1
|
Refaat M, Oujane C, Kholaiq H, Aadam Z, Errami A, Baghad B, Boussetta S, El Kettani A, Benhsaien I, Ailal F, Bourhanbour AD, El Bakkouri J, Bousfiha AA. Innate immunodeficiencies: a group of primary immunodeficiencies predisposing exclusively to common diseases. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:134. [DOI: 10.1186/s43042-024-00604-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/30/2024] [Indexed: 01/03/2025] Open
Abstract
Abstract
Background
Innate immune deficiencies can impair both cellular and humoral immune responses. In contrast, other immune functions may appear normal, leading to increased susceptibility to specific pathogens, such as severe viral infections or Mendelian Susceptibility to Mycobacterial Disease (MSMD). Studying these deficiencies is essential for understanding the pathophysiology of these infectious diseases.
Main body
While primary immunodeficiencies (PIDs) generally cause vulnerability to multiple infections, innate immunodeficiencies increase susceptibility to specific pathogens, despite normal immune responses to others. Patients with these deficiencies show normal immunoglobulins and lymphocyte subpopulations, complicating diagnosis. This review highlights genetic susceptibility to mycobacteria, pneumococci, herpes simplex virus, and candidiasis, emphasizing recognizing this subset of PIDs.
Conclusion
This review highlights the diverse spectrum of genetic mutations contributing to defects in innate and intrinsic immunity, including Mendelian susceptibility to mycobacterial disease (MSMD), chronic mucocutaneous candidiasis, and predispositions to invasive bacterial and viral infections. Identifying key mutations in pathprovideh such as TLR3, IFN signaling, and IL-17A/F immunity provides valuable insights into the pathogenesis of these conditions. Our findings underscore the need for early genetic diagnosis and targeted interventions, particularly in regions with high undiagnosed cases, to reduce the morbidity and mortality associated with defects in innate and intrinsic immunity.
Collapse
|
2
|
Castaño D, Wang S, Atencio-Garcia S, Shields EJ, Rico MC, Sharpe H, Bustamante J, Feng A, Le Coz C, Romberg N, Tobias JW, Utz PJ, Henrickson SE, Casanova JL, Bonasio R, Locci M. IL-12 drives the differentiation of human T follicular regulatory cells. Sci Immunol 2024; 9:eadf2047. [PMID: 38968337 DOI: 10.1126/sciimmunol.adf2047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
T follicular regulatory (Tfr) cells can counteract the B cell helper activity of T follicular helper (Tfh) cells and hinder the production of antibodies against self-antigens or allergens. A mechanistic understanding of the cytokines initiating the differentiation of human regulatory T (Treg) cells into Tfr cells is still missing. Herein, we report that low doses of the pro-Tfh cytokine interleukin-12 (IL-12) drive the induction of a Tfr cell program on activated human Treg cells while also preserving their regulatory function. Mechanistically, we found that IL-12 led to STAT4 (signal transducer and activator of transcription 4) phosphorylation and binding to IL-12-driven follicular signature genes. Patients with inborn errors of immunity in the IL12RB1 gene presented with a strong decrease in circulating Tfr cells and produced higher levels of anti-actin autoantibodies in vivo. Overall, this study unveils IL-12 as an inducer of Tfr cell differentiation in vivo and provides an approach for the in vitro generation of human Tfr-like cells.
Collapse
Affiliation(s)
- Diana Castaño
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sidney Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Segovia Atencio-Garcia
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily J Shields
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria C Rico
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Hannah Sharpe
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Allan Feng
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Carole Le Coz
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| | - Neil Romberg
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomics and Sequencing Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul J Utz
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah E Henrickson
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Paris Cité University, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Roberto Bonasio
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michela Locci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Minotti C, Costenaro P, Donà D, Zuliani M, Bosa L, Leon A, Perilongo G, Gaio P, Martini G, Cananzi M. Disseminated Mycobacterial Infection With Reactive Polyarthritis (Poncet's Disease) During Immune-suppressive Treatment Including Ustekinumab for Pediatric Crohn's Disease. Pediatr Infect Dis J 2024; 43:543-549. [PMID: 38377462 DOI: 10.1097/inf.0000000000004277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
BACKGROUND The incidence of pediatric inflammatory bowel disease is increasing. tumor necrosis factor alpha inhibitors medicines improved the prognosis of affected subjects. Nonetheless, a proportion of patients do not respond or lose response to treatment. Newer biologics, like ustekinumab, have been approved for adults. The pediatric off-label use of these drugs is increasing, despite limited safety evidence. We report a case of disseminated mycobacterial infection (MI) presenting with reactive polyarthritis (Poncet's disease, PD) in a girl with Crohn's disease receiving various immunosuppressants, including ustekinumab. CASE REPORT A 12-year-old girl with Crohn's disease was admitted for acute-onset migratory polyarthritis of large and small joints and opioid-resistant pain. She had recently received adalimumab and methotrexate and was currently under treatment with ustekinumab. She was vaccinated with Bacillus Calmette-Guérin and screened for tuberculosis before starting immunosuppressants. Interferon-gamma release assay, Mantoux test and chest computed tomography scan were negative. Disseminated MI with PD was diagnosed following positive cultures for Mycobacterium tuberculosis complex in blood and intestinal biopsies (with negative in synovial fluid and gastric aspirate). Whole-exome sequencing did not identify any genetic susceptibility to MI. Antituberculosis treatment eradicated MI. CONCLUSIONS Children with inflammatory bowel disease receiving combination immunosuppressive treatments including tumor necrosis factor alpha inhibitors and anti-IL-12/23 agents are at higher risk for MI. Disseminated MI should be considered and ruled out in these patients when presenting with pulmonary, extrapulmonary or unusual clinical manifestations, like PD. The collection of multiple specimens (including intestinal biopsies) for mycobacterial culture is recommended when mycobacterial disease is suspected.
Collapse
Affiliation(s)
- Chiara Minotti
- From the Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
- PhD Program in Clinical Research, Pediatric Research Center, University Children's Hospital Basel, Basel, Switzerland
| | - Paola Costenaro
- From the Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Daniele Donà
- From the Division of Pediatric Infectious Diseases, Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Monica Zuliani
- Pediatric Radiology, Department for Integrated Diagnostic Services
| | - Luca Bosa
- Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova
| | | | | | - Paola Gaio
- Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova
| | - Giorgia Martini
- Pediatric Rheumatology, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy
| | - Mara Cananzi
- Pediatric Gastroenterology, Digestive Endoscopy, Hepatology and Care of the Child with Liver Transplantation, Department of Women's and Children's Health, University Hospital of Padova
| |
Collapse
|
4
|
Khavandegar A, Mahdaviani SA, Zaki-Dizaji M, Khalili-Moghaddam F, Ansari S, Alijani S, Taherzadeh-Ghahfarrokhi N, Mansouri D, Casanova JL, Bustamante J, Jamee M. Genetic, immunologic, and clinical features of 830 patients with Mendelian susceptibility to mycobacterial diseases (MSMD): A systematic review. J Allergy Clin Immunol 2024; 153:1432-1444. [PMID: 38341181 PMCID: PMC11880893 DOI: 10.1016/j.jaci.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare clinical syndrome characterized by vulnerability to weakly virulent mycobacterial species, including Bacillus Calmette-Guérin (BCG) vaccines and environmental mycobacteria. OBJECTIVE We sought to perform a systematic review of the genetic, immunologic, and clinical findings for reported patients with MSMD. METHODS We searched PubMed, Web of Science, and Scopus databases for publications in English relating to MSMD. All full texts were evaluated for eligibility for inclusion. Two reviewers independently selected the publications, with a third reviewer consulted in cases of disagreement. RESULTS A primary systematic search and searches of other resources identified 16,155 articles. In total, 158 articles from 63 countries were included in qualitative and quantitative analyses. In total, 830 patients-436 males (52.5%), 369 females (44.5%), and 25 patients of unknown sex (3.0%)-from 581 families were evaluated. A positive family history was reported in 347 patients (45.5%). The patients had a mean age of 10.41 ± 0.42 (SEM) years. The frequency of MSMD was highest in Iran, Turkey, and Saudi Arabia. Lymphadenopathy was the most common clinical manifestation of MSMD, reported in 378 (45.5%) cases and multifocal in 35.1%. Fever, organomegaly, and sepsis were the next most frequent findings, reported in 251 (30.2%), 206 (24.8%), and 171 (20.8%) cases, respectively. In total, 299 unique mutations in 21 genes known to be involved in MSMD were reported: 100 missense (34%), 80 indel-frameshift (insertion or deletion, 27%), 53 nonsense (18%), 35 splice site (12%), 10 indel-in frame (2.7%), 6 indel (2%), and 15 large deletion/duplication mutations. Finally, 61% of the reported patients with MSMD had mutations of IL12RB1 (41%) or IFNGR1 (20%). At the time of the report, 177 of the patients (21.3%) were dead and 597 (71.9%) were still alive. CONCLUSIONS MSMD is associated with a high mortality rate, mostly due to impaired control of infection. Preexposure strategies, such as changes in vaccination policy in endemic areas, the establishment of a worldwide registry of patients with MSMD, and precise follow-up over generations in affected families, appear to be vital to decrease MSMD-related mortality.
