1
|
Li Y, Liu J, Sun Y, Hu Y, Cong C, Chen Y, Fang Y. Interdisciplinary integration strategy reveals the anti-inflammatory efficacy and potential mechanism of Jianpi Qingre Tongluo prescription in rheumatoid arthritis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156625. [PMID: 40073777 DOI: 10.1016/j.phymed.2025.156625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis and associated with high rates of disability and systemic damage. Jianpi Qingre Tongluo prescription (Huangqin Qingre Chubi Capsule, HQC), an herbal formula with abundant clinical applications, has played a definite role in both clinical and experimental studies of RA. However, the specific mechanisms by which HQC relieves inflammation in RA have not been fully elucidated. OBJECTIVE This study aimed to elucidate the anti-inflammatory efficacy and potential molecular mechanisms of HQC in RA and provide new targets and strategies for its clinical treatment. METHODS An adjuvant-induced arthritis with damp-heat pattern rat model was established to observe the in vivo effects of HQC. Hematoxylin-eosin and toluidine blue staining, and enzyme-linked immunosorbent assay were used to assess potential efficacy. Bioinformatics methods and molecular docking were used to predict potential targets and intervention pathways in which HQC might act on RA. Clinical samples, overexpressed / silenced genes, and pathway agonists were selected to investigate the clinical relevance and regulatory relationships of the pathways. The regulatory mechanism of HQC was confirmed in an in vitro co-culture of neutrophils and fibroblast-like synoviocytes (FLSs) and an in vivo model. RESULTS HQC dose-dependently reversed synovial pathological injury and systemic inflammatory responses in rats in vivo. Integrated bioinformatics and molecular docking identified the p38 mitogen-activated protein kinase (MAPK) signaling pathway and neutrophil extracellular trap (NET) formation as the key mechanisms by which HQC exerts anti-inflammatory effects on RA. Subsequently, a high correlation between circ0005732, p38 MAPK, and clinical features of RA was confirmed in clinical samples. In vitro experiments demonstrated that HQC alleviated the proliferation and inflammatory response of FLSs by regulating circ0005732 expression to inhibit NET formation driven by the p38 MAPK signaling pathway. Finally, RT-qPCR and western blotting confirmed that HQC modulated circ0005732, p38 MAPK pathway, and NET formation to alleviate RA in vivo. CONCLUSION HQC exerts therapeutic effects against RA by modulating circ0005732 to inhibit p38 MAPK signaling pathway-mediated NET generation and inflammation progression.
Collapse
Affiliation(s)
- Yang Li
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China; First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Jian Liu
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230031, China.
| | - Yue Sun
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China; Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230031, China
| | - Yuedi Hu
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China; First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Chengzhi Cong
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China; First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yiming Chen
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China; First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yanyan Fang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, China; First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| |
Collapse
|
2
|
Zhang L, Wu G, Yao J, Wang D, Gao F, Qian Z. Hyaluronic acid-modified PtPdCo-CQ nanocatalyst with triple enzyme-like activities regulates macrophage polarization and autophagy levels for the treatment of rheumatoid arthritis. Int J Biol Macromol 2025; 309:143143. [PMID: 40233904 DOI: 10.1016/j.ijbiomac.2025.143143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation and imbalanced macrophage polarization. Pro-inflammatory M1 macrophages exacerbate joint damage through excessive production of reactive oxygen species (ROS), while anti-inflammatory M2 macrophages are prone to ferroptosis, limiting the long-term efficacy of existing nanozyme therapies. This study aimed to develop a novel nanocatalyst combining efficient ROS scavenging and M2 macrophage protection to synergistically regulate macrophage polarization and autophagy levels for sustained RA remission. We designed a hyaluronic acid-modified PtPdCo-CQ nanocatalyst (HPPCQ) with triple enzyme-like activities-superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). In vitro experiments demonstrated that HPPCQ activated the Nrf2/HO-1 antioxidant pathway by scavenging ROS, promoted M1-to-M2 phenotypic repolarization, and protected M2 macrophages from autophagy-dependent ferroptosis via controlled release of chloroquine (CQ). In a collagen-induced arthritis (CIA) mouse model, HPPCQ targeted inflamed joints, significantly reducing clinical scores, synovial hyperplasia, and pro-inflammatory cytokine levels (TNF-α, IL-1β). Histological analysis revealed markedly alleviated cartilage destruction and inflammatory infiltration in HPPCQ-treated mice. By integrating ROS scavenging, macrophage reprogramming, and ferroptosis inhibition, this work provides a novel therapeutic strategy with enhanced efficacy and durability for RA treatment.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China; Department of Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Department of Emergency, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Guoquan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, China
| | - Junwei Yao
- Department of Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Dajun Wang
- Department of Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Fenglei Gao
- Department of Emergency Center, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, China.
| | - Zhonglai Qian
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Zhang Z, Liu Y, Liang X, Wang Q, Xu M, Yang X, Tang J, He X, He Y, Zhang D, Li C. Advances in nanodelivery systems based on apoptosis strategies for enhanced rheumatoid arthritis therapy. Acta Biomater 2025:S1742-7061(25)00221-1. [PMID: 40154765 DOI: 10.1016/j.actbio.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder primarily characterized by persistent synovial inflammation and progressive bone erosion. The pathogenesis of RA involves a complex cascade of cellular and molecular events, including sustained hyperactivation of macrophages, excessive recruitment and activation of neutrophils, pathological proliferation and invasion of fibroblast-like synoviocytes (FLS), and dysregulated differentiation and function of osteoclasts (OCs). The inflammatory factors secreted by these dysregulated cells significantly disrupt the joint microenvironment through multiple pathological mechanisms, primarily by promoting synovial inflammation, cartilage matrix degradation, osteoclast-mediated bone erosion, and pathological angiogenesis. Therapeutic strategies targeting the induction of apoptosis in these malignant cells have demonstrated considerable potential in preclinical studies, offering a promising approach to enhance treatment outcomes by simultaneously reducing inflammatory cytokine production and inhibiting pathogenic cell proliferation. However, conventional therapeutic drugs are limited in clinical applications because of their high toxicity and side effects. Inflammation induces morphological and functional changes in cells within the rheumatoid arthritis microenvironment (RAM), particularly the overexpression of specific receptors on cell membranes. This phenomenon has driven the development of ligand-modified targeted nanodelivery systems (NDSs), which can specifically target and induce apoptosis in specific cell types, thereby enhancing therapeutic efficacy. This paper comprehensively reviews the research progress of targeted NDSs based on apoptosis strategies for RA therapy, with a detailed discussion of their advantages in inducing apoptosis in various disease-associated cells. Furthermore, the potential of combining apoptosis of multiple cell types for RA treatment is explored. This review is expected to improve insights into the apoptosis of malignant cells to enhance RA therapy. STATEMENT OF SIGNIFICANCE: This review highlights recent advances in nanodelivery systems (NDSs) based on apoptotic strategies for enhanced rheumatoid arthritis (RA) therapy. Unlike conventional NDSs, these optimized systems specifically induce apoptosis in malignant cells within the RA microenvironment by integrating multiple therapeutic strategies. By summarizing the latest research, our work demonstrates the potential of these NDSs to suppress inflammatory responses and prevent bone destruction through targeted elimination of malignant cells, offering a novel direction for RA treatment. This review is significant as it provides a comprehensive overview for researchers and clinicians, facilitating the development of more effective therapeutic approaches for RA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Zongquan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yilin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaoya Liang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qian Wang
- Classical teaching and Research Department, College of Integrated Chinese and Western medicine, Affiliated TCM Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Maochang Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xi Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Jun Tang
- Analysis and Testing Center, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xinghui He
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yufeng He
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Dan Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China; Green Pharmaceutical Technology Key Laboratory of Luzhou, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
4
|
Zhang D, Xu T, Gao X, Qu Y, Su X. Methyltransferase-like 3-mediated RNA N 6-methyladenosine contributes to immune dysregulation: diagnostic biomarker and therapeutic target. Front Immunol 2025; 16:1523503. [PMID: 40196133 PMCID: PMC11973086 DOI: 10.3389/fimmu.2025.1523503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/09/2025] Open
Abstract
Methyltransferase-like 3 (METTL3) plays a crucial role in post-transcriptional gene regulation. Substantial evidence links METTL3 to various immune dysfunctions, such as the suppression of antiviral immunity during viral infections and the disruption of immune tolerance in conditions like autoimmune diseases, myeloid leukemia, skin cancers, and anticancer immunotherapy. However, a thorough review and analysis of this evidence is currently missing, which limits the understanding of METTL3's mechanisms and significance in immune dysfunctions. This review aims to elucidate the roles and mechanisms of METTL3 in these immune issues, highlighting its connections and proposing new insights into its modulation of immune responses. Analysis results in this review suggest that METTL3 hampers antiviral immunity, worsens viral replication and infection, and disrupts immune tolerance; conversely, regulating METTL3 enhances antiviral immunity and facilitates viral clearance. Moreover, clinical data corroborates these findings, showing that METTL3 overexpression is associated with increased susceptibility to viral infections and autoimmune conditions. This review establishes a theoretical basis for considering METTL3 as a novel regulator, an important diagnostic biomarker, and a potential target for treating immune dysfunctions.
Collapse
Affiliation(s)
- Deshuang Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ting Xu
- Department of Pediatrics, School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoxue Gao
- Department of Pediatrics, School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Su
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Karsdal M, Cox TR, Parker AL, Willumsen N, Sand JMB, Jenkins G, Hansen HH, Oldenburger A, Geillinger-Kaestle KE, Larsen AT, Black D, Genovese F, Eckersley A, Heinz A, Nyström A, Holm Nielsen S, Bennink L, Johannsson L, Bay-Jensen AC, Orange DE, Friedman S, Røpke M, Fiore V, Schuppan D, Rieder F, Simona B, Borthwick L, Skarsfeldt M, Wennbo H, Thakker P, Stoffel R, Clarke GW, Kalluri R, Ruane D, Zannad F, Mortensen JH, Sinkeviciute D, Sundberg F, Coseno M, Thudium C, Croft AP, Khanna D, Cooreman M, Broermann A, Leeming DJ, Mobasheri A, Ricard-Blum S. Advances in Extracellular Matrix-Associated Diagnostics and Therapeutics. J Clin Med 2025; 14:1856. [PMID: 40142664 PMCID: PMC11943371 DOI: 10.3390/jcm14061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 03/28/2025] Open
Abstract
The extracellular matrix (ECM) is the common denominator of more than 50 chronic diseases. Some of these chronic pathologies lead to enhanced tissue formation and deposition, whereas others are associated with increased tissue degradation, and some exhibit a combination of both, leading to severe tissue alterations. To develop effective therapies for diseases affecting the lung, liver, kidney, skin, intestine, musculoskeletal system, heart, and solid tumors, we need to modulate the ECM's composition to restore its organization and function. Across diverse organ diseases, there are common denominators and distinguishing factors in this fibroinflammatory axis, which may be used to foster new insights into drug development across disease indications. The 2nd Extracellular Matrix Pharmacology Congress took place in Copenhagen, Denmark, from 17 to 19 June 2024 and was hosted by the International Society of Extracellular Matrix Pharmacology. The event was attended by 450 participants from 35 countries, among whom were prominent scientists who brought together state-of-the-art research on organ diseases and asked important questions to facilitate drug development. We highlight key aspects of the ECM in the liver, kidney, skin, intestine, musculoskeletal system, lungs, and solid tumors to advance our understanding of the ECM and its central targets in drug development. We also highlight key advances in the tools and technology that enable this drug development, thereby supporting the ECM.
Collapse
Affiliation(s)
- Morten Karsdal
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Thomas R. Cox
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Amelia L. Parker
- Garvan Institute of Medical Research, Sydney 2010, Australia; (T.R.C.); (A.L.P.)
