1
|
Miyagawa-Hayashino A, Imura T, Takezawa T, Hirai M, Shibata S, Ogi H, Tsujikawa T, Konishi E. Activation of S1PR2 on macrophages and the hepatocyte S1PR2/RhoA/ROCK1/MLC2 pathway in vanishing bile duct syndrome. PLoS One 2025; 20:e0317568. [PMID: 39854311 PMCID: PMC11760576 DOI: 10.1371/journal.pone.0317568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks. Multiplex immunohistochemistry revealed increased numbers of S1PR2+CD45+CD68+FCN1+ inflammatory macrophages and S1PR2+CD45+CD68+MARCO+ Kupffer cells in liver tissues showing ductopenia due to graft-versus-host disease and rejection post-liver transplant compared with normal liver. Macrophage expression of proinflammatory cytokines, including MCP1, was reduced following S1PR2 inhibition. Taurocholic acid and S1P2 agonist induced hepatocyte S1PR2 and reduced RhoA/ROCK1 expression, resulting in bile canaliculi dilatation. S1PR2 inhibition reversed the effect on RhoA/ROCK1 expression, resulting in maintenance of bile canaliculi through myosin light chain 2 (MLC2) phosphorylation. Activation of S1PR2 on macrophages and S1PR2 on hepatocytes may disrupt bile canaliculi dynamics in VBDS under regulation by RhoA/ROCK1 through MLC2 phosphorylation.
Collapse
Affiliation(s)
- Aya Miyagawa-Hayashino
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Imura
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Maki Hirai
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings Co., Ltd., Kyoto, Japan
| | - Saya Shibata
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings Co., Ltd., Kyoto, Japan
| | - Hiroshi Ogi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- SCREEN Holdings Co., Ltd., Kyoto, Japan
| | - Takahiro Tsujikawa
- Department of Otolaryngology–Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Graham CT, Gordon S, Kubes P. A historical perspective of Kupffer cells in the context of infection. Cell Tissue Res 2024:10.1007/s00441-024-03924-4. [PMID: 39392500 DOI: 10.1007/s00441-024-03924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The Kupffer cell was first discovered by Karl Wilhelm von Kupffer in 1876, labeling them as "Sternzellen." Since their discovery as the primary macrophages of the liver, researchers have gradually gained an in-depth understanding of the identity, functions, and influential role of Kupffer cells, particularly in infection. It is becoming clear that Kupffer cells perform important tissue-specific functions in homeostasis and disease. Stationary in the sinusoids of the liver, Kupffer cells have a high phagocytic capacity and are adept in clearing the bloodstream of foreign material, toxins, and pathogens. Thus, they are indispensable to host defense and prevent the dissemination of bacteria during infections. To highlight the importance of this cell, this review will explore the history of the Kupffer cell in the context of infection beginning with its discovery to the present day.
Collapse
Affiliation(s)
- Carolyn T Graham
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, 259 Wenhua 1st Road Guishan Dist., Taoyuan, Taiwan
| | - Paul Kubes
- Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
4
|
Tian Y, Ni Y, Zhang T, Cao Y, Zhou M, Zhao C. Targeting hepatic macrophages for non-alcoholic fatty liver disease therapy. Front Cell Dev Biol 2024; 12:1444198. [PMID: 39300994 PMCID: PMC11410645 DOI: 10.3389/fcell.2024.1444198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its more advanced form, non-alcoholic steatohepatitis (NASH), have become global health challenges with significant morbidity and mortality rates. NAFLD encompasses several liver diseases, ranging from simple steatosis to more severe inflammatory and fibrotic forms. Ultimately, this can lead to liver cirrhosis and hepatocellular carcinoma. The intricate role of hepatic macrophages, particularly Kupffer cells (KCs) and monocyte-derived macrophages (MoMFs), in the pathogenesis of NAFLD and NASH, has received increasing attention. Hepatic macrophages can interact with hepatocytes, hepatic stellate cells, and endothelial cells, playing a crucial role in maintaining homeostasis. Paradoxically, they also participate in the pathogenesis of some liver diseases. This review highlights the fundamental role of hepatic macrophages in the pathogenesis of NAFLD and NASH, emphasizing their plasticity and contribution to inflammation and fibrosis, and hopes to provide ideas for subsequent experimental research and clinical treatment.