Collapse
Affiliation(s)
- Armin Khavandegar
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran; Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | | | - Sarina Ansari
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Saba Alijani
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Davood Mansouri
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Clinical Immunology and Infectious Diseases, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris Cité University, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Mahnaz Jamee
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
5
|
Goren LR, Lehman AC, Luquette M, Howard C, Thielen BK. A Lytic Bone Lesion in a 23-month-old Boy from Kenya. Pediatr Rev 2024; 45:225-229. [PMID: 38556514 PMCID: PMC11997301 DOI: 10.1542/pir.2021-005473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Affiliation(s)
- Lea R Goren
- University of Minnesota Medical School, University of Minnesota, Minneapolis, MN
| | - Alice C Lehman
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Mark Luquette
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Cynthia Howard
- Division of Pediatric Hospital Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Beth K Thielen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| |
Collapse
|
6
|
Melo KMD, Tavares FS, Antunes TS, Condino-Neto A, Silva Segundo GR, Macedo ACTD, Ferreira AP, Valente CFC. Autosomal Recessive IL-12p40 Deficiency due to a Mutation in the IL12B Gene: Report of a Brazilian Patient with Lymph Node Mycobacterial Infection. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2024; 37:33-36. [PMID: 38484269 DOI: 10.1089/ped.2022.0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Background: Autosomal recessive interleukin (IL)-12p40 deficiency is a genetic etiology of Mendelian susceptibility to mycobacterial disease (MSMD). It has been described in ∼50 patients, usually with onset at childhood with Bacille Calmette-Guérin (BCG) and Salmonella infections. Case Presentation: A male patient born to consanguineous parents was diagnosed with presumed lymph node MSMD at the age of 13 years after ocular symptoms. A positive history of inborn error of immunity was present: BCG reaction, skin abscess, and recurrent oral candidiasis. Abnormal measurements of cytokine levels, IL-12p40 and interferon-gamma (IFN-γ), lead to the diagnosis of MSMD. Genetic analysis showed a mutation in exon 7 of the IL12B gene. Currently, the patient is alive under prophylactic antibiotics. Conclusion: We report a rare case of IL-12p40 deficiency in a Latin American patient. Medical history was crucial for immune defect suspicion, as confirmed by precision diagnostic medicine tools.
Collapse
Affiliation(s)
- Karina Mescouto de Melo
- Unit of Allergy and Immunology, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | - Fabíola Scancetti Tavares
- Unit of Allergy and Immunology, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
- Unit of Children and Adolescents, Hospital Universitário de Brasília, Brasília, Brazil
| | - Thales Silva Antunes
- Unit of Allergy and Immunology, Hospital da Criança de Brasília José Alencar, Brasília, Brazil
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
7
|
Vinh DC. From Mendel to mycoses: Immuno-genomic warfare at the human-fungus interface. Immunol Rev 2024; 322:28-52. [PMID: 38069482 DOI: 10.1111/imr.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024]
Abstract
Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.
Collapse
Affiliation(s)
- Donald C Vinh
- Infectious Diseases - Hematology/Oncology/Transplant Clinical Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Dalvi A, Bargir UA, Natraj G, Shah I, Madkaikar M. Diagnosis and Management of Infections in Patients with Mendelian Susceptibility to Mycobacterial Disease. Pathogens 2024; 13:203. [PMID: 38535546 PMCID: PMC10975294 DOI: 10.3390/pathogens13030203] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 02/11/2025] Open
Abstract
The diagnosis and treatment of patients with mendelian susceptibility to mycobacterial disease (MSMD) pose consistent challenges due to the diverse infection spectrum observed in this population. Common clinical manifestations include Bacillus Calmette-Guérin vaccine (BCG) complications in countries where routine BCG vaccination is practiced, while in non-BCG-vaccinating countries, Non-Tuberculous Mycobacteria (NTM) is prevalent. In tuberculosis-endemic regions, Mycobacterium tuberculosis (MTB) has a high prevalence, along with other intracellular organisms. Isolating these organisms presents a significant challenge, and treatment is often initiated without confirming the specific species. This review primarily focuses on the methods and challenges associated with diagnosing and treating MSMD patients.
Collapse
Affiliation(s)
- Aparna Dalvi
- Department of Pediatric Immunology, ICMR National Institute of Immunohaematology, Mumbai 400012, India; (A.D.); (U.A.B.)
| | - Umair Ahmed Bargir
- Department of Pediatric Immunology, ICMR National Institute of Immunohaematology, Mumbai 400012, India; (A.D.); (U.A.B.)
| | - Gita Natraj
- Seth GS Medical College and KEM Hospital, Mumbai 400012, India;
| | - Ira Shah
- Bai Jerbai Wadia Hospital for Children, Mumbai 400012, India;
| | - Manisha Madkaikar
- Department of Pediatric Immunology, ICMR National Institute of Immunohaematology, Mumbai 400012, India; (A.D.); (U.A.B.)
| |
Collapse
|
9
|
Rosain J, Kiykim A, Michev A, Kendir-Demirkol Y, Rinchai D, Peel JN, Li H, Ocak S, Ozdemir PG, Le Voyer T, Philippot Q, Khan T, Neehus AL, Migaud M, Soudée C, Boisson-Dupuis S, Marr N, Borghesi A, Casanova JL, Bustamante J. Recombinant IFN-γ1b Treatment in a Patient with Inherited IFN-γ Deficiency. J Clin Immunol 2024; 44:62. [PMID: 38363432 PMCID: PMC10873451 DOI: 10.1007/s10875-024-01661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/21/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Inborn errors of IFN-γ immunity underlie Mendelian susceptibility to mycobacterial disease (MSMD). Twenty-two genes with products involved in the production of, or response to, IFN-γ and variants of which underlie MSMD have been identified. However, pathogenic variants of IFNG encoding a defective IFN-γ have been described in only two siblings, who both underwent hematopoietic stem cell transplantation (HCST). METHODS We characterized a new patient with MSMD by genetic, immunological, and clinical means. Therapeutic decisions were taken on the basis of these findings. RESULTS The patient was born to consanguineous Turkish parents and developed bacillus Calmette-Guérin (BCG) disease following vaccination at birth. Whole-exome sequencing revealed a homozygous private IFNG variant (c.224 T > C, p.F75S). Upon overexpression in recipient cells or constitutive expression in the patient's cells, the mutant IFN-γ was produced within the cells but was not correctly folded or secreted. The patient was treated for 6 months with two or three antimycobacterial drugs only and then for 30 months with subcutaneous recombinant IFN-γ1b plus two antimycobacterial drugs. Treatment with IFN-γ1b finally normalized all biological parameters. The patient presented no recurrence of mycobacterial disease or other related infectious diseases. The treatment was well tolerated, without the production of detectable autoantibodies against IFN-γ. CONCLUSION We describe a patient with a new form of autosomal recessive IFN-γ deficiency, with intracellular, but not extracellular IFN-γ. IFN-γ1b treatment appears to have been beneficial in this patient, with no recurrence of mycobacterial infection over a period of more than 30 months. This targeted treatment provides an alternative to HCST in patients with complete IFN-γ deficiency or at least an option to better control mycobacterial infection prior to HCST.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France.
- University of Paris Cité, Imagine Institute, Paris, France.
