1
|
Chauhan A, Boora GS, Maitra A, Gupta R, Bakshi J, Ghoshal S, Pal A. PADI4 expression in baseline circulating tumour cells acts as a prognostic biomarker in oral squamous cell carcinoma. THE JOURNAL OF LIQUID BIOPSY 2025; 7:100289. [PMID: 40027234 PMCID: PMC11863982 DOI: 10.1016/j.jlb.2025.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025]
Abstract
Oral Squamous Cell Carcinoma (OSCC), one of the most prevalent cancers in developing countries. It is associated with poor prognosis due to relapse in a significant number of patients. Circulating tumour cells (CTCs) are precursors for metastasis and thought to be key players in early relapse in various cancers including OSCC. Though CTC enumeration has been associated with disease outcome, in-depth molecular analysis of CTCs remained minimal as the techniques for CTC isolation and analysis are challenging. While exploring gene expression in CTCs, we performed whole transcriptome analysis of paired primary tumour and CTCs isolated from Oral Squamous Cell Carcinoma (OSCC) patients. Various genes were found to be differentially expressed in CTCs. We found PADI4 gene was significantly upregulated in CTCs. PADI4 gene encodes for an enzyme that converts arginine to citrulline. PADI4 expression in primary tumours was previously observed to be associated with metastasis. Here, we are reporting PADI4 expression for the first time in CTCs and its association with relapse. Interestingly in our data, PADI4 expression was more seen in CTCs with EMT (epithelial to mesenchymal transition)-phenotype than with CTCs only epithelial-phenotype. In conclusion, this is the first study presenting the potential prognostic utility of PADI4 expression in CTCs isolated from OSCC patients.
Collapse
Affiliation(s)
- Anshika Chauhan
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Geeta S. Boora
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arindam Maitra
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Rijuneeta Gupta
- Department of ENT, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Jaimanti Bakshi
- Department of ENT, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Alturki MS, Gomaa MS, Tawfeeq N, Al Khzem AH, Shaik MB, Alshaikh Jafar M, Alsamen M, Al Nahab H, Al-Eid M, Almutawah A, Rants’o TA, Ayil KAG, Almaghrabi M. A Multifaceted Computational Approach to Identify PAD4 Inhibitors for the Treatment of Rheumatoid Arthritis (RA). Metabolites 2025; 15:156. [PMID: 40137121 PMCID: PMC11943705 DOI: 10.3390/metabo15030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Neutrophil cells' lysis forms the extracellular traps (NETs) to counter the foreign body during insults to the body. Peptidyl arginine deiminase (PAD) participates in this process and is then released into the extracellular fluid with the lysed cell components. In some diseases, patients with abnormal function of PADs, especially PAD 4, tend to form autoantibodies against the abnormal citrullinated proteins that are the result of PAD activity on arginine side chains. Those antibodies, which are highly distinct in RA, are distinctly anti-citrullinated protein antibodies (ACPA). This study used an in-silico drug repurposing approach of FDA-approved medications to identify potential alternative medications that can inhibit this process and address solutions to the current limitations of existing therapies. METHODS We utilized Maestro Schrödinger as a computational tool for preparing and docking simulations on the PAD 4 enzyme crystal structure that is retrieved from RCSB Protein Data Bank (PDB ID: 4X8G) while the docked FDA-approved medications are obtained from the Zinc 15 database. The protein was bound to GSK 199-an investigational compound-as a positive control for the docked molecules. Preparation of the protein was performed by Schrödinger Protein Preparation Wizard tool. Binding pocket determination was performed by Glide software (Schrödinger Release 2021-3:Schrödinger, LLC., New York, NY, USA, 2021). and validation of molecular docking was carried out through the redocking of GSK 199 and superimposition. After that, standard and induced fit docking were performed. RESULTS/CONCLUSIONS Among the four obtained hits Pemetrexed, Leucovorin, Chlordiazepoxide, and Ioversol, which showed the highest XP scores providing favorable binding interactions. The induced-fit docking (IFD) results displayed the strong binding affinities of Ioversol, Pemetrexed, Leucovorin, Chlordiazepoxide in the order IFD values -11.617, -10.599, -10.521, -9.988, respectively. This research investigates Pemetrexed, Leucovorin, Chlordiazepoxide, and Ioversol as potential repurposing agents in the treatment of rheumatoid arthritis (RA) as they are identified as PAD4 inhibitors.
Collapse
Affiliation(s)
- Mansour S. Alturki
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (N.T.); (A.H.A.K.); (M.B.S.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (N.T.); (A.H.A.K.); (M.B.S.)
| | - Nada Tawfeeq
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (N.T.); (A.H.A.K.); (M.B.S.)
| | - Abdulaziz H. Al Khzem
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (N.T.); (A.H.A.K.); (M.B.S.)
| | - Mohsina B. Shaik
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (N.T.); (A.H.A.K.); (M.B.S.)
| | - Murtadha Alshaikh Jafar
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.J.); (M.A.); (H.A.N.); (M.A.-E.); (A.A.)
| | - Mohammad Alsamen
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.J.); (M.A.); (H.A.N.); (M.A.-E.); (A.A.)
| | - Hasan Al Nahab
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.J.); (M.A.); (H.A.N.); (M.A.-E.); (A.A.)
| | - Mohammad Al-Eid
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.J.); (M.A.); (H.A.N.); (M.A.-E.); (A.A.)
| | - Alhassan Almutawah
- College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (M.A.J.); (M.A.); (H.A.N.); (M.A.-E.); (A.A.)