Collapse
Affiliation(s)
- Yingxin Tian
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Celhar T, Li X, Zhao Y, Tay HC, Lee A, Liew HH, Shepherdson EK, Rajarethinam R, Fan Y, Mak A, Chan JKY, Singhal A, Takahashi T. Fetal liver CD34 + contain human immune and endothelial progenitors and mediate solid tumor rejection in NOG mice. Stem Cell Res Ther 2024; 15:164. [PMID: 38853275 PMCID: PMC11163708 DOI: 10.1186/s13287-024-03756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Transplantation of CD34+ hematopoietic stem and progenitor cells (HSPC) into immunodeficient mice is an established method to generate humanized mice harbouring a human immune system. Different sources and methods for CD34+ isolation have been employed by various research groups, resulting in customized models that are difficult to compare. A more detailed characterization of CD34+ isolates is needed for a better understanding of engraftable hematopoietic and potentially non-hematopoietic cells. Here we have performed a direct comparison of CD34+ isolated from cord blood (CB-CD34+) or fetal liver (FL-CD34+ and FL-CD34+CD14-) and their engraftment into immunocompromised NOD/Shi-scid Il2rgnull (NOG) mice. METHODS NOG mice were transplanted with either CB-CD34+, FL-CD34+ or FL-CD34+CD14- to generate CB-NOG, FL-NOG and FL-CD14--NOG, respectively. After 15-20 weeks, the mice were sacrificed and human immune cell reconstitution was assessed in blood and several organs. Liver sections were pathologically assessed upon Haematoxylin and Eosin staining. To assess the capability of allogenic tumor rejection in CB- vs. FL-reconstituted mice, animals were subcutaneously engrafted with an HLA-mismatched melanoma cell line. Tumor growth was assessed by calliper measurements and a Luminex-based assay was used to compare the cytokine/chemokine profiles. RESULTS We show that CB-CD34+ are a uniform population of HSPC that reconstitute NOG mice more rapidly than FL-CD34+ due to faster B cell development. However, upon long-term engraftment, FL-NOG display increased numbers of neutrophils, dendritic cells and macrophages in multiple tissues. In addition to HSPC, FL-CD34+ isolates contain non-hematopoietic CD14+ endothelial cells that enhance the engraftment of the human immune system in FL-NOG mice. We demonstrate that these CD14+CD34+ cells are capable of reconstituting Factor VIII-producing liver sinusoidal endothelial cells (LSEC) in FL-NOG. However, CD14+CD34+ also contribute to hepatic sinusoidal dilatation and immune cell infiltration, which may culminate in a graft-versus-host disease (GVHD) pathology upon long-term engraftment. Finally, using an HLA-A mismatched CDX melanoma model, we show that FL-NOG, but not CB-NOG, can mount a graft-versus-tumor (GVT) response resulting in tumor rejection. CONCLUSION Our results highlight important phenotypical and functional differences between CB- and FL-NOG and reveal FL-NOG as a potential model to study hepatic sinusoidal dilatation and mechanisms of GVT.
Collapse
Affiliation(s)
- Teja Celhar
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #04-06, Singapore, 138648, Republic of Singapore.
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan.
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore, 138648, Republic of Singapore.
| | - Xinyi Li
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #04-06, Singapore, 138648, Republic of Singapore
- Interdisciplinary Life Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Yunqian Zhao
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #04-06, Singapore, 138648, Republic of Singapore
| | - Hui Chien Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #04-06, Singapore, 138648, Republic of Singapore
| | - Andrea Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #04-06, Singapore, 138648, Republic of Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore, 138648, Republic of Singapore
| | - Hui Hua Liew
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, 229899, Republic of Singapore
| | - Edwin Kunxiang Shepherdson
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, 229899, Republic of Singapore
| | - Ravisankar Rajarethinam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yiping Fan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, 229899, Republic of Singapore
- Obstetrics and Gynaecology Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, 117597, Republic of Singapore
| | - Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore, Republic of Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, 229899, Republic of Singapore
- Obstetrics and Gynaecology Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Republic of Singapore
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, Singapore, 117597, Republic of Singapore
| | - Amit Singhal
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #04-06, Singapore, 138648, Republic of Singapore
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #05-13, Singapore, 138648, Republic of Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Republic of Singapore
| | - Takeshi Takahashi
- Central Institute for Experimental Animals (CIEA), 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-0821, Japan
| |
Collapse
|
6
|
Kholodenko IV, Yarygin KN. Hepatic Macrophages as Targets for the MSC-Based Cell Therapy in Non-Alcoholic Steatohepatitis. Biomedicines 2023; 11:3056. [PMID: 38002056 PMCID: PMC10669188 DOI: 10.3390/biomedicines11113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a serious public health issue associated with the obesity pandemic. Obesity is the main risk factor for the non-alcoholic fatty liver disease (NAFLD), which progresses to NASH and then to end-stage liver disease. Currently, there are no specific pharmacotherapies of NAFLD/NASH approved by the FDA or other national regulatory bodies and the treatment includes lifestyle adjustment and medicines for improving lipid metabolism, enhancing sensitivity to insulin, balancing oxidation, and counteracting fibrosis. Accordingly, further basic research and development of new therapeutic approaches are greatly needed. Mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles prevent induced hepatocyte death in vitro and attenuate NASH symptoms in animal models of the disease. They interact with hepatocytes directly, but also target other liver cells, including Kupffer cells and macrophages recruited from the blood flow. This review provides an update on the pathogenesis of NAFLD/NASH and the key role of macrophages in the development of the disease. We examine in detail the mechanisms of the cross-talk between the MSCs and the macrophages, which are likely to be among the key targets of MSCs and their derivatives in the course of NAFLD/NASH cell therapy.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | | |
Collapse
|
7
|
Li N, Li Z, Fang F, Zhu C, Zhang W, Lu Y, Zhang R, Si P, Bian Y, Qin Y, Jiao X. Two distinct resident macrophage populations coexist in the ovary. Front Immunol 2022; 13:1007711. [PMID: 36605192 PMCID: PMC9810109 DOI: 10.3389/fimmu.2022.1007711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Tissue-resident macrophages (TRMs) are highly heterogeneous and have a complex and important role in tissue support, homeostasis, and function. The heterogeneity, maintenance, and function of TRMs, as one of the major immune cells in the ovary, are not well understood. Methods Application of flow cytometry, Parabiosis, Fate mapping, Macrophage depletion, etc. Results Here, we described two distinct macrophage subsets, F4/80hiCD11bint and F4/80intCD11bhi, with different phenotypic characteristics in the ovary of mice. The F4/80hiCD11bint population contained a distinct CD206+ subgroup and highly expressed CD81, while the F4/80intCD11bhi subset showed higher expression of CCR2 and TLR2. Notably, Ly6c+ macrophages were present almost exclusively in the F4/80intCD11bhi subpopulation. Combining in vivo fate mapping and parabiotic mouse models, we characterized the longevity and replenishment of the two macrophage populations. We found that both the F4/80hiCD11bint and F4/80intCD11bhi subsets were ovary-resident. Importantly, the F4/80hiCD11bint macrophages acted as a self-maintaining and long-lived population with a modest monocyte contribution at a steady state, and the F4/80intCD11bhi subpopulation had a relatively short lifespan with a greater contribution from monocytes. After macrophage ablation, disturbance of estradiol secretion and ovarian hemorrhage due to damaged vascular integrity was observed in mice. Discussion Our data provide critical insights into ovarian macrophage heterogeneity and highlight the strategic role of TRMs in ovarian homeostasis and physiology.
Collapse
Affiliation(s)
- Nianyu Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Zhuqing Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Fang Fang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Chendi Zhu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Wenzhe Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yueshuang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Rongrong Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Pinxin Si
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yuehong Bian
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Xue Jiao
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China,Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, China,Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, China,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China,Suzhou Institute of Shandong University, Suzhou, Jiangsu, China,*Correspondence: Xue Jiao,
| |
Collapse
|
8
|
Cui H, Li H, Zhang M, Li H, Wang X, Wang Z, Zhai W, Chen X, Cheng H, Xu J, Zhao X, Ding Z. Molecular Characterization, Expression, Evolutionary Selection, and Biological Activity Analysis of CD68 Gene from Megalobrama amblycephala. Int J Mol Sci 2022; 23:13133. [PMID: 36361921 PMCID: PMC9656401 DOI: 10.3390/ijms232113133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
CD68 is a highly glycosylated transmembrane glycoprotein that belongs to the lysosome-associated membrane glycoprotein family and is involved in various immune processes. In this study, Megalobrama amblycephala CD68 (MaCD68) was cloned and characterized, and its expression patterns and evolutionary characteristics were analyzed. The coding region of MaCD68 was 987 bp, encoding 328 amino acids, and the predicted protein molecular weight was 34.9 kDa. MaCD68 contained two transmembrane helical structures and 18 predicted N-glycosylation sites. Multiple sequence alignments showed that the MaCD68 protein had high homology with other fish, and their functional sites were also highly conserved. Phylogenetic analysis revealed that MaCD68 and other cypriniformes fish clustered into one branch. Adaptive evolution analysis identified several positively selected sites of teleost CD68 using site and branch-site models, indicating that it was under positive selection pressure during evolution. Quantitative real-time reverse transcription polymerase chain reaction analysis showed that MaCD68 was highly expressed in the head kidney, spleen, and heart. After Aeromonas hydrophila infection, MaCD68 was significantly upregulated in all tested tissues, peaking at 12 h post-infection (hpi) in the kidney and head kidney and at 120 hpi in the liver and spleen, suggesting that MaCD68 participated in the innate immune response of the host against bacterial infection. Immunohistochemical and immunofluorescence analyses also showed that positive signals derived from the MaCD68 protein were further enhanced after bacterial and lipopolysaccharide treatment, which suggested that MaCD68 is involved in the immune response and could be used as a macrophage marker. Biological activity analysis indicated that recombinant MaCD68 (rMaCD68) protein had no agglutination or bactericidal effects on A. hydrophila but did have these effects on Escherichia coli. In conclusion, these results suggest that MaCD68 plays a vital role in the immune response against pathogens, which is helpful in understanding the immune responses and mechanisms of M. amblycephala.