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- Pediatric Clinic, IRCCS Policlinico "San Matteo" Foundation, University of Pavia, Pavia, Italy
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatric Genetics, Umraniye Education and Research Hospital, Istanbul, Turkey
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Hailun Li
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Suheyla Ocak
- Pediatric Hematology and Oncology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Clinical Immunology Department, Saint-Louis Hospital, AP-HP, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Alessandro Borghesi
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France.
- University of Paris Cité, Imagine Institute, Paris, France.
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France.
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.
| |
Collapse
|
10
|
Sanap R, David J, Chattopadhyay N, Vaswani RK. Mendelian Susceptibility to Mycobacterial Disease - A Diagnostic and Therapeutic Challenge. Indian J Pediatr 2024; 91:198. [PMID: 37651062 DOI: 10.1007/s12098-023-04836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Affiliation(s)
- Rahi Sanap
- Department of Pediatrics, Seth Gordhandas Sunderdas Medical College & King Edward Memorial Hospital, Parel, Mumbai, 400012, Maharashtra, India.
| | - Jane David
- Department of Pediatrics, Seth Gordhandas Sunderdas Medical College & King Edward Memorial Hospital, Parel, Mumbai, 400012, Maharashtra, India
| | - Niranjana Chattopadhyay
- Department of Pediatrics, Seth Gordhandas Sunderdas Medical College & King Edward Memorial Hospital, Parel, Mumbai, 400012, Maharashtra, India
| | - Rajwanti K Vaswani
- Department of Pediatrics, Seth Gordhandas Sunderdas Medical College & King Edward Memorial Hospital, Parel, Mumbai, 400012, Maharashtra, India
| |
Collapse
|
11
|
Rao SK, Garg S, Kashyap A, Verma H, Saroj AK. Pointers of Genetic Susceptibility in an Infant with Pulmonary Tuberculosis. Indian J Pediatr 2024; 91:209. [PMID: 37747633 DOI: 10.1007/s12098-023-04846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Sunil Kumar Rao
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India.
| | - Shikhar Garg
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India
| | - Aishwarya Kashyap
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India
| | - Hemlata Verma
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India
| | - Anil Kumar Saroj
- Division of Pediatric Intensive Care & Pulmonology, Department of Pediatrics, IMS, BHU, Varanasi, UP, India
| |
Collapse
|
12
|
Huang J, He Q, Huang L, Liu L, Yang P, Chen M. Discovering the link between IL12RB1 gene polymorphisms and tuberculosis susceptibility: a comprehensive meta-analysis. Front Public Health 2024; 12:1249880. [PMID: 38317798 PMCID: PMC10839023 DOI: 10.3389/fpubh.2024.1249880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Numerous studies suggest that the risk of tuberculosis (TB) is linked to gene polymorphisms of the interleukin-12 receptor b subunit 1 (IL12RB1), but the association between IL12RB1 polymorphisms and TB susceptibility has not been thoroughly investigated. Methods A meta-analysis was conducted based on eight case-control studies with 10,112 individuals to further explore this topic. A systematic search of PubMed, Web of Science, Excerpt Medica Database, and Google Scholar up until April 6th, 2023 was performed. ORs and 95% CIs were pooled using the random-effect model. The epidemiological credibility of all significant associations was assessed using the Venice criteria and false-positive report probability (FPRP) analyses. Results The IL12RB1 rs11575934 and rs401502 showed solid evidence of no significant association with TB susceptibility. However, a weak association was observed between the IL12RB1 rs375947 biomarker and pulmonary tuberculosis (PTB) susceptibility (OR = 1.64, 95% CI: 1.22, 2.21). Discussion These findings should be confirmed through larger, better-designed studies to clarify the relationship between biomarkers in IL12RB1 gene and different types of TB susceptibility.
Collapse
Affiliation(s)
- Jie Huang
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiurong He
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lijun Huang
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Liping Liu
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Pei Yang
- Department of Clinical Laboratory, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Min Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Butel-Simoes G, Kiss C, Kong K, Rosen L, Hosking L, Barnes S, Jenkin G, Megaloudis S, Kumar B, Holland S, Ojaimi S. Disseminated tuberculosis, CMV viraemia & haemophagocytic-lymphohistiocystosis syndrome in an adult patient with anti- IFNγ autoantibodies - case report and brief review. CLINICAL IMMUNOLOGY COMMUNICATIONS 2023; 4:55-59. [PMID: 37906631 PMCID: PMC10600947 DOI: 10.1016/j.clicom.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
We report a case of an adult female with disseminated tuberculosis, cytomegalovirus viraemia and haemophagocytic-lymphohistiocystosis syndrome associated with neutralizing anti- interferon gamma (IFNγ) autoantibodies demonstrated by absent IFNγ stimulated STAT1 phosphorylation in the presence of patient sera. A brief review of immunodeficiency caused by anti-IFNγ autoantibodies is also described.
Collapse
Affiliation(s)
| | - C. Kiss
- Monash Infectious Diseases, Monash Health, Victoria, Australia
| | - K. Kong
- Monash Infectious Diseases, Monash Health, Victoria, Australia
| | - L.B. Rosen
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - L.M. Hosking
- Department of Allergy and Immunology, Royal Children’s Hospital, Parkville, Victoria, Australia
- Immunology Laboratory, Laboratory Services, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - S. Barnes
- Monash Lung Sleep Allergy Immunology, Monash Health, Victoria, Australia
- Monash University Department of Medicine, Monash University, Victoria, Australia
| | - G.A. Jenkin
- Monash Infectious Diseases, Monash Health, Victoria, Australia
| | - S. Megaloudis
- Haematology Laboratory, Monash Pathology, Monash Health, Victoria, Australia
| | - B. Kumar
- Anatomical Pathology Laboratory, Monash Pathology, Monash Health, Victoria, Australia
| | - S.M. Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, MD, United States
| | - S. Ojaimi
- Monash Infectious Diseases, Monash Health, Victoria, Australia
- Monash Lung Sleep Allergy Immunology, Monash Health, Victoria, Australia
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Victoria, Australia
- Immunology Laboratory, Monash Pathology, Monash Health, Victoria, Australia
| |
Collapse
|
14
|
Yang Y, Xia L, Lu S. Adult-onset Mendelian Susceptibility to Mycobacterial Diseases: A case report and systematic literature review. Heliyon 2023; 9:e22632. [PMID: 38058431 PMCID: PMC10696185 DOI: 10.1016/j.heliyon.2023.e22632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Objectives To help in diagnosis and treatment of adult-onset Mendelian Susceptibility to Mycobacterial Disease (MSMD). Methods We reported a 27-year-old man who had disease onset at 18 years. Then we reviewed previous reports of adult-onset MSMD patients, and summarized their clinical characteristics. Results The case was diagnosed as MSMD with tyrosine kinase 2 (TYK2) mutation and had dramatic improvement after treatment. In addition to our presented case and through a review of the literature, 12 cases in total were included in our study. Average age of disease onset was 29.4 years. Medium delay of diagnosis was 2.5 years. Four were with IFN-γR1 deficiency, four with IL-12β1 deficiency, two with NEMO deficiency, one with TYK2 deficiency and one with STAT1 deficiency. Common symptoms were lymphadenopathy (6/12, 50.0 %), weight loss (6/12, 50.0 %), bone/joint pain (5/12, 41.7 %), fever (4/12, 33.3 %) and gastrointestinal symptoms (4/12, 33.3 %). Mycobacteria caused infections in lymph nodes (7/12, 58.3 %), bone/joint (5/12, 41.7 %) and skin (5/12, 41.7 %). After treatment, eight (66.7 %) got favorable prognosis, two (16.7 %) died and one (16.7 %) was unknown. Conclusions Adult-onset MSMD have complex clinical presentations and are difficult to recognize, which results in delayed diagnosis. However, once identified, antibiotics and IFN-γ might have good efficacy. Therefore, when encountering adult patients with recurrent and refractory mycobacterial infections, especially in lymph nodes, bone/joints, and skin, MSMD should be considered.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, 201508, China
| | - Lu Xia
- Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, 201508, China
| | - Shuihua Lu
- Department of Pulmonary Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital/The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
| |
Collapse
|
15
|
Pilania RK, Goyal T, Singh S. Editorial: Advances in therapeutic strategies of inborn errors of immunity. Front Immunol 2023; 14:1328846. [PMID: 38022641 PMCID: PMC10666772 DOI: 10.3389/fimmu.2023.1328846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Rakesh Kumar Pilania
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
16
|
Dasanayake D, Bustamante J, Boisson-Dupuis S, Karunatilleke C, Thambyrajah J, Puel A, Chan KW, Doffinger R, Lau YL, Casanova JL, Kumararatne D, de Silva R. Inborn Errors of Immunity-the Sri Lankan Experience 2010-2022. J Clin Immunol 2023; 43:1858-1872. [PMID: 37480474 PMCID: PMC11014423 DOI: 10.1007/s10875-023-01542-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/19/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE Inborn errors of immunity (IEI) are typically monogenic. Data from the Indian subcontinent are relatively scarce. This paper evaluates IEI diagnosed in Sri Lanka. METHODS Data of patients diagnosed with IEI from 2010 to 2022 at the Department of Immunology, Medical Research Institute, Colombo, Sri Lanka, were retrospectively analyzed. RESULTS Two hundred and six patients were diagnosed with IEI, with a prevalence of 0.94 per 100,000. The onset of disease was below 12 years in 84.9%, whereas in 10.9%, it was after 18 years. The male: female ratio was 1.78:1. Consanguinity was identified in 26.6%. IEI were found in all but one (bone marrow failure) of the 10 IUIS categories. Predominantly antibody deficiencies were the most common category among the nine identified (30.1%), followed by combined immune deficiencies with syndromic features (21.3%), immunodeficiencies affecting cellular and humoral immunity (19.9%), congenital defects of phagocyte number or function (13.1%), and defects in intrinsic and innate immunity (8.2%). Severe combined immune deficiency (SCID) was the commonest disease (14.6%), followed by chronic granulomatous disease (CGD) (10.6%) and X linked agammaglobulinemia (8.7%). Of the patients with a known outcome (n = 184), 51 died (27.7%). Mortality rates were high in SCID (83.3%), Omenn syndrome (OS) (100%), and CGD (31.8%) patients. CONCLUSION IEI in Sri Lanka are diagnosed mainly in childhood. The low diagnosis rates suggest a need for educating clinicians regarding IEI in adulthood. The high mortality rates associated with some IEI indicate the need of transplant services in the country.
