1
|
Liu X, Zhang Q, Zong C, Gai H. Digital Immunoassay for Proteins: Theory, Methodology, and Clinical Applications. Anal Chem 2025; 97:9077-9110. [PMID: 40257815 DOI: 10.1021/acs.analchem.4c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Affiliation(s)
- Xiaojun Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Qingquan Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Chenghua Zong
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| | - Hongwei Gai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116 China
| |
Collapse
|
2
|
Jiravejchakul N, Chan-In W, Thuncharoen W, Sungnak W, Charoensawan V, Vacharathit V, Matangkasombut P. Cytokine and chemokine kinetics in natural human dengue infection as predictors of disease outcome. Sci Rep 2025; 15:15612. [PMID: 40320430 PMCID: PMC12050306 DOI: 10.1038/s41598-025-99628-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
Dengue is an important tropical disease with considerable global impact. Despite this, there remains an urgent need for reliable biomarkers to predict disease severity, as well as effective antiviral drugs and targeted treatments. In this study, we conducted a comprehensive profiling of 41 plasma mediators in patients with asymptomatic dengue (AD) and symptomatic dengue (SD), which includes mild dengue fever (DF) and severe dengue hemorrhagic fever (DHF). Our findings revealed that the levels of nearly all measured mediators were consistently lower in AD compared to SD patients, suggesting a potential protective cytokine response signature. Time-course cytokine analysis in SD shown significantly elevated levels of pro-inflammatory cytokines and chemokines associated with inflammation and viral clearance upon the acute phase, while various growth factors were elevated during the convalescence. Notably, we identified elevated IL-15 levels in DHF patients three days before fever subsidence, highlighting its potential as an early prognostic biomarker for severe disease outcomes. Furthermore, prolonged high levels of IL-8 and IP-10 in DHF during the critical period may contribute to dengue immunopathogenesis. This study advances the understanding of cytokine dynamics in the natural course of human dengue infection, providing valuable insights for the development of targeted treatments and prognostic biomarkers.
Collapse
Affiliation(s)
- Natnicha Jiravejchakul
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Wilawan Chan-In
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Clinical Pathology, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Walairat Thuncharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Waradon Sungnak
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Single-Cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Varodom Charoensawan
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, 73170, Thailand
- Single-Cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Division of Medical Bioinformatics, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Vimvara Vacharathit
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Single-Cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Single-Cell Omics and Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
3
|
Struyfs C, Van den Heede K, Van Wesenbeeck L, Waickman AT, Rasschaert F, Herrera-Taracena G, Thomas SJ, Van Loock M, Lagatie O. Quantifying temporal differences in the induction of interferon-mediated signalling observed in a dengue virus 1 human infection model: insights from longitudinal proteome analysis. EBioMedicine 2025; 115:105728. [PMID: 40288237 PMCID: PMC12056955 DOI: 10.1016/j.ebiom.2025.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 04/03/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND According to WHO, dengue is one of the top ten global health threats, with almost half of the world's population at risk of being infected. Most of the annual 400 million dengue virus (DENV) infections manifest asymptomatically or in a mild form, causing symptoms such as fever and headache. Nevertheless, every year 500,000 dengue cases require hospitalization and up to 25,000 patients die. Despite the high incidence, the DENV-elicited proteome response remains insufficiently understood. METHODS Therefore, we evaluated the proteome dynamics of nine dengue-naïve individuals experimentally infected with the underattenuated DENV-1 strain 45AZ5 via the Proximity Extension Assay technology of Olink®. FINDINGS Using Olink Explore, a total of ∼3000 proteins were quantified simultaneously in serum samples at 8, 10, 14, and 28 days after the viral inoculation. We identified the top ten significant proteins via linear mixed effects models, i.e., interferons (IFNs), IFN-related proteins, and members of the CCL and CXCL chemokine family. In all participants, an increase in IFN-λ1 levels was observed after peak viral load, whereas in one participant an IFN-γ response was not detected. Interestingly, both the onset and peak viral load of this participant were, on average, delayed 4 days compared to other participants. To gain a detailed kinetic overview of the DENV-elicited proteome response, we designed a smaller, targeted Olink® panel to evaluate serum protein levels at multiple time points throughout the infection. Here, we revealed that type I/III IFN response precedes the type II IFN response. INTERPRETATION In conclusion, our analyses provided detailed insights into the temporal dynamics of the different IFN responses upon a primary DENV-1 infection. These insights might aid in better understanding dengue pathogenesis. FUNDING Funding for this research was provided by Johnson and Johnson, the State of New York, and the Congressionally Directed Medical Research Programs.