| | - Thankhoe A. Rants’o
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA;
| | - Khaled A. G. Ayil
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia;
| |
Collapse
|
3
|
Malik A, Hassan M, Waquar S, Wasim M, Naz A, Awan FM, Khan MT, Khawaja AI, Zaib S, Iqbal J, Zahid A, Marvi M, Iqbal J, Wang H, Wei DQ. Neuroprotective role of epigallocatechin-3-gallate, albeginin and melanoxetin in alzheimer's disease. PHYTOMEDICINE PLUS 2025; 5:100740. [DOI: 10.1016/j.phyplu.2025.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
|
4
|
Panda B, Chilvery S, Devi P, Kalmegh R, Godugu C. Inhibition of peptidyl arginine deiminase-4 ameliorated pulmonary fibrosis via modulating M1/M2 polarisation of macrophages. Life Sci 2025; 362:123354. [PMID: 39755270 DOI: 10.1016/j.lfs.2024.123354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression. PAD-4 inhibitor chloro-amidine (CLA) has shown anti-fibrotic effects in bleomycin (BLM) induced PF mouse model in our earlier study. Here, we have demonstrated that CLA also exhibited inhibition of macrophage polarisation in in-vitro in THP-1 monocytes and in-vivo in BLM induced PF. THP-1 monocytes were exposed to NETs isolated from phorbol 12-myristate-13-acetate (PMA) stimulated and PMA plus CLA treated differentiated HL-60 (dHL-60) cells. Monocytes exposed to stimulated NETs resulted in increased oxidative stress, disrupted mitochondrial membrane potential and increased M1 and M2 macrophage markers. These alterations were abrogated in THP-1 cells upon exposure to CLA treated NETs. Further, CLA treatment in BLM induced mice improved abnormal BALF, biochemical, and histological parameters in line with our previous findings. Additionally, CLA also reduced M1 and M2 markers time-dependently, as shown by immunofluorescence (IF), western blot, and RT-PCR analysis. CLA treatment led to decreased expression of PAD-4, M1-related pro-inflammatory cytokines and M2-related pro-fibrotic cytokines and mediators, as confirmed by western blot and ELISA analysis. Thus, it is established that inhibition of PAD-4 lead to mitigation of macrophage polarisation and a combined anti-fibrotic effect is achieved which can be explored further.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Shrilekha Chilvery
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Priyanka Devi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Radha Kalmegh
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India.
| |
Collapse
|
5
|
Aripova N, Duryee MJ, Zhou W, England BR, Hunter CD, Klingemann LE, Aripova N, Nelson AJ, Katafiasz D, Bailey KL, Poole JA, Thiele GM, Mikuls TR. Citrullinated and malondialdehyde-acetaldehyde-modified fibrinogen activates macrophages and promotes profibrotic responses in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2025; 328:L134-L147. [PMID: 39560968 PMCID: PMC11905797 DOI: 10.1152/ajplung.00153.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024] Open
Abstract
The objective of this study was to assess fibrinogen (FIB) comodified with citrulline (CIT) and/or malondialdehyde-acetaldehyde (MAA) initiates macrophage-fibroblast interactions, leading to extracellular matrix (ECM) deposition that characterizes rheumatoid arthritis-associated interstitial lung disease (RA-ILD). Macrophages (Mϕ) were stimulated with native-FIB, FIB-CIT, FIB-MAA, or FIB-MAA-CIT. Supernatants (SNs) [Mϕ-SN (U-937-derived) or MϕP-SN (PBMC-derived)] or direct antigens were coincubated with human lung fibroblasts (HLFs). Gene expression was examined using RT-PCR. ECM deposition was quantified using immunohistochemistry and Western blot; cell signaling mechanisms were delineated. Platelet-derived growth factor (PDGF)-BB and TGF-β were measured in macrophage supernatants, and inhibition studies were performed using Su16f and SB431542, respectively. HLF gene expression of CD36, COL6A3, MMP-9, MMP-10, and MMP-12 was increased following stimulations with Mϕ-SN generated from modified FIB but not from direct antigens. HLF stimulated with MϕP-SNFIB-MAA-CIT derived from patients with RA-ILD resulted in 4- to 30-fold increases in COL6A3 and MMP12 expression; upregulation was greater in HLFs stimulated with MϕP-SN derived from RA-ILD versus controls. HLF exposure to Mϕ-SNFIB-MAA-CIT increased types I/VI collagen deposition versus all other Mϕ-SN groups and was greater than FIB-MAA-CIT stimulation. PDGF-BB and TGF-β signaling had the highest concentrations identified in Mϕ-SNFIB-MAA-CIT and MϕP-SNFIB-MAA-CIT, particularly from RA-ILD-derived cells. PDGF-BB and TGF-β inhibitors, alone and in combination, significantly reduced HLF-mediated ECM deposition from Mϕ-SN stimulations. These results show that comodified fibrinogen activates macrophages to produce PDGF-BB and TGF-β that promotes an aggressive HLF phenotype characterized by increased ECM deposition. These results suggest that targeting CIT and/or MAA modifications or downstream cellular signals could represent novel approaches to RA-ILD treatment.NEW & NOTEWORTHY This report demonstrates that fibrinogen simultaneously harboring two common posttranslational modifications activates macrophages to secrete platelet-derived growth factor (PDGF)-BB and transforming growth factor (TGF)-β. Resulting cross talk between activated macrophages and human lung fibroblasts leads to marked increases in extracellular matrix deposition. These protein modifications are abundant and colocalize in lung tissues from patients with rheumatoid arthritis-associated interstitial lung disease (RA-ILD), and the results suggest that agents targeting citrullination and/or malondialdehyde-acetaldehyde (MAA) adduct formation could represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Nozima Aripova
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Michael J Duryee
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| | - Wenxian Zhou
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Bryant R England
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| | - Carlos D Hunter
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| | - Lauren E Klingemann
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Nigina Aripova
- Department of Biology, Washington University in Saint Louis, Saint Louis, Missouri, United States
| | - Amy J Nelson
- Division of Allergy & Immunology, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Dawn Katafiasz
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Kristina L Bailey
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Jill A Poole
- Division of Allergy & Immunology, Department of Internal Medicine, Omaha, Nebraska, United States
| | - Geoffrey M Thiele
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| | - Ted R Mikuls
- Division of Rheumatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States
- Veteran Affairs Nebraska-Western Iowa Health Care System, Research Services 151, Omaha, Nebraska, United States
| |
Collapse
|
6
|
Jha P, Rajoria P, Poonia P, Chopra M. Identification of novel PAD2 inhibitors using pharmacophore-based virtual screening, molecular docking, and MD simulation studies. Sci Rep 2024; 14:28097. [PMID: 39543332 PMCID: PMC11564549 DOI: 10.1038/s41598-024-78330-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
In the realm of epigenetic regulation, Protein arginine deiminase 2 (PAD2) stands out as a therapeutic target due to its significant role in neurological disorders, rheumatoid arthritis (RA), multiple sclerosis (MS), and various cancers. To date, no in silico studies have focused on PAD2 for lead compound identification. Therefore, we conducted structure-based pharmacophore modeling, virtual screening, molecular docking, molecular dynamics (MD) simulations, and essential dynamics studies using PCA and free energy landscape analyses to identify repurposed drugs and selective inhibitors against PAD2. The best pharmacophore model, 'Pharm_01,' had a selectivity score of 10.485 and an excellent ROC curve quality of 0.972. Pharm1 consisted of three hydrogen bond donors (HBD) and two hydrophobic (Hy) features (DDDHH). A virtual screening of about 9.2 million compounds yielded 2575 hits using a fit value threshold of 2.5 and drug-likeness criteria. Molecular docking identified the top ten molecules, which were verified using MD simulations. Stability was verified using MM-PBSA studies, whereas conformational differences were investigated using PCA and free energy landscape analyses. Two hits (Leads 1 and 2) from the DrugBank dataset showed promise for repurposing as PAD2 inhibitors, while one hit compound (Lead 8) from the ZINC database emerged as a novel PAD2 inhibitor. These findings indicate that the discovered compounds may be potent PAD2 inhibitors, necessitating additional preclinical and clinical research to produce viable treatments for cancer and neurological disorders.