Collapse
Affiliation(s)
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Center for the Study of Primary Immunodeficiencies, AP-HP, Necker Hospital for Sick Children, Paris, France
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | | | - James Thambyrajah
- Institute of Biochemistry, Molecular Biology & Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rainer Doffinger
- Dept of Clinical Biochemistry and Immunology, Cambridge University Hospitals, Cambridge, UK
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University of Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Dinakantha Kumararatne
- Dept of Clinical Biochemistry and Immunology, Cambridge University Hospitals, Cambridge, UK
| | - Rajiva de Silva
- Department of Immunology, Medical Research Institute, Colombo, Sri Lanka.
| |
Collapse
|
17
|
Ahmad S, Ahmed J, Khalifa EH, Khattak FA, Khan AS, Farooq SU, Osman SMA, Salih MM, Ullah N, Khan TA. Novel mutations in genes of the IL-12/IFN-γ axis cause susceptibility to tuberculosis. J Infect Public Health 2023; 16:1368-1378. [PMID: 37437430 DOI: 10.1016/j.jiph.2023.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 06/06/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND The IL-12/23/ISG15-IFN-γ pathway is the main immunological pathway for controlling intra-macrophagic microorganisms such as Mycobacteria, Salmonella, and Leishmania spp. Consequently, upon mutations in genes of the IL-12/23/ISG15-IFN-γ pathway cause increased susceptibility to intra-macrophagic pathogens, particularly to Mycobacteria. Therefore, the purpose of this study was to characterize the mutations in genes of the IL-12/23/ISG15-IFN-γ pathway in severe tuberculosis (TB) patients. METHODS Clinically suspected TB was initially confirmed in four patients (P) (P1, P2, P3, and P4) using the GeneXpert MTB/RIF and culturing techniques. The patients' Peripheral blood mononuclear cells (PBMCs) were then subjected to ELISA to measure Interleukin 12 (IL-12) and interferon gamma (IFN-γ). Flow cytometry was used to detect the surface expressions of IFN-γR1 and IFN-γR2 as well as IL-12Rβ1and IL-12Rβ2 on monocytes and T lymphocytes, respectively.The phosphorylation of signal transducer and activator of transcription 1(STAT1) on monocytes and STAT4 on T lymphocytes were also detected by flow cytometry. Sanger sequencing was used to identify mutations in the IL-12Rβ1, STAT1, NEMO, and CYBB genes. RESULTS P1's PBMCs exhibited reduced IFN-γ production, while P2's and P3's PBMCs exhibited impaired IL-12 induction. Low IL-12Rβ1 surface expression and reduced STAT4 phosphorylation were demonstrated by P1's T lymphocytes, while impaired STAT1 phosphorylation was detected in P2's monocytes. The impaired IκB-α degradation and abolished H2O2 production in monocytes and neutrophils of P3 and P4 were observed, respectively. Sanger sequencing revealed novel nonsense homozygous mutation: c.191 G>A/p.W64 * in exon 3 of the IL-12Rβ1 gene in P1, novel missense homozygous mutation: c.107 A>T/p.Q36L in exon 3 of the STAT1 gene in P2, missense hemizygous mutation:: c.950 A>C/p.Q317P in exon 8 of the NEMO gene in P3, and nonsense hemizygous mutation: c.868 C>T/p.R290X in exon 8 of CYBB gene in P4. CONCLUSION Our findings broaden the clinical and genetic spectra associated with IL-12/23/ISG15-IFN-γ axis anomalies. Additionally, our data suggest that TB patients in Pakistan should be investigated for potential genetic defects due to high prevalence of parental consanguinity and increased incidence of TB in the country.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Institute of Basic Medical Science, Khyber Medical University, Peshawar, KP, Pakistan
| | - Jawad Ahmed
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Eman H Khalifa
- Al Baha University Faculty of Applied Medical Sciences, Saudi Arabia
| | - Farhad Ali Khattak
- Research & development Cell, Khyber College of Dentistry (KCD), Peshawar, Pakistan
| | - Anwar Sheed Khan
- Provincial TB Reference laboratory, Hayatabad Medical Complex, Peshawar, PK, Pakistan
| | - Syed Umar Farooq
- Department of oral pathology, Khyber College of Dentistry, Peshawar. Pakistan
| | | | | | - Nadeem Ullah
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden.
| | - Taj Ali Khan
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan; Division of Infectious Diseases & Global Medicine,Department of Medicine,University of Florida, Gainesville, FL,United States.
| |
Collapse
|
18
|
Alabbas A, Alasmari BG, Saeed M, Al-Tala SM, Abualama AE. Hemophagocytic Lymphohistiocytosis (HLH) Due to Fulminant Salmonella Sepsis in the Setting of IL12Rβ1 (Interleukin 12 Receptor Beta 1) Deficiency. Cureus 2023; 15:e41946. [PMID: 37588305 PMCID: PMC10425967 DOI: 10.7759/cureus.41946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
Interleukin 12 receptor beta 1 (IL12Rβ1) deficiency is the most common cause of Mendelian susceptibility to mycobacterial disease (MSMD). MSMD usually predisposes the affected individuals to infections with weakly virulent mycobacteria such as Bacille Calmette-Guérin (BCG), environmental mycobacteria, non-typhoidal Salmonella, and certain other intracellular pathogens. MSMD usually presents with disseminated BCG infection after exposure to the BCG vaccine. Infections with non-typhoidal Salmonella are considered the second most common manifestation of MSMD; however, severe presentation with such organisms is unusual. In this report, we describe a case of a previously healthy infant who was found to have IL12Rβ1 deficiency after she presented with hemophagocytic lymphohistiocytosis (HLH) secondary to severe Salmonella enterica sepsis. This case report highlights the importance of considering the diagnosis of MSMD in any patient presenting with severe non-typhoidal Salmonella infections even in the absence of any exposure to low-virulent mycobacteria.