Collapse
Affiliation(s)
| | | | | | - Adam Tully Waickman
- State University of New York Upstate Global Health Institute, 5010 Campuswood Drive, Syracuse, NY, 13057, USA
| | | | | | - Stephen James Thomas
- State University of New York Upstate Global Health Institute, 5010 Campuswood Drive, Syracuse, NY, 13057, USA
| | | | | |
Collapse
|
4
|
Hamidah B, Pakpahan C, Wulandari L, Tinduh D, Wibawa T, Prakoeswa CRS, Oceandy D. Expression of interferon-stimulated genes, but not polymorphisms in the interferon α/β receptor 2 gene, is associated with coronavirus disease 2019 mortality. Heliyon 2024; 10:e39002. [PMID: 39435115 PMCID: PMC11492585 DOI: 10.1016/j.heliyon.2024.e39002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Excessive inflammatory response is a hallmark of severe COVID-19. This study investigated the associations between interferon-stimulated genes (ISGs) expression, genetic variation in the interferon α/β receptor 2 (IFNAR2) gene, and COVID-19 mortality. We investigated 67 patients with moderate-to-severe COVID-19. Of them, 22 patients (32.8 %) died because of COVID-19. We examined the expression of ISGs in total RNA of peripheral whole blood. We observed a significant increase in the expression of all ISGs examined in non-surviving patients, indicating a heightened interferon type I signaling activation in non-survived patients. Subsequently, we analyzed whether the increase in ISGs expression was correlated with polymorphism within the IFNAR2 gene. Intriguingly, no significant association was observed between IFNAR2 gene polymorphism and COVID-19 mortality. Similarly, no association was noted between the IFNAR2 and ISGs expression levels. Overall, our data showed that higher ISGs expression, which presumably indicates heightened interferon type I activation, is associated with COVID-19 mortality.
Collapse
Affiliation(s)
- Berliana Hamidah
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Cennikon Pakpahan
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Laksmi Wulandari
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Damayanti Tinduh
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Universitas Airlangga/Dr Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology, Venerology and Aesthetics, Faculty of Medicine, Universitas Airlangga / Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Malavige GN, Ogg GS. Molecular mechanisms in the pathogenesis of dengue infections. Trends Mol Med 2024; 30:484-498. [PMID: 38582622 DOI: 10.1016/j.molmed.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
Dengue is the most rapidly emerging climate-sensitive infection, and morbidity/mortality and disease incidence are rising markedly, leading to healthcare systems being overwhelmed. There are currently no specific treatments for dengue or prognostic markers to identify those who will progress to severe disease. Owing to an increase in the burden of illness and a change in epidemiology, many patients experience severe disease. Our limited understanding of the complex mechanisms of disease pathogenesis has significantly hampered the development of safe and effective treatments, vaccines, and biomarkers. We discuss the molecular mechanisms of dengue pathogenesis, the gaps in our knowledge, and recent advances, as well as the most crucial questions to be answered to enable the development of therapeutics, biomarkers, and vaccines.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka; Medical Research Council (MRC) Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Fracella M, Mancino E, Nenna R, Virgillito C, Frasca F, D'Auria A, Sorrentino L, Petrarca L, La Regina D, Matera L, Di Mattia G, Caputo B, Antonelli G, Pierangeli A, Viscidi RP, Midulla F, Scagnolari C. Age-related transcript changes in type I interferon signaling in children and adolescents with long COVID. Eur J Immunol 2024; 54:e2350682. [PMID: 38522030 DOI: 10.1002/eji.202350682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
SARS-CoV-2 typically causes mild symptoms in children, but evidence suggests that persistent immunopathological changes may lead to long COVID (LC). To explore the interplay between LC and innate immunity, we assessed the type I interferon (IFN-I) response in children and adolescents with LC symptoms (LC; n = 28). This was compared with age-matched SARS-CoV-2 recovered participants without LC symptoms (MC; n = 28) and healthy controls (HC; n = 18). We measured the mRNA expression of IFN-I (IFN-α/β/ε/ω), IFN-I receptor (IFNAR1/2), and ISGs (ISG15, ISG56, MxA, IFI27, BST2, LY6E, OAS1, OAS2, OAS3, and MDA5) in PBMCs collected 3-6 months after COVID-19. LC adolescents (12-17 years) had higher transcript levels of IFN-β, IFN-ε, and IFN-ω than HC, whereas LC children (6-11 years) had lower levels than HC. In adolescents, increased levels of IFN-α, IFN-β, and IFN-ω mRNAs were found in the LC group compared with MC, while lower levels were observed in LC children than MC. Adolescents with neurological symptoms had higher IFN-α/β mRNA levels than MC. LC and MC participants showed decreased expression of ISGs and IFNAR1, but increased expression of IFNAR2, than HC. Our results show age-related changes in the expression of transcripts involved in the IFN-I signaling pathway in children and adolescents with LC.
