1
|
Shanthikumar S, Gubbels L, Davies K, Walker H, Wong ATC, Maksimovic J, Oshlack A, Saffery R, Levi E, Ranganathan SC, Neeland MR. Cross-tissue, age-specific flow cytometry reference for immune cells in airway and blood of children. J Allergy Clin Immunol 2025; 155:1002-1014. [PMID: 39577813 DOI: 10.1016/j.jaci.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Respiratory diseases are a common cause of morbidity and hospitalization for children. Despite this, treatment options are limited and are often ineffective. The development of curative or disease-modifying treatments for children relies on a better understanding of underlying immunity in the early airway. OBJECTIVE To establish a flow cytometry dataset for immune cells in the pediatric airway, we analyzed 180 samples from 68 children aged between 1 and 15 years. This included 5 tissues of the upper (nasal brushings, palatine tonsils, adenotonsil) and lower (bronchial brushings, bronchoalveolar lavage) airway, as well as whole blood for paired analysis of local and systemic immune response. METHODS Nasal, bronchial, and alveolar samples were analyzed using a 17-plex antibody panel that captures cells of immune and epithelial lineage, while tonsil, adenoid, and blood samples were analyzed using a 31-plex antibody panel that extensively phenotypes mononuclear immune cells. All protocols, panels, and data are openly available to facilitate implementation in pediatric clinical laboratories. RESULTS We provide age-specific airway cell data for infancy (0-2 years), preschool (3-5 years), childhood (6-10 years) and adolescence (11-15 years) for 37 cell populations. We show tissue-specific maturation of the airway immune system across childhood, further highlighting the importance of developing age-specific references of the pediatric airway. Intraindividual, cross-tissue analysis of paired samples revealed marked correlation in immune cell proportions between paired nasal-bronchial samples, paired tonsil-adenoid samples, and paired adenoid-blood samples, which may have implications for clinical testing. CONCLUSION Our study advances knowledge of airway immunity from infancy through to adolescence and provides an openly available control dataset to aid in interpretation of clinical findings in samples obtained from children with respiratory diseases.
Collapse
Affiliation(s)
- Shivanthan Shanthikumar
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia; Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Liam Gubbels
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Karen Davies
- Department of Otolaryngology, Royal Children's Hospital, Parkville, Australia
| | - Hannah Walker
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia; Children's Cancer Centre, Royal Children's Hospital, Parkville, Australia
| | - Anson Tsz Chun Wong
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Jovana Maksimovic
- Computational Biology Program, Peter MacCallum Cancer Centre, Parkville, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Alicia Oshlack
- Computational Biology Program, Peter MacCallum Cancer Centre, Parkville, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia; School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Richard Saffery
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Eric Levi
- Department of Otolaryngology, Royal Children's Hospital, Parkville, Australia; Clinical Sciences, Murdoch Children's Research Institute, Parkville, Australia
| | - Sarath C Ranganathan
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia; Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Melanie R Neeland
- Infection, Immunity and Global Health, Murdoch Children's Research Institute, Parkville, Australia; Department of Paediatrics, University of Melbourne, Parkville, Australia.
| |
Collapse
|
2
|
Hegewisch-Solloa E, Melsen JE, Ravichandran H, Rendeiro AF, Freud AG, Mundy-Bosse B, Melms JC, Eisman SE, Izar B, Grunstein E, Connors TJ, Elemento O, Horowitz A, Mace EM. Mapping human natural killer cell development in pediatric tonsil by imaging mass cytometry and high-resolution microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556371. [PMID: 37732282 PMCID: PMC10508773 DOI: 10.1101/2023.09.05.556371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Natural killer (NK) cells develop from CD34+ progenitors in a stage-specific manner defined by changes in cell surface receptor expression and function. Secondary lymphoid tissues, including tonsil, are sites of human NK cell development. Here we present new insights into human NK cell development in pediatric tonsil using cyclic immunofluorescence and imaging mass cytometry. We show that NK cell subset localization and interactions are dependent on NK cell developmental stage and tissue residency. NK cell progenitors are found in the interfollicular domain in proximity to cytokine-expressing stromal cells that promote proliferation and maturation. Mature NK cells are primarily found in the T-cell rich parafollicular domain engaging in cell-cell interactions that differ depending on their stage and tissue residency. The presence of local inflammation results in changes in NK cell interactions, abundance, and localization. This study provides the first comprehensive atlas of human NK cell development in secondary lymphoid tissue.