- School of Clinical Medicine, St Vincent’s Clinical Campus, UNSW Medicine & Health, UNSW, Sydney 2010, Australia
| | - Nicholas Willumsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Jannie Marie Bülow Sand
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Gisli Jenkins
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, NIHR Imperial Biomedical Research Centre, Imperial College London, London SW7 2AZ, UK;
| | | | | | - Kerstin E. Geillinger-Kaestle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Anna Thorsø Larsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | - Federica Genovese
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Alexander Eckersley
- Wellcome Centre for Cell Matrix Research, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9PL, UK;
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Alexander Nyström
- Department of Dermatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Breisgau, Germany;
| | - Signe Holm Nielsen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | | | | | - Anne-Christine Bay-Jensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dana E. Orange
- Hospital for Special Surgery, The Rockefeller University, New York, NY 10065, USA;
| | - Scott Friedman
- Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA;
| | | | - Vincent Fiore
- Boehringer Ingelheim, 55218 Ingelheim am Rhein, Germany;
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany;
| | - Florian Rieder
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | | | - Lee Borthwick
- FibroFind Ltd., FibroFind Laboratories, Medical School, Newcastle upon Tyne NE2 4HH, UK;
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mark Skarsfeldt
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Haakan Wennbo
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Paresh Thakker
- Takeda, Translational Medicine Biomarkers Gastrointestinal & Global, Boston, MA 02110, USA; (H.W.); (P.T.)
| | - Ruedi Stoffel
- Roche Diagnostics International Ltd., 6343 Rotkreuz, Switzerland;
| | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Gothenburg, Sweden;
- School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College, London E1 9RT, UK
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Darren Ruane
- Janssen Immunology, Translational Sciences and Medicine, La Jolla, CA 92037, USA;
| | - Faiez Zannad
- Division of Heart Failure and Hypertension, and of the Inserm CIC, University of Lorraine, 54000 Metz, France;
| | - Joachim Høg Mortensen
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Dovile Sinkeviciute
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Fred Sundberg
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Molly Coseno
- Sengenics Corporation LLC, Wilmington, DE 19801, USA; (F.S.); (M.C.)
| | - Christian Thudium
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Adam P. Croft
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham B15 2TT, UK;
- Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham B15 2TT, UK
| | - Dinesh Khanna
- Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | | | - Andre Broermann
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach an der Riss, Germany;
| | - Diana Julie Leeming
- Nordic Bioscience, 2730 Herlev, Denmark; (N.W.); (J.M.B.S.); (A.T.L.); (F.G.); (S.H.N.); (A.-C.B.-J.); (J.H.M.); (D.S.); (D.J.L.)
| | - Ali Mobasheri
- Faculty of Medicine, University of Oulu, 90570 Oulu, Finland;
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
- Faculté de Médecine, Université de Liège, 4000 Liège, Belgium
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS, ICBMS, University Lyon 1, 69622 Villeurbanne Cedex, France;
| |
Collapse
|
6
|
Wang L, Hao M, Xu Y, Wang Z, Xie H, Zhang B, Zhang X, Lin J, Sun X, Wang J, Wu Q. Adipose-derived stem cells attenuate rheumatoid arthritis by restoring CX 3CR1 + synovial lining macrophage barrier. Stem Cell Res Ther 2025; 16:111. [PMID: 40038808 DOI: 10.1186/s13287-025-04144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease and the integrity of CX3CR1+ synovial macrophage barrier significantly impacts its progression. However, the mechanisms driving the dynamic changes of this macrophage barrier remain unclear. Traditional drug therapies for RA have substantial limitations. Mesenchymal stem cells (MSCs)-based cell therapy, especially adipose-derived stem cells (ADSCs), hold therapeutic promise. Nevertheless, the underlying therapeutic mechanism of ADSCs, especially their interactions with CX3CR1+ macrophages, require further investigation. METHODS To explore the interaction between ADSCs and CX3CR1+ synovial macrophages during barrier reconstruction, underlying the therapeutic mechanism of ADSCs and the mechanisms on the dynamic changes of the macrophage barrier, scRNA-seq analysis was conducted 4 days after ADSCs injection in serum transfer-induced arthritis model mice. The roles of mitochondria transfer and ADSCs transplantation were also explored. Bulk RNA-seq analysis was performed after the co-culture of ADSCs and CX3CR1+ synovial macrophages. To study the in vivo fate of ADSCs, bulk RNA-seq was performed on ADSCs retrieved at 0, 2, 4, and 7 days post-injection. RESULTS Intra-articular injection of ADSCs effectively attenuated the pathological progression of mice with serum transfer-induced arthritis. ADSCs gradually adhered to CX3CR1+ macrophages, facilitating the restore of the macrophage barrier, while the absence of this barrier greatly weakened the therapeutic effect of ADSCs. scRNA-seq analysis revealed an Atf3high Ccl3high subset of CX3CR1+ macrophages with impaired oxidative phosphorylation that increased during RA progression. ADSCs-mediated reduction of this subset appeared to be linked to mitochondrial transfer, and transplantation of isolated ADSCs-derived mitochondria also proved effective in treating RA. Both bulk RNA-seq and scRNA-seq analyses revealed multiple interaction mechanisms between ADSCs and CX3CR1+ macrophages, including Cd74/Mif axis and GAS6/MERTK axis, which contribute to barrier restoration and therapeutic effects. Furthermore, bulk RNA-seq analysis showed that ADSCs primarily contribute to tissue repair and immune regulation subsequently. CONCLUSIONS Our results suggest that ADSCs ameliorated the energy metabolism signature of CX3CR1+ lining macrophages and may promote barrier restoration through mitochondria transfer. In addition, we elucidated the fate of ADSCs and the therapeutic potential of mitochondria in RA treatment.
Collapse
Affiliation(s)
- Lei Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yongyue Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhaoyan Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hanqi Xie
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bo Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xue Zhang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jun Lin
- Department of Orthopaedics, Suzhou Dushu Lake Hospital, The Fourth Affiliated of Soochow University, Medical Center of Soochow University, Suzhou, 215001, Jiangsu, China
| | - Xiaodan Sun
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, 100084, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiong Wu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Tian X, Chen J, Hong Y, Cao Y, Xiao J, Zhu Y. Exploring the Role of Macrophages and Their Associated Structures in Rheumatoid Arthritis. J Innate Immun 2025; 17:95-111. [PMID: 39938504 PMCID: PMC11820663 DOI: 10.1159/000543444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 01/02/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic, invasive autoimmune disease characterized by symmetrical polyarthritis involving synovial inflammation. Epidemiological studies indicate that the incidence of RA continues to rise, yet the pathogenesis of this disease remains not fully understood. A significant infiltration of macrophages is observed in the synovium of RA patients. It can be inferred that macrophages likely play a crucial role in the onset and progression of RA. SUMMARY This review aims to summarize the research progress on the mechanisms by which macrophages and their associated structures contribute to RA, as well as potential therapeutic approaches, aiming to provide new insights into the study of RA pathogenesis and its clinical treatment. KEY MESSAGES During the course of RA, besides the inherent roles of macrophages, these cells respond to microenvironmental changes such as pathogen invasion or tissue damage by undergoing polarization, pyroptosis, or forming macrophage extracellular traps (METs), all of which influence inflammatory responses and immune homeostasis, thereby mediating the occurrence and development of RA. Additionally, macrophages secrete exosomes, which participate in intercellular communication and signal transduction processes, thus contributing to the progression of RA. Therefore, it is critical to elucidate how macrophages and their related structures function in RA. BACKGROUND Rheumatoid arthritis (RA) is a chronic, invasive autoimmune disease characterized by symmetrical polyarthritis involving synovial inflammation. Epidemiological studies indicate that the incidence of RA continues to rise, yet the pathogenesis of this disease remains not fully understood. A significant infiltration of macrophages is observed in the synovium of RA patients. It can be inferred that macrophages likely play a crucial role in the onset and progression of RA. SUMMARY This review aims to summarize the research progress on the mechanisms by which macrophages and their associated structures contribute to RA, as well as potential therapeutic approaches, aiming to provide new insights into the study of RA pathogenesis and its clinical treatment. KEY MESSAGES During the course of RA, besides the inherent roles of macrophages, these cells respond to microenvironmental changes such as pathogen invasion or tissue damage by undergoing polarization, pyroptosis, or forming macrophage extracellular traps (METs), all of which influence inflammatory responses and immune homeostasis, thereby mediating the occurrence and development of RA. Additionally, macrophages secrete exosomes, which participate in intercellular communication and signal transduction processes, thus contributing to the progression of RA. Therefore, it is critical to elucidate how macrophages and their related structures function in RA.
Collapse
Affiliation(s)
- Xin Tian
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Chen
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yujie Hong
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yang Cao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Jing Xiao
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
| | - Yan Zhu
- The Geriatrics, Graduate School of Anhui University of Chinese Medicine, Hefei, China
- The Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Cyndari KI, Scorza BM, Zacharias ZR, Pessôa-Pereira D, Strand L, Mahachi K, Oviedo JM, Gibbs L, Butler KL, Ausdal G, Hendricks D, Yahashiri R, Elkins JM, Gulbrandsen T, Peterson AR, Willey MC, Fairfax KC, Petersen CA. Resident synovial macrophages in synovial fluid: Implications for immunoregulation. Clin Immunol 2025; 271:110422. [PMID: 39701169 DOI: 10.1016/j.clim.2024.110422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Resident synovial macrophages (RSMs) are anti-inflammatory, self-renewing macrophages that provide physical immune sequestration of the joint space from the peripheral immune system. Increased permeability of this structure is associated with peripheral immune cells in the synovial fluid (SF). Direct measures of synovial barrier integrity are possible with tissue histology, but after barrier breakdown, if these cells perpetuate or initiate chronic inflammation in SF remains unknown. We sought to identify RSM in human SF as an indirect measure of synovial barrier integrity. To validate findings, we created a novel ex vivo explant model using human synovium. scRNA-seq revealed these SF RSMs upregulated pro-fibrotic and pro-osteoclastic pathways in inflammatory arthritis, but not septic arthritis. Increased frequencies of RSMs in SF was associated with increased sRANKL regardless of underlying pathology. These findings suggest the frequency of RSMs in SF may correlate with synovial barrier damage and in turn, potential damage to joint structures.
Collapse
Affiliation(s)
- Karen I Cyndari
- Department of Emergency Medicine, University of Iowa, Iowa City, IA, United States of America; Center for Emerging Infectious Diseases, United States of America.
| | - Breanna M Scorza
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Zeb R Zacharias
- Human Immunology Core, University of Iowa, Iowa City, IA, United States of America; Holden Comprehensive Cancer Center, Iowa City, IA, United States of America
| | - Danielle Pessôa-Pereira
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Leela Strand
- Harvard University, Cambridge, MA, United States of America
| | - Kurayi Mahachi
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Juan Marcos Oviedo
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lisa Gibbs
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Katherine L Butler
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States of America
| | - Graham Ausdal
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Dylan Hendricks
- Center for Emerging Infectious Diseases, United States of America; Department of Epidemiology, University of Iowa, Iowa City, IA, United States of America
| | - Rika Yahashiri
- Williams College, Williamstown, MA, United States of America
| | - Jacob M Elkins
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Trevor Gulbrandsen
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Andrew R Peterson
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Michael C Willey
- Department of Orthopedics and Rehabilitation, University of Iowa, Iowa City, IA, United States of America
| | - Keke C Fairfax
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christine A Petersen
- College of Veterinary Medicine, Ohio State University, OH, United States of America
| |
Collapse
|
9
|
Li J, Xiao C, Li C, He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther 2025; 10:12. [PMID: 39820040 PMCID: PMC11755756 DOI: 10.1038/s41392-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 01/19/2025] Open
Abstract
Tissue-resident immune cells (TRICs) are a highly heterogeneous and plastic subpopulation of immune cells that reside in lymphoid or peripheral tissues without recirculation. These cells are endowed with notably distinct capabilities, setting them apart from their circulating leukocyte counterparts. Many studies demonstrate their complex roles in both health and disease, involving the regulation of homeostasis, protection, and destruction. The advancement of tissue-resolution technologies, such as single-cell sequencing and spatiotemporal omics, provides deeper insights into the cell morphology, characteristic markers, and dynamic transcriptional profiles of TRICs. Currently, the reported TRIC population includes tissue-resident T cells, tissue-resident memory B (BRM) cells, tissue-resident innate lymphocytes, tissue-resident macrophages, tissue-resident neutrophils (TRNs), and tissue-resident mast cells, but unignorably the existence of TRNs is controversial. Previous studies focus on one of them in specific tissues or diseases, however, the origins, developmental trajectories, and intercellular cross-talks of every TRIC type are not fully summarized. In addition, a systemic overview of TRICs in disease progression and the development of parallel therapeutic strategies is lacking. Here, we describe the development and function characteristics of all TRIC types and their major roles in health and diseases. We shed light on how to harness TRICs to offer new therapeutic targets and present burning questions in this field.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Wu W, Cheng Z, Nan Y, Pan G, Wang Y. L-selectin Promotes Migration, Invasion and Inflammatory Response of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis via NF-kB Signaling Pathway. Inflammation 2025:10.1007/s10753-025-02242-3. [PMID: 39821520 DOI: 10.1007/s10753-025-02242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease characterized by chronic inflammation of the synovium and progressive joint damage. Fibroblast-like synoviocytes (FLSs) exhibit excessive proliferative and aggressive phenotypes and play a major role in the pathophysiology of RA. Previous studies have confirmed the pathologic role of L-selectin in cell adhesion and migration. In rheumatoid arthritis models, L-selectin regulates leukocyte homing, which leads to joint inflammation. Moreover, in L-selectin knockout mice, there is a reduction in joint inflammation. However, the associations of L-selectin with FLSs in RA remain unclear. This study aims to reveal the effect of L-selectin on RA-FLSs and to investigate the molecular mechanism of L-selectin in RA. Our findings indicated that L-selectin was significantly expressed in RA synovial tissues and RA-FLSs. L-selectin silencing reduced RA-FLSs migration and invasion and attenuated the secretion of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 in vitro. Moreover, investigations into mechanisms revealed that L-selectin activated the nuclear factor kappa-B (NF-κB) signaling pathway while blocking this signaling pathway could compromise the effects of L-selectin. Finally, in vivo experiments with a collagen-induced arthritis rat model revealed that silencing L-selectin alleviated inflammatory infiltration of the synovium and cartilage destruction, and validated the NF-κB signaling pathways findings observed in vitro. In summary, we show that L-selectin enhances the migration and invasion of RA-FLSs through the activation of NF-κB signaling pathways, ultimately worsening the progression of RA.