Collapse
Affiliation(s)
- Prakash Jha
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Prerna Rajoria
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Priya Poonia
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anti-Cancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
7
|
Baird R, Yusuf A, Forde L, Pohl K, Kavanagh K, Fitzpatrick F, Gogoi D, Reeves EP. The vacuolar anti- Pseudomonal activity of neutrophil primary granule peptidyl-arginine deiminase enzymes. Front Immunol 2024; 15:1452393. [PMID: 39493757 PMCID: PMC11527647 DOI: 10.3389/fimmu.2024.1452393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/13/2024] [Indexed: 11/05/2024] Open
Abstract
The role of neutrophils in host defense involves several cell processes including phagocytosis, degranulation of antimicrobial proteins, and the release of neutrophil extracellular traps (NETs). In turn, dysregulated cell activity is associated with the pathogenesis of airway and rheumatic diseases, in which neutrophil-derived enzymes including peptidyl-arginine deiminases (PADs) play a role. Known physiological functions of PADs in neutrophils are limited to the activity of PAD isotype 4 in histone citrullination in NET formation. The aim of this study was to extend our knowledge on the role of PADs in neutrophils and, specifically, bacterial killing within the confines of the phagocytic vacuole. Human neutrophils were fractionated by sucrose gradient ultracentrifuge and PADs localized in subcellular compartments by Western blot analysis. Direct interaction of PADs with Pseudomonas aeruginosa (P. aeruginosa) was assessed by flow cytometry and Western blot overlay. The participation of neutrophil PAD2 and PAD4 in killing of P. aeruginosa was assessed by inclusion of PAD-specific inhibitors. In vitro, bactericidal activity of recombinant human PAD2 or PAD4 enzymes against P. aeruginosa was determined by enumeration of colony-forming units (CFU). Together with neutrophil elastase (NE), PAD2 and PAD4 were localized to primary granules and, following activation with particulate stimuli, were degranulated in to the phagocytic vacuole. In vitro, PAD2 and PAD4 bound P. aeruginosa (p = 0.04) and significantly reduced bacterial survival to 49.1 ± 17.0 (p < 0.0001) and 48.5 ± 13.9% (p < 0.0001), respectively. Higher antibacterial activity was observed at neutral pH levels with the maximum toxicity at pH 6.5 and pH 7.5, comparable to the effects of neutrophil bactericidal permeability increasing protein. In phagosomal killing assays, inclusion of the PAD2 inhibitor, AFM-30a, or PAD4 inhibitor, GSK484, significantly increased survival of P. aeruginosa (AFM-30a, p = 0.05; and GSK484, p = 0.0079). Results indicate that PAD2 and PAD4 possess antimicrobial activity and are directly involved in the neutrophil antimicrobial processes. This study supports further research into the development of PAD-based antimicrobials.
Collapse
Affiliation(s)
- Rory Baird
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Azeez Yusuf
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Luke Forde
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Kerstin Pohl
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Kildare, Ireland
| | - Fidelma Fitzpatrick
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - Debananda Gogoi
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P. Reeves
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
8
|
Noone D, Preston RJS, Rehill AM. The Role of Myeloid Cells in Thromboinflammatory Disease. Semin Thromb Hemost 2024; 50:998-1011. [PMID: 38547918 DOI: 10.1055/s-0044-1782660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor-mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell-mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.