Collapse
Affiliation(s)
- Matteo Fracella
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Enrica Mancino
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Raffaella Nenna
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Chiara Virgillito
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Frasca
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alessandra D'Auria
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Leonardo Sorrentino
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Laura Petrarca
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Domenico La Regina
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Luigi Matera
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Greta Di Mattia
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Beniamino Caputo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Pierangeli
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| | - Raphael P Viscidi
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fabio Midulla
- Department of Pediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Chen YJ, Tsao YC, Ho TC, Puc I, Chen CC, Perng GC, Lien HM. Antrodia cinnamomea Suppress Dengue Virus Infection through Enhancing the Secretion of Interferon-Alpha. PLANTS (BASEL, SWITZERLAND) 2022; 11:2631. [PMID: 36235496 PMCID: PMC9573221 DOI: 10.3390/plants11192631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Dengue caused by dengue virus (DENV) is a mosquito-borne disease. Dengue exhibits a wide range of symptoms, ranging from asymptomatic to flu-like illness, and a few symptomatic cases may develop into severe dengue, leading to death. However, there are no effective and safe therapeutics for DENV infections. We have previously reported that cytokine expression, especially inflammatory cytokines, was altered in patients with different severities of dengue. Antrodia cinnamomea (A. cinnamomea) is a precious and endemic medical mushroom in Taiwan. It contains unique chemical components and exhibits biological activities, including suppressing effects on inflammation and viral infection-related diseases. According to previous studies, megakaryocytes can support DENV infection, and the number of megakaryocytes is positively correlated with the viral load in the serum of acute dengue patients. In the study, we investigated the anti-DENV effects of two ethanolic extracts (ACEs 1-2) and three isolated compounds (ACEs 3-5) from A. cinnamomea on DENV infection in Meg-01 cells. Our results not only demonstrated that ACE-3 and ACE-4 significantly suppressed DENV infection, but also reduced interleukin (IL)-6 and IL-8 levels. Moreover, the level of the antiviral cytokine interferon (IFN)-α was also increased by ACE-3 and ACE-4 in Meg-01 cells after DENV infection. Here, we provide new insights into the potential use of A. cinnamomea extracts as therapeutic agents against DENV infection. However, the detailed mechanisms underlying these processes require further investigation.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Cian Tsao
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Irwin Puc
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chia-Chang Chen
- School of Management, Feng Chia University, Taichung 40724, Taiwan
| | - Guey-Chuen Perng
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hsiu-Man Lien
- Research Institute of Biotechnology, Hungkuang University, Taichung 43302, Taiwan
| |
Collapse
|
8
|
Fonseka CL, Hardman CS, Woo J, Singh R, Nahler J, Yang J, Chen YL, Kamaladasa A, Silva T, Salimi M, Gray N, Dong T, Malavige GN, Ogg GS. Dengue virus co-opts innate type 2 pathways to escape early control of viral replication. Commun Biol 2022; 5:735. [PMID: 35869167 PMCID: PMC9306424 DOI: 10.1038/s42003-022-03682-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Mast cell products and high levels of type 2 cytokines are associated with severe dengue disease. Group 2 innate lymphoid cells (ILC2) are type-2 cytokine-producing cells that are activated by epithelial cytokines and mast cell-derived lipid mediators. Through ex vivo RNAseq analysis, we observed that ILC2 are activated during acute dengue viral infection, and show an impaired type I-IFN signature in severe disease. We observed that circulating ILC2 are permissive for dengue virus infection in vivo and in vitro, particularly when activated through prostaglandin D2 (PGD2). ILC2 underwent productive dengue virus infection, which was inhibited through CRTH2 antagonism. Furthermore, exogenous IFN-β induced expression of type I-IFN responsive anti-viral genes by ILC2. PGD2 downregulated type I-IFN responsive gene and protein expression; and urinary prostaglandin D2 metabolite levels were elevated in severe dengue. Moreover, supernatants from activated ILC2 enhanced monocyte infection in a GM-CSF and mannan-dependent manner. Our results indicate that dengue virus co-opts an innate type 2 environment to escape early type I-IFN control and facilitate viral dissemination. PGD2 downregulates type I-IFN induced anti-viral responses in ILC2. CRTH2 antagonism may be a therapeutic strategy for dengue-associated disease.