Collapse
Affiliation(s)
- Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China
- Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Nantong, 226001, Jiangsu, China
| | - Zhen Cheng
- Department of Orthopaedics (Sports Medicine), Yancheng Third People's Hospital, Yancheng, 224000, Jiangsu, China
| | - Yunyi Nan
- Department of Pain Medicine, Yueqing People's Hospital, Affiliated Yueqing Hospital of Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China
| | - Gang Pan
- Department of Orthopaedics, Affiliated Nantong Hospital of Shanghai University, The Six People's Hospital of Nantong, Nantong, 226001, Jiangsu, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
11
|
Guerau-de-Arellano M, Morris MA, Sherman MA, Esch TR. Meeting report: Hidden links in autoimmunity. Sci Immunol 2024; 9:eads5884. [PMID: 39705334 DOI: 10.1126/sciimmunol.ads5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 12/22/2024]
Abstract
A NIAID-sponsored workshop was held in September 2024, where challenges to understanding common mechanisms in autoimmune disease were discussed as opportunities to advance research.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Margaret A Morris
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Matthew A Sherman
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Thomas R Esch
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| |
Collapse
|
12
|
Chang JW, Tang CH. The role of macrophage polarization in rheumatoid arthritis and osteoarthritis: Pathogenesis and therapeutic strategies. Int Immunopharmacol 2024; 142:113056. [PMID: 39217882 DOI: 10.1016/j.intimp.2024.113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/17/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are common and debilitating joint disorders affecting millions of individuals worldwide. Despite their distinct pathological features, both conditions share a crucial role of macrophages in disease progression. Macrophages exhibit remarkable plasticity, polarizing into pro-inflammatory M1 or anti-inflammatory M2 phenotypes in response to environmental cues. An imbalance in macrophage polarization, particularly a shift towards the M1 phenotype, contributes to chronic inflammation and joint damage in RA and OA. This review explores the complex interplay between macrophages and various cell types, including T cells, B cells, synovial fibroblasts, osteoclasts, chondrocytes, and adipocytes, in the pathogenesis of these diseases. We discuss the current understanding of macrophage polarization in RA and OA, highlighting the molecular mechanisms involved. Furthermore, we provide an overview of potential therapeutic strategies targeting macrophage polarization, such as disease-modifying anti-rheumatic drugs, traditional Chinese medicine, nanomedicines, proteins, chemical compounds, and physical therapies. By elucidating the precise mechanisms governing macrophage polarization and its interactions with other cells in the joint microenvironment, researchers can identify novel therapeutic targets and develop targeted interventions to alleviate disease progression and improve patient outcomes in RA and OA.
Collapse
Affiliation(s)
- Jun-Way Chang
- The Ph.D. Program of Biotechnology and Biomedical Industry, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
13
|
Kodama H, Endo K, Sekiya I. Macrophage depletion in inflamed rat knees prevents the activation of synovial mesenchymal stem cells by weakening Nampt and Spp1 signaling. Inflamm Regen 2024; 44:47. [PMID: 39563425 PMCID: PMC11577658 DOI: 10.1186/s41232-024-00361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Macrophages and mesenchymal stem cells (MSCs) engage in crucial interplay during inflammation and have significant roles in tissue regeneration. Synovial MSCs, as key players in joint regeneration, are known to proliferate together with macrophages in synovitis. However, the crosstalk between synovial MSCs and macrophages remains unclear. In this study, we investigated changes in the activation of synovial MSCs in inflamed rat knees following selective depletion of macrophages with clodronate liposomes. METHODS Acute inflammation was induced in rat knee joints by injection of carrageenan (day 0). Clodronate liposomes were administered intra-articularly on days 1 and 4 to deplete macrophages, with empty liposomes as a control. Knee joints were collected on day 7 for evaluation by histology, flow cytometry, and colony-forming assays. Concurrently, synovial MSCs were cultured and subjected to proliferation assays, flow cytometry, and chondrogenesis assessments. We also analyzed their crosstalk using single-cell RNA sequencing (scRNA-seq). RESULTS Clodronate liposome treatment significantly reduced CD68-positive macrophage numbers and suppressed synovitis. Immunohistochemistry and flow cytometry showed decreased expression of CD68 (a macrophage marker) and CD44 and CD271 (MSC markers) in the clodronate group, while CD73 expression remained unchanged. The number of colony-forming cells per 1000 nucleated cells and per gram of synovium was significantly lower in the clodronate group than in the control group. Cultured synovial MSCs from both groups showed comparable proliferation, surface antigen expression, and chondrogenic capacity. scRNA-seq identified seven distinct synovial fibroblast (SF) subsets, with a notable decrease in the Mki67+ SF subset, corresponding to synovial MSCs, in the clodronate group. Clodronate treatment downregulated genes related to extracellular matrix organization and anabolic pathways in Mki67+ SF. Cell-cell communication analysis revealed diminished Nampt and Spp1 signaling interaction between macrophages and Mki67+ SF and diminished Ccl7, Spp1, and Csf1 signaling interaction between Mki67+ SF and macrophages in the clodronate group. Spp1 and Nampt promoted the proliferation and/or chondrogenesis of synovial MSCs. CONCLUSIONS Macrophage depletion with clodronate liposomes suppressed synovitis and reduced the number and activity of synovial MSCs, highlighting the significance of macrophage-derived Nampt and Spp1 signals in synovial MSC activation. These findings offer potential therapeutic strategies to promote joint tissue regeneration by enhancing beneficial signals between macrophages and synovial MSCs.
Collapse
Affiliation(s)
- Hayato Kodama
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kentaro Endo
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
14
|
Klimak M, Cimino A, Lenz KL, Springer LE, Collins KH, Harasymowicz NS, Xu N, Pham CTN, Guilak F. Engineered self-regulating macrophages for targeted anti-inflammatory drug delivery. Arthritis Res Ther 2024; 26:190. [PMID: 39501398 PMCID: PMC11539832 DOI: 10.1186/s13075-024-03425-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by increased levels of inflammation that primarily manifests in the joints. Macrophages act as key drivers for the progression of RA, contributing to the perpetuation of chronic inflammation and dysregulation of pro-inflammatory cytokines such as interleukin 1 (IL-1). The goal of this study was to develop a macrophage-based cell therapy for biologic drug delivery in an autoregulated manner. METHODS For proof-of-concept, we developed "smart" macrophages to mitigate the effects of IL-1 by delivering its inhibitor, IL-1 receptor antagonist (IL-1Ra). Bone marrow-derived macrophages were lentivirally transduced with a synthetic gene circuit that uses an NF-κB inducible promoter upstream of either the Il1rn or firefly luciferase transgenes. Two types of joint like cells were utilized to examine therapeutic protection in vitro, miPSCs derived cartilage and isolated primary mouse synovial fibroblasts while the K/BxN mouse model of RA was utilized to examine in vivo therapeutic protection. RESULTS These engineered macrophages were able to repeatably produce therapeutic levels of IL-1Ra that could successfully mitigate inflammatory activation in co-culture with both tissue-engineered cartilage constructs and synovial fibroblasts. Following injection in vivo, macrophages homed to sites of inflammation and mitigated disease severity in the K/BxN mouse model of RA. CONCLUSION These findings demonstrate the successful development of engineered macrophages that possess the ability for controlled, autoregulated production of IL-1 based on inflammatory signaling such as via the NF-κB pathway to mitigate the effects of this cytokine for applications in RA or other inflammatory diseases. This system provides proof of concept for applications in other immune cell types as self-regulating delivery systems for therapeutic applications in a range of diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
| | - Amanda Cimino
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
| | - Luke E Springer
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT, 84108, USA
| | - Nathan Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Christine T N Pham
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA
- Division of Rheumatology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA.
- Shriners Hospitals for Children - St. Louis, St. Louis, MO, 63110, USA.
- Center of Regenerative Medicine, Washington University in St. Louis, Campus Box 8233, Couch Biomedical Research Bldg., Room 3121, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Gaigeard N, Cardon A, Le Goff B, Guicheux J, Boutet MA. Unveiling the macrophage dynamics in osteoarthritic joints: From inflammation to therapeutic strategies. Drug Discov Today 2024; 29:104187. [PMID: 39306233 DOI: 10.1016/j.drudis.2024.104187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Osteoarthritis (OA) is an incurable, painful, and debilitating joint disease affecting over 500 million people worldwide. The OA joint tissues are infiltrated by various immune cells, particularly macrophages, which are able to induce or perpetuate inflammation. Notably, synovitis and its macrophage component represent a target of interest for developing treatments. In this review, we describe the latest advances in understanding the heterogeneity of macrophage origins, phenotypes, and functions in the OA joint and the effect of current symptomatic therapies on these cells. We then highlight the therapeutic potential of anticytokines/chemokines, nano- and microdrug delivery, and future strategies to modulate macrophage functions in OA.
Collapse
Affiliation(s)
- Nicolas Gaigeard
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Anaïs Cardon
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Benoit Le Goff
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France
| | - Marie-Astrid Boutet
- Nantes Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RMeS, UMR1229, F-44000 Nantes, France; Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M6BQ London, UK.
| |
Collapse
|
16
|
Rocha PS, Silva AA, Queiroz-Junior CM, Braga AD, Moreira TP, Teixeira MM, Amaral FA. Trained immunity of synovial macrophages is associated with exacerbated joint inflammation and damage after Staphylococcus aureus infection. Inflamm Res 2024; 73:1995-2008. [PMID: 39340660 DOI: 10.1007/s00011-024-01946-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Investigate whether and which synoviocytes would acquire trained immunity characteristics that could exacerbate joint inflammation following a secondary Staphylococcus aureus infection. METHODS Lipopolysaccharide (LPS) and S. aureus were separately or double injected (21 days of interval) into the tibiofemoral joint cavity of male C57BL/6 mice. At different time points after these stimulations, mechanical nociception was analyzed followed by the analysis of signs of inflammation and damage in the affected joints. The trained immunity markers, including the glycolytic and mTOR pathway, were analyzed in whole tissue or isolated synoviocytes. A group of mice was treated with Rapamycin, an mTOR inhibitor before LPS or S. aureus stimulation. RESULTS The double LPS - S. aureus hit promoted intense joint inflammation and damage compared to single joint stimulation, including markers in synoviocyte activation, production of proinflammatory cytokines, persistent nociception, and bone damage, despite not reducing the bacterial clearance. The double LPS - S. aureus hit joints increased the synovial macrophage population expressing CX3CR1 alongside triggering established epigenetic modifications associated with trained immunity events in these cells, such as the upregulation of the mTOR signaling pathway (p-mTOR and HIF1α) and the trimethylation of histone H3. Mice treated with Rapamycin presented reduced CX3CR1+ macrophage activation, joint inflammation, and bone damage. CONCLUSIONS There is a trained immunity phenotype in CX3CR1+ synovial macrophages that contributes to the exacerbation of joint inflammation and damage during septic arthritis caused by S. aureus.
Collapse
Affiliation(s)
- Peter Silva Rocha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Adryan Aparecido Silva
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Amanda Dias Braga
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Thaiane Pinto Moreira
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Flávio Almeida Amaral
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
17
|
Ammons DT, Chow L, Goodrich L, Bass L, Larson B, Williams ZJ, Stoneback JW, Dow S, Pezzanite LM. Characterization of the single cell landscape in normal and osteoarthritic equine joints. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:88. [PMID: 39507442 PMCID: PMC11534742 DOI: 10.21037/atm-24-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/30/2024] [Indexed: 11/08/2024]
Abstract
Background Osteoarthritis (OA) is a major source of pain and disability worldwide. Understanding of disease progression is evolving, but OA is increasingly thought to be a multifactorial disease in which the innate immune system plays a role in regulating and perpetuating low-grade inflammation. The aim of this study was to enhance our understanding of OA immunopathogenesis through characterization of the transcriptomic responses in OA joints, with the goal to facilitate the development of targeted therapies. Methods Single-cell RNA sequencing (scRNA-seq) was completed on cells isolated from the synovial fluid of three normal and three OA equine joints. In addition to synovial fluid, scRNA-seq was also performed on synovium from one normal joint and one OA joint. Results Characterization of 28,639 cells isolated from normal and OA-affected equine synovial fluid revealed the composition to be entirely immune cells (CD45+) with 8 major populations and 26 subpopulations identified. In synovial fluid, we found myeloid cells (macrophage and dendritic cells) to be overrepresented and T cells (CD4 and CD8) to be underrepresented in OA relative to normal joints. Through subcluster and differential abundance analysis of T cells we further identified a relative overrepresentation of IL23R+ gamma-delta (γδ) T cells in OA-affected joints (a cell type we report to be enriched in gene signatures associated with T helper 17 mediated immunity). Analysis of an additional 17,690 cells (11 distinct cell type clusters) obtained from synovium of one horse led to the identification of an OA-associated reduction in the relative abundance of synovial macrophages, which contrasts with the increased relative abundance of macrophages in synovial fluid. Completion of cell-cell interaction analysis implicated myeloid cells in disease progression, suggesting that the myeloid-myeloid interactions were increased in OA-affected joints. Conclusions Overall, this work provides key insights into the composition of equine synovial fluid and synovium in health and OA. The data generated in this study provides equine-specific cell type gene signatures which can be applied to future investigations. Furthermore, our analysis highlights the potential role of macrophages and IL23R+ γδ T cells in OA immunopathogenesis.
Collapse
Affiliation(s)
- Dylan T Ammons
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Laurie Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Luke Bass
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Blaine Larson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Zoë J Williams
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jason W Stoneback
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Lynn M Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
18
|
Trapana J, Weinerman J, Lee D, Sedani A, Constantinescu D, Best TM, Hornicek FJ, Hare JM. Cell-based therapy in the treatment of musculoskeletal diseases. Stem Cells Transl Med 2024; 13:959-978. [PMID: 39226104 PMCID: PMC11465182 DOI: 10.1093/stcltm/szae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/21/2024] [Indexed: 09/04/2024] Open
Abstract
A limited number of tissues can spontaneously regenerate following injury, and even fewer can regenerate to a state comparable to mature, healthy adult tissue. Mesenchymal stem cells (MSCs) were first described in the 1960s-1970s by Friedenstein et al as a small population of bone marrow cells with osteogenic potential and abilities to differentiate into chondrocytes. In 1991, Arnold Caplan coined the term "mesenchymal cells" after identifying these cells as a theoretical precursor to bone, cartilage, tendon, ligament, marrow stroma, adipocyte, dermis, muscle, and connective tissues. MSCs are derived from periosteum, fat, and muscle. Another attractive property of MSCs is their immunoregulatory and regenerative properties, which result from crosstalk with their microenvironment and components of the innate immune system. Collectively, these properties make MSCs potentially attractive for various therapeutic purposes. MSCs offer potential in sports medicine, aiding in muscle recovery, meniscal tears, and tendon and ligament injuries. In joint disease, MSCs have the potential for chondrogenesis and reversing the effects of osteoarthritis. MSCs have also demonstrated potential application to the treatment of degenerative disc disease of the cervical, thoracic, and lumbar spine.