Collapse
Affiliation(s)
- David Noone
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| |
Collapse
|
9
|
Pasquero S, Gugliesi F, Biolatti M, Albano C, Bajetto G, Trifirò L, Raviola S, Dell’Oste V, De Andrea M. Targeting Peptidylarginine Deiminase 3 to Efficiently Suppress Herpes Simplex Virus Type 2 Infection. Int J Mol Sci 2024; 25:8709. [PMID: 39201398 PMCID: PMC11354815 DOI: 10.3390/ijms25168709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Protein expression is regulated through multiple mechanisms, including post-translational modifications (PTMs), which can alter protein structure, stability, localization, and function. Among these, citrullination stands out due to its ability to convert arginine residues into citrulline, altering protein charge and mass. This modification is catalyzed by calcium-dependent protein arginine deiminases (PADs), enzymes implicated in various inflammatory diseases. We have recently shown that human cytomegalovirus (HCMV) and herpes simplex virus type 1 (HSV-1) exploit these enzymes to enhance their replication capabilities. Although the role of PADs in HCMV and HSV-1 infections is well documented, their involvement in HSV-2 infection has not yet been thoroughly investigated. Here, we demonstrate that HSV-2 manipulates the overall protein citrullination profile by activating three PAD isoforms: PAD2, PAD3, and PAD4. However, as previously observed during HSV-1 infection, PAD3 is the most significantly upregulated isoform, both at the mRNA and protein levels. Consistently, we demonstrate that inhibiting PAD3, either through the specific inhibitor CAY10727 or via CRISPR/Cas9-mediated gene silencing, markedly reduces HSV-2 replication and viral protein expression. Lastly, we show that CAY10727 displays an IC50 value of 0.3 μM, which is extremely close to what was previously observed for HSV-1. Overall, our findings highlight the crucial role of PAD3 in the life cycle of HSV-2 and suggest that the targeted inhibition of PAD3 may represent a promising approach for treating HSV-2 infections, especially in cases resistant to existing antiviral therapies.
Collapse
Affiliation(s)
- Selina Pasquero
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10124 Turin, Italy; (S.P.)
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10124 Turin, Italy; (S.P.)
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10124 Turin, Italy; (S.P.)
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10124 Turin, Italy; (S.P.)
| | - Greta Bajetto
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10124 Turin, Italy; (S.P.)
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, 28100 Novara, Italy
| | - Linda Trifirò
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10124 Turin, Italy; (S.P.)
| | - Stefano Raviola
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, 28100 Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10124 Turin, Italy; (S.P.)
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, Medical School, University of Turin, 10124 Turin, Italy; (S.P.)
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, 28100 Novara, Italy
| |
Collapse
|
10
|
Ma H, Liang X, Li SS, Li W, Li TF. The role of anti-citrullinated protein antibody in pathogenesis of RA. Clin Exp Med 2024; 24:153. [PMID: 38972923 PMCID: PMC11228005 DOI: 10.1007/s10238-024-01359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/21/2024] [Indexed: 07/09/2024]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune rheumatic disease that causes chronic synovitis, bone erosion, and joint destruction. The autoantigens in RA include a wide array of posttranslational modified proteins, such as citrullinated proteins catalyzed by peptidyl arginine deiminase4a. Pathogenic anti-citrullinated protein antibodies (ACPAs) directed against a variety of citrullinated epitopes are abundant both in plasma and synovial fluid of RA patients. ACPAs play an important role in the onset and progression of RA. Intensive and extensive studies are being conducted to unveil the mechanisms of RA pathogenesis and evaluate the efficacy of some investigative drugs. In this review, we focus on the formation and pathogenic function of ACPAs.
Collapse
Affiliation(s)
- Hang Ma
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xu Liang
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shan-Shan Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Wei Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tian-Fang Li
- Department of Rheumatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
11
|
Otsuka Y, Masuta Y, Minaga K, Okai N, Hara A, Takada R, Masaki S, Kamata K, Honjo H, Yamashita K, Kudo M, Watanabe T. Reciprocal regulation of protein arginine deiminase 2 and 4 expression in the colonic mucosa of ulcerative colitis. J Clin Biochem Nutr 2024; 75:46-53. [PMID: 39070530 PMCID: PMC11273265 DOI: 10.3164/jcbn.23-77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 07/30/2024] Open
Abstract
Neutrophils express protein arginine deiminase 2 and PAD4, both of which mediate the citrullination of target proteins to induce production of neutrophil extracellular traps. Although PAD-dependent NETs trigger inflammatory bowel disease, the mechanisms governing the expression of PAD2 and PAD4 are poorly understood. In this study, we tried to clarify expression mechanisms of PAD2 and PAD4 in the colonic mucosa of patients with ulcerative colitis and Crohn's disease. Administration of Cl-amidine, a pan PAD-inhibitor, attenuated the development of dextran sodium sulfate-induced colitis, the effects of which were accompanied by reduced IL-6 and TNF-α production by colonic lamina propria mononuclear cells upon exposure to Toll-like receptor ligands. The mRNA expression of colonic PAD2 and PAD4 was negatively and positively correlated with disease activity and pro-inflammatory cytokine responses in patients with UC, respectively. Reciprocal regulation of PAD2 and PAD4 mRNA expression was observed in the colonic mucosa of UC patients, but not in those of CD patients. PAD4 mRNA expression was correlated with disease activity and pro-inflammatory cytokine responses in patients with CD. Collectively, these data suggest that reciprocal regulation of PAD2 and PAD4 expression is associated with disease activity in UC patients.
Collapse
Affiliation(s)
- Yasuo Otsuka
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yasuhiro Masuta
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Natsuki Okai
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Akane Hara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ryutaro Takada
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Sho Masaki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Ken Kamata
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hajime Honjo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kouhei Yamashita
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, 54 Shogoin-kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
12
|
Murphy MP, Hunt D, Herron M, McDonnell J, Alshuhoumi R, McGarvey LP, Fabré A, O’Brien H, McCarthy C, Martin SL, McElvaney NG, Reeves EP. Neutrophil-Derived Peptidyl Arginine Deiminase Activity Contributes to Pulmonary Emphysema by Enhancing Elastin Degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:75-85. [PMID: 38758115 PMCID: PMC11212725 DOI: 10.4049/jimmunol.2300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024]
Abstract
In chronic obstructive pulmonary disease (COPD), inflammation gives rise to protease-mediated degradation of the key extracellular matrix protein, elastin, which causes irreversible loss of pulmonary function. Intervention against proteolysis has met with limited success in COPD, due in part to our incomplete understanding of the mechanisms that underlie disease pathogenesis. Peptidyl arginine deiminase (PAD) enzymes are a known modifier of proteolytic susceptibility, but their involvement in COPD in the lungs of affected individuals is underexplored. In this study, we showed that enzyme isotypes PAD2 and PAD4 are present in primary granules of neutrophils and that cells from people with COPD release increased levels of PADs when compared with neutrophils of healthy control subjects. By examining bronchoalveolar lavage and lung tissue samples of patients with COPD or matched smoking and nonsmoking counterparts with normal lung function, we reveal that COPD presents with markedly increased airway concentrations of PADs. Ex vivo, we established citrullinated elastin in the peripheral airways of people with COPD, and in vitro, elastin citrullination significantly enhanced its proteolytic degradation by serine and matrix metalloproteinases, including neutrophil elastase and matrix metalloprotease-12, respectively. These results provide a mechanism by which neutrophil-released PADs affect lung function decline, indicating promise for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.