Collapse
Affiliation(s)
- Ali Alabbas
- Pediatrics, Najran General Hospital, Najran, SAU
- Pediatrics, Armed Forces Hospital South Region - AFHSR, Khamis Mushait, SAU
| | - Badriah G Alasmari
- Pediatrics, Armed Forces Hospital South Region - AFHSR, Khamis Mushait, SAU
| | - Muhammad Saeed
- Pediatric Neurology, Armed Forces Hospital South Region - AFHSR, Khamis Mushait, SAU
| | - Saeed M Al-Tala
- Pediatric Genetics, Armed Forces Hospital South Region - AFHSR, Khamis Mushait, SAU
| | - Ayman E Abualama
- Pediatric Hematology and Oncology, Armed Forces Hospital South Region - AFHSR, Khamis Mushait, SAU
| |
Collapse
|
19
|
Quiros-Roldan E, Sottini A, Signorini SG, Serana F, Tiecco G, Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses 2023; 15:v15051215. [PMID: 37243300 DOI: 10.3390/v15051215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Anti-cytokine autoantibodies and, in particular, anti-type I interferons are increasingly described in association with immunodeficient, autoimmune, and immune-dysregulated conditions. Their presence in otherwise healthy individuals may result in a phenotype characterized by a predisposition to infections with several agents. For instance, anti-type I interferon autoantibodies are implicated in Coronavirus Disease 19 (COVID-19) pathogenesis and found preferentially in patients with critical disease. However, autoantibodies were also described in the serum of patients with viral, bacterial, and fungal infections not associated with COVID-19. In this review, we provide an overview of anti-cytokine autoantibodies identified to date and their clinical associations; we also discuss whether they can act as enemies or friends, i.e., are capable of acting in a beneficial or harmful way, and if they may be linked to gender or immunosenescence. Understanding the mechanisms underlying the production of autoantibodies could improve the approach to treating some infections, focusing not only on pathogens, but also on the possibility of a low degree of autoimmunity in patients.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | | | - Federico Serana
- Clinical Chemistry Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Giorgio Tiecco
- Department of Infectious and Tropical Diseases, ASST Spedali Civili, Brescia and University of Brescia, 25123 Brescia, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
20
|
Philippot Q, Ogishi M, Bohlen J, Puchan J, Arias AA, Nguyen T, Martin-Fernandez M, Conil C, Rinchai D, Momenilandi M, Mahdaviani A, Keramatipour M, Rosain J, Yang R, Khan T, Neehus AL, Materna M, Han JE, Peel J, Mele F, Weisshaar M, Jovic S, Bastard P, Lévy R, Le Voyer T, Zhang P, Renkilaraj MRLM, Arango-Franco CA, Pelham S, Seeleuthner Y, Pochon M, Ata MMA, Ali FA, Migaud M, Soudée C, Kochetkov T, Molitor A, Carapito R, Bahram S, Boisson B, Fieschi C, Mansouri D, Marr N, Okada S, Shahrooei M, Parvaneh N, Chavoshzadeh Z, Cobat A, Bogunovic D, Abel L, Tangye S, Ma CS, Béziat V, Sallusto F, Boisson-Dupuis S, Bustamante J, Casanova JL, Puel A. Human IL-23 is essential for IFN-γ-dependent immunity to mycobacteria. Sci Immunol 2023; 8:eabq5204. [PMID: 36763636 PMCID: PMC10069949 DOI: 10.1126/sciimmunol.abq5204] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/12/2023] [Indexed: 02/12/2023]
Abstract
Patients with autosomal recessive (AR) IL-12p40 or IL-12Rβ1 deficiency display Mendelian susceptibility to mycobacterial disease (MSMD) due to impaired IFN-γ production and, less commonly, chronic mucocutaneous candidiasis (CMC) due to impaired IL-17A/F production. We report six patients from four kindreds with AR IL-23R deficiency. These patients are homozygous for one of four different loss-of-function IL23R variants. All six patients have a history of MSMD, but only two suffered from CMC. We show that IL-23 induces IL-17A only in MAIT cells, possibly contributing to the incomplete penetrance of CMC in patients unresponsive to IL-23. By contrast, IL-23 is required for both baseline and Mycobacterium-inducible IFN-γ immunity in both Vδ2+ γδ T and MAIT cells, probably contributing to the higher penetrance of MSMD in these patients. Human IL-23 appears to contribute to IL-17A/F-dependent immunity to Candida in a single lymphocyte subset but is required for IFN-γ-dependent immunity to Mycobacterium in at least two lymphocyte subsets.
Collapse
Affiliation(s)
- Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Masato Ogishi
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Julia Puchan
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Andrés Augusto Arias
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, Australia
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
| | - Marta Martin-Fernandez
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clement Conil
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Darawan Rinchai
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Keramatipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Rui Yang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Taushif Khan
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Ji Eun Han
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jessica Peel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Marc Weisshaar
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Peng Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Simon Pelham
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | | | - Fatima Al Ali
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Tatiana Kochetkov
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Anne Molitor
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
| | - Raphael Carapito
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Seiamak Bahram
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S1109, Plateforme GENOMAX, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Strasbourg, France
- Laboratoire d’Immunologie, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, Paris, France
| | - Davood Mansouri
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nico Marr
- Department of Human Immunology, Sidra Medicine, Doha, Qatar
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha Qatar
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, Japan
| | | | - Nima Parvaneh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Teheran University of Medical Sciences, Teheran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Dusan Bogunovic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Stuart Tangye
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cindy S. Ma
- St. Vincent’s Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, Australia
- Center for Inborn Errors of Immunity, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Federica Sallusto
- Institute of Microbiology, ETH Zürich, Zurich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA
| |
Collapse
|
21
|
Errami A, El Baghdadi J, Ailal F, Benhsaien I, Ouazahrou K, Abel L, Casanova JL, Boisson-Dupuis S, Bustamante J, Bousfiha AA. Mendelian susceptibility to mycobacterial disease: an overview. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-022-00358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Background
Mycobacteria include ubiquitous species of varying virulence. However, environmental and individual-specific factors, particularly host genetics, play a crucial role in the outcome of exposure to mycobacteria. The first molecular evidence of a monogenic predisposition to mycobacteria came from the study of Mendelian susceptibility to mycobacterial disease (MSMD), a rare inborn error of IFN-γ immunity conferring a selective susceptibility to infections even with low virulent mycobacteria, in patients, mostly children, without recognizable immune defects in routine tests. This article provides a global and updated description of the most important molecular, cellular, and clinical features of all known monogenic defects of MSMD.
Results
Over the last 20 years, 19 genes were found to be mutated in MSMD patients (IFNGR1, IFNGR2, IFNG, IL12RB1, IL12RB2, IL23R, IL12B, ISG15, USP18, ZNFX1, TBX21, STAT1, TYK2, IRF8, CYBB, JAK1, RORC, NEMO, and SPPL2A), and the allelic heterogeneity at these loci has led to the definition of 35 different genetic defects. Despite the clinical and genetic heterogeneity, almost all genetic etiologies of MSMD alter the interferon gamma (IFN-γ)-mediated immunity, by impairing or abolishing IFN-γ production or the response to this cytokine or both. It was proven that the human IFN-γ level is a quantitative trait that defines the outcome of mycobacterial infection.
Conclusion
The study of these monogenic defects contributes to understanding the molecular mechanism of mycobacterial infections in humans and to the development of new diagnostic and therapeutic approaches to improve care and prognosis. These discoveries also bridge the gap between the simple Mendelian inheritance and complex human genetics.
Collapse
|
22
|
Mendelian Susceptibility to Mycobacterial Disease: Retrospective Clinical and Genetic Study in Mexico. J Clin Immunol 2023; 43:123-135. [PMID: 36044171 PMCID: PMC9428379 DOI: 10.1007/s10875-022-01357-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/21/2022] [Indexed: 01/21/2023]
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) is a rare genetic disorder characterized by impaired immunity against intracellular pathogens, such as mycobacteria, attenuated Mycobacterium bovis-Bacillus Calmette-Guérin (BCG) vaccine strains, and environmental mycobacteria in otherwise healthy individuals. Retrospective study reviewed the clinical, immunological, and genetic characteristics of patients with MSMD in Mexico. Overall, 22 patients diagnosed with MSMD from 2006 to 2021 were enrolled: 14 males (64%) and eight females. After BCG vaccination, 12 patients (70%) developed BCG infection. Furthermore, 6 (22%) patients developed bacterial infections mainly caused by Salmonella, as what is described next in the text is fungal infections, particularly Histoplasma. Seven patients died of disseminated BCG disease. Thirteen different pathogenic variants were identified in IL12RB1 (n = 13), IFNGR1 (n = 3), and IFNGR2 (n = 1) genes. Interleukin-12Rβ1 deficiency is the leading cause of MSMD in our cohort. Morbidity and mortality were primarily due to BCG infection.