Collapse
Affiliation(s)
- Hujun Cui
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hong Li
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Minying Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hongping Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zirui Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Wei Zhai
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
9
|
Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD - more than inflammation. Nat Rev Endocrinol 2022; 18:461-472. [PMID: 35534573 DOI: 10.1038/s41574-022-00675-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 01/07/2023]
Abstract
Macrophages have diverse phenotypes and functions due to differences in their origin, location and pathophysiological context. Although their main role in the liver has been described as immunoregulatory and detoxifying, changes in macrophage phenotypes, diversity, dynamics and function have been reported during obesity-related complications such as non-alcoholic fatty liver disease (NAFLD). NAFLD encompasses multiple disease states from hepatic steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocarcinoma. Obesity and insulin resistance are prominent risk factors for NASH, a disease with a high worldwide prevalence and no approved treatment. In this Review, we discuss the turnover and function of liver-resident macrophages (Kupffer cells) and monocyte-derived hepatic macrophages. We examine these populations in both steady state and during NAFLD, with an emphasis on NASH. The explosion in high-throughput gene expression analysis using single-cell RNA sequencing (scRNA-seq) within the last 5 years has revolutionized the study of macrophage heterogeneity, substantially increasing our understanding of the composition and diversity of tissue macrophages, including in the liver. Here, we highlight scRNA-seq findings from the last 5 years on the diversity of liver macrophages in homeostasis and metabolic disease, and reveal hepatic macrophage function beyond their classically described inflammatory role in the progression of NAFLD and NASH pathogenesis.
Collapse
Affiliation(s)
- Emelie Barreby
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ping Chen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Myriam Aouadi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
10
|
Li W, Chang N, Li L. Heterogeneity and Function of Kupffer Cells in Liver Injury. Front Immunol 2022; 13:940867. [PMID: 35833135 PMCID: PMC9271789 DOI: 10.3389/fimmu.2022.940867] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Kupffer cells (KCs) are key regulators of liver immunity composing the principal part of hepatic macrophages even body tissue macrophages. They reside in liver sinusoids towards portal vein. The micro-environment shapes KCs unique immunosuppressive features and functions. KCs express specific surface markers that distinguish from other liver macrophages. By engulfing gut-derived foreign products and apoptotic cells without triggering excessive inflammation, KCs maintain homeostasis of liver and body. Heterogeneity of KCs has been identified in different studies. In terms of the origin, adult KCs are derived from progenitors of both embryo and adult bone marrow. Embryo-derived KCs compose the majority of KCs in healthy and maintain by self-renewal. Bone marrow monocytes replenish massively when embryo-derived KC proliferation are impaired. The phenotype of KCs is also beyond the traditional dogma of M1-M2. Functionally, KCs play central roles in pathogenesis of acute and chronic liver injury. They contribute to each pathological stage of liver disease. By initiating inflammation, regulating fibrosis, cirrhosis and tumor cell proliferation, KCs contribute to the resolution of liver injury and restoration of tissue architecture. The underlying mechanism varied by damage factors and pathology. Understanding the characteristics and functions of KCs may provide opportunities for the therapy of liver injury. Herein, we attempt to afford insights on heterogeneity and functions of KCs in liver injury using the existing findings.
Collapse
|
11
|
Abstract
Tissue-resident immune cells span both myeloid and lymphoid cell lineages, have been found in multiple human tissues, and play integral roles at all stages of the immune response, from maintaining homeostasis to responding to infectious challenges to resolution of inflammation to tissue repair. In humans, studying immune cells and responses in tissues is challenging, although recent advances in sampling and high-dimensional profiling have provided new insights into the ontogeny, maintenance, and functional role of tissue-resident immune cells. Each tissue contains a specific complement of resident immune cells. Moreover, resident immune cells for each lineage share core properties, along with tissue-specific adaptations. Here we propose a five-point checklist for defining resident immune cell types in humans and describe the currently known features of resident immune cells, their mechanisms of development, and their putative functional roles within various human organs. We also consider these aspects of resident immune cells in the context of future studies and therapeutics.
Collapse
Affiliation(s)
- Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, USA;
- Department of Surgery, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
12
|
Wu X, Roberto JB, Knupp A, Greninger AL, Truong CD, Hollingshead N, Kenerson HL, Tuefferd M, Chen A, Koelle DM, Horton H, Jerome KR, Polyak SJ, Yeung RS, Crispe IN. Response of Human Liver Tissue to Innate Immune Stimuli. Front Immunol 2022; 13:811551. [PMID: 35355993 PMCID: PMC8959492 DOI: 10.3389/fimmu.2022.811551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Precision-cut human liver slice cultures (PCLS) have become an important alternative immunological platform in preclinical testing. To further evaluate the capacity of PCLS, we investigated the innate immune response to TLR3 agonist (poly-I:C) and TLR4 agonist (LPS) using normal and diseased liver tissue. Pathological liver tissue was obtained from patients with active chronic HCV infection, and patients with former chronic HCV infection cured by recent Direct-Acting Antiviral (DAA) drug therapy. We found that hepatic innate immunity in response to TLR3 and TLR4 agonists was not suppressed but enhanced in the HCV-infected tissue, compared with the healthy controls. Furthermore, despite recent HCV elimination, DAA-cured liver tissue manifested ongoing abnormalities in liver immunity: sustained abnormal immune gene expression in DAA-cured samples was identified in direct ex vivo measurements and in TLR3 and TLR4 stimulation assays. Genes that were up-regulated in chronic HCV-infected liver tissue were mostly characteristic of the non-parenchymal cell compartment. These results demonstrated the utility of PCLS in studying both liver pathology and innate immunity.
