1
|
Xiao Z, Xie J, Zhao X, Chen X, Lu Y, Xu Y, Wu M, An L, Li Q. Role of Pyroptosis in inflammatory bowel disease. Int Immunopharmacol 2025; 155:114619. [PMID: 40209313 DOI: 10.1016/j.intimp.2025.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/12/2025]
Abstract
Inflammatory bowel disease (IBD) is a serious chronic condition marked by persistent and recurrent intestinal ulcers. Although the exact cause of IBD remains unclear, it is generally accepted that a complex interaction among dietary factors, gut microbiota, and immune responses in genetically predisposed individuals contributes to its development. Pyroptosis, an inflammatory form of programmed cell death activated by inflammasomes, is marked by the rupture of cell membranes and the subsequent release of inflammatory mediators. Emerging evidence indicates that pyroptosis plays a crucial role in the pathogenesis of IBD. Moderate pyroptosis activation can enhance intestinal immune defenses, while excessive inflammasome activation can trigger an inflammatory cascade, resulting in increased damage to intestinal tissues. This article reviews the molecular mechanisms underlying pyroptosis and highlights its role in the onset and progression of IBD. Furthermore, We explore recent advancements in IBD treatment, focusing on small molecule compounds that specifically target and inhibit pyroptosis.
Collapse
Affiliation(s)
- Zhiyi Xiao
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Jiling Xie
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Xun Zhao
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Xiangjun Chen
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Yihong Lu
- The Clinical Medical College, Guizhou Medical University, Guiyang 550004, China
| | - Yuanzhao Xu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Manqing Wu
- Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Lingyue An
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| | - Qing Li
- Department of Gastroenterology and Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
2
|
Li L, Mo Q, Wan Y, Zhou Y, Li W, Li W. Antimicrobial peptide AP2 ameliorates Salmonella Typhimurium infection by modulating gut microbiota. BMC Microbiol 2025; 25:64. [PMID: 39910418 PMCID: PMC11796240 DOI: 10.1186/s12866-025-03776-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Endogenous antimicrobial peptides and proteins are essential for shaping and maintaining a healthy gut microbiota, contributing to anti-inflammatory responses and resistance to pathogen colonization. Salmonella enterica subsp. enterica serovar Typhimurium (ST) infection is one of the most frequently reported bacterial diseases worldwide. Manipulation of the gut microbiota through exogenous antimicrobial peptides may protect against ST colonization and improve clinical outcomes. RESULTS This study demonstrated that oral administration of the antimicrobial peptide AP2 (2 µg /mouse), an optimized version of native apidaecin IB (AP IB), provided protective effects against ST infection in mice. These effects were evidenced by reduced ST-induced body weight loss and lower levels of serum inflammatory cytokines. A 16 S rRNA-based analysis of the cecal microbiota revealed that AP2 significantly modulated the gut microbiota, increasing the relative abundance of Bifidobacterium while decreasing that of Akkermansia at the genus level. Furthermore, the transplantation of fecal microbiota from AP2-treated donor mice, rather than from Control mice, significantly reduced cecal damage caused by ST and decreased the concentration of ST by one order of magnitude after infection. CONCLUSIONS These findings reveal a novel mechanism by which exogenous antimicrobial peptides mitigate Salmonella Typhimurium infection through the modulation of gut microbiota.