Collapse
Affiliation(s)
- Chathuranga L Fonseka
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Medicine, Faculty of Medicine, University of Ruhuna, Galle, Sri Lanka
| | - Clare S Hardman
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jeongmin Woo
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Randeep Singh
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Janina Nahler
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jiahe Yang
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Yi-Ling Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Achala Kamaladasa
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Tehani Silva
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
| | - Maryam Salimi
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicki Gray
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Gathsaurie N Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Malavige GN, Jeewandara C, Ogg GS. Dengue and COVID-19: two sides of the same coin. J Biomed Sci 2022; 29:48. [PMID: 35786403 PMCID: PMC9251039 DOI: 10.1186/s12929-022-00833-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Many countries in Asia and Latin America are currently facing a double burden of outbreaks due to dengue and COVID-19. Here we discuss the similarities and differences between the two infections so that lessons learnt so far from studying both infections will be helpful in further understanding their immunopathogenesis and to develop therapeutic interventions. MAIN BODY Although the entry routes of the SARS-CoV-2 and the dengue virus (DENV) are different, both infections result in a systemic infection, with some similar clinical presentations such as fever, headache, myalgia and gastrointestinal symptoms. However, while dengue is usually associated with a tendency to bleed, development of micro and macrothrombi is a hallmark of severe COVID-19. Apart from the initial similarities in the clinical presentation, there are further similarities between such as risk factors for development of severe illness, cytokine storms, endothelial dysfunction and multi-organ failure. Both infections are characterised by a delayed and impaired type I IFN response and a proinflammatory immune response. Furthermore, while high levels of potent neutralising antibodies are associated with protection, poorly neutralising and cross-reactive antibodies have been proposed to lead to immunopathology by different mechanisms, associated with an exaggerated plasmablast response. The virus specific T cell responses are also shown to be delayed in those who develop severe illness, while varying degrees of endothelial dysfunction leads to increased vascular permeability and coagulation abnormalities. CONCLUSION While there are many similarities between dengue and SARS-CoV-2 infection, there are also key differences especially in long-term disease sequelae. Therefore, it would be important to study the parallels between the immunopathogenesis of both infections for development of more effective vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Chandima Jeewandara
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Graham S Ogg
- Allergy Immunology and Cell Biology Unit, Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Abstract
Adipose tissue is a complex dynamic organ with whole-body immunometabolic influence. Much of the work into understanding the role of immune cells in adipose tissue has been in the context of obesity. These investigations have also uncovered a range of typical (immune) and non-typical functions exerted by adipose tissue leukocytes. Here we provide an overview of the adipose tissue immune system, including its role as an immune reservoir in the whole-body response to infection and as a site of parasitic and viral infections. We also describe the functional roles of specialized immunological structures found within adipose tissue. However, our main focus is on the recently discovered 'non-immune' functions of adipose tissue immune cells, which include the regulation of adipocyte homeostasis, as well as responses to changing nutrient status and body temperature. In doing so, we outline the therapeutic potential of the adipose tissue immune system in health and disease.