Collapse
Affiliation(s)
- Xia Wu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Jessica B Roberto
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Allison Knupp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, WA, United States
| | - Camtu D Truong
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Nicole Hollingshead
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Marianne Tuefferd
- Infectious Diseases and Vaccines, Janssen Research and Development, Beerse, Belgium
| | - Antony Chen
- Infectious Diseases and Vaccines, Janssen Research and Development, Beerse, Belgium
| | - David M Koelle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, WA, United States.,Department of Translational Research, Benaroya Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Helen Horton
- Infectious Diseases and Vaccines, Janssen Research and Development, Beerse, Belgium
| | - Keith R Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Institute, Seattle, WA, United States
| | - Stephen J Polyak
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA, United States
| | - Ian N Crispe
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Papachristoforou E, Ramachandran P. Macrophages as key regulators of liver health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:143-212. [PMID: 35636927 DOI: 10.1016/bs.ircmb.2022.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Macrophages are a heterogeneous population of innate immune cells and key cellular components of the liver. Hepatic macrophages consist of embryologically-derived resident Kupffer cells (KC), recruited monocyte-derived macrophages (MDM) and capsular macrophages. Both the diversity and plasticity of hepatic macrophage subsets explain their different functions in the maintenance of hepatic homeostasis and in injury processes in acute and chronic liver diseases. In this review, we assess the evidence for macrophage involvement in regulating both liver health and injury responses in liver diseases including acute liver injury (ALI), chronic liver disease (CLD) (including liver fibrosis) and hepatocellular carcinoma (HCC). In healthy livers, KC display critical functions such as phagocytosis, danger signal recognition, cytokine release, antigen processing and the ability to orchestrate immune responses and maintain immunological tolerance. However, in most liver diseases there is a striking hepatic MDM expansion, which orchestrate both disease progression and regression. Single-cell approaches have transformed our understanding of liver macrophage heterogeneity, dynamics, and functions in both human samples and preclinical models. We will further discuss the new insights provided by these approaches and how they are enabling high-fidelity work to specifically identify pathogenic macrophage subpopulations. Given the important role of macrophages in regulating injury responses in a broad range of settings, there is now a huge interest in developing new therapeutic strategies aimed at targeting macrophages. Therefore, we also review the current approaches being used to modulate macrophage function in liver diseases and discuss the therapeutic potential of targeting macrophage subpopulations as a novel treatment strategy for patients with liver disorders.
Collapse
Affiliation(s)
- Eleni Papachristoforou
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Prakash Ramachandran
- University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, United Kingdom.
| |
Collapse
|
14
|
De Muynck K, Vanderborght B, Van Vlierberghe H, Devisscher L. The Gut-Liver Axis in Chronic Liver Disease: A Macrophage Perspective. Cells 2021; 10:2959. [PMID: 34831182 PMCID: PMC8616442 DOI: 10.3390/cells10112959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease (CLD) is a growing health concern which accounts for two million deaths per year. Obesity, alcohol overconsumption, and progressive cholestasis are commonly characterized by persistent low-grade inflammation and advancing fibrosis, which form the basis for development of end-stage liver disease complications, including hepatocellular carcinoma. CLD pathophysiology extends to the intestinal tract and is characterized by intestinal dysbiosis, bile acid dysregulation, and gut barrier disruption. In addition, macrophages are key players in CLD progression and intestinal barrier breakdown. Emerging studies are unveiling macrophage heterogeneity and driving factors of their plasticity in health and disease. To date, in-depth investigation of how gut-liver axis disruption impacts the hepatic and intestinal macrophage pool in CLD pathogenesis is scarce. In this review, we give an overview of the role of intestinal and hepatic macrophages in homeostasis and gut-liver axis disruption in progressive stages of CLD.
Collapse
Affiliation(s)
- Kevin De Muynck
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Hans Van Vlierberghe
- Hepatology Research Unit, Department of Internal Medicine and Pediatrics, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium;
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Medical Sciences, Liver Research Center Ghent, Ghent University, 9000 Ghent, Belgium; (K.D.M.); (B.V.)
| |
Collapse
|
15
|
De Simone G, Andreata F, Bleriot C, Fumagalli V, Laura C, Garcia-Manteiga JM, Di Lucia P, Gilotto S, Ficht X, De Ponti FF, Bono EB, Giustini L, Ambrosi G, Mainetti M, Zordan P, Bénéchet AP, Ravà M, Chakarov S, Moalli F, Bajenoff M, Guidotti LG, Ginhoux F, Iannacone M. Identification of a Kupffer cell subset capable of reverting the T cell dysfunction induced by hepatocellular priming. Immunity 2021; 54:2089-2100.e8. [PMID: 34469774 PMCID: PMC8459394 DOI: 10.1016/j.immuni.2021.05.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/13/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022]
Abstract
Kupffer cells (KCs) are highly abundant, intravascular, liver-resident macrophages known for their scavenger and phagocytic functions. KCs can also present antigens to CD8+ T cells and promote either tolerance or effector differentiation, but the mechanisms underlying these discrepant outcomes are poorly understood. Here, we used a mouse model of hepatitis B virus (HBV) infection, in which HBV-specific naive CD8+ T cells recognizing hepatocellular antigens are driven into a state of immune dysfunction, to identify a subset of KCs (referred to as KC2) that cross-presents hepatocellular antigens upon interleukin-2 (IL-2) administration, thus improving the antiviral function of T cells. Removing MHC-I from all KCs, including KC2, or selectively depleting KC2 impaired the capacity of IL-2 to revert the T cell dysfunction induced by intrahepatic priming. In summary, by sensing IL-2 and cross-presenting hepatocellular antigens, KC2 overcome the tolerogenic potential of the hepatic microenvironment, suggesting new strategies for boosting hepatic T cell immunity.
