer was consistent with that in lamina propria. Functional assays in vitro revealed the positive association between glutamine metabolism and lymphocytes infiltration. Additionally, multiplex immunohistochemistry (mIHC) uncovered a stronger colocalization among ASCT2 and CD4 and IFN-γ, which was further demonstrated by human Th1 differentiation assay in vitro. Mechanistically, targeting glutamine uptake through interference with ASCT2 using L-γ-Glutamyl-p-nitroanilide (GPNA) decreased the glutamine uptake of T cells and leaded to the accumulation of intracellular reactive oxygen species (ROS), which promoted dual specificity phosphatase 2 (DUSP2/PAC1) expression through activation of early growth response 1 (EGR1) to induce dephosphorylation of signal transducer and activator of transcription 3 (STAT3) and inhibit Th1 differentiation in turn. These results demonstrated that glutamine uptake mediated by ASCT2 induced Th1 differentiation by ROS-EGR1-PAC1 pathway, and restoring the redox dynamic balance through targeting ASCT2 may be a potential treatment for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Wei Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zihang Ling
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jinmei Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zhangci Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jingyi Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Yang
- Department of Periodontology, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| | - Xiaoan Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
48
|
Bao Y, Lian M, Chen Y, Gu X, Cao K, Du X, Ju J. sNASP Mutation Aggravates to the TLR4-Mediated Inflammation in SLE by TAK1 Pathway. J Immunol Res 2023; 2023:4877700. [PMID: 37771504 PMCID: PMC10533267 DOI: 10.1155/2023/4877700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/30/2023] Open
Abstract
Genetic factors play an important role in the pathogenesis of systemic lupus erythematosus (SLE), and abnormal Toll-like receptor (TLR) signaling pathways are closely related to the onset of SLE. In previous studies, we found that the mutant somatic nuclear autoantigenic sperm protein (sNASP) gene in the mouse lupus susceptibility locus Sle2 can promote the development of lupus model mice, but the mechanism is still unclear. Here, we stimulated mouse peritoneal macrophages with different concentrations of lipopolysaccharide. The results showed that sNASP gene mutations can promote the response of the TLR4-TAK1 signaling pathway but have no significant effect on the TLR4-TBK1 signaling pathway. sNASP mutations enhanced TLR4-mediated nuclear factor-κ-gene binding and mitogen-activated protein kinase activation and IL-6, tumor necrosis factor secretion in murine peritoneal macrophages. Collectively, our study revealed the impact of sNASP gene mutation on the sensitivity of TLR4 receptors in mouse peritoneal macrophages and shed light on potential mechanisms underlying inflammation in autoimmune diseases.
Collapse
Affiliation(s)
- Yatao Bao
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Meng Lian
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Yong Chen
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Xiaotian Gu
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Kunyu Cao
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| | - Xiaoping Du
- Medical Control Office, The Second Affiliated Hospital of Weifang Medical University, Weifang 261041, China
- Medical Control Office, Weifang, No. 2 Hospital, Weifang 261041, China
| | - Jiyu Ju
- School of Basic Medical Science, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
49
|
Zhang J, Qiu Z, Zhang Y, Wang G, Hao H. Intracellular spatiotemporal metabolism in connection to target engagement. Adv Drug Deliv Rev 2023; 200:115024. [PMID: 37516411 DOI: 10.1016/j.addr.2023.115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
The metabolism in eukaryotic cells is a highly ordered system involving various cellular compartments, which fluctuates based on physiological rhythms. Organelles, as the smallest independent sub-cell unit, are important contributors to cell metabolism and drug metabolism, collectively designated intracellular metabolism. However, disruption of intracellular spatiotemporal metabolism can lead to disease development and progression, as well as drug treatment interference. In this review, we systematically discuss spatiotemporal metabolism in cells and cell subpopulations. In particular, we focused on metabolism compartmentalization and physiological rhythms, including the variation and regulation of metabolic enzymes, metabolic pathways, and metabolites. Additionally, the intricate relationship among intracellular spatiotemporal metabolism, metabolism-related diseases, and drug therapy/toxicity has been discussed. Finally, approaches and strategies for intracellular spatiotemporal metabolism analysis and potential target identification are introduced, along with examples of potential new drug design based on this.
Collapse
Affiliation(s)
- Jingwei Zhang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Zhixia Qiu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China; Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, Research Unit of PK-PD Based Bioactive Components and Pharmacodynamic Target Discovery of Natural Medicine of Chinese Academy of Medical Sciences, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
50
|
Li S, Wu J, Cao N, Wang Q, Zhang Y, Yang T, Miao Y, Pan L, Xiao H, Liu M, Sun C, Yao J, Xiao X. Jingfang granules ameliorate inflammation and immune disorders in mice exposed to low temperature and high humidity by restoring the dysregulation of gut microbiota and fecal metabolites. Biomed Pharmacother 2023; 165:115050. [PMID: 37354813 DOI: 10.1016/j.biopha.2023.115050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023] Open
Abstract
The dramatic changes in global climate on human health have been extremely severe. The immune disorder caused by low temperature and high humidity (LTHH) have become a severe public health issue. Clinically, Jingfang granule (JF) has the effect of dispelling cold and eliminating dampness, and is widely used in the treatment of cold caused by wind and cold, autoimmune diseases, and COVID-19 with cold-dampness stagnating in the lung pattern. Our study aims to elucidate the effect of JF on LTHH-induced immune disorders in mice as well as the underlying mechanisms. In this study, JF increased the spleen index, improved fecal character, repaired the intestinal barrier and alleviated intestinal inflammatory responses. Most importantly, JF ameliorated immune disorder in LTHH mice, which was manifested primarily by the significant increase in gdT, CD8+ Tcm, and CD8+ Tem cells, as well as the decrease in TH1, TH17, CD4+ Tem1, CD4+ Tem2, immature NK, mature NK cells, and M1-like macrophages. Interestingly, the JF treatment not only regulated the gut microbiota by decreasing the abundance of harmful bacteria, as well as up-regulating the abundance of beneficial bacteria, but also ameliorated the metabolic disorders by reversing the levels of fecal metabolites to normality. The results of the correlation analysis demonstrated a significant association among gut microbiota, fecal metabolites and immune cells. In addition, JF inhibited the TLR4/NF-κB/NLRP3 pathway in LTHH mice. In conclusion, our results suggested that JF alleviated inflammation and immune disorders in LTHH mice by restoring gut microbiota and fecal metabolism.
Collapse
Affiliation(s)
- Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jieyi Wu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ningning Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingguo Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | | | - Tianye Yang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Yu Miao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - He Xiao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China
| | - Mingfei Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. LTD., Linyi 273400, China.
| | - Xuefeng Xiao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|