Collapse
|
11
|
Huan X, Zhao R, Song J, Zhong H, Su M, Yan C, Wang Y, Chen S, Zhou Z, Lu J, Xi J, Luo S, Zhao C. Increased serum IL-2, IL-4, IL-5 and IL-12p70 levels in AChR subtype generalized myasthenia gravis. BMC Immunol 2022; 23:26. [PMID: 35624411 PMCID: PMC9145157 DOI: 10.1186/s12865-022-00501-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular junctions. Cytokines play important roles in facilitating the immune response and augmenting the pathogenic antibody production. The current study aims to sensitively characterize the serum levels of cytokines with very low concentration in generalized MG (gMG). Methods Using ultrasensitive single-molecule arrays (SIMOA), we measured serum IL-2, IL-4, IL-5 and IL-12p70 in 228 participants including 152 immunotherapy-naïve anti-acetylcholine receptor (AChR) subtype gMG from Huashan MG registry and 76 age-matched healthy controls. Subgroup analysis was then performed by stratifying patients according to the onset ages, MGFA classification, disease duration at baseline. Results Serum IL-2, IL-4, IL-5 and IL-12p70 levels were significantly elevated in gMG compared to controls (0.179 pg/mL versus 0.011 pg/mL, P < 0.0001; 0.029 pg/mL versus 0.018 pg/mL, P = 0.0259; 0.215 pg/mL versus 0.143 pg/mL, P = 0.0007; 0.132 pg/mL versus 0.118 pg/mL, P = 0.0401). Subgroup analysis revealed that IL-2 levels were slightly elevated in gMG with MGFA II compared to MGFA III/IV (0.195 pg/mL versus 0.160 pg/mL, P = 0.022), as well as elevated levels of IL-2 (0.220 pg/mL versus 0.159 pg/mL, P = 0.0002) and IL-5 (0.251 pg/mL versus 0.181 pg/mL, P = 0.004) in late-onset gMG compared with the early-onset gMG. gMG patients with a long duration had a significant increased serum IL-12p70 than those with a short duration (0.163 pg/mL versus 0.120 pg/mL, P = 0.011). Conclusion Serum IL-2, IL-4, IL-5 and IL-12p70 levels were increased in AChR subtype gMG using ultrasensitive measurement. Serum cytokines with very low concentrations may provide as potential biomarkers in stratifying gMG patients in future prospective cohort studies.
Collapse
Affiliation(s)
- Xiao Huan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Rui Zhao
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Jie Song
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Huahua Zhong
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Manqiqige Su
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Chong Yan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Ying Wang
- Department of Pharmacy, Huashan Hospital Fudan University, Shanghai, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahong Lu
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Jianying Xi
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Sushan Luo
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China. .,National Center for Neurological Disorders, Shanghai, China.
| | - Chongbo Zhao
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China. .,National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
12
|
PHAM HHS, FUJII Y, ARAKAWA K, HATABU T. Differential effects of orally administered <i>Lactobacillus acidophilus</i> L-55 on the gene expression of cytokines and master immune switches in the ileum and spleen of laying hen with an attenuated Newcastle disease virus vaccine. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2022; 41:12-19. [PMID: 35036249 PMCID: PMC8727056 DOI: 10.12938/bmfh.2021-026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022]
Abstract
This study aimed to evaluate the benefits of oral administration of Lactobacillus
acidophilus strain L-55 (LaL-55) to chickens inoculated with a Newcastle
disease virus (NDV)-based live-attenuated vaccine by examining the mRNA expression of
several genes related to viral infection in the spleen and ileum by quantitative reverse
transcription polymerase chain reaction. In the spleen, interferon (IFN)-α was
significantly higher in the low- and middle-dose LaL-55 groups at 6 weeks than at 4 weeks.
IFN regulatory factor (IRF)-3 and IRF-7 expression was significantly higher in the
low-dose LaL-55 group than in the middle- and high-dose LaL-55 groups. In the ileum,
melanoma differentiation-associated gene 5 showed a dose-dependent increase at 4 weeks.
IFN-γ and IRF-7 showed dose-dependent increases at 6 weeks. These results suggested that
LaL-55 boosts the immune response to the NDV vaccine, albeit by different mechanisms in
the spleen and ileum.