Collapse
Affiliation(s)
- Giorgia De Simone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Camille Bleriot
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A(∗)STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Chiara Laura
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Pietro Di Lucia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Gilotto
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federico F De Ponti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gioia Ambrosi
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marta Mainetti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola Zordan
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alexandre P Bénéchet
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Svetoslav Chakarov
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A(∗)STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648
| | - Federica Moalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France
| | - Luca G Guidotti
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology & Research (A(∗)STAR), 8A Biomedical Grove, Immunos Building #3-4, Biopolis, Singapore 138648; Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, 169856, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita-Salute San Raffaele University, 20132 Milan, Italy; Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
16
|
Blériot C, Barreby E, Dunsmore G, Ballaire R, Chakarov S, Ficht X, De Simone G, Andreata F, Fumagalli V, Guo W, Wan G, Gessain G, Khalilnezhad A, Zhang XM, Ang N, Chen P, Morgantini C, Azzimato V, Kong WT, Liu Z, Pai R, Lum J, Shihui F, Low I, Xu C, Malleret B, Kairi MFM, Balachander A, Cexus O, Larbi A, Lee B, Newell EW, Ng LG, Phoo WW, Sobota RM, Sharma A, Howland SW, Chen J, Bajenoff M, Yvan-Charvet L, Venteclef N, Iannacone M, Aouadi M, Ginhoux F. A subset of Kupffer cells regulates metabolism through the expression of CD36. Immunity 2021; 54:2101-2116.e6. [PMID: 34469775 DOI: 10.1016/j.immuni.2021.08.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.
Collapse
Affiliation(s)
- Camille Blériot
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Inserm U1015, Gustave Roussy, Villejuif 94800, France.
| | - Emelie Barreby
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | | | | | - Svetoslav Chakarov
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xenia Ficht
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Giorgia De Simone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Valeria Fumagalli
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Wei Guo
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guochen Wan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Gregoire Gessain
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Xiao Meng Zhang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Nicholas Ang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Ping Chen
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Cecilia Morgantini
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Valerio Azzimato
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rhea Pai
- Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Josephine Lum
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Foo Shihui
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Ivy Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Connie Xu
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Benoit Malleret
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Muhammad Faris Mohd Kairi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Olivier Cexus
- Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Evan W Newell
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore
| | - Wint Wint Phoo
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), Singapore 138673, Singapore
| | - Ankur Sharma
- Genome Institute of Singapore, A(∗)STAR, Singapore 138672, Singapore
| | - Shanshan W Howland
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Marc Bajenoff
- Aix Marseille University, CNRS, INSERM, CIML, Marseille 13288, France
| | | | - Nicolas Venteclef
- Centre de Recherche des Cordeliers, INSERM, Université de Paris, Sorbonne Université, IMMEDIAB Laboratory, Paris 75006, France
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy; Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Myriam Aouadi
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute, Huddinge 14157, Sweden
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore; Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, Immunology Program, Life Sciences Institute, National University of Singapore, Singapore 117543, Singapore; Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore.
| |
Collapse
|
17
|
Ehlting C, Wolf SD, Bode JG. Acute-phase protein synthesis: a key feature of innate immune functions of the liver. Biol Chem 2021; 402:1129-1145. [PMID: 34323429 DOI: 10.1515/hsz-2021-0209] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023]
Abstract
The expression of acute-phase proteins (APP's) maintains homeostasis and tissue repair, but also represents a central component of the organism's defense strategy, especially in the context of innate immunity. Accordingly, an inflammatory response is accompanied by significant changes in the serum protein composition, an aspect that is also used diagnostically. As the main site of APP synthesis the liver is constantly exposed to antigens or pathogens via blood flow, but also to systemic inflammatory signals originating either from the splanchnic area or from the circulation. Under both homeostatic and acute-phase response (APR) conditions the composition of APP's is determined by the pattern of regulatory mediators derived from the systemic circulation or from local cell populations, especially liver macrophages. The key regulators mentioned here most frequently are IL-1β, IL-6 and TNF-α. In addition to a variety of molecular mediators described mainly on the basis of in vitro studies, recent data emphasize the in vivo relevance of cellular key effectors as well as molecular key mediators and protein modifications for the regulation and function of APP's. These are aspects, on which the present review is primarily focused.