Collapse
Affiliation(s)
- Everardo Hegewisch-Solloa
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Janine E Melsen
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
- Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Hiranmayi Ravichandran
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - André F Rendeiro
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, 10065
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT 25.3, 1090, Vienna, Austria
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210
| | - Bethany Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA; Comprehensive Cancer Center and The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210
| | - Johannes C Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, 10032
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, 10032
| | - Shira E Eisman
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, 10032
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, 10032
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032
- Program for Mathematical Genomics, Columbia University, New York, NY, 10032
| | - Eli Grunstein
- Department of Otolaryngology - Head and Neck Surgery, Columbia University Medical Center, New York, New York 10032
| | - Thomas J Connors
- Department of Pediatrics, Division of Pediatric Critical Care and Hospital Medicine, Columbia University Irving Medical Center, New York, NY 10024
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10065
| | - Amir Horowitz
- Department of Oncological Sciences, Precision Immunology Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
| | - Emily M Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York NY 10032
| |
Collapse
|
3
|
Zhu Y, Wang S, Yang Y, Shen B, Wang A, Zhang X, Zhang X, Li N, Gao Z, Liu Y, Zhu J, Wei Z, Guan J, Su K, Liu F, Gu M, Yin S. Adenoid lymphocyte heterogeneity in pediatric adenoid hypertrophy and obstructive sleep apnea. Front Immunol 2023; 14:1186258. [PMID: 37283767 PMCID: PMC10239814 DOI: 10.3389/fimmu.2023.1186258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Introduction Adenoid hypertrophy is the main cause of obstructive sleep apnea in children. Previous studies have suggested that pathogenic infections and local immune system disorders in the adenoids are associated with adenoid hypertrophy. The abnormalities in the number and function of various lymphocyte subsets in the adenoids may play a role in this association. However, changes in the proportion of lymphocyte subsets in hypertrophic adenoids remain unclear. Methods To identify patterns of lymphocyte subsets in hypertrophic adenoids, we used multicolor flow cytometry to analyze the lymphocyte subset composition in two groups of children: the mild to moderate hypertrophy group (n = 10) and the severe hypertrophy group (n = 5). Results A significant increase in naïve lymphocytes and a decrease in effector lymphocytes were found in severe hypertrophic adenoids. Discussion This finding suggests that abnormal lymphocyte differentiation or migration may contribute to the development of adenoid hypertrophy. Our study provides valuable insights and clues into the immunological mechanism underlying adenoid hypertrophy.