Collapse
Affiliation(s)
- Hung Hoang Son PHAM
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Yusuke FUJII
- Research & Development, Ohayo Dairy Products Co., Ltd., 565 Koshita, Naka-ku, Okayama-shi, Okayama 703-8505, Japan
| | - Kensuke ARAKAWA
- Laboratory of Animal Applied Microbiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Toshimitsu HATABU
- Laboratory of Animal Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| |
Collapse
|
13
|
Khor CS, Tsuji R, Lee HY, Nor’e SS, Sahimin N, Azman AS, Tiong V, Hasandarvish P, Teoh BT, Soh YH, Chai JH, Kokubo T, Kanauchi O, Yamamoto N, AbuBakar S. Lactococcus lactis Strain Plasma Intake Suppresses the Incidence of Dengue Fever-like Symptoms in Healthy Malaysians: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021; 13:nu13124507. [PMID: 34960061 PMCID: PMC8707015 DOI: 10.3390/nu13124507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022] Open
Abstract
Dengue fever (DF) is a mosquito-borne disease still with no effective treatment or vaccine available. A randomized, placebo-controlled, double-blinded, parallel-group trial was undertaken to evaluate the efficacy of oral intake of Lactococcus lactis strain plasma (LC-Plasma) on the presentation and severity of DF-like symptoms among healthy volunteers. Study participants (320) were assigned into two groups, and consumed either placebo or LC-Plasma tablets (approximately 100 billion cells/day) for 8 weeks. The clinical symptoms of DF were self-recorded through questionnaires, and exposure to DENV was determined by serum antibody and/or DENV antigen tests. No significant differences between groups were observed for exposure to DENV, or the symptomatic ratio. Results obtained showed that participants from the LC-Plasma group reported a significant reduction in the cumulative incidence days of DF-like symptoms, which include fever (p < 0.001), muscle pain (p < 0.005), joint pain (p < 0.001), and pain behind the eyes (p < 0.001), compared to that of the placebo group. Subgroup analysis revealed a significantly (p < 0.05) reduced severity score in the LC-Plasma group when study sites were separately analyzed. Overall, our findings suggest that LC-Plasma supplementation reduces the cumulative days with DF-like symptoms, and the severity of the symptoms. Daily oral intake of LC-Plasma, hence, is shown to mitigate the DF-like symptoms.
Collapse
Affiliation(s)
- Chee-Sieng Khor
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Ryohei Tsuji
- Kirin Central Research Institute, Kirin Holdings Co., Ltd., Yokohama 236-0004, Japan; (R.T.); (T.K.)
| | - Hai-Yen Lee
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Siti-Sarah Nor’e
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Norhidayu Sahimin
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Adzzie-Shazleen Azman
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Vunjia Tiong
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Pouya Hasandarvish
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Boon-Teong Teoh
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Yih-Harng Soh
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Jian-Hai Chai
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
| | - Takeshi Kokubo
- Kirin Central Research Institute, Kirin Holdings Co., Ltd., Yokohama 236-0004, Japan; (R.T.); (T.K.)
| | - Osamu Kanauchi
- Research and Development Strategy Department, Kirin Holdings Co., Ltd., Tokyo 164-0001, Japan;
| | - Naoki Yamamoto
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Chiba 272-8516, Japan;
- Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research & Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.-S.K.); (H.-Y.L.); (S.-S.N.); (N.S.); (A.-S.A.); (V.T.); (P.H.); (B.-T.T.); (Y.-H.S.); (J.-H.C.)
- Correspondence:
| |
Collapse
|
14
|
Bondet V, Rodero MP, Posseme C, Bost P, Decalf J, Haljasmägi L, Bekaddour N, Rice GI, Upasani V, Herbeuval JP, Reynolds JA, Briggs TA, Bruce IN, Mauri C, Isenberg D, Menon M, Hunt D, Schwikowski B, Mariette X, Pol S, Rozenberg F, Cantaert T, Eric Gottenberg J, Kisand K, Duffy D. Differential levels of IFNα subtypes in autoimmunity and viral infection. Cytokine 2021; 144:155533. [PMID: 33941444 PMCID: PMC7614897 DOI: 10.1016/j.cyto.2021.155533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Type I interferons are essential for host response to viral infections, while dysregulation of their response can result in autoinflammation or autoimmunity. Among IFNα (alpha) responses, 13 subtypes exist that signal through the same receptor, but have been reported to have different effector functions. However, the lack of available tools for discriminating these closely related subtypes, in particular at the protein level, has restricted the study of their differential roles in disease. We developed a digital ELISA with specificity and high sensitivity for the IFNα2 subtype. Application of this assay, in parallel with our previously described pan-IFNα assay, allowed us to study different IFNα protein responses following cellular stimulation and in diverse patient cohorts. We observed different ratios of IFNα protein responses between viral infection and autoimmune patients. This analysis also revealed a small percentage of autoimmune patients with high IFNα2 protein measurements but low pan-IFNα measurements. Correlation with an ISG score and functional activity showed that in this small sub group of patients, IFNα2 protein measurements did not reflect its biological activity. This unusual phenotype was partly explained by the presence of anti-IFNα auto-antibodies in a subset of autoimmune patients. This study reports ultrasensitive assays for the study of IFNα proteins in patient samples and highlights the insights that can be obtained from the use of multiple phenotypic readouts in translational and clinical studies.