Collapse
|
23
|
Sharifinejad N, Mahdaviani SA, Fallah S, Fard NK, Norouzi A, Jamee M, Sadeghi-Shabestari M, Marjani M, Malekshoar M, Farnia P, Velayati AA. Fibrosing mediastinitis in a child with Mendelian susceptibility to mycobacterial disease possibly due to Bacillus Calmette-Guérin. Allergy Asthma Clin Immunol 2022; 18:96. [PMID: 36397171 PMCID: PMC9673375 DOI: 10.1186/s13223-022-00738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 10/30/2022] [Indexed: 11/18/2022] Open
Abstract
Background Mendelian susceptibility to mycobacterial disease (MSMD) is an uncommon disorder with increased susceptibility to less virulent mycobacteria including bacillus Calmette-Guérin (BCG). Fibrosing mediastinitis (FM) is also a rare condition defined by excessive fibrotic reactions in the mediastinum. So far, some infectious organisms and autoimmune diseases have been introduced as possible etiologies of FM. However, no study has ever discussed the possible association of BCG infection and FM. Case presentation In this study, we report a 3-year-old female presenting with persistent fever, weakness, and bloody diarrhea in addition to mediastinal lymphadenopathy, hepatosplenomegaly, and pleural and pericardial effusion. Further examinations established a diagnosis of MSMD based on her clinical condition, immunologic data, positive tests for mycobacterial species, positive family history, and genetic study (IL12RB1 gene, c.G1193C, p.W398S). A year and a half later, she was referred with submandibular lymphadenitis and underwent immunologic work-up which revealed high inflammatory indices, a slight reduction in numbers of CD3 + and CD4 + cells as well as elevated CD16/56 + cell count and hyperimmunoglobulinemia. Purified protein derivative (PPD), QuantiFERON, and gastric washing test were all negative. Her chest computed tomography (CT) scan revealed suspicious para-aortic soft tissue and her echocardiography was indicative of strictures in superior vena cava and pulmonary veins. She further underwent chest CT angiography which confirmed FM development. Meanwhile, she has been treated with anti-mycobacterial agents and subcutaneous IFN-γ. Conclusion In summary, we described a novel case of MSMD in a child presenting with granulomatous FM possibly following BCG infection. This is the first report introducing aberrant BCG infection as the underlying cause of FM. This result could assist physicians in identifying early-onset FM in suspicious cases with MSMD. However, more studies are required to support this matter.
Collapse
|
24
|
Manifestations of cutaneous mycobacterial infections in patients with inborn errors of IL-12/IL-23-IFNγ immunity. Eur J Dermatol 2022; 32:495-504. [PMID: 36069176 PMCID: PMC9465665 DOI: 10.1684/ejd.2022.4281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Inborn errors of IL-12/IL-23-IFNγ immunity underlie Mendelian susceptibility to mycobacterial diseases (MSMD), a group of immunodeficiencies characterized by a highly selective susceptibility to weakly virulent strains of mycobacteria, such as non-tuberculous mycobacteria (NTM) and bacillus Calmette-Guérin (BCG). Cutaneous mycobacterial infections are common in MSMD and may represent a red flag for this immunodeficiency. Objectives We present a case series of four paediatric patients with MSMD, specifically with IFNγR1 and STAT1 deficiencies, and cutaneous NTM/BCG infections to increase awareness of this immunodeficiency, which may, in some cases, be intercepted by the dermatologist and thus timely referred to the immunologist. Materials & Methods Clinical, laboratory and genetic investigations of the four paediatric patients with MSMD are presented. Results All four presented patients experienced early complications after BCG vaccination. Two patients suffered recurrent mycobacteriosis, one patient experienced delayed BCG reactivation, and one patient died of disseminated avian mycobacteriosis. The dermatological manifestation in these patients included destructive nasal ulcerations, scrofuloderma of various sites and lupus vulgaris. All patients had a normal basic immune phenotype. Conclusion The presented cases demonstrate that NTM/BCG infections in otherwise seemingly immunocompetent patients should raise suspicion of MSMD. This is of utmost importance as specific therapeutic approaches, such as IFNγ treatment or haematopoietic stem cell transplantation, may be employed to improve the disease outcome.
Collapse
|
25
|
Singh Dhiman N, Saini V, Kumar V. Sex-dependent regulation of interferon-γ receptor expression in pulmonary tuberculosis. Hum Immunol 2022; 83:656-661. [PMID: 35792002 DOI: 10.1016/j.humimm.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/22/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Interferon-γ (IFN-γ) is an essential pro-inflammatory cytokine against tuberculosis (TB). To initiate immune response, IFN-γ binds to its receptor complex which consists of two subunits IFN-γ receptor 1 (IFN-γR1) and IFN-γ receptor 2 (IFN-γR2). The deficiency in either receptor subunit can alter IFN-γ signalling thus influencing host susceptibility to TB. In the present study IFN-γ receptor expression at transcriptional and translational level was analysed in pulmonary TB patients from North India. A total of 46 pulmonary TB patients (at 0 day of anti-tuberculosis therapy) and 48 healthy controls (HCs) were recruited. It was found that the mRNA expression of IFN-γR1 was decreased in male TB patients (p = 0.003). The surface expression of IFN-γR1 (p = 0.0005) and IFN-γR2 (p = 0.024) was also found to be decreased in male TB patients. In conclusion, we found sex-dependent regulation of IFN-γR1 and IFN-γR2 expression in pulmonary TB patients of studied population.
Collapse
Affiliation(s)
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Sector-32, Chandigarh, India
| | - Vijay Kumar
- Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
26
|
Xia L, Liu XH, Yuan Y, Lowrie DB, Fan XY, Li T, Hu ZD, Lu SH. An Updated Review on MSMD Research Globally and A Literature Review on the Molecular Findings, Clinical Manifestations, and Treatment Approaches in China. Front Immunol 2022; 13:926781. [PMID: 36569938 PMCID: PMC9774035 DOI: 10.3389/fimmu.2022.926781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Mendelian susceptibility to mycobacterial disease (MSMD) arises from a group of rare inherited errors of immunity that result in selective susceptibility of otherwise healthy people to clinical disease caused by low virulence strains of mycobacteria, such as Mycobacterium bovis Bacille Calmette-Guérin (BCG) and environmental mycobacteria. Patients have normal resistance to other pathogens and no overt abnormalities in routine immunological and hematological evaluations for primary immunodeficiencies. At least 19 genes and 34 clinical phenotypes have been identified in MSMD. However, there have been no systematic reports on the clinical characteristics and genetic backgrounds of MSMD in China. In this review, on the one hand, we summarize an update findings on molecular defects and immunological mechanisms in the field of MSMD research globally. On the other hand, we undertook a systematic review of PubMed (MEDLINE), the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, EMBASE, CNKI, and Wanfang to identify articles published before Jan 23, 2022, to summarize the clinical characteristics, diagnosis, treatment, and prognosis of MSMD in China. All the English and Chinese publications were searched without any restriction on article types.