Collapse
Affiliation(s)
- Yaxin Zhu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengming Wang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingchao Yang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bojun Shen
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anzhao Wang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoman Zhang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Zhang
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Niannian Li
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfei Gao
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuenan Liu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Zhu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicheng Wei
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaiming Su
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Liu
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meizhen Gu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery and Center of Sleep Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Restricted Recruitment of NK Cells with Impaired Function Is Caused by HPV-Driven Immunosuppressive Microenvironment of Papillomas in Aggressive Juvenile-Onset Recurrent Respiratory Papillomatosis Patients. J Virol 2022; 96:e0094622. [PMID: 36154611 DOI: 10.1128/jvi.00946-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Laryngopharynx epithelium neoplasia induced by HPV6/11 infection in juvenile-onset recurrent respiratory papillomatosis (JO-RRP) causes a great health issue characteristic of frequent relapse and aggressive disease progression. Local cell-mediated immunity shaped by the recruitment and activation of cytotoxic effector cells is critical for viral clearance. In this study, we found that NK cells in the papillomas of aggressive JO-RRP patients, in contrast to massive infiltrated T cells, were scarce in number and impaired in activation and cytotoxicity as they were in peripheral blood. Data from cell infiltration analysis indicated that the migration of NK cell to papilloma was restricted in aggressive JO-RRP patients. Further study showed that the skewed chemokine expression in the papillomas and elevated ICAM-1 expression in hyperplastic epithelia cells favored the T cell but not NK cell recruitment in aggressive JO-RRP patients. In parallel to the increased CD3+ T cells, we observed a dramatical increase in Tregs and Treg-promoting cytokines such as IL-4, IL-10 and TGFβ in papillomas of aggressive JO-RRP patients. Our study suggested that likely initialized by the intrinsic change in neoplastic epithelial cells with persistent HPV infection, the aggressive papillomas built an entry barrier for NK cell infiltration and formed an immunosuppressive clump to fend off the immune attack from intra-papillomas NK cells. IMPORTANCE Frequent relapse and aggressive disease progression of juvenile-onset recurrent respiratory papillomatosis (JO-RRP) pose a great challenge to the complete remission of HPV 6/11 related laryngeal neoplasia. Local immune responses in papillomas are more relevant to the disease control considering the locale infected restriction of HPV virus in epitheliums. In our study, the restricted NK cell number and reduced expression of activating NKp30 receptor suggested one possible mechanism underlying impaired NK cell defense ability in aggressive JO-RRP papillomas. Meanwhile, the negative impact of HPV persistent infection on NK cell number and function represented yet another example of a chronic pathogen subverting NK cell behavior, affirming a potentially important role for NK cells in viral containment. Further, the skewed chemokine/cytokine expression in the papillomas and the elevated adhesion molecules expression in hyperplastic epithelia cells provided important clues for understanding blocked infiltration and antiviral dysfunction of NK cells in papilloma.
Collapse
|
5
|
A Proposal to Perform High Contrast Imaging of Human Palatine Tonsil with Cross Polarized Optical Coherence Tomography. PHOTONICS 2022. [DOI: 10.3390/photonics9040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The palatine tonsils provide the first line of immune defense against foreign pathogens inhaled or ingested. However, a disruption in the epithelial layer within the tonsil crypts can lead to recurrent acute tonsillitis (RAT). Current imaging techniques suffer from poor resolution and contrast and do not allow a classification of the severity of RAT. We have developed a cross-polarized optical coherence tomography system. The system can detect a change in the polarization of the light after the light-tissue interaction. We demonstrate improved resolution and contrast in tonsil imaging with the developed method. Intensity, as well as retardance images of the excised tonsil tissue, were acquired. Features such as crypt epithelium, lymphoid follicles, and dense connective tissue were observed with improved contrast. Cross polarized optical coherence tomography can be a valuable tool in the clinic to evaluate palatine tonsils as it would allow visualizing common tonsil features without the need for any external contrast agent.