Collapse
Affiliation(s)
- Justin Trapana
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Jonathan Weinerman
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Danny Lee
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Anil Sedani
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - David Constantinescu
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
| | - Thomas M Best
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Francis J Hornicek
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, United States
| |
Collapse
|
19
|
Zhou F, Chen M, Qian Y, Yuan K, Han X, Wang W, Guo JJ, Chen Q, Li B. Enhancing Endogenous Hyaluronic Acid in Osteoarthritic Joints with an Anti-Inflammatory Supramolecular Nanofiber Hydrogel Delivering HAS2 Lentivirus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400542. [PMID: 38593309 DOI: 10.1002/smll.202400542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Osteoarthritis (OA) management remains challenging because of its intricate pathogenesis. Intra-articular injections of drugs, such as glucocorticoids and hyaluronic acid (HA), have certain limitations, including the risk of joint infection, pain, and swelling. Hydrogel-based therapeutic strategies have attracted considerable attention because of their enormous therapeutic potential. Herein, a supramolecular nanofiber hydrogel is developed using dexamethasone sodium phosphate (DexP) as a vector to deliver lentivirus-encoding hyaluronan synthase 2 (HAS2) (HAS2@DexP-Gel). During hydrogel degradation, HAS2 lentivirus and DexP molecules are slowly released. Intra-articular injection of HAS2@DexP-Gel promotes endogenous HA production and suppresses synovial inflammation. Additionally, HAS2@DexP-Gel reduces subchondral bone resorption in the anterior cruciate ligament transection-induced OA mice, attenuates cartilage degeneration, and delays OA progression. HAS2@DexP-Gel exhibited good biocompatibility both in vitro and in vivo. The therapeutic mechanisms of the HAS2@DexP-Gel are investigated using single-cell RNA sequencing. HAS2@DexP-Gel optimizes the microenvironment of the synovial tissue by modulating the proportion of synovial cell subpopulations and regulating the interactions between synovial fibroblasts and macrophages. The innovative nanofiber hydrogel, HAS2@DexP-Gel, effectively enhances endogenous HA production while reducing synovial inflammation. This comprehensive approach holds promise for improving joint function, alleviating pain, and slowing OA progression, thereby providing significant benefits to patients.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yufan Qian
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Kai Yuan
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xuequan Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Center for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Weishan Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, 832099, P. R. China
| | - Jiong Jiong Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Bin Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Medical 3D Printing Center, Orthopedic Institute, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, P. R. China
| |
Collapse
|
20
|
Hoffmann MH, Kirchner H, Krönke G, Riemekasten G, Bonelli M. Inflammatory tissue priming: novel insights and therapeutic opportunities for inflammatory rheumatic diseases. Ann Rheum Dis 2024; 83:1233-1253. [PMID: 38702177 DOI: 10.1136/ard-2023-224092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Due to optimised treatment strategies and the availability of new therapies during the last decades, formerly devastating chronic inflammatory diseases such as rheumatoid arthritis or systemic sclerosis (SSc) have become less menacing. However, in many patients, even state-of-the-art treatment cannot induce remission. Moreover, the risk for flares strongly increases once anti-inflammatory therapy is tapered or withdrawn, suggesting that underlying pathological processes remain active even in the absence of overt inflammation. It has become evident that tissues have the ability to remember past encounters with pathogens, wounds and other irritants, and to react more strongly and/or persistently to the next occurrence. This priming of the tissue bears a paramount role in defence from microbes, but on the other hand drives inflammatory pathologies (the Dr Jekyll and Mr Hyde aspect of tissue adaptation). Emerging evidence suggests that long-lived tissue-resident cells, such as fibroblasts, macrophages, long-lived plasma cells and tissue-resident memory T cells, determine inflammatory tissue priming in an interplay with infiltrating immune cells of lymphoid and myeloid origin, and with systemically acting factors such as cytokines, extracellular vesicles and antibodies. Here, we review the current state of science on inflammatory tissue priming, focusing on tissue-resident and tissue-occupying cells in arthritis and SSc, and reflect on the most promising treatment options targeting the maladapted tissue response during these diseases.
Collapse
Affiliation(s)
| | - Henriette Kirchner
- Institute for Human Genetics, Epigenetics and Metabolism Lab, University of Lübeck, Lübeck, Germany
| | - Gerhard Krönke
- Department of Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriela Riemekasten
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Vienna, Austria
| |
Collapse
|
21
|
Liu D, Kuang Y, Chen S, Li R, Su F, Zhang S, Qiu Q, Lin S, Shen C, Liu Y, Liang L, Wang J, Xu H, Xiao Y. NAT10 promotes synovial aggression by increasing the stability and translation of N4-acetylated PTX3 mRNA in rheumatoid arthritis. Ann Rheum Dis 2024; 83:1118-1131. [PMID: 38724075 DOI: 10.1136/ard-2023-225343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/22/2024] [Indexed: 08/29/2024]
Abstract
OBJECTIVE Recent studies indicate that N-acetyltransferase 10 (NAT10)-mediated ac4C modification plays unique roles in tumour metastasis and immune infiltration. This study aimed to uncover the role of NAT10-mediated ac4C in fibroblast-like synoviocytes (FLSs) functions and synovial immune cell infiltration in rheumatoid arthritis (RA). METHODS FLSs were obtained from active established patients with RA. Protein expression was determined by western blotting or immunohistochemistry or multiplexed immunohistochemistry. Cell migration was measured using a Boyden chamber. ac4C-RIP-seq combined with RNA-seq was performed to identify potential targets of NAT10. RNA immunoprecipitation was used to validate the interaction between protein and mRNA. NAT10 haploinsufficiency, inhibitor remodelin or intra-articular Adv-NAT10 was used to suppress arthritis in mice with delayed-type hypersensitivity arthritis (DYHA) and collagen II-induced arthritis (CIA) and rats with CIA. RESULTS We found elevated levels of NAT10 and ac4C in FLSs and synovium from patients with RA. NAT10 knockdown or specific inhibitor treatment reduced the migration and invasion of RA FLSs. Increased NAT10 level in the synovium was positively correlated with synovial infiltration of multiple types of immune cells. NAT10 inhibition in vivo attenuated the severity of arthritis in mice with CIA and DTHA, and rats with CIA. Mechanistically, we explored that NAT10 regulated RA FLS functions by promoting stability and translation efficiency of N4-acetylated PTX3 mRNA. PTX3 also regulated RA FLS aggression and is associated with synovial immune cell infiltration. CONCLUSION Our findings uncover the important roles of NAT10-mediated ac4C modification in promoting rheumatoid synovial aggression and inflammation, indicating that NAT10 may be a potential target for the treatment of RA, even other dysregulated FLSs-associated disorders.
Collapse
Affiliation(s)
- Di Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kuang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Simin Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruiru Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fan Su
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuoyang Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chuyu Shen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingli Liu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingnan Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Youjun Xiao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
22
|
Wei Z, Chen X, Sun Y, Zhang Y, Dong R, Wang X, Chen S. Exploring the molecular mechanisms and shared potential drugs between rheumatoid arthritis and arthrofibrosis based on large language model and synovial microenvironment analysis. Sci Rep 2024; 14:18939. [PMID: 39147768 PMCID: PMC11327321 DOI: 10.1038/s41598-024-69080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Rheumatoid arthritis (RA) and arthrofibrosis (AF) are both chronic synovial hyperplasia diseases that result in joint stiffness and contractures. They shared similar symptoms and many common features in pathogenesis. Our study aims to perform a comprehensive analysis between RA and AF and identify novel drugs for clinical use. Based on the text mining approaches, we performed a correlation analysis of 12 common joint diseases including arthrofibrosis, gouty arthritis, infectious arthritis, juvenile idiopathic arthritis, osteoarthritis, post infectious arthropathies, post traumatic osteoarthritis, psoriatic arthritis, reactive arthritis, rheumatoid arthritis, septic arthritis, and transient arthritis. 5 bulk sequencing datasets and 4 single-cell sequencing datasets of RA and AF were integrated and analyzed. A novel drug repositioning method was found for drug screening, and text mining approaches were used to verify the identified drugs. RA and AF performed the highest gene similarity (0.77) and functional ontology similarity (0.84) among all 12 joint diseases. We figured out that they share the same key pathogenic cell including CD34 + sublining fibroblasts (CD34-SLF) and DKK3 + sublining fibroblasts (DKK3-SLF). Potential therapeutic target database (PTTD) was established with the differential expressed genes (DEGs) of these key pathogenic cells. Based on the PTTD, 15 potential drugs for AF and 16 potential drugs for RA were identified. This work provides a new perspective on AF and RA study which enhances our understanding of their pathogenesis. It also shed light on their underlying mechanism and open new avenues for drug repositioning studies.
Collapse
Affiliation(s)
- Zhaoquan Wei
- Department of Orthopaedic Surgery, North China Medical and Health Group Xingtai General Hospital, Xingtai, 054000, Hebei, People's Republic of China
| | - Xi Chen
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital medical University, Beijing, 100035, China
| | - Youshi Sun
- Department of Clinical Medicine, Peking Union Medical College, Tsinghua University, Beijing, 100730, China
| | - Yifei Zhang
- Department of Orthopaedic Surgery, North China Medical and Health Group Xingtai General Hospital, Xingtai, 054000, Hebei, People's Republic of China
| | - Ruifang Dong
- Department of Orthopaedic Surgery, North China Medical and Health Group Xingtai General Hospital, Xingtai, 054000, Hebei, People's Republic of China
| | - Xiaojing Wang
- The Second Affiliated Hospital of Xingtai Medical College, Xingtai, 054000, Hebei Province, China
| | - Shuangtao Chen
- Department of Orthopaedic Surgery, North China Medical and Health Group Xingtai General Hospital, Xingtai, 054000, Hebei, People's Republic of China.
| |
Collapse
|
23
|
Martin CS, Crastin A, Sagmeister MS, Kalirai MS, Turner JD, MacDonald L, Kurowska-Stolarska M, Scheel-Toellner D, Taylor AE, Gilligan LC, Storbeck K, Price M, Gorvin CM, A F, Mahida R, Clark AR, Jones SW, Raza K, Hewison M, Hardy RS. Inflammation dynamically regulates steroid hormone metabolism and action within macrophages in rheumatoid arthritis. J Autoimmun 2024; 147:103263. [PMID: 38851089 DOI: 10.1016/j.jaut.2024.103263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
RATIONALE In inflammatory diseases such as rheumatoid arthritis (RA), steroid metabolism is a central component mediating the actions of immuno-modulatory glucocorticoids and sex steroids. However, the regulation and function of cellular steroid metabolism within key leukocyte populations such as macrophages remain poorly defined. In this study, the inflammatory regulation of global steroid metabolism was assessed in RA macrophages. METHODS Bulk RNA-seq data from RA synovial macrophages was used to assess transcripts encoding key enzymes in steroid metabolism and signalling. Changes in metabolism were assessed in synovial fluids, correlated to measures of disease activity and functionally validated in primary macrophage cultures. RESULTS RNA-seq revealed a unique pattern of differentially expressed genes, including changes in genes encoding the enzymes 11β-HSD1, SRD5A1, AKR1C2 and AKR1C3. These correlated with disease activity, favouring increased glucocorticoid and androgen levels. Synovial fluid 11β-HSD1 activity correlated with local inflammatory mediators (TNFα, IL-6, IL-17), whilst 11β-HSD1, SRD5A1 and AKR1C3 activity correlated with systemic measures of disease and patient pain (ESR, DAS28 ESR, global disease activity). Changes in enzyme activity were evident in inflammatory activated macrophages in vitro and revealed a novel androgen activating role for 11β-HSD1. Together, increased glucocorticoids and androgens were able to suppress inflammation in macrophages and fibroblast-like-synoviocytes. CONCLUSIONS This study underscores the significant increase in androgen and glucocorticoid activation within inflammatory polarized macrophages of the synovium, contributing to local suppression of inflammation. The diminished profile of inactive steroid precursors in postmenopausal women may contribute to disturbances in this process, leading to increased disease incidence and severity.
Collapse
Affiliation(s)
- C S Martin
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - A Crastin
- School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - M S Sagmeister
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - M S Kalirai
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - J D Turner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - L MacDonald
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - M Kurowska-Stolarska
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - D Scheel-Toellner
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - A E Taylor
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - L C Gilligan
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - K Storbeck
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - M Price
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - C M Gorvin
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Filer A
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - R Mahida
- University of Birmingham, Birmingham, West Midlands Uk
| | - A R Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - S W Jones
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - K Raza
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK; Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK
| | - M Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - R S Hardy
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; School of Biomedical Sciences. Institute of Clinical Sciences, University of Birmingham, Birmingham, UK; MRC Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK.
| |
Collapse
|
24
|
Damerau A, Rosenow E, Alkhoury D, Buttgereit F, Gaber T. Fibrotic pathways and fibroblast-like synoviocyte phenotypes in osteoarthritis. Front Immunol 2024; 15:1385006. [PMID: 38895122 PMCID: PMC11183113 DOI: 10.3389/fimmu.2024.1385006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis, characterized by osteophyte formation, cartilage degradation, and structural and cellular alterations of the synovial membrane. Activated fibroblast-like synoviocytes (FLS) of the synovial membrane have been identified as key drivers, secreting humoral mediators that maintain inflammatory processes, proteases that cause cartilage and bone destruction, and factors that drive fibrotic processes. In normal tissue repair, fibrotic processes are terminated after the damage has been repaired. In fibrosis, tissue remodeling and wound healing are exaggerated and prolonged. Various stressors, including aging, joint instability, and inflammation, lead to structural damage of the joint and micro lesions within the synovial tissue. One result is the reduced production of synovial fluid (lubricants), which reduces the lubricity of the cartilage areas, leading to cartilage damage. In the synovial tissue, a wound-healing cascade is initiated by activating macrophages, Th2 cells, and FLS. The latter can be divided into two major populations. The destructive thymocyte differentiation antigen (THY)1─ phenotype is restricted to the synovial lining layer. In contrast, the THY1+ phenotype of the sublining layer is classified as an invasive one with immune effector function driving synovitis. The exact mechanisms involved in the transition of fibroblasts into a myofibroblast-like phenotype that drives fibrosis remain unclear. The review provides an overview of the phenotypes and spatial distribution of FLS in the synovial membrane of OA, describes the mechanisms of fibroblast into myofibroblast activation, and the metabolic alterations of myofibroblast-like cells.