Collapse
Affiliation(s)
- Christian Ehlting
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Hospital of the Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Stephanie D Wolf
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Hospital of the Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | - Johannes G Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Hospital of the Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Zwicker C, Bujko A, Scott CL. Hepatic Macrophage Responses in Inflammation, a Function of Plasticity, Heterogeneity or Both? Front Immunol 2021; 12:690813. [PMID: 34177948 PMCID: PMC8220199 DOI: 10.3389/fimmu.2021.690813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
With the increasing availability and accessibility of single cell technologies, much attention has been given to delineating the specific populations of cells present in any given tissue. In recent years, hepatic macrophage heterogeneity has also begun to be examined using these strategies. While previously any macrophage in the liver was considered to be a Kupffer cell (KC), several studies have recently revealed the presence of distinct subsets of hepatic macrophages, including those distinct from KCs both under homeostatic and non-homeostatic conditions. This heterogeneity has brought the concept of macrophage plasticity into question. Are KCs really as plastic as once thought, being capable of responding efficiently and specifically to any given stimuli? Or are the differential responses observed from hepatic macrophages in distinct settings due to the presence of multiple subsets of these cells? With these questions in mind, here we examine what is currently understood regarding hepatic macrophage heterogeneity in mouse and human and examine the role of heterogeneity vs plasticity in regards to hepatic macrophage responses in settings of both pathogen-induced and sterile inflammation.
Collapse
Affiliation(s)
- Christian Zwicker
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Anna Bujko
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Charlotte L. Scott
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
19
|
Kenerson HL, Sullivan KM, Labadie KP, Pillarisetty VG, Yeung RS. Protocol for tissue slice cultures from human solid tumors to study therapeutic response. STAR Protoc 2021; 2:100574. [PMID: 34142099 PMCID: PMC8184656 DOI: 10.1016/j.xpro.2021.100574] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The impact of systemic therapy on the tumor microenvironment has been difficult to study in human solid tumors. Our protocol describes steps for establishing slice cultures to investigate response to chemotherapies, immunotherapies, or adoptive cell therapies. Endpoints include changes in viability, histology, live-cell imaging, and multi-omics analyses. The protocol has been applied to a broad array of gastrointestinal malignancies. Culture conditions and treatment parameters can be modified for specific experiments. The platform is highly flexible and easy to manipulate. For complete details on the use and execution of this protocol, please refer to Kenerson et al. (2020), Jabbari et al. (2020), Brempelis et al. (2020), and Jiang et al. (2017). Organotypic tumor slice cultures (TSCs) can be utilized to study human cancer TSCs provide a model to study effects of chemo-, immuno-, and cell-based therapies Tumor response to treatment can be assessed using multiple readouts
Collapse
Affiliation(s)
- Heidi L Kenerson
- University of Washington Department of Surgery, Seattle, WA 98195, USA
| | - Kevin M Sullivan
- University of Washington Department of Surgery, Seattle, WA 98195, USA
| | - Kevin P Labadie
- University of Washington Department of Surgery, Seattle, WA 98195, USA
| | | | - Raymond S Yeung
- University of Washington Department of Surgery, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Czuba LC, Wu X, Huang W, Hollingshead N, Roberto JB, Kenerson HL, Yeung RS, Crispe IN, Isoherranen N. Altered vitamin A metabolism in human liver slices corresponds to fibrogenesis. Clin Transl Sci 2021; 14:976-989. [PMID: 33382909 PMCID: PMC8212748 DOI: 10.1111/cts.12962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
All-trans-retinoic acid (atRA), the active metabolite of vitamin A, has antifibrogenic properties in vitro and in animal models. Liver vitamin A homeostasis is maintained by cell-specific enzymatic activities including storage in hepatic stellate cells (HSCs), secretion into circulation from hepatocytes, and formation and clearance of atRA. During chronic liver injury, HSC activation is associated with a decrease in liver retinyl esters and retinol concentrations. atRA is synthesized through two enzymatic steps from retinol, but it is unknown if the loss of retinoid stores is associated with changes in atRA formation and which cell types contribute to the metabolic changes. The aim of this study was to determine if the vitamin A metabolic flux is perturbed in acute liver injury, and if changes in atRA concentrations are associated with HSC activation and collagen expression. At basal levels, HSC and Kupffer cells expressed key genes involved in vitamin A metabolism, whereas after acute liver injury, complex changes to the metabolic flux were observed in liver slices. These changes include a reproducible spike in atRA tissue concentrations, decreased retinyl ester and atRA formation rate, and time-dependent changes to the expression of metabolizing enzymes. Kinetic simulations suggested that oxidoreductases are important in determining retinoid metabolic flux after liver injury. These early changes precede HSC activation and upregulation of profibrogenic gene expression, which were inversely correlated with atRA tissue concentrations, suggesting that HSC and Kupffer cells are key cells involved in changes to vitamin A metabolic flux and signaling after liver injury. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Vitamin A is metabolized in the liver for storage as retinyl esters in hepatic stellate cell (HSCs) or to all-trans-retinoic acid (atRA), an active metabolite with antifibrogenic properties. Following chronic liver injury, vitamin A metabolic flux is perturbed, and HSC activation leads to diminished retinoid stores. WHAT QUESTION DID THIS STUDY ADDRESS? Do changes in the expression of vitamin A metabolizing enzymes explain changes in atRA concentrations and the regulation of fibrosis following acute liver injury? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? In healthy liver, both HSC and Kupffer cells may mediate vitamin A homeostasis. Following acute liver injury, complex changes in metabolizing enzyme expression/activity alter the metabolic flux of retinoids, resulting in a transient peak in atRA concentrations. The atRA concentrations are inversely correlated with profibrogenic gene expression, HSC activation, and collagen deposition. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Improved understanding of altered vitamin A metabolic flux in acute liver injury may provide insight into cell-specific contributions to vitamin A loss and lead to novel interventions in liver fibrosis.