Collapse
Affiliation(s)
- Mark P. Murphy
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - David Hunt
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Malcolm Herron
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Jake McDonnell
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Rashed Alshuhoumi
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Lorcan P. McGarvey
- Wellcome–Wolfson Centre for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Department of Respiratory Medicine, Royal Victoria Hospital; Belfast Health Social Care Trust, Belfast, United Kingdom
| | - Aurelie Fabré
- Department of Histopathology, St. Vincent’s University Hospital and Department of Medicine, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Helen O’Brien
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - Cormac McCarthy
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Elm Park, Dublin, Ireland
| | - S. Lorraine Martin
- Biomolecular Sciences Research Group, School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Noel G. McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P. Reeves
- Pulmonary Clinical Science, Department of Anaesthesia and Critical Care Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
13
|
Nicolaes GAF, Soehnlein O. Targeting extranuclear histones to alleviate acute and chronic inflammation. Trends Pharmacol Sci 2024; 45:651-662. [PMID: 38853103 DOI: 10.1016/j.tips.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Extracellular histones instigate an inflammatory triad - centered on cytotoxicity, immune cell stimulation, and coagulation - ultimately shaping the dynamics and outcome of various inflammatory pathologies. Given the virtual absence of beneficial functions of histones in the extracellular space, in recent years a number of interference strategies have emerged. In this review we summarize pathogenic functions of extracellular histones and highlight current developments of therapeutic interference. Finally, we elaborate on the current status of preclinical attempts to interfere with extracellular histones in the context of a focus on sepsis and cardiovascular diseases, both of which are leading causes of mortality worldwide.
Collapse
Affiliation(s)
- Gerry A F Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, The Netherlands.
| | - Oliver Soehnlein
- Institute of Experimental Pathology (ExPat), Center of Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany.
| |
Collapse
|
14
|
Dejbakht M, Akhzari M, Jalili S, Faraji F, Barazesh M. Multiple Sclerosis: New Insights into Molecular Pathogenesis and Novel Platforms for Disease Treatment. Curr Drug Res Rev 2024; 16:175-197. [PMID: 37724675 DOI: 10.2174/2589977516666230915103730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS), a chronic inflammatory disorder, affects the central nervous system via myelin degradation. The cause of MS is not fully known, but during recent years, our knowledge has deepened significantly regarding the different aspects of MS, including etiology, molecular pathophysiology, diagnosis and therapeutic options. Myelin basic protein (MBP) is the main myelin protein that accounts for maintaining the stability of the myelin sheath. Recent evidence has revealed that MBP citrullination or deamination, which is catalyzed by Ca2+ dependent peptidyl arginine deiminase (PAD) enzyme leads to the reduction of positive charge, and subsequently proteolytic cleavage of MBP. The overexpression of PAD2 in the brains of MS patients plays an essential role in new epitope formation and progression of the autoimmune disorder. Some drugs have recently entered phase III clinical trials with promising efficacy and will probably obtain approval in the near future. As different therapeutic platforms develop, finding an optimal treatment for each individual patient will be more challenging. AIMS This review provides a comprehensive insight into MS with a focus on its pathogenesis and recent advances in diagnostic methods and its present and upcoming treatment modalities. CONCLUSION MS therapy alters quickly as research findings and therapeutic options surrounding MS expand. McDonald's guidelines have created different criteria for MS diagnosis. In recent years, ever-growing interest in the development of PAD inhibitors has led to the generation of many reversible and irreversible PAD inhibitors against the disease with satisfactory therapeutic outcomes.
Collapse
Affiliation(s)
- Majid Dejbakht
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Sajad Jalili
- Department of Orthopedics, School of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Fouziyeh Faraji
- Department of Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mahdi Barazesh
- Department of Biotechnology, Cellular and Molecular Research Center, School of Paramedical, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
15
|
Pasquero S, Gugliesi F, Biolatti M, Dell’Oste V, Albano C, Bajetto G, Griffante G, Trifirò L, Brugo B, Raviola S, Lacarbonara D, Yang Q, Sudeshna S, Barasa L, Haniff H, Thompson PR, Landolfo S, De Andrea M. Citrullination profile analysis reveals peptidylarginine deaminase 3 as an HSV-1 target to dampen the activity of candidate antiviral restriction factors. PLoS Pathog 2023; 19:e1011849. [PMID: 38055760 PMCID: PMC10727434 DOI: 10.1371/journal.ppat.1011849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a neurotropic virus that remains latent in neuronal cell bodies but reactivates throughout an individual's life, causing severe adverse reactions, such as herpes simplex encephalitis (HSE). Recently, it has also been implicated in the etiology of Alzheimer's disease (AD). The absence of an effective vaccine and the emergence of numerous drug-resistant variants have called for the development of new antiviral agents that can tackle HSV-1 infection. Host-targeting antivirals (HTAs) have recently emerged as promising antiviral compounds that act on host-cell factors essential for viral replication. Here we show that a new class of HTAs targeting peptidylarginine deiminases (PADs), a family of calcium-dependent enzymes catalyzing protein citrullination, exhibits a marked inhibitory activity against HSV-1. Furthermore, we show that HSV-1 infection leads to enhanced protein citrullination through transcriptional activation of three PAD isoforms: PAD2, PAD3, and PAD4. Interestingly, PAD3-depletion by specific drugs or siRNAs dramatically inhibits HSV-1 replication. Finally, an analysis of the citrullinome reveals significant changes in the deimination levels of both cellular and viral proteins, with the interferon (IFN)-inducible proteins IFIT1 and IFIT2 being among the most heavily deiminated ones. As genetic depletion of IFIT1 and IFIT2 strongly enhances HSV-1 growth, we propose that viral-induced citrullination of IFIT1 and 2 is a highly efficient HSV-1 evasion mechanism from host antiviral resistance. Overall, our findings point to a crucial role of citrullination in subverting cellular responses to viral infection and demonstrate that PAD inhibitors efficiently suppress HSV-1 infection in vitro, which may provide the rationale for their repurposing as HSV-1 antiviral drugs.