Collapse
Affiliation(s)
- Alexandra Damerau
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Emely Rosenow
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Dana Alkhoury
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin, a Leibniz Institute, Glucocorticoids - Bioenergetics - 3R Research Lab, Berlin, Germany
| |
Collapse
|
25
|
Hua P, Liang R, Yang S, Tu Y, Chen M. Microneedle-assisted dual delivery of PUMA gene and celastrol for synergistic therapy of rheumatoid arthritis through restoring synovial homeostasis. Bioact Mater 2024; 36:83-95. [PMID: 38450203 PMCID: PMC10917641 DOI: 10.1016/j.bioactmat.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Abnormal proliferation of aggressive fibroblast-like synoviocytes (FLS) and perpetuate synovial inflammation can inevitably accelerate the progression of rheumatoid arthritis (RA). Herein, a strategy of simultaneously promoting FLS apoptosis and inhibiting inflammation as mediated by macrophages is proposed to restore synovial homeostasis for effective RA therapy. A hyaluronic acid-based dissolvable microneedle (MN) is fabricated for transdermal delivery of dual human serum albumin (HSA)-contained biomimetic nanocomplexes to regulate RA FLS and macrophages. Upon skin insertion, dual nanocomplexes are released rapidly from the MN and accumulate in RA joint microenvironment through both passive and active targeting as mediated by HSA. Thioketal-crosslinked fluorinated polyethyleneimine 1.8 K (TKPF) was constructed to bind the plasmid encoding pro-apoptotic gene PUMA with HSA coating layer (TKPF/pPUMA@HSA, TPH). TPH nanocomplexes can upregulate PUMA through RA FLS transfection to trigger efficient apoptosis. Also, HSA nanocomplexes encapsulating the classic anti-inflammatory natural product celastrol (Cel@HSA, CH) can inhibit inflammation of macrophages through blocking NF-κB pathway activation. TPH/CH MN can deplete RA FLS and inhibit M1 macrophage activation, suppress synovial hyperplasia as well as reduce bone and cartilage erosion in a collagen-induced arthritis (CIA) mouse model, demonstrating a promising strategy for efficient RA treatment.
Collapse
Affiliation(s)
- Peng Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruifeng Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Suleixin Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
26
|
Hu SL, Thadevoos LA, Ho TL, Lin YY, Chen HT, Huang CC, Su CM, Tang CH. FGF23 facilitates IL-1β synthesis in rheumatoid arthritis through activating PI3K, Akt, and NF-κB pathways. ENVIRONMENTAL TOXICOLOGY 2024; 39:3283-3291. [PMID: 38380842 DOI: 10.1002/tox.24180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/22/2024]
Abstract
Rheumatoid arthritis (RA) is a well-known autoimmune disorder related with joint pain, joint swelling, cartilage and bone degradation as well as deformity. Fibroblast growth factor 23 (FGF23) is an endocrine factor of the FGF family primarily produced by osteocytes and osteoblasts, involves an essential effect in pathogenesis of RA. IL-1β is a vital proinflammatory factor in the development of RA. However, the role of FGF23 on IL-1β synthesis in RA has not been fully explored. Our analysis of database revealed higher levels of FGF23 and IL-1β in RA samples compared with healthy controls. High-throughput screening demonstrated that IL-1β is a potential candidate factor after FGF23 treatment in RA synovial fibroblasts (RASFs). FGF23 concentration dependently promotes IL-1β synthesis in RASFs. FGF23 enhances IL-1β expression by activating the PI3K, Akt, and NF-κB pathways. Our findings support the notion that FGF23 is a promising target in the remedy of RA.
Collapse
Affiliation(s)
- Sung-Lin Hu
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
| | - Louis Anoop Thadevoos
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Trung-Loc Ho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Hsien-Te Chen
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chen-Ming Su
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
Salminen A, Kaarniranta K, Kauppinen A. Tissue fibroblasts are versatile immune regulators: An evaluation of their impact on the aging process. Ageing Res Rev 2024; 97:102296. [PMID: 38588867 DOI: 10.1016/j.arr.2024.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Fibroblasts are abundant stromal cells which not only control the integrity of extracellular matrix (ECM) but also act as immune regulators. It is known that the structural cells within tissues can establish an organ-specific immunity expressing many immune-related genes and closely interact with immune cells. In fact, fibroblasts can modify their immune properties to display both pro-inflammatory and immunosuppressive activities in a context-dependent manner. After acute insults, fibroblasts promote tissue inflammation although they concurrently recruit immunosuppressive cells to enhance the resolution of inflammation. In chronic pathological states, tissue fibroblasts, especially senescent fibroblasts, can display many pro-inflammatory and immunosuppressive properties and stimulate the activities of different immunosuppressive cells. In return, immunosuppressive cells, such as M2 macrophages and myeloid-derived suppressor cells (MDSC), evoke an excessive conversion of fibroblasts into myofibroblasts, thus aggravating the severity of tissue fibrosis. Single-cell transcriptome studies on fibroblasts isolated from aged tissues have confirmed that tissue fibroblasts express many genes coding for cytokines, chemokines, and complement factors, whereas they lose some fibrogenic properties. The versatile immune properties of fibroblasts and their close cooperation with immune cells indicate that tissue fibroblasts have a crucial role in the aging process and age-related diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, KYS FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland
| |
Collapse
|
28
|
Klimak M, Cimino A, Lenz K, Springer L, Collins K, Harasymowicz N, Xu N, Pham C, Guilak F. Engineered Self-Regulating Macrophages for Targeted Anti-inflammatory Drug Delivery. RESEARCH SQUARE 2024:rs.3.rs-4385938. [PMID: 38854124 PMCID: PMC11160898 DOI: 10.21203/rs.3.rs-4385938/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by increased levels of inflammation that primarily manifests in the joints. Macrophages act as key drivers for the progression of RA, contributing to the perpetuation of chronic inflammation and dysregulation of pro-inflammatory cytokines such as interleukin 1 (IL-1). The goal of this study was to develop a macrophage-based cell therapy for biologic drug delivery in an autoregulated manner. Methods For proof-of-concept, we developed "smart" macrophages to mitigate the effects of IL-1 by delivering its inhibitor, IL-1 receptor antagonist (IL-1Ra). Bone marrow-derived macrophages were lentivirally transduced with a synthetic gene circuit that uses an NF-κB inducible promoter upstream of either the Il1rn or firefly luciferase transgenes. Two types of joint like cells were utilized to examine therapeutic protection in vitro, miPSCs derived cartilage and isolated primary mouse synovial fibroblasts while the K/BxN mouse model of RA was utilized to examine in vivo therapeutic protection. Results These engineered macrophages were able to repeatably produce therapeutic levels of IL-1Ra that could successfully mitigate inflammatory activation in co-culture with both tissue engineered cartilage constructs and synovial fibroblasts. Following injection in vivo, macrophages homed to sites of inflammation and mitigated disease severity in the K/BxN mouse model of RA. Conclusion These findings demonstrate the successful development of engineered macrophages that possess the ability for controlled, autoregulated production of IL-1 based on inflammatory signaling such as the NF-κB pathway to mitigate the effects of this cytokine for applications in RA or other inflammatory diseases. This system provides proof of concept for applications in other immune cell types as self-regulating delivery systems for therapeutic applications in a range of diseases.
Collapse
|
29
|
Zhu LW, Li Z, Dong X, Wu H, Cheng Y, Xia S, Bao X, Xu Y, Cao R. Ficolin-A induces macrophage polarization to a novel pro-inflammatory phenotype distinct from classical M1. Cell Commun Signal 2024; 22:271. [PMID: 38750493 PMCID: PMC11094856 DOI: 10.1186/s12964-024-01571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/16/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Macrophages are key inflammatory immune cells that orchestrate the initiation and progression of autoimmune diseases. The characters of macrophage in diseases are determined by its phenotype in response to the local microenvironment. Ficolins have been confirmed as crucial contributors to autoimmune diseases, with Ficolin-2 being particularly elevated in patients with autoimmune diseases. However, whether Ficolin-A stimulates macrophage polarization is still poorly understood. METHODS We investigated the transcriptomic expression profile of murine bone marrow-derived macrophages (BMDMs) stimulated with Ficolin-A using RNA-sequencing. To further confirm a distinct phenotype activated by Ficolin-A, quantitative RT-PCR and Luminex assay were performed in this study. Additionally, we assessed the activation of underlying cell signaling pathways triggered by Ficolin-A. Finally, the impact of Ficolin-A on macrophages were investigated in vivo through building Collagen-induced arthritis (CIA) and Dextran Sulfate Sodium Salt (DSS)-induced colitis mouse models with Fcna-/- mice. RESULTS Ficolin-A activated macrophages into a pro-inflammatory phenotype distinct to LPS-, IFN-γ- and IFN-γ + LPS-induced phenotypes. The transcriptomic profile induced by Ficolin-A was primarily characterized by upregulation of interleukins, chemokines, iNOS, and Arginase 1, along with downregulation of CD86 and CD206, setting it apart from the M1 and M2 phenotypes. The activation effect of Ficolin-A on macrophages deteriorated the symptoms of CIA and DSS mouse models, and the deletion of Fcna significantly alleviated the severity of diseases in mice. CONCLUSION Our work used transcriptomic analysis by RNA-Seq to investigate the impact of Ficolin-A on macrophage polarization. Our findings demonstrate that Ficolin-A induces a novel pro-inflammatory phenotype distinct to the phenotypes activated by LPS, IFN-γ and IFN-γ + LPS on macrophages.
Collapse
Affiliation(s)
- Li-Wen Zhu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Department of Neurology, Nanjing Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, China
| | - Zihao Li
- Department of Neurology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiaohong Dong
- The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Huadong Wu
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yifan Cheng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Medical school of Nanjing University, Nanjing, Jiangsu, China.
| | - Runjing Cao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
30
|
Zhang X, Zhang Z, Zhao Y, Jin L, Tai Y, Tang Y, Geng S, Zhang H, Zhai Y, Yang Y, Pan P, He P, Fang S, Sun C, Chen Y, Zhou M, Liu L, Wang H, Xu L, Zhang T, Hua J, Wang H, Zhang L. Sodium chloride promotes macrophage pyroptosis and aggravates rheumatoid arthritis by activating SGK1 through GABA receptors Slc6a12. Int J Biol Sci 2024; 20:2922-2942. [PMID: 38904021 PMCID: PMC11186373 DOI: 10.7150/ijbs.93242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and the production of autoantibodies. Previous studies have indicated an association between high-salt diets (HSD) and an increased risk of RA, yet the underlying mechanisms remain unclear. Macrophage pyroptosis, a pro-inflammatory form of cell death, plays a pivotal role in RA. In this study, we demonstrate that HSD exacerbates the severity of arthritis in collagen-induced arthritis (CIA) mice, correlating with macrophage infiltration and inflammatory lesions. Given the significant alterations observed in macrophages from CIA mice subjected to HSD, we specifically investigate the impact of HSD on macrophage responses in the inflammatory milieu of RA. In our in vitro experiments, pretreatment with NaCl enhances LPS-induced pyroptosis in RAW.264.7 and THP-1 cells through the p38 MAPK/NF-κB signaling pathway. Subsequent experiments reveal that Slc6a12 inhibitors and SGK1 silencing inhibit sodium-induced activation of macrophage pyroptosis and the p38 MAPK/NF-κB signaling pathway, whereas overexpression of the SGK1 gene counteracts the effect of sodium on macrophages. In conclusion, our findings verified that high salt intake promotes the progression of RA and provided a detailed elucidation of the activation of macrophage pyroptosis induced by sodium transportation through the Slc6a12 channel.