Collapse
Affiliation(s)
- Vincent Bondet
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Mathieu P Rodero
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université de Paris, CNRS, UMR8601, Paris, France
| | - Céline Posseme
- Translational Immunology Lab, Institut Pasteur, Paris, France; Frontiers of Innovation in Research and Education PhD program, CRI doctoral school, Université de Paris, Paris 75005, France
| | - Pierre Bost
- Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris 75015, France; Sorbonne Universite, Complexite du vivant, Paris 75005, France
| | - Jérémie Decalf
- Translational Immunology Lab, Institut Pasteur, Paris, France
| | - Liis Haljasmägi
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nassima Bekaddour
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université de Paris, CNRS, UMR8601, Paris, France
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Jean-Philippe Herbeuval
- Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université de Paris, CNRS, UMR8601, Paris, France
| | - John A Reynolds
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Rheumatology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Rheumatology Department, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Tracy A Briggs
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ian N Bruce
- Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Claudia Mauri
- Centre for Rheumatology Research, Division of Medicine, University College of London, London WC1E 6JF, UK
| | - David Isenberg
- Centre for Rheumatology Research, Division of Medicine, University College of London, London WC1E 6JF, UK
| | - Madhvi Menon
- Centre for Rheumatology Research, Division of Medicine, University College of London, London WC1E 6JF, UK; Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, University of Manchester, UK
| | - David Hunt
- Centre for Genomic and Experimental Medicine, Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | - Benno Schwikowski
- Systems Biology Group, Department of Computational Biology and USR 3756, Institut Pasteur and CNRS, Paris 75015, France; Sorbonne Universite, Complexite du vivant, Paris 75005, France
| | - Xavier Mariette
- Rheumatology, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, INSERM UMR1184, Le Kremlin-Bicetre, France
| | - Stanislas Pol
- Unite d'Hépatologie, Assistance Publique-Hopitaux de Paris (AP-HP), Hopital Cochin, Paris, France
| | - Flore Rozenberg
- Department of Virology, APHP-CUP, Université de Paris, Paris, France
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - J Eric Gottenberg
- Faculté de Médecine de l'Université de Strasbourg, Strasbourg, France
| | - Kai Kisand
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Darragh Duffy
- Translational Immunology Lab, Institut Pasteur, Paris, France.
| |
Collapse
|
15
|
Iba T, Levy JH, Levi M. Viral-induced inflammatory coagulation disorders: Preparing for another epidemic. Thromb Haemost 2021; 122:8-19. [PMID: 34331297 PMCID: PMC8763450 DOI: 10.1055/a-1562-7599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A number of viral infectious diseases have emerged or reemerged from wildlife vectors that have generated serious threats to global health. Increased international traveling and commerce increase the risk of transmission of viral or other infectious diseases. In addition, recent climate changes accelerate the potential spread of domestic disease. The Coronavirus disease 2019 (COVID-19) pandemic is an important example of the worldwide spread, and the current epidemic will unlikely be the last. Viral hemorrhagic fevers, such as Dengue and Lassa fevers, may also have the potential to spread worldwide with a significant impact on public health with unpredictable timing. Based on the important lessons learned from COVID-19, it would be prudent to prepare for future pandemics of life-threatening viral diseases. Among the various threats, this review focuses on the coagulopathy of acute viral infections since hypercoagulability has been a major challenge in COVID-19, but represents a different presentation compared to viral hemorrhagic fever. However, both thrombosis and hemorrhage are understood as the result of thromboinflammation due to viral infections, and the role of anticoagulation is important to consider.
Collapse
Affiliation(s)
- Toshiaki Iba
- Emergency and Disaster Medicine, Juntendo University, Bunkyo-ku, Japan
| | - J H Levy
- Anesthesiology and Critcal Care, Duke University, Durham, United States
| | - Marcel Levi
- Department of Gastroenterology, University College London Hospitals NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|