Collapse
Affiliation(s)
- Selina Pasquero
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Francesca Gugliesi
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Matteo Biolatti
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Valentina Dell’Oste
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Camilla Albano
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Greta Bajetto
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, Novara, Italy
| | - Gloria Griffante
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Linda Trifirò
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Bianca Brugo
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Stefano Raviola
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Davide Lacarbonara
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Qiao Yang
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, P.R. China
| | - Sen Sudeshna
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Leonard Barasa
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Hafeez Haniff
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Paul R. Thompson
- Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts, United States of America
| | - Santo Landolfo
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
| | - Marco De Andrea
- Department of Public Health and Pediatric Sciences, University of Turin – Medical School, Turin, Italy
- CAAD Center for Translational Research on Autoimmune and Allergic Disease, University of Piemonte Orientale, Novara Medical School, Novara, Italy
| |
Collapse
|
16
|
Zheng S, Kummarapurugu AB, Bulut GB, Syed A, Kang L, Voynow JA. Neutrophil elastase activates the release of extracellular traps from COPD blood monocyte-derived macrophages. Clin Transl Sci 2023; 16:2765-2778. [PMID: 37926919 PMCID: PMC10719474 DOI: 10.1111/cts.13671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Neutrophil elastase (NE), a major inflammatory mediator in chronic obstructive pulmonary disease (COPD) airways, impairs macrophage function, contributing to persistence of airway inflammation. We hypothesized that NE activates a novel mechanism of macrophage-induced inflammation: release of macrophage extracellular traps (METs). The METs are composed of extracellular DNA decorated with granule proteinases and oxidants and may trigger persistent airway inflammation in COPD. To test the hypothesis, human blood monocytes were isolated from whole blood of subjects with COPD recruited following informed written consent. Patient demographics and clinical data were collected. Cells were cultured in media with GM-CSF to differentiate into blood monocyte derived macrophages (BMDMs). The BMDMs were treated with FITC-NE and unlabeled NE to determine intracellular localization by confocal microscopy and intracellular proteinase activity by DQ-Elastin assay. After NE exposure, released extracellular traps were quantified by abundance of extracellular DNA in conditioned media using the Pico Green assay. BMDM cell lysates were analyzed by Western analysis for proteolytic degradation of histone H3 or H4 or upregulation of peptidyl arginine deiminase (PAD) 2 and 4, two potential mechanisms to mediate extracellular trap DNA release. We observed that NE was taken up by COPD BMDM, localized to the cytosol and nucleus, and retained proteinase activity in the cell. NE induced MET release at doses as low as 50 nM. NE treatment caused histone H3 clipping but no effect on histone H4 nor PAD 2 or 4 abundance or activity. In summary, NE activated COPD MET release by clipping histone H3, a prerequisite for chromatin decondensation.
Collapse
Affiliation(s)
- Shuo Zheng
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at VCURichmondVirginiaUSA
| | - Apparao B. Kummarapurugu
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at VCURichmondVirginiaUSA
| | - Gamze B. Bulut
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at VCURichmondVirginiaUSA
| | - Aamer Syed
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineVCURichmondVirginiaUSA
| | - Le Kang
- Department of BiostatisticsVCURichmondVirginiaUSA
| | - Judith A. Voynow
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at VCURichmondVirginiaUSA
| |
Collapse
|
17
|
Harada K, Carr SM, Shrestha A, La Thangue NB. Citrullination and the protein code: crosstalk between post-translational modifications in cancer. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220243. [PMID: 37778382 PMCID: PMC10542456 DOI: 10.1098/rstb.2022.0243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/05/2023] [Indexed: 10/03/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are central to epigenetic regulation and cellular signalling, playing an important role in the pathogenesis and progression of numerous diseases. Growing evidence indicates that protein arginine citrullination, catalysed by peptidylarginine deiminases (PADs), is involved in many aspects of molecular and cell biology and is emerging as a potential druggable target in multiple diseases including cancer. However, we are only just beginning to understand the molecular activities of PADs, and their underlying mechanistic details in vivo under both physiological and pathological conditions. Many questions still remain regarding the dynamic cellular functions of citrullination and its interplay with other types of PTMs. This review, therefore, discusses the known functions of PADs with a focus on cancer biology, highlighting the cross-talk between citrullination and other types of PTMs, and how this interplay regulates downstream biological events. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Koyo Harada
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Simon M. Carr
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Amit Shrestha
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Nicholas B. La Thangue
- Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
18
|
Shen K, Zhang M, Zhao R, Li Y, Li C, Hou X, Sun B, Liu B, Xiang M, Lin J. Eosinophil extracellular traps in asthma: implications for pathogenesis and therapy. Respir Res 2023; 24:231. [PMID: 37752512 PMCID: PMC10523707 DOI: 10.1186/s12931-023-02504-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/04/2023] [Indexed: 09/28/2023] Open
Abstract
Asthma is a common, chronic inflammatory disease of the airways that affects millions of people worldwide and is associated with significant healthcare costs. Eosinophils, a type of immune cell, play a critical role in the development and progression of asthma. Eosinophil extracellular traps (EETs) are reticular structures composed of DNA, histones, and granulins that eosinophils form and release into the extracellular space as part of the innate immune response. EETs have a protective effect by limiting the migration of pathogens and antimicrobial activity to a controlled range. However, chronic inflammation can lead to the overproduction of EETs, which can trigger and exacerbate allergic asthma. In this review, we examine the role of EETs in asthma.