Collapse
Affiliation(s)
- Xianzheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yujing Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Shuo Geng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yufang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yining Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Pin Pan
- Department of orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Peng He
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuqi Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Chenlong Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Tianjing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinghan Hua
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| |
Collapse
|
31
|
Zhang Z, Chen Y, Fu X, Chen L, Wang J, Zheng Q, Zhang S, Zhu X. Identification of PPARG as key gene to link coronary atherosclerosis disease and rheumatoid arthritis via microarray data analysis. PLoS One 2024; 19:e0300022. [PMID: 38573982 PMCID: PMC10994321 DOI: 10.1371/journal.pone.0300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Inflammation is the common pathogenesis of coronary atherosclerosis disease (CAD) and rheumatoid arthritis (RA). Although it is established that RA increases the risk of CAD, the underlining mechanism remained indefinite. This study seeks to explore the molecular mechanisms of RA linked CAD and identify potential target gene for early prediction of CAD in RA patients. MATERIALS AND METHODS The study utilized five raw datasets: GSE55235, GSE55457, GSE12021 for RA patients, and GSE42148 and GSE20680 for CAD patients. Gene Set Enrichment Analysis (GSEA) was used to investigate common signaling pathways associated with RA and CAD. Then, weighted gene co-expression network analysis (WGCNA) was performed on RA and CAD training datasets to identify gene modules related to single-sample GSEA (ssGSEA) scores. Overlapping module genes and differentially expressed genes (DEGs) were considered as co-susceptible genes for both diseases. Three hub genes were screened using a protein-protein interaction (PPI) network analysis via Cytoscape plug-ins. The signaling pathways, immune infiltration, and transcription factors associated with these hub genes were analyzed to explore the underlying mechanism connecting both diseases. Immunohistochemistry and qRT-PCR were conducted to validate the expression of the key candidate gene, PPARG, in macrophages of synovial tissue and arterial walls from RA and CAD patients. RESULTS The study found that Fc-gamma receptor-mediated endocytosis is a common signaling pathway for both RA and CAD. A total of 25 genes were screened by WGCNA and DEGs, which are involved in inflammation-related ligand-receptor interactions, cytoskeleton, and endocytosis signaling pathways. The principal component analysis(PCA) and support vector machine (SVM) and receiver-operator characteristic (ROC) analysis demonstrate that 25 DEGs can effectively distinguish RA and CAD groups from normal groups. Three hub genes TUBB2A, FKBP5, and PPARG were further identified by the Cytoscape software. Both FKBP5 and PPARG were downregulated in synovial tissue of RA and upregulated in the peripheral blood of CAD patients and differential mRNAexpreesion between normal and disease groups in both diseases were validated by qRT-PCR.Association of PPARG with monocyte was demonstrated across both training and validation datasets in CAD. PPARG expression is observed in control synovial epithelial cells and foamy macrophages of arterial walls, but was decreased in synovial epithelium of RA patients. Its expression in foamy macrophages of atherosclerotic vascular walls exhibits a positive correlation (r = 0.6276, p = 0.0002) with CD68. CONCLUSION Our findings suggest that PPARG may serve as a potentially predictive marker for CAD in RA patients, which provides new insights into the molecular mechanism underling RA linked CAD.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yupeng Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaodan Fu
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Linying Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junlan Wang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qingqiang Zheng
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sheng Zhang
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Department of Pathology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xia Zhu
- Department of Bone Tumor, The Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
32
|
Jonsson AH. Synovial Tissue Insights into Heterogeneity of Rheumatoid Arthritis. Curr Rheumatol Rep 2024; 26:81-88. [PMID: 38157158 PMCID: PMC11245950 DOI: 10.1007/s11926-023-01129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis is one of the most common rheumatic and autoimmune diseases. While it can affect many different organ systems, RA primarily involves inflammation in the synovium, the tissue that lines joints. Patients with RA exhibit significant clinical heterogeneity in terms of presence or absence of autoantibodies, degree of permanent deformities, and most importantly, treatment response. These clinical characteristics point to heterogeneity in the cellular and molecular pathogenesis of RA, an area that several recent studies have begun to address. RECENT FINDINGS Single-cell RNA-sequencing initiatives and deeper focused studies have revealed several RA-associated cell populations in synovial tissues, including peripheral helper T cells, autoimmunity-associated B cells (ABCs), and NOTCH3+ sublining fibroblasts. Recent large transcriptional studies and translational clinical trials present frameworks to capture cellular and molecular heterogeneity in RA synovium. Technological developments, such as spatial transcriptomics and machine learning, promise to further elucidate the different types of RA synovitis and the biological mechanisms that characterize them, key elements of precision medicine to optimize patient care and outcomes in RA. This review recaps the findings of those recent studies and puts our current knowledge and future challenges into scientific and clinical perspective.
Collapse
Affiliation(s)
- Anna Helena Jonsson
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
33
|
Qadri M, Khired Z, Alaqi R, Elsayed S, Alarifi A, Ahmed R, Alhamami H, Khardali A, Hakami W. Zerumbone reduces TLR2 stimulation-induced M1 macrophage polarization pattern via upregulation of Nrf-2 expression in murine macrophages. Saudi Pharm J 2024; 32:101956. [PMID: 38318316 PMCID: PMC10840118 DOI: 10.1016/j.jsps.2024.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Hyperuricemia contributes significantly to gout arthritis pathogenesis, which promotes urate crystal deposition in the joints and activates joint-resident macrophages and circulating monocytes to initiate a state of inflammatory arthritis. In the joint, macrophages have an immune defense role where the presence of urate crystals results in the inflammatory mediators secretion, inflammatory cells recruitment to the joint, and shift macrophage population toward M1 pro-inflammatory phenotypes. Current treatment modalities of gout arthritis have side effects that limit their use in the elderly. A novel treatment that targets macrophage polarization to re-establish homeostasis may initiate a drug discovery program of novel disease-modifying agents for gout. Zerumbone (Zer) is a sesquiterpenoid bioactive compound found in the rhizome of Zingiberaceae family and possesses anti-inflammatory, antioxidant, and anti-proliferative activity. Our study hypothesized that soluble uric acid (sUA) and Pam3CSK4 (TLR2 agonist) reduce the anti-inflammatory function of murine M2 bone marrow-derived macrophages and change the expression of M2 genetic markers toward M1 phenotypes. We observed that priming of M2 macrophages with sUA and Pam3CSK4 significantly decreased M2 specific markers expression, e.g., Arg-1, Ym-1, and Fizz-1, enhanced mRNA expression of IL-1β, TNF-α, CXCL2, and iNOS and increased oxidative stress in M2 macrophages, as exhibited by a reduction in Nrf2 expression. We also aimed to study the impact of Zer on reducing the pro-inflammatory effect of sUA in TLR2-stimulated M2 macrophages. We noticed that Zer treatment significantly reduced L-1β and TNF-α production following Pam3CSK4 + sUA treatment on M2 macrophages. Furthermore, Zer reduced the caspase-1 activity without altering cytosolic NLRP3 content in challenged M2 BMDMs. We also observed that Zer significantly enhanced M2-associated marker's expression, e.g., Arg-1, Ym-1, and Fizz-1, and augmented Nrf-2 and other antioxidant proteins, including HMOX1 and srxn1expression following Pam3CSK4 + sUA treatment. We draw the conclusion that Zer is a potentially effective anti-inflammatory treatment for gout arthritis linked to hyperuricemia.
Collapse
Affiliation(s)
- Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Saudi Arabia
- Inflammation Pharmacology and Drug Discovery Unit, Health Science Research Center (HSRC), Jazan University, 45142, Saudi Arabia
| | - Zenat Khired
- Surgical Department, Faculty of Medicine, Jazan University, 45142, Saudi Arabia
| | - Reem Alaqi
- Inflammation Pharmacology and Drug Discovery Unit, Health Science Research Center (HSRC), Jazan University, 45142, Saudi Arabia
| | - Sandy Elsayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Abdulaziz Alarifi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Rayan Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Saudi Arabia
| | - Hussain Alhamami
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amani Khardali
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jizan 45142, Jazan, Saudi Arabia
- Pharmacy Practice Research Unit, College of Pharmacy, Jazan University, Jizan 45142, Jazan, Saudi Arabia
| | - Walaa Hakami
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Saudi Arabia
| |
Collapse
|
34
|
Achudhan D, Lai YL, Lin YY, Huang YL, Tsai CH, Ho TL, Ko CY, Fong YC, Huang CC, Tang CH. CXCL13 promotes TNF-α synthesis in rheumatoid arthritis through activating ERK/p38 pathway and inhibiting miR-330-3p generation. Biochem Pharmacol 2024; 221:116037. [PMID: 38301965 DOI: 10.1016/j.bcp.2024.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Rheumatoid arthritis (RA) is a well-known autoimmune disorder associated with joint pain, joint swelling, cartilage and bone degradation as well as deformity. The chemokine (C-X-C motif) ligand 13 (CXCL13) plays a crucial role in multiple cellular pathogenesis processes, including RA. TNF-α is a vital proinflammatory factor in the progression of RA. However, the role of CXCL13 in TNF-α production in RA has not been fully explored. Our analysis of both database and clinical samples revealed higher levels of CXCL13 and TNF-α in RA samples compared to healthy controls. CXCL13 concentration-dependently induces TNF-α synthesis in RA synovial fibroblasts. CXCL13 enhances TNF-α expression by interacting with the CXCR5 receptor, activating the ERK/p38 pathways, and inhibiting miR-330-3p generation. Importantly, treatment with CXCL13 shRNA counteracted the upregulation of TNF-α production induced by collagen-induced arthritis. Our findings support the notion that CXCL13 is a promising target in the treatment of RA.
Collapse
Affiliation(s)
- David Achudhan
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Liang Lai
- Department of Physical Medicine and Rehabilitation, China Medical University Hsinchu Hospital, Hsinchu, Taiwan; Department of Physical Therapy and Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan; Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan
| | - Yen-You Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chun-Hao Tsai
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Trung-Loc Ho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Yuan Ko
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Chin Fong
- Department of Sports Medicine, College of Health Care, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Beigang Hospital, Yunlin, Taiwan
| | - Chien-Chung Huang
- School of Medicine, China Medical University, Taichung, Taiwan; Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
| | - Chih-Hsin Tang
- Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; School of Medicine, China Medical University, Taichung, Taiwan; Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung, Taiwan; Department of Medical Research, China Medical University Hsinchu Hospital, Hsinchu, Taiwan.
| |
Collapse
|
35
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
36
|
Chando A, Basudkar V, Gharat S, Momin M, Khan T. Development and preclinical assessment of nanoemulgel loaded with phytoconstituents for the management of rheumatoid arthritis. Drug Deliv Transl Res 2024; 14:524-541. [PMID: 37606759 DOI: 10.1007/s13346-023-01416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 08/23/2023]
Abstract
In recent years, natural ingredients have gained importance for therapeutic treatment due to their minimal toxicity. However, the delivery of these phytoconstituents poses a challenge to provide better efficacy. Current research reports the development of nanoemulgel (NEG) loaded with ginger oleoresin (GOR) and lipid guggul extract (LGE) for the management of rheumatoid arthritis (RA). The nanoemulsion (NE) was developed using the spontaneous emulsification technique by the pseudo-ternary method. The optimized nanoemulsion exhibited globule size of 16.08 ± 2.55 nm, PDI of 0.187 ± 0.06, and zeta potential of - 22.4 ± 0.31 mV. The cumulative release from in vitro diffusion studies at pH 7.4 was about 99.72 ± 3.47%, 57.98 ± 2.11%, and 86.42 ± 5.13% of 6-gingerol, E-guggulsterone, and Z-guggulsterone respectively at the end of 24 h. The ex vivo studies on porcine ear skin showed sustained release with 92.8 ± 3.21% for 6-gingerol, 55.61 ± 0.91% for E-guggulsterone, and 84.2 ± 4.22% for Z-guggulsterone released at the end of 24 h. The cell culture studies on RAW 264.7 cells indicated a robust inhibition of LPS-induced IL-6 and TNF-α production indicating its efficacy in the management of RA. The preclinical studies on male Wistar rats suggest that the developed NEG exhibited a comparable decrease in paw edema inflammation as compared to the marketed diclofenac sodium gel. These encouraging results demonstrate the potential of the developed nanoemulgel containing combination of GOR and LGE for the management of RA.
Collapse
Affiliation(s)
- Anita Chando
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Vivek Basudkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India.
- SVKM's Shri C. B. Patel Research Centre for Chemistry and Biological Sciences, Vile Parle (West), Mumbai, Maharashtra, India.
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India
| |
Collapse
|
37
|
Yang J, Li S, Li Z, Yao L, Liu M, Tong K, Xu Q, Yu B, Peng R, Gui T, Tang W, Xu Y, Chen J, He J, Zhao K, Wang X, Wang X, Zha Z, Zhang H. Targeting YAP1-regulated Glycolysis in Fibroblast-Like Synoviocytes Impairs Macrophage Infiltration to Ameliorate Diabetic Osteoarthritis Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304617. [PMID: 38044289 PMCID: PMC10837355 DOI: 10.1002/advs.202304617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Indexed: 12/05/2023]
Abstract
The interplay between immune cells/macrophages and fibroblast-like synoviocytes (FLSs) plays a pivotal role in initiating synovitis; however, their involvement in metabolic disorders, including diabetic osteoarthritis (DOA), is largely unknown. In this study, single-cell RNA sequencing (scRNA-seq) is employed to investigate the synovial cell composition of DOA. A significant enrichment of activated macrophages within eight distinct synovial cell clusters is found in DOA synovium. Moreover, it is demonstrated that increased glycolysis in FLSs is a key driver for DOA patients' synovial macrophage infiltration and polarization. In addition, the yes-associated protein 1 (YAP1)/thioredoxin-interacting protein (TXNIP) signaling axis is demonstrated to play a crucial role in regulating glucose transporter 1 (GLUT1)-dependent glycolysis in FLSs, thereby controlling the expression of a series of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) which may subsequently fine-tune the infiltration of M1-polarized synovial macrophages in DOA patients and db/db diabetic OA mice. For treatment, M1 macrophage membrane-camouflaged Verteporfin (Vt)-loaded PLGA nanoparticles (MVPs) are developed to ameliorate DOA progression by regulating the YAP1/TXNIP signaling axis, thus suppressing the synovial glycolysis and the infiltration of M1-polarized macrophages. The results provide several novel insights into the pathogenesis of DOA and offer a promising treatment approach for DOA.