Collapse
Affiliation(s)
- Lu Xia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xu-Hui Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yuan Yuan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Douglas B. Lowrie
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Tao Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhi-Dong Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Zhi-Dong Hu, ; Shui-Hua Lu,
| | - Shui-Hua Lu
- Shenzhen National Clinical Research Center for Infectious Disease, Shenzhen, China,Department of tuberculosis, The Third People’s Hospital of Shenzhen, Shenzhen, China,*Correspondence: Zhi-Dong Hu, ; Shui-Hua Lu,
| |
Collapse
|
27
|
Xu P, Yang K, Yang L, Wang Z, Jin F, Wang Y, Feng J. Next-Generation Metagenome Sequencing Shows Superior Diagnostic Performance in Acid-Fast Staining Sputum Smear-Negative Pulmonary Tuberculosis and Non-tuberculous Mycobacterial Pulmonary Disease. Front Microbiol 2022; 13:898195. [PMID: 35847073 PMCID: PMC9283093 DOI: 10.3389/fmicb.2022.898195] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, we explored the clinical value of next-generation metagenome sequencing (mNGS) using bronchoalveolar lavage fluid (BALF) samples from patients with acid-fast staining (AFS) sputum smear-negative pulmonary tuberculosis (PTB) and non-tuberculous mycobacterial pulmonary disease (NTM-PD). Data corresponding to hospitalized patients with pulmonary infection admitted to the hospital between July 2018 and July 2021, who were finally diagnosed with AFS sputum smear-negative PTB and NTM-PD, were retrospectively analyzed. Bronchoscopy data as well as mNGS, Xpert, AFS (BALF analysis), and T-SPOT (blood) data, were extracted from medical records. Thereafter, the diagnostic performances of these methods with respect to PTB and NTM-PD were compared. Seventy-one patients with PTB and 23 with NTM-PD were included in the study. The sensitivities of mNGS, Xpert, T-SPOT, and AFS for the diagnosis of PTB were 94.4% (67/71), 85.9% (61/71), 64.8% (46/71), and 28.2% (20/71), respectively, and the diagnostic sensitivity of mNGS combined with Xpert was the highest (97.2%, 67/71). The specificity of Xpert was 100%, while those of AFS and T-SPOT were 73.9% (17/23) and 91.3% (21/23), respectively. Further, the 23 patients with NTM-PD could be identified using mNGS, and in the population with immunosuppression, the sensitivities of mNGS, Xpert, T-SPOT, and AFS were 93.5% (29/31), 80.6% (25/31), 48.4% (15/31), and 32.3% (10/31), respectively, and the diagnostic sensitivity of mNGS combined with Xpert was the highest (100%, 31/31). The specificities of Xpert and T-SPOT in this regard were both 100%, while that of AFS was 40% (2/5). Furthermore, using mNGS, all the NTM samples could be identified. Thus, the analysis of BALF samples using mNGS has a high accuracy in the differential diagnosis of MTB and NTM. Further, mNGS combined with Xpert can improve the detection of MTB, especially in AFS sputum smear-negative samples from patients with compromised immune states or poor responses to empirical antibiotics.
Collapse
Affiliation(s)
- Peng Xu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ke Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Yang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhongli Wang
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
- Department of Respiratory and Critical Care Medicine, Shandong Second Provincial General Hospital, Jinan, China
| | - Fang Jin
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Yubao Wang
- Institute of Infectious Diseases, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
28
|
Ma N, Chen M, Ding J, Wang F, Jin J, Fan S, Chen J. Recurrent Pneumonia With Tuberculosis and Candida Co-infection Diagnosed by Metagenomic Next-Generation Sequencing: A Case Report and Literature Review. Front Med (Lausanne) 2022; 9:755308. [PMID: 35462994 PMCID: PMC9026854 DOI: 10.3389/fmed.2022.755308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/23/2022] [Indexed: 01/16/2023] Open
Abstract
An 82-year-old male patient was hospitalized in the Respiratory Department for “repeated cough and shortness of breath for 10 years, recurrence worsened for 1 month.” Later, he was transferred for further diagnosis and treatment, to the Infectious Disease Department for further hospitalization. Previously, the patient had repeatedly undergone tuberculosis-related examinations including bronchoscopy examinations. However, no evidence of Mycobacterium tuberculosis (MTB) infection was found. Early anti-infection treatments failed. Due to repeated symptoms, we performed bronchoscopy again and sent alveolar lavage fluid for the metagenomic next-generation sequencing (mNGS) test. Subsequently, MTB and Candida albicans were detected by mNGS. After antituberculosis and antifungal treatments, the symptoms were significantly relieved, and the chest CT showed resolution of the lung lesions. Therefore, we successfully diagnosed and treated a case of recurrent pneumonia with tuberculosis and Candida co-infection diagnosed by mNGS.
Collapse
Affiliation(s)
- Ning Ma
- Department of Infectious Diseases, Beilun District People’s Hospital, Ningbo, China
| | - Mei Chen
- Department of Infectious Diseases, Beilun District People’s Hospital, Ningbo, China
| | - Jingyi Ding
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Wang
- Department of Hospital-Acquired Infection Control, Beilun District People’s Hospital, Ningbo, China
| | - Jingbo Jin
- Department of Infectious Diseases, Beilun District People’s Hospital, Ningbo, China
| | - Sitong Fan
- Department of Infectious Diseases, Beilun District People’s Hospital, Ningbo, China
| | - Jiajia Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jiajia Chen,
| |
Collapse
|
29
|
Wang Z, Li T, Gong Z, Xie J. Role of ISG15 post-translational modification in immunity against Mycobacterium tuberculosis infection. Cell Signal 2022; 94:110329. [PMID: 35390466 DOI: 10.1016/j.cellsig.2022.110329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022]
Abstract
ISG15 encoded by a type I interferon (IFN) inducible gene mediates an important cellular process called ISGylation. ISGylation emerges as a powerful host tactic against intracellular pathogens like Mycobacterium tuberculosis (Mtb). However, the exact role of ISGylation in immunity remains elusive. To shed light on how ISGylation, which is both interesting and complex, participates in immunity against Mtb, this manuscript summarized the current knowledge about the structural characteristics and targets of ISG15 and how ISGylation cross-talks with other host post-translational modifications to exert its effect.
Collapse
Affiliation(s)
- Zilu Wang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tongxin Li
- Chongqing Public Health Medical Center, Southwest University Public Health Hospital, central laboratory Chongqing, 400030, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
30
|
Noma K, Mizoguchi Y, Tsumura M, Okada S. Mendelian susceptibility to mycobacterial diseases: state-of-the-art. Clin Microbiol Infect 2022; 28:1429-1434. [DOI: 10.1016/j.cmi.2022.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
|
31
|
Mahdaviani SA, Fallahi M, Jamee M, Marjani M, Tabarsi P, Moniri A, Farnia P, Daneshmandi Z, Parvaneh N, Casanova JL, Bustamante J, Mansouri D, Velayati AA. Effective anti-mycobacterial treatment for BCG disease in patients with Mendelian Susceptibility to Mycobacterial Disease (MSMD): a case series. Ann Clin Microbiol Antimicrob 2022; 21:8. [PMID: 35232430 PMCID: PMC8889629 DOI: 10.1186/s12941-022-00500-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Background Post-vaccination BCG disease typically attests to underlying inborn errors of immunity (IEIs), with the highest rates of complications in patients with Mendelian susceptibility to mycobacterial disease (MSMD). However, therapeutic protocols for the management of BCG-osis (disseminated) and persistent BCG-itis (localized) are still controversial. Methods Twenty-four Iranian patients with MSMD (BCG-osis or BCG-itis), followed from 2009 to 2020 in Tehran, were included in the study. Their medical records were retrospectively reviewed for demographics, clinical features, laboratory findings, and molecular diagnosis. The therapeutic protocol sheets were prepared to contain the types and duration of anti-mycobacterial agents. Results BCG disease either as BCG-itis (33.3%) or BCG-osis (66.7%) was confirmed in all patients by positive gastric washing test (54.2%), microbial smear and culture (58.3%), or purified protein derivative (PPD) test (4.2%). The duration between BCG-osis onset and MSMD diagnosis was 21.6 months. All except three patients were initiated on second-line anti-mycobacterial agents with either a fluoroquinolone (levofloxacin: 15 mg/kg/day, ciprofloxacin: 20 mg/kg/day, ofloxacin: 15 mg/kg/day), aminoglycoside (amikacin: 10–15 mg/kg/day, streptomycin: 15 mg/kg/day), and/or macrolide (clarithromycin: 15 mg/kg/day) along with oral rifampin (10 mg/kg/day), isoniazid (15 mg/kg/day), and ethambutol (20 mg/kg/day). Three patients showed a clinical response to rifampin, despite in vitro resistance. Fourteen (58.3%) patients received also adjuvant subcutaneous IFN-γ therapy, 50 µ/m2 every other day. At the end of survey, most patients (n = 22, 91.7%) were alive and two patients died following BCG-osis and respiratory failure. Conclusions We recommend the early instigation of second-line anti-mycobacterial agents in MSMD patients with BCG disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-022-00500-y.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazdak Fallahi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Jamee
- Pediatric Nephrology Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Marjani
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Moniri
- Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Farnia
- Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Daneshmandi
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, Necker Hospital for Sick Children, INSERM, University of Paris, Imagine Institute, 75015, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, UMR 1163, Necker Hospital for Sick Children, INSERM, University of Paris, Imagine Institute, 75015, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
| | - Davood Mansouri
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Clinical Tuberculosis and Epidemiology Research Centre, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Velayati
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Druszczyńska M, Godkowicz M, Kulesza J, Wawrocki S, Fol M. Cytokine Receptors-Regulators of Antimycobacterial Immune Response. Int J Mol Sci 2022; 23:1112. [PMID: 35163035 PMCID: PMC8835057 DOI: 10.3390/ijms23031112] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Cytokine receptors are critical regulators of the antimycobacterial immune response, playing a key role in initiating and coordinating the recruitment and activation of immune cells during infection. They recognize and bind specific cytokines and are involved in inducing intracellular signal transduction pathways that regulate a diverse range of biological functions, including proliferation, differentiation, metabolism and cell growth. Due to mutations in cytokine receptor genes, defective signaling may contribute to increased susceptibility to mycobacteria, allowing the pathogens to avoid killing and immune surveillance. This paper provides an overview of cytokine receptors important for the innate and adaptive immune responses against mycobacteria and discusses the implications of receptor gene defects for the course of mycobacterial infection.