Collapse
Affiliation(s)
- Kunlu Shen
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengyuan Zhang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiheng Zhao
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yun Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chunxiao Li
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xin Hou
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Bingqing Sun
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bowen Liu
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Min Xiang
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Jiangtao Lin
- National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, Chinese Academy of Medical Sciences, Friendship Hospital, No.2, East Yinghua Road, Chaoyang District, 100029, Beijing, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
- Beijing University of Chinese Medicine, Beijing, China.
- Peking University Health Science Center, Beijing, China.
| |
Collapse
|
19
|
Teng Y, Chen Y, Tang X, Wang S, Yin K. PAD2: A potential target for tumor therapy. Biochim Biophys Acta Rev Cancer 2023; 1878:188931. [PMID: 37315720 DOI: 10.1016/j.bbcan.2023.188931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Peptide arginine deiminase 2(PAD2) catalyzes the conversion of arginine residues on target proteins to citrulline residues in the presence of calcium ions. This particular posttranslational modification is called citrullination. PAD2 can regulate the transcriptional activity of genes through histone citrullination and nonhistone citrullination. In this review, we summarize the evidence from recent decades and systematically illustrate the role of PAD2-mediated citrullination in tumor pathology and the regulation of tumor-associated immune cells such as neutrophils, monocytes, macrophages and T cells. Several PAD2-specific inhibitors are also presented to discuss the feasibility of anti-PAD2 therapy to treat tumors and the urgent problems to be solved. Finally, we review some recent developments in the development of PAD2 inhibitors.
Collapse
Affiliation(s)
- Yi Teng
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuhang Chen
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xinyi Tang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China; Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
20
|
Tillotson J, Aryal B, Lai L, Beaver JA, Rao VA. Differential Protein Citrullination in Human ER- and ER+ Tumor and Adjacent Healthy Breast Tissue. Biochemistry 2023; 62:893-898. [PMID: 36757899 PMCID: PMC9948284 DOI: 10.1021/acs.biochem.2c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Post-translational modification of arginine to citrulline is catalyzed by members of the peptidylarginine deiminase (PAD) family. Dysregulation of this catalysis is a significant driver of the pathogenesis of numerous inflammatory diseases, including cancer. However, dysregulation of PAD activity has not been examined in breast cancer with respect to hormone receptor status. In this study, we measured PAD enzyme levels using Western blotting and investigated protein citrullination using a mass spectrometry-based proteomics approach in primary estrogen receptor negative (ER-) or positive (ER+) breast tumor and matched adjacent normal tissue. Our findings reveal 72 and 41 citrullinated proteins in ER- tumor and adjacent healthy tissue, respectively, where 20 of these proteins are common between the two groups. We detected 64 and 49 citrullinated proteins in ER+ tumor and adjacent healthy tissue, respectively, where 32 proteins are common. Interestingly, upon comparison of ER- and ER+ tumor tissue, only 32 citrullinated proteins are shared between the two and the rest are unique to the tumor's receptor status. Using the STRING database for protein-protein interaction network analysis, these proteins are involved in protein-folding events (i.e., heat shock proteins) in ER- samples and blood-clotting events (i.e., fibulin) in ER+ samples. Constituents of the extracellular matrix structure (i.e., collagen and fibrinogen) were found in both. Herein, we establish evidence that supports the role of this unique post-translational modification in breast cancer biology. Finally, to aid drug discovery against citrullination, we developed a liquid chromatography-ultraviolet method to measure PAD enzymatic activity and optimized glucagon-like peptide II to quantitatively measure the ability of PADs to citrullinate its substrate.
Collapse
Affiliation(s)
- Joseph Tillotson
- Laboratory
of Applied Biochemistry, Division of Biotechnology Review and Research
III, Office of Biotechnology Products, Center for Drug Evaluation
and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Baikuntha Aryal
- Laboratory
of Applied Biochemistry, Division of Biotechnology Review and Research
III, Office of Biotechnology Products, Center for Drug Evaluation
and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Lo Lai
- Laboratory
of Applied Biochemistry, Division of Biotechnology Review and Research
III, Office of Biotechnology Products, Center for Drug Evaluation
and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Julia A. Beaver
- Oncology
Center of Excellence and Center for Drug Evaluation and Research,
Office of Oncologic Diseases, U.S. Food
and Drug Administration, Silver
Spring, Maryland 20993, United States
| | - V. Ashutosh Rao
- Laboratory
of Applied Biochemistry, Division of Biotechnology Review and Research
III, Office of Biotechnology Products, Center for Drug Evaluation
and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States,
| |
Collapse
|
21
|
Song YH, Wang ZJ, Kang L, He ZX, Zhao SB, Fang X, Li ZS, Wang SL, Bai Y. PADs and NETs in digestive system: From physiology to pathology. Front Immunol 2023; 14:1077041. [PMID: 36761761 PMCID: PMC9902375 DOI: 10.3389/fimmu.2023.1077041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Peptidylarginine deiminases (PADs) are the only enzyme class known to deiminate arginine residues into citrulline in proteins, a process known as citrullination. This is an important post-translational modification that functions in several physiological and pathological processes. Neutrophil extracellular traps (NETs) are generated by NETosis, a novel cell death in neutrophils and a double-edged sword in inflammation. Excessive activation of PADs and NETs is critically implicated in their transformation from a physiological to a pathological state. Herein, we review the physiological and pathological functions of PADs and NETs, in particular, the involvement of PAD2 and PAD4 in the digestive system, from inflammatory to oncological diseases, along with related therapeutic prospects.