Collapse
Affiliation(s)
- Jie Yang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Shanshan Li
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhenyan Li
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Lutian Yao
- Department of OrthopedicsThe First Hospital of China Medical UniversityShenyang110001China
| | - Meijing Liu
- Key Laboratory of Big Data‐Based Precision MedicineSchool of Engineering MedicineBeihang UniversityBeijing100191China
- Clinical Research Platform for Interdisciplinary of Stomatologythe First Affiliated Hospital of Jinan University and Department of StomatologyJinan UniversityGuangzhou510632China
| | - Kui‐Leung Tong
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Qiutong Xu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Bo Yu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Rui Peng
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Tao Gui
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Wang Tang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Yidi Xu
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula‐Pattern Research CenterSchool of Traditional Chinese MedicineJinan UniversityGuangzhou510640China
| | - Jun He
- Institute of Laboratory Animal ScienceJinan UniversityGuangzhou510632China
| | - Kewei Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosisthe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou510375China
| | - Xiaogang Wang
- Key Laboratory of Big Data‐Based Precision MedicineSchool of Engineering MedicineBeihang UniversityBeijing100191China
- Clinical Research Platform for Interdisciplinary of Stomatologythe First Affiliated Hospital of Jinan University and Department of StomatologyJinan UniversityGuangzhou510632China
| | - Xiaoying Wang
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhengang Zha
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
| | - Huan‐Tian Zhang
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Jinan UniversityKey Laboratory of Regenerative Medicine of Ministry of EducationJinan UniversityGuangzhouGuangdong510630China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosisthe Third Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou510375China
| |
Collapse
|
38
|
Zeng L, Yu G, Yang K, He Q, Hao W, Xiang W, Long Z, Chen H, Tang X, Sun L. Exploring the mechanism of Celastrol in the treatment of rheumatoid arthritis based on systems pharmacology and multi-omics. Sci Rep 2024; 14:1604. [PMID: 38238321 PMCID: PMC10796403 DOI: 10.1038/s41598-023-48248-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
To explore the molecular network mechanism of Celastrol in the treatment of rheumatoid arthritis (RA) based on a novel strategy (integrated systems pharmacology, proteomics, transcriptomics and single-cell transcriptomics). Firstly, the potential targets of Celastrol and RA genes were predicted through the database, and the Celastrol-RA targets were obtained by taking the intersection. Then, transcriptomic data and proteomic data of Celastrol treatment of RA were collected. Subsequently, Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were imported into Metascape for enrichment analysis, and related networks were constructed. Finally, the core targets of Celastrol-RA targets, differentially expressed genes, and differentially expressed proteins were mapped to synoviocytes of RA mice to find potential cell populations for Celastrol therapy. A total of 195 Celastrol-RA targets, 2068 differential genes, 294 differential proteins were obtained. The results of enrichment analysis showed that these targets, genes and proteins were mainly related to extracellular matrix organization, TGF-β signaling pathway, etc. The results of single cell sequencing showed that the main clusters of these targets, genes, and proteins could be mapped to RA synovial cells. For example, Mmp9 was mainly distributed in Hematopoietic cells, especially in Ptprn+fibroblast. The results of molecular docking also suggested that Celastrol could stably combine with molecules predicted by network pharmacology. In conclusion, this study used systems pharmacology, transcriptomics, proteomics, single-cell transcriptomics to reveal that Celastrol may regulate the PI3K/AKT signaling pathway by regulating key targets such as TNF and IL6, and then play an immune regulatory role.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Anhui, China.
| |
Collapse
|
39
|
Wei Z, Li H, Lv S, Yang J. Current situation and trend of non-coding RNA in rheumatoid arthritis: a review and bibliometric analysis. Front Immunol 2024; 14:1301545. [PMID: 38292492 PMCID: PMC10824985 DOI: 10.3389/fimmu.2023.1301545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease that affects multiple joints and has adverse effects on various organs throughout the body, often leading to a poor prognosis. Recent studies have shown significant progress in the research of non-coding RNAs (ncRNAs) in RA. Therefore, this study aims to comprehensively assess the current status and research trends of ncRNAs in RA through a bibliometric analysis. Methods This study retrieved articles relevant to ncRNAs and RA from the Science Citation Index Expanded Database of the Web of Science Core Collection between January 1st, 2003, and July 31st, 2023. The relevant articles were screened based on the inclusion criteria. VOSviewer and CiteSpace are utilized for bibliometric and visual analysis. Results A total of 1697 publications were included in this study, and there was a noticeable increase in annual publications from January 1st, 2003, to July 31st, 2023. China, the United States, and the United Kingdom were the most productive countries in this field, contributing to 43.81%, 13.09%, and 3.87% of the publications. Anhui Medical University and Lu Qianjin were identified as the most influential institution and author. Frontiers In Immunology stood out as the most prolific journal, while Arthritis & Rheumatology was the most co-cited journal. Additionally, the research related to "circular RNA", "oxidative stress", "proliferation", and "migration" have emerged as new hotspots in the field. Conclusion In this study, we have summarized the publication characteristics related to ncRNA and RA and identified the most productive countries, institutions, authors, journals, hot topics, and trends.
Collapse
Affiliation(s)
- Zehong Wei
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Huaiyu Li
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Senhao Lv
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Junping Yang
- Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
40
|
Zheng S, Li Y, Yin L, Lu M. Identification of sulfur metabolism-related gene signature in osteoarthritis and TM9SF2's sustenance effect on M2 macrophages' phagocytic activity. J Orthop Surg Res 2024; 19:62. [PMID: 38218914 PMCID: PMC10787471 DOI: 10.1186/s13018-023-04384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/18/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic and low-grade inflammatory disease associated with metabolism disorder and multiple cell death types in the synovial tissues. Sulfur metabolism has not been studied in OA. METHODS First, we calculated the single sample gene set enrichment analysis score of sulfur metabolism-associated annotations (i.e., cysteine metabolism process, regulation of sulfur metabolism process, and disulfidptosis) between healthy and synovial samples from patients with OA. Sulfur metabolism-related differentially expressed genes (DEGs) were analyzed in OA. Least absolute shrinkage and selection operator COX regression were used to identify the sulfur metabolism-associated gene signature for diagnosing OA. Correlation and immune cell deconvolution analyses were used to explore the correlated functions and cell specificity of the signature gene, TM9SF2. TM9SF2's effect on the phagocytosis of macrophages M2 was analyzed by coculturing macrophages with IgG-coated beads or apoptotic Jurkat cells. RESULTS A diagnostic six gene signature (i.e., MTHFD1, PDK4, TM9SF2, POU4F1, HOXA2, NCKAP1) was identified based on the ten DEGs, validated using GSE12021 and GSE1919 datasets. TM9SF2 was upregulated in the synovial tissues of OA at both mRNA and protein levels. The relationship between TM9SF2 and several functional annotations, such as antigen processing and presentation, lysosome, phagosome, Fcγ-mediated phagocytosis, and tyrosine metabolism, was identified. TM9SF2 and macrophages M2 were significantly correlated. After silencing TM9SF2 in THP-1-derived macrophages M2, a significantly reduced phagocytosis and attenuated activation of PLC-γ1 were observed. CONCLUSION A sulfur metabolism-associated six-gene signature for OA diagnosis was constructed and upregulation of the phagocytosis-associated gene, TM9SF2, was identified. The findings are expected to deepen our understanding of the molecular mechanism underlying OA development and be used as potential therapeutic targets.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of Rheumatology, The First Affiliated Hospital of Anhui Medical University, No.218 Ji Xi Road, Hefei, 230032, Anhui, China.
| | - Yetian Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Ji Xi Road, Hefei, 230032, Anhui, China
| | - Li Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Ji Xi Road, Hefei, 230032, Anhui, China
| | - Ming Lu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No.218 Ji Xi Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
41
|
Klimak M, Guilak F. Genetically engineered macrophages derived from iPSCs for self-regulating delivery of anti-inflammatory biologic drugs. J Tissue Eng Regen Med 2024; 2024:6201728. [PMID: 38571695 PMCID: PMC10990417 DOI: 10.1155/2024/6201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
In rheumatoid arthritis, dysregulated cytokine signaling has been implicated as a primary factor in chronic inflammation. Many antirheumatic and biological therapies are used to suppress joint inflammation, but despite these advances, effectiveness is not universal, and delivery is often at high doses, which can predispose patients to significant off-target effects. During chronic inflammation, the inappropriate regulation of signaling factors by macrophages accelerates progression of disease by driving an imbalance of inflammatory cytokines, making macrophages an ideal cellular target. To develop a macrophage-based therapy to treat chronic inflammation, we engineered a novel induced pluripotent stem cell (iPSC)-derived macrophage capable of delivering soluble TNF receptor 1 (TNFR1), an anti-inflammatory biologic inhibitor of tumor necrosis factor alpha (TNF-α), in an auto-regulated manner in response to TNF-α. Murine iPSCs were differentiated into macrophages (iMACs) over a 17-day optimized protocol with continued successful differentiation confirmed at key timepoints. Varying inflammatory and immunomodulatory stimuli demonstrated traditional macrophage function and phenotypes. In response to TNF-α, therapeutic iMACs produced high levels of sTNFR1 in an autoregulated manner, which inhibited inflammatory signaling. This self-regulating iMAC system demonstrated the potential for macrophage-based drug delivery as a novel therapeutic approach for a variety of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
- Shriners Hospitals for Children – St. Louis, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
42
|
Jin Y, Ge X, Xu Y, Wang S, Lu Q, Deng A, Li J, Gu Z. A pH-Responsive DNA Tetrahedron/Methotrexate Drug Delivery System Used for Rheumatoid Arthritis Treatment. J Funct Biomater 2023; 14:541. [PMID: 37998110 PMCID: PMC10672632 DOI: 10.3390/jfb14110541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that leads to progressive and aggressive joint inflammation. The disease process is characterized by the activation of macrophages, which then release tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), accelerating tissue damage. Tackling tissue damage is a crucial target in the treatment of RA. In this study, a macrophage-targeted and pH-response DNA tetrahedron/methotrexate drug delivery system was constructed by loading methotrexate (MTX) onto a DNA duplex. MTX was used as a drug model, and a pH-response DNA tetrahedron (TET) was used as the drug carrier, which was modified with hyaluronic acid (HA) to target macrophages. The aim of this study was to evaluate the potential of TET as an effective drug carrier for the treatment of RA. On this basis, we successfully prepared TETs loaded with MTX, and in vitro assays showed that the MTX-TET treatment could successfully target macrophages and induce macrophages to polarize to M1 phenotype. At the same time, we also injected MTX-TET intravenously into collagen-induced arthritis (CIA) model mice, and the redness and swelling of the paws of mice were significantly alleviated, proving that the MTX-TET could successfully target inflamed joints and release MTX to treat joint swelling. In addition, the histochemical results showed that the MTX-TET could reduce synovitis and joint swelling in CIA mice, reduce the level of inflammatory factors in vivo, and improve the disease status while maintaining a good biosafety profile. This study showed that the MTX-TET treatment has beneficial therapeutic effects on RA, providing a new strategy for the clinical treatment of RA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Xingyu Ge
- Department of Rheumatology, Yancheng Third People’s Hospital, Yancheng 224000, China;
| | - Yinjin Xu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
| | - Siyi Wang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
| | - Qian Lu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226000, China; (Y.J.)
| | - Aidong Deng
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Jingjing Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226000, China
| | - Zhifeng Gu
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong 226000, China
| |
Collapse
|
43
|
Saeki N, Imai Y. Crosstalk between synovial macrophages and fibroblasts in rheumatoid arthritis. Histol Histopathol 2023; 38:1231-1238. [PMID: 37219031 DOI: 10.14670/hh-18-628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease associated with chronic inflammation of joints. Abnormally activated cells such as synovial macrophages and synovial fibroblasts induce RA pathogenesis and ultimately joint destruction. Since macrophages can change their own characteristics depending on the microenvironmental condition, it has been suggested that activation and remission of RA are regulated by crosstalk between synovial macrophages and other cells. Moreover, recent findings of heterogeneity of synovial macrophages and fibroblasts support the idea that complex interactions regulate RA from its onset to remission. Importantly, an understanding of the intercellular crosstalk in RA is far from complete. Here, we summarize the molecular mechanisms underlying the pathological development of RA with particular reference to the crosstalk between synovial macrophages and fibroblasts.
Collapse
Affiliation(s)
- Noritaka Saeki
- Division of Medical Research Support, Advanced Research Support Center, Ehime University, Ehime, Japan
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime, Japan.
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Ehime, Japan.
- Department of Pathophysiology, Graduate School of Medicine, Ehime University, Ehime, Japan
| |
Collapse
|
44
|
Everett JB, Menarim BC, Barrett SH, Bogers SH, Byron CR, Pleasant RS, Werre SR, Dahlgren LA. Intra-articular bone marrow mononuclear cell therapy improves lameness from naturally occurring equine osteoarthritis. Front Vet Sci 2023; 10:1256284. [PMID: 37876630 PMCID: PMC10591079 DOI: 10.3389/fvets.2023.1256284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Osteoarthritis (OA) can be debilitating and is related to impaired resolution of synovial inflammation. Current treatments offer temporary relief of clinical signs, but have potentially deleterious side effects. Bone marrow mononuclear cells (BMNC) are a rich source of macrophage progenitors that have the ability to reduce OA symptoms in people and inflammation in experimentally-induced synovitis in horses. The objective of this study was to evaluate the ability of intra-articular BMNC therapy to improve clinical signs of naturally occurring equine OA. Horses presenting with clinical and radiographic evidence of moderate OA in a single joint were randomly assigned to 1 of 3 treatment groups: saline (negative control), triamcinolone (positive control), or BMNC (treatment group). Lameness was evaluated subjectively and objectively, joint circumference measured, and synovial fluid collected for cytology and growth factor/cytokine quantification at 0, 7, and 21 days post-injection. Data were analyzed using General Estimating Equations with significance set at p < 0.05. There were no adverse effects noted in any treatment group. There was a significant increase in synovial fluid total nucleated cell count in the BMNC-treated group on day 7 (median 440; range 20-1920 cells/uL) compared to day 0. Mononuclear cells were the predominant cell type across treatments at all time points. Joint circumference decreased significantly in the BMNC-treated group from days 7 to 21 and was significantly lower at day 21 in the BMNC-treated group compared to the saline-treated group. Median objective lameness improved significantly in the BMNC group between days 7 and 21. GM-CSF, IL-1ra, IGF-1, and TNF-α were below detectable limits and IL-6, IL-1β, FGF-2 were detectable in a limited number of synovial fluid samples. Inconsistent and limited differences were detected over time and between treatment groups for synovial fluid PGE2, SDF-1, MCP-1 and IL-10. Decreased lameness and joint circumference, coupled with a lack of adverse effects following BMNC treatment, support a larger clinical trial using BMNC therapy to treat OA in horses.