Collapse
|
6
|
Xu Q, Milanez-Almeida P, Martins AJ, Radtke AJ, Hoehn KB, Chen J, Liu C, Tang J, Grubbs G, Stein S, Ramelli S, Kabat J, Behzadpour H, Karkanitsa M, Spathies J, Kalish H, Kardava L, Kirby M, Cheung F, Preite S, Duncker PC, Romero N, Preciado D, Gitman L, Koroleva G, Smith G, Shaffer A, McBain IT, Pittaluga S, Germain RN, Apps R, Sadtler K, Moir S, Chertow DS, Kleinstein SH, Khurana S, Tsang JS, Mudd P, Schwartzberg PL, Manthiram K. Robust, persistent adaptive immune responses to SARS-CoV-2 in the oropharyngeal lymphoid tissue of children. RESEARCH SQUARE 2022:rs.3.rs-1276578. [PMID: 35350206 PMCID: PMC8963700 DOI: 10.21203/rs.3.rs-1276578/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SARS-CoV-2 infection triggers adaptive immune responses from both T and B cells. However, most studies focus on peripheral blood, which may not fully reflect immune responses in lymphoid tissues at the site of infection. To evaluate both local and systemic adaptive immune responses to SARS-CoV-2, we collected peripheral blood, tonsils, and adenoids from 110 children undergoing tonsillectomy/adenoidectomy during the COVID-19 pandemic and found 24 with evidence of prior SARS-CoV-2 infection, including detectable neutralizing antibodies against multiple viral variants. We identified SARS-CoV-2-specific germinal center (GC) and memory B cells; single cell BCR sequencing showed that these virus-specific B cells were class-switched and somatically hypermutated, with overlapping clones in the adenoids and tonsils. Oropharyngeal tissues from COVID-19-convalescent children showed persistent expansion of GC and anti-viral lymphocyte populations associated with an IFN-γ-type response, with particularly prominent changes in the adenoids, as well as evidence of persistent viral RNA in both tonsil and adenoid tissues of many participants. Our results show robust, tissue-specific adaptive immune responses to SARS-CoV-2 in the upper respiratory tract of children weeks to months after acute infection, providing evidence of persistent localized immunity to this respiratory virus.
Collapse
Affiliation(s)
- Qin Xu
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | | | - Andrea J. Radtke
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH Bethesda, MD
| | | | - Jinguo Chen
- Center for Human Immunology, NIAID, NIH, Bethesda, MD
| | - Can Liu
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD
| | - Juanjie Tang
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD
| | - Gabrielle Grubbs
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD
| | - Sydney Stein
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD
| | - Sabrina Ramelli
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD
| | - Juraj Kabat
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH Bethesda, MD
| | - Hengameh Behzadpour
- Division of Pediatric Otolaryngology, Children’s National Hospital, Washington, DC
| | - Maria Karkanitsa
- Laboratory of Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD
| | - Jacquelyn Spathies
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD
| | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science, NIBIB, NIH, Bethesda, MD
| | - Lela Kardava
- B-cell Immunology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD
| | - Martha Kirby
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD
| | - Foo Cheung
- Center for Human Immunology, NIAID, NIH, Bethesda, MD
| | - Silvia Preite
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | | | - Nahir Romero
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Diego Preciado
- Division of Pediatric Otolaryngology, Children’s National Hospital, Washington, DC
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Lyuba Gitman
- Division of Pediatric Otolaryngology, Children’s National Hospital, Washington, DC
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | - Grace Smith
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Arthur Shaffer
- Lymphoid Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD
| | - Ian T. McBain
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD
| | - Ronald N. Germain
- Center for Advanced Tissue Imaging, LISB, NIAID, NIH Bethesda, MD
- Lymphocyte Biology Section, LISB, NIAID, NIH, Bethesda, MD
| | - Richard Apps
- Center for Human Immunology, NIAID, NIH, Bethesda, MD
| | - Kaitlyn Sadtler
- Laboratory of Immuno-Engineering, National Institute of Biomedical Imaging and Bioengineering (NIBIB), NIH, Bethesda, MD
| | - Susan Moir
- B-cell Immunology Section, Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD
| | - Daniel S. Chertow
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center (CC), NIH, Bethesda, MD
- Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
- Department of Immunobiology, Yale School of Medicine, New Haven, CT
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, MD
| | - John S. Tsang
- Center for Human Immunology, NIAID, NIH, Bethesda, MD
- Multiscale Systems Biology Section, LISB, NIAID, NIH, Bethesda, MD
| | - Pamela Mudd
- Division of Pediatric Otolaryngology, Children’s National Hospital, Washington, DC
- Division of Otolaryngology, Department of Surgery, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Pamela L. Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, MD
| | - Kalpana Manthiram
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| |
Collapse
|