Collapse
Affiliation(s)
- Magdalena Druszczyńska
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
| | - Magdalena Godkowicz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
| | - Jakub Kulesza
- Department of Internal Diseases and Clinical Pharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347 Lodz, Poland;
| | - Sebastian Wawrocki
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos, Switzerland
| | - Marek Fol
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.G.); (S.W.); (M.F.)
| |
Collapse
|
33
|
Lange C, Aaby P, Behr MA, Donald PR, Kaufmann SHE, Netea MG, Mandalakas AM. 100 years of Mycobacterium bovis bacille Calmette-Guérin. THE LANCET. INFECTIOUS DISEASES 2022; 22:e2-e12. [PMID: 34506734 PMCID: PMC11967564 DOI: 10.1016/s1473-3099(21)00403-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022]
Abstract
Mycobacterium bovis bacille Calmette-Guérin (BCG), an experimental vaccine designed to protect cattle from bovine tuberculosis, was administered for the first time to a newborn baby in Paris in 1921. Over the past century, BCG has saved tens of millions of lives and has been given to more humans than any other vaccine. It remains the sole tuberculosis vaccine licensed for use in humans. BCG provides long-lasting strong protection against miliary and meningeal tuberculosis in children, but it is less effective for the prevention of pulmonary tuberculosis, especially in adults. Evidence mainly from the past two decades suggests that BCG has non-specific benefits against non-tuberculous infections in newborn babies and in older adults, and offers immunotherapeutic benefit in certain malignancies such as non-muscle invasive bladder cancer. However, as a live attenuated vaccine, BCG can cause localised or disseminated infections in immunocompromised hosts, which can also occur following intravesical installation of BCG for the treatment of bladder cancer. The legacy of BCG includes fundamental discoveries about tuberculosis-specific and non-specific immunity and the demonstration that tuberculosis is a vaccine-preventable disease, providing a foundation for new vaccines to hasten tuberculosis elimination.
Collapse
Affiliation(s)
- Christoph Lange
- Division of Clinical Infectious Diseases, Medical Clinic, Research Center Borstel, Borstel, Germany; German Center for Infection Research (DZIF) Tuberculosis Unit, Borstel, Germany; Respiratory Medicine and International Health, University of Lübeck, Lübeck, Germany; Global TB Program, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - Peter Aaby
- Bandim Health Project, Indepth Network, Bissau, Guinea-Bissau; Bandim Health Project, Southern Danish University, Copenhagen, Denmark
| | - Marcel A Behr
- McGill International TB Centre and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Peter R Donald
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany; Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Anna M Mandalakas
- Global TB Program, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
34
|
Das J, Banday A, Shandilya J, Sharma M, Vignesh P, Rawat A. An updated review on Mendelian susceptibility to mycobacterial diseases - a silver jubilee celebration of its first genetic diagnosis. Expert Rev Clin Immunol 2021; 17:1103-1120. [PMID: 34259572 DOI: 10.1080/1744666x.2021.1956314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mendelian susceptibility to mycobacterial diseases (MSMD), a group of at least 18 different genetic disorders, encompasses a specific class of inborn errors of immunity that result in predilection to infection with mycobacteria including the weakly virulent strains. Primarily, these consist of defects in the IFN-γ-IL-12/23 circuit that is crucial for immunity against intracellular microorganisms. Although the first genetic etiology of MSMD was discovered in 1996, molecular diagnosis of MSMD in resource-constrained settings may remain far-fetched. Recently, original studies have emerged from developing countries, including India, wherein the genetic diagnosis was confirmed within the country itself. A lag of about 25 years, hence, seems to exist. AREAS COVERED Herein, we review the clinical, laboratory, and mutational profile of the genetic defects responsible for causing MSMD. We intend to enhance the recognition of these disorders in settings endemic for tuberculosis and bridge the gap between the developed and developing countries in the field of MSMD research and therapeutics. EXPERT OPINION Research in the field of MSMD in developing countries, including India, can uncover novel genetic etiologies, as the population exceeds 1.3 billion, a huge burden of tuberculosis (across all clinical spectrums) exists, and BCG vaccination is given universally at birth.
Collapse
Affiliation(s)
- Jhumki Das
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aaqib Banday
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Jitendra Shandilya
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
35
|
Tsumura M, Miki M, Mizoguchi Y, Hirata O, Nishimura S, Tamaura M, Kagawa R, Hayakawa S, Kobayashi M, Okada S. Enhanced osteoclastogenesis in patients with MSMD due to impaired response to IFN-γ. J Allergy Clin Immunol 2021; 149:252-261.e6. [PMID: 34176646 DOI: 10.1016/j.jaci.2021.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Patients with Mendelian susceptibility to mycobacterial disease (MSMD) experience recurrent and/or persistent infectious diseases associated with poorly virulent mycobacteria. Multifocal osteomyelitis is among the representative manifestations of MSMD. The frequency of multifocal osteomyelitis is especially high in patients with MSMD etiologies that impair cellular response to IFN-γ, such as IFN-γR1, IFN-γR2, or STAT1 deficiency. OBJECTIVES This study sought to characterize the mechanism underlying multifocal osteomyelitis in MSMD. METHODS GM colonies prepared from bone marrow mononuclear cells from patients with autosomal dominant (AD) IFN-γR1 deficiency, AD STAT1 deficiency, or STAT1 gain of function (GOF) and from healthy controls were differentiated into osteoclasts in the presence or absence of IFN-γ. The inhibitory effect of IFN-γ on osteoclastogenesis was investigated by quantitative PCR, immunoblotting, tartrate-resistant acid phosphatase staining, and pit formation assays. RESULTS Increased osteoclast numbers were identified by examining the histopathology of osteomyelitis in patients with AD IFN-γR1 deficiency or AD STAT1 deficiency. In the presence of receptor activator of nuclear factor kappa-B ligand and M-CSF, GM colonies from patients with AD IFN-γR1 deficiency, AD STAT1 deficiency, or STAT1 GOF differentiated into osteoclasts, similar to GM colonies from healthy volunteers. IFN-γ concentration-dependent inhibition of osteoclast formation was impaired in GM colonies from patients with AD IFN-γR1 deficiency or AD STAT1 deficiency, whereas it was enhanced in GM colonies from patients with STAT1 GOF. CONCLUSIONS Osteoclast differentiation is increased in AD IFN-γR1 deficiency and AD STAT1 deficiency due to an impaired response to IFN-γ, leading to excessive osteoclast proliferation and, by inference, increased bone resorption in infected foci, which may underlie multifocal osteomyelitis.
Collapse
Affiliation(s)
- Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Mizuka Miki
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima Red Cross Hospital and Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Osamu Hirata
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Hidamari Children Clinic, Hiroshima, Japan
| | - Shiho Nishimura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Moe Tamaura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Department of Pediatrics, Hiroshima-Nishi Medical Center, Hiroshima, Japan
| | - Reiko Kagawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Seiichi Hayakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan; Japanese Red Cross, Chugoku-Shikoku Block Blood Center, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| |
Collapse
|