Collapse
Affiliation(s)
- J. Blake Everett
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Bruno C. Menarim
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Gluck Equine Research Center, Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Sarah H. Barrett
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sophie H. Bogers
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Christopher R. Byron
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - R. Scott Pleasant
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Stephen R. Werre
- Laboratory for Study Design and Statistical Analysis, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Linda A. Dahlgren
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
45
|
Zhang A, Suzuki T, Adachi S, Yoshida E, Sakaguchi S, Yamamoto M. Nrf2 activation improves experimental rheumatoid arthritis. Free Radic Biol Med 2023; 207:279-295. [PMID: 37494986 DOI: 10.1016/j.freeradbiomed.2023.07.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/28/2023]
Abstract
Rheumatoid arthritis is a systemic autoimmune disease with pain and functional disorder of joints. Multiple strategies toward treatment of the rheumatoid arthritis are operating, while there are concerns of serious adverse effects of the therapeutic drugs. Here, we show that activation of Nrf2 (Nuclear factor erythroid 2-related factor 2) efficiently improves arthritis of SKG mice, which develop T cell-mediated autoimmune arthritis by zymosan A injection. We found that genetic Nrf2 activation by knockdown of Keap1 (Kelch-like ECH-associated protein 1), a negative regulator of Nrf2, repressed arthritis by inhibiting the expression of pro-inflammatory cytokines and inducing the expression of antioxidant enzymes in SKG mice. In addition, oral administration of CDDO-Im, a representative chemical inducer of Nrf2, had effects of both prevention and treatment toward arthritis of SKG mice in an Nrf2-dependent manner. We also found that Nrf2 activation through myeloid-cell lineage-specific Keap1 disruption did not achieve significant improvement in the arthritis of SKG mice. In contrast, expressions of pro-inflammatory cytokine genes were decreased, and those of antioxidant enzyme genes were increased in fibroblast-like synoviocytes (FLS) isolated from SKG mouse. Our results thus demonstrate that Nrf2 activation exerts marked anti-arthritis effects in the SKG experimental rheumatoid arthritis model mice, supporting the contention that the Nrf2 activation is a new therapeutic strategy for the rheumatoid arthritis.
Collapse
Affiliation(s)
- Anqi Zhang
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Takafumi Suzuki
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan.
| | - Saki Adachi
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Eiki Yoshida
- Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Shimon Sakaguchi
- Experimental Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Masayuki Yamamoto
- Departments of Biochemistry and Molecular Biology, Tohoku Medical-Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; Departments of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan; The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8573, Japan.
| |
Collapse
|
46
|
Wilantri S, Grasshoff H, Lange T, Gaber T, Besedovsky L, Buttgereit F. Detecting and exploiting the circadian clock in rheumatoid arthritis. Acta Physiol (Oxf) 2023; 239:e14028. [PMID: 37609862 DOI: 10.1111/apha.14028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Over the past four decades, research on 24-h rhythms has yielded numerous remarkable findings, revealing their genetic, molecular, and physiological significance for immunity and various diseases. Thus, circadian rhythms are of fundamental importance to mammals, as their disruption and misalignment have been associated with many diseases and the abnormal functioning of many physiological processes. In this article, we provide a brief overview of the molecular regulation of 24-h rhythms, their importance for immunity, the deleterious effects of misalignment, the link between such pathological rhythms and rheumatoid arthritis (RA), and the potential exploitation of chronobiological rhythms for the chronotherapy of inflammatory autoimmune diseases, using RA as an example.
Collapse
Affiliation(s)
- Siska Wilantri
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Hanna Grasshoff
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
| | - Tanja Lange
- Department of Rheumatology and Clinical Immunology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | | | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
47
|
Jin Z, Zhang H, Bai L, Yue L, Zhang W, Liang J, Chang B, Yang Y, Hu Z, Chen L, Guo C. Synovium is a sensitive tissue for mapping the negative effects of systemic iron overload in osteoarthritis: identification and validation of two potential targets. J Transl Med 2023; 21:661. [PMID: 37741987 PMCID: PMC10518090 DOI: 10.1186/s12967-023-04541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND The prevention and treatment of osteoarthritis (OA) pose a major challenge in its research. The synovium is a critical tissue in the systematic treatment of OA. The present study aimed to investigate potential target genes and their correlation with iron overload in OA patients. METHODS The internal datasets for analysis included the microarray datasets GSE46750, GSE55457, and GSE56409, while the external datasets for validation included GSE12021 and GSE55235. The GSE176308 dataset was used to generate single-cell RNA sequencing profiles. To investigate the expression of the target genes in synovial samples, quantitative reverse transcription-PCR, western blotting, and immunohistochemical assay were conducted. ELISA was used to detect the levels of ferritin and Fe2+ in both serum and synovium. RESULTS JUN and ZFP36 were screened from the differentially expressed genes, and their mRNA were significantly reduced in the OA synovium compared to that in normal synovium. Subsequently, complex and dynamically evolving cellular components were observed in the OA synovium. The mRNA level of JUN and ZFP36 differed across various cell clusters of OA synovium and correlated with immune cell infiltration. Moreover, ferritin and Fe2+ were significantly increased in the serum and synovium of OA patients. Further, we found that JUN elevated and ZFP36 decreased at protein level. CONCLUSIONS The synovium is a sensitive tissue for mapping the adverse effects of systemic iron overload in OA. JUN and ZFP36 represent potential target genes for attenuating iron overload during OA treatment. Some discrepancies between the transcription and protein levels of JUN suggest that post-transcriptional modifications may be implicated. Future studies should also focus on the roles of JUN and ZFP36 in inducing changes in cellular components in the synovium during OA pathogenesis.
Collapse
Affiliation(s)
- Zhuangzhuang Jin
- Department of Emergence Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - He Zhang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lingyu Yue
- Beijing AnDing Hospital of Capital Medical University, Beijing, China
| | - Weiming Zhang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jiajian Liang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bohan Chang
- Department of Rheumatology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Yang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhehan Hu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liang Chen
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuanji Guo
- Hospital Administration Office, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, Liaoning Province, China.
| |
Collapse
|
48
|
Chen X, Gong L, Li C, Wang S, Wang Z, Chu M, Zhou Y. Single-cell and bulk tissue sequencing unravels the heterogeneity of synovial microenvironment in arthrofibrosis. iScience 2023; 26:107379. [PMID: 37705954 PMCID: PMC10495645 DOI: 10.1016/j.isci.2023.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 09/15/2023] Open
Abstract
Arthrofibrosis (AF) is a debilitating complication that occurs after trauma or surgery, leading to functional impairment and surgical failures worldwide. This study aimed to uncover the underlying mechanism of AF. A total of 141 patients were enrolled, and synovial samples were collected from both patients and animal models at different time points. Single-cell RNA-sequencing (scRNA-seq) and bulk tissue RNA sequencing (bulk-seq) were employed to profile the distinct synovial microenvironment. This study revealed changes in cell proportions during AF pathogenesis and identified Engrailed-1 (EN1) as a key transcription factor strongly associated with disease severity and clinical prognosis. Additionally, the researchers discovered a specific type of synovial fibroblast called DKK3-SLF, which played a critical role in driving AF development. These findings shed light on the composition and heterogeneity of the synovial microenvironment in AF, offering potential avenues for identifying therapeutic targets and developing clinical treatments for AF and other fibrotic diseases.
Collapse
Affiliation(s)
- Xi Chen
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Lihua Gong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Cheng Li
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Siyuan Wang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Ziyuan Wang
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, NHC Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yixin Zhou
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, 31 East Xinjiekou Street, Beijing 100035, China
| |
Collapse
|
49
|
Paz-González R, Lourido L, Calamia V, Fernández-Puente P, Quaranta P, Picchi F, Blanco FJ, Ruiz-Romero C. An Atlas of the Knee Joint Proteins and Their Role in Osteoarthritis Defined by Literature Mining. Mol Cell Proteomics 2023; 22:100606. [PMID: 37356495 PMCID: PMC10393810 DOI: 10.1016/j.mcpro.2023.100606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent rheumatic pathology. However, OA is not simply a process of wear and tear affecting articular cartilage but rather a disease of the entire joint. One of the most common locations of OA is the knee. Knee tissues have been studied using molecular strategies, generating a large amount of complex data. As one of the goals of the Rheumatic and Autoimmune Diseases initiative of the Human Proteome Project, we applied a text-mining strategy to publicly available literature to collect relevant information and generate a systematically organized overview of the proteins most closely related to the different knee components. To this end, the PubPular literature-mining software was employed to identify protein-topic relationships and extract the most frequently cited proteins associated with the different knee joint components and OA. The text-mining approach searched over eight million articles in PubMed up to November 2022. Proteins associated with the six most representative knee components (articular cartilage, subchondral bone, synovial membrane, synovial fluid, meniscus, and cruciate ligament) were retrieved and ranked by their relevance to the tissue and OA. Gene ontology analyses showed the biological functions of these proteins. This study provided a systematic and prioritized description of knee-component proteins most frequently cited as associated with OA. The study also explored the relationship of these proteins to OA and identified the processes most relevant to proper knee function and OA pathophysiology.
Collapse
Affiliation(s)
- Rocío Paz-González
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Lucía Lourido
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Valentina Calamia
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Patricia Fernández-Puente
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Grupo de Investigación de Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Patricia Quaranta
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Florencia Picchi
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain; Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Grupo de Investigación de Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain.
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
50
|
Li D, Liu W, Sun S, Zhang Y, Zhang P, Feng G, Wei J, Chai L. Chinese herbal formula, modified Xianfang Huoming Yin, alleviates the inflammatory proliferation of rat synoviocytes induced by IL-1β through regulating the migration and differentiation of T lymphocytes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116297. [PMID: 36849102 DOI: 10.1016/j.jep.2023.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xianfang Huoming Yin (XFH) is a traditional Chinese herbal formula, which has the effect of clearing heat and detoxifying toxins, dispersing swellings, activating blood circulation, and relieving pain. It is usually applied to treat various autoimmune diseases, including Rheumatoid arthritis (RA). AIM OF THE STUDY The migration of T lymphocytes plays an indispensable role in the pathogenesis of RA. Our previous studies demonstrated that modified Xianfang Huoming Yin (XFHM) could modulate the differentiation of T, B, and NK cells, and contribute to the restoration of immunologic balance. It also could downregulate the production of pro-inflammatory cytokines by regulating the activation of NF-κ B and JAK/STAT signaling pathways in the collagen-induced arthritis mouse model. In this study, we want to investigate whether XFHM has therapeutic effects on the inflammatory proliferation of rat fibroblast-like synovial cells (FLSs) by interfering with the migration of T lymphocytes in vitro experiments. MATERIALS AND METHODS High performance liquid chromatography-electrospray ionization/mass spectrometer system was used to identify the constituents of the XFHM formula. A co-culture system of rat fibroblast-like synovial cells (RSC-364 cells) and peripheral blood lymphocytes stimulated by interleukin-1 beta (IL-1β) was used as the cell model. IL-1β inhibitor (IL-1βRA) was used as a positive control medicine, and two concentrations (100 μg/mL and 250 μg/mL) of freeze-dried XFHM powder were used as intervention measure. The lymphocyte migration levels were analyzed by the Real-time xCELLigence analysis system after 24 h and 48 h of treatment. The percentage of CD3+CD4+ T cells and CD3+CD8+ T cells, and the apoptosis rate of FLSs were detected by flow cytometry. The morphology of RSC-364 cells was observed by hematoxylin-eosin staining. The protein expression of key factors for T cell differentiation and NF-κ B signaling pathway-related proteins in RSC-364 cells were examined by western-blot analysis. The migration-related cytokines levels of P-selectin, VCAM-1, and ICAM-1 in the supernatant were measured by enzyme-linked immunosorbent assay. RESULTS Twenty-one different components in XFHM were identified. The migration CI index of T cells was significantly decreased in treatment with XFHM. XFHM also could significantly downregulate the levels r of CD3+CD4+T cells and CD3+CD8+T cells that migrated to the FLSs layer. Further study found that XFHM suppresses the production of P-selectin, VCAM-1, and ICAM-1. Meanwhile, it downregulated the protein levels of T-bet, ROR γ t, IKKα/β, TRAF2, and NF-κ B p50, upregulated the expression of GATA-3 and alleviated synovial cells inflammation proliferation, contributing to the FLSs apoptosis. CONCLUSION XFHM could attenuate the inflammation of synovium by inhibiting T lymphocyte cell migration, regulating differentiation of T cells through modulating the activation of the NF-κ B signaling pathway.
Collapse
Affiliation(s)
- Dongyang Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Song Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yingkai Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Pingxin Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guiyu Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Wei
- Department of Pharmacy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Limin Chai
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|