Collapse
Affiliation(s)
- Lindsay C. Czuba
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Xia Wu
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Weize Huang
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Nicole Hollingshead
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Jessica B. Roberto
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | | | - Raymond S. Yeung
- Department of SurgeryUniversity of WashingtonSeattleWashingtonUSA
| | - Ian N. Crispe
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
| | - Nina Isoherranen
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
21
|
Padberg F, Höper T, Henkel S, Driesch D, Luch A, Zellmer S. Novel indirect co-culture of immortalised hepatocytes with monocyte derived macrophages is characterised by pro-inflammatory cytokine networks. Toxicol In Vitro 2021; 73:105134. [PMID: 33662514 DOI: 10.1016/j.tiv.2021.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
The liver is composed of different cell populations. Interactions of different cell populations can be investigated by a newly established indirect co-culture system consisting of immortalised primary human hepatocytes and human monocyte derived macrophages (MDMs). Using the time-dependent cytokine secretion of the co-cultures and single cultures, correlation networks (including the cytokines G-CSF, CCL3, MCP-1, CCL20, FGF, TGF-β1, GM-CSF, IL-8 IL-6, IL-1β, and IL-18) were generated and the correlations were validated by application of IL-8 and TNF-α-neutralising antibodies. The data reveal that IL-8 is crucial for the interaction between hepatocytes and macrophages in vitro. In addition, transcriptome analyses showed that a change in the ratio between macrophages and hepatocytes may trigger pro-inflammatory signalling pathways of the acute phase response and the complement system (release of, e.g., certain cyto- and chemokines). Using diclofenac and LPS showed that the release of cytokines is increasing with higher ratios of MDMs. Altogether, we could demonstrate that the current co-culture system is better suited to mirror the in vivo situation when compared to previously established co-culture systems composed of HepG2 and differentiated THP-1 cells. Further, our data reveal that the cytokine IL-8 is crucial for the interaction between hepatocytes and macrophages in vitro.
Collapse
Affiliation(s)
- Florian Padberg
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Straße 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany.
| | - Tessa Höper
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Straße 8-10, 10589 Berlin, Germany
| | | | - Dominik Driesch
- BioControl Jena GmbH, Hans-Knöll-Straße 6, 07745 Jena, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Straße 8-10, 10589 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Sebastian Zellmer
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn Straße 8-10, 10589 Berlin, Germany
| |
Collapse
|
22
|
Polyak SJ, Crispe IN, Baumert TF. Liver Abnormalities after Elimination of HCV Infection: Persistent Epigenetic and Immunological Perturbations Post-Cure. Pathogens 2021; 10:pathogens10010044. [PMID: 33430338 PMCID: PMC7825776 DOI: 10.3390/pathogens10010044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis C (CHC) is a major cause of hepatocellular carcinoma (HCC) worldwide. While directly acting antiviral (DAA) drugs are now able to cure virtually all hepatitis C virus (HCV) infections, even in subjects with advanced liver disease, what happens to the liver and progression of the disease after DAA-induced cure of viremia is only beginning to emerge. Several large-scale clinical studies in different patient populations have shown that patients with advanced liver disease maintain a risk for developing HCC even when the original instigator, the virus, is eliminated by DAAs. Here we review emerging studies derived from multiple, complementary experimental systems involving patient liver tissues, human liver cell cultures, human liver slice cultures, and animal models, showing that HCV infection induces epigenetic, signaling, and gene expression changes in the liver associated with altered hepatic innate immunity and liver cancer risk. Of critical importance is the fact that these virus-induced abnormalities persist after DAA cure of HCV. These nascent findings portend the discovery of pathways involved in post-HCV immunopathogenesis, which may be clinically actionable targets for more comprehensive care of DAA-cured individuals.
Collapse
Affiliation(s)
- Stephen J. Polyak
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
- Correspondence: (S.J.P.); (I.N.C.); (T.F.B.)
| | - I. Nicholas Crispe
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Correspondence: (S.J.P.); (I.N.C.); (T.F.B.)
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Inserm U1110, 67000 Strasbourg, France
- Pole Hépato-digestif, IHU, Hopitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Correspondence: (S.J.P.); (I.N.C.); (T.F.B.)
| |
Collapse
|