Collapse
Affiliation(s)
- Yi-Hang Song
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi-Jie Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Le Kang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zi-Xuan He
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Sheng-Bing Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xue Fang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shu-Ling Wang
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yu Bai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
22
|
Van Bruggen S, Martinod K. The coming of age of neutrophil extracellular traps in thrombosis: Where are we now and where are we headed? Immunol Rev 2022; 314:376-398. [PMID: 36560865 DOI: 10.1111/imr.13179] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombosis remains a major problem in our society, manifesting across multiple demographic groups and with high associated morbidity and mortality. Thrombus development is the result of a complex mechanism in which multiple cell types and soluble factors play a crucial role. One cell that has gained the most attention in recent years is the neutrophil. This key member of the innate immune system can form neutrophil extracellular traps (NETs) in response to activating stimuli in circulation. NETs form a scaffold for thrombus formation, both initiating the process and stabilizing the final product. As the first responders of the host immune system, neutrophils have the flexibility to recognize a variety of molecules and can quickly interact with a range of different cell types. This trait makes them sensitive to exogenous stimuli. NET formation in response to pathogens is well established, leading to immune-mediated thrombus formation or immunothrombosis. NETs can also be formed during sterile inflammation through the activation of neutrophils by fellow immune cells including platelets, or activated endothelium. In chronic inflammatory settings, NETs can ultimately promote the development of tissue fibrosis, with organ failure as an end-stage outcome. In this review, we discuss the different pathways through which neutrophils can be activated toward NET formation and how these processes can result in a shared outcome: thrombus formation. Finally, we evaluate these different interactions and mechanisms for their potential as therapeutic targets, with neutrophil-targeted therapies providing a future approach to treating thrombosis. In contrast to current practices, such treatment could result in reduced pathogenic blood clot formation without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Stijn Van Bruggen
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Kimberly Martinod
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Bissenova S, Ellis D, Mathieu C, Gysemans C. Neutrophils in autoimmunity: when the hero becomes the villain. Clin Exp Immunol 2022; 210:128-140. [PMID: 36208466 PMCID: PMC9750832 DOI: 10.1093/cei/uxac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 01/25/2023] Open
Abstract
Neutrophils were long considered to be a short-lived homogenous cell population, limited to their role as first responders in anti-bacterial and -fungal immunity. While it is true that neutrophils are first to infiltrate the site of infection to eliminate pathogens, growing evidence suggests their functions could extend beyond those of basic innate immune cells. Along with their well-established role in pathogen elimination, utilizing effector functions such as phagocytosis, degranulation, and the deployment of neutrophil extracellular traps (NETs), neutrophils have recently been shown to possess antigen-presenting capabilities. Moreover, the identification of different subtypes of neutrophils points to a multifactorial heterogeneous cell population with great plasticity in which some subsets have enhanced pro-inflammatory characteristics, while others seem to behave as immunosuppressors. Interestingly, the aberrant presence of activated neutrophils with a pro-inflammatory profile in several systemic and organ-specific autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), multiple sclerosis (MS), and type 1 diabetes (T1D) could potentially be exploited in novel therapeutic strategies. The full extent of the involvement of neutrophils, and more specifically that of their various subtypes, in the pathophysiology of autoimmune diseases is yet to be elucidated.
Collapse
Affiliation(s)
- Samal Bissenova
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Darcy Ellis
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Conny Gysemans
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
25
|
Schoen J, Euler M, Schauer C, Schett G, Herrmann M, Knopf J, Yaykasli KO. Neutrophils' Extracellular Trap Mechanisms: From Physiology to Pathology. Int J Mol Sci 2022; 23:12855. [PMID: 36361646 PMCID: PMC9653572 DOI: 10.3390/ijms232112855] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Neutrophils are an essential part of the innate immune system and the first line of defense against invading pathogens. They phagocytose, release granular contents, produce reactive oxygen species, and form neutrophil extracellular traps (NETs) to fight pathogens. With the characterization of NETs and their components, neutrophils were identified as players of the innate adaptive crosstalk. This has placed NETs at the center not only of physiological but also pathological processes. Aside from their role in pathogen uptake and clearance, NETs have been demonstrated to contribute to the resolution of inflammation by forming aggregated NETs able to degrade inflammatory mediators. On the other hand, NETs have the potential to foster severe pathological conditions. When homeostasis is disrupted, they occlude vessels and ducts, serve as sources of autoantigens and danger or damage associated molecular patterns, directly damage tissues, and exaggerate complement activity and inflammation. This review focusses on the understanding of NETs from their formation to their functions in both physiological and pathological processes.
Collapse
Affiliation(s)
- Janina Schoen
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Maximilien Euler
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
26
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
27
|
Kaltenmeier C, Yazdani HO, Handu S, Popp B, Geller D, Tohme S. The Role of Neutrophils as a Driver in Hepatic Ischemia-Reperfusion Injury and Cancer Growth. Front Immunol 2022; 13:887565. [PMID: 35844608 PMCID: PMC9284204 DOI: 10.3389/fimmu.2022.887565] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022] Open
Abstract
The innate immune system plays an essential role in the response to sterile inflammation and its association with liver ischemia and reperfusion injury (IRI). Liver IRI often manifests during times of surgical stress such as cancer surgery or liver transplantation. Following the initiation of liver IRI, stressed hepatocytes release damage-associated molecular patterns (DAMPs) which promote the infiltration of innate immune cells which then initiate an inflammatory cascade and cytokine storm. Upon reperfusion, neutrophils are among the first cells that infiltrate the liver. Within the liver, neutrophils play an important role in fueling tissue damage and tumor progression by promoting the metastatic cascade through the formation of Neutrophil Extracellular Traps (NETs). NETs are composed of web-like DNA structures containing proteins that are released in response to inflammatory stimuli in the environment. Additionally, NETs can aid in mediating liver IRI, promoting tumor progression, and most recently, in mediating early graft rejection in liver transplantation. In this review we aim to summarize the current knowledge of innate immune cells, with a focus on neutrophils, and their role in mediating IRI in mouse and human diseases, including cancer and transplantation. Moreover, we will investigate the interaction of Neutrophils with varying subtypes of other cells. Furthermore, we will discuss the role and different treatment modalities in targeting Neutrophils and NETs to prevent IRI.
Collapse
Affiliation(s)
- Christof Kaltenmeier
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Hamza O. Yazdani
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sanah Handu
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Brandon Popp
- Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - David Geller
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- *Correspondence: Samer Tohme,
| |
Collapse
|