Collapse
Affiliation(s)
- Lianglan Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiufen Mo
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China
- College of Food and Health, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Wan
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yuanhao Zhou
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weiqin Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Weifen Li
- Key Laboratory of Animal Molecular Nutrition of Education of Ministry, College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Chen K, Wang J, Hu T, Zhao Y, Wu Y, Wang X, Li W, Yang G, Zhang L, Wang J, Zhu Y. Salmonella enterica serovar typhimurium effectors spiA and spiC promote replication by modulating iron metabolism and oxidative stress. Vet Microbiol 2025; 300:110328. [PMID: 39674031 DOI: 10.1016/j.vetmic.2024.110328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/22/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) poses a major threat to the health and safety of animal-derived foods worldwide. Recently, we have reported that S. Typhimurium uses iron to promote its own proliferation, leading to iron metabolism disorders. However, the mechanism by which S. Typhimurium induces iron metabolism disturbances remains unclear. In this study, we found that the S. Typhimurium effectors spiA and spiC promote the expression of iron regulatory protein 2 (IRP2), transferrin receptor 1 (TfR1) and divalent metal transporter protein 1 (DMT1) and inhibit the expression of ferroportin after transfection with the recombinant plasmids pEGFP-C1-spiA and pEGFP-C1-spiC, which in turn contributes to the accumulation of iron and oxidative stress. Furthermore, we aimed to verify the role of these two effector proteins in S. Typhimurium-induced disorders of iron metabolism. We constructed spiA or spiC mutant strains and their corresponding complementation strains. Our data showed that when spiA or spiC was knocked out, the upregulation of iron metabolism proteins (IRP2, TfR1 and DMT1), the accumulation of iron and oxidative stress caused by the wild-type strain were clearly alleviated in vitro and in vivo, which plays a key role in reducing the intracellular replication of S. Typhimurium and attenuating pathological damage to the liver and ileum of mice. Our findings highlighted that S. Typhimurium induces the disruption of iron metabolism via the virulence factors spiA and spiC, thereby facilitating S. Typhimurium proliferation and causing oxidative damage to the liver and ileum, which provides prospective insights into the search for effective antimicrobial targets for the defense against salmonellosis.
Collapse
Affiliation(s)
- Keyuan Chen
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Ting Hu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yiqing Zhao
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yi Wu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Wei Li
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Linlin Zhang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya 572000, China.
| |
Collapse
|
4
|
Meng Y, Zhang Q, Xu M, Ding K, Yu Z, Li J. Pyroptosis regulation by Salmonella effectors. Front Immunol 2024; 15:1464858. [PMID: 39507539 PMCID: PMC11538000 DOI: 10.3389/fimmu.2024.1464858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The genus Salmonella contains the most common foodborne pathogens frequently isolated from food-producing animals and is responsible for zoonotic infections in humans and animals. Salmonella infection in humans and animals can cause intestinal damage, resulting in intestinal inflammation and disruption of intestinal homeostasis more severe cases can lead to bacteremia. Pyroptosis, a proinflammatory form of programmed cell death, is involved in many disease processes. Inflammasomes, pyroptosis, along with their respective signaling cascades, are instrumental in the preservation of intestinal homeostasis. In recent years, with the in-depth study of pyroptosis, our comprehension of the virulence factors and effector proteins in Salmonella has reached an extensive level, a deficit persists in our knowledge regarding the intrinsic pathogenic mechanisms about pyroptosis, necessitating a continued pursuit of understanding and investigation. In this review, we discuss the occurrence of pyroptosis induced by Salmonella effectors to provide new ideas for elucidating the regulatory mechanisms through which Salmonella virulence factors and effector proteins trigger pyroptosis could pave the way for novel concepts and strategies in the clinical prevention of Salmonella infections and the treatment of associated diseases.
Collapse
Affiliation(s)
- Yuan Meng
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qianjin Zhang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mengen Xu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Li
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
5
|
Shan Q, Wang X, Yang H, Zhu Y, Wang J, Yang G. Bacillus cereus CwpFM induces colonic tissue damage and inflammatory responses through oxidative stress and the NLRP3/NF-κB pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173079. [PMID: 38735331 DOI: 10.1016/j.scitotenv.2024.173079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Bacillus cereus (B. cereus) from cow milk poses a threat to public health, causing food poisoning and gastrointestinal disorders in humans. We identified CwpFM, an enterotoxin from B. cereus, caused oxidative stress and inflammatory responses in mouse colon and colonic epithelial cells. Colon proteomics revealed that CwpFM elevated proteins associated with inflammation and oxidative stress. Notably, CwpFM induced activation of the NLRP3/NF-κB signaling, but suppressed antioxidant NFE2L2/HO-1 expression in the intestine and epithelial cells. Consistently, CwpFM exposure led to cytotoxicity and ROS accumulation in Caco-2 cells in a dose-dependent manner. Further, NAC (ROS inhibitor) treatment abolished NLRP3/NF-κB activation due to CwpFM. Moreover, overexpression of Nfe2l2 or activation of NFE2L2 by NK-252 reduced ROS production and inhibited activation of the NLRP3/NF-κB pathway. Inhibition of NF-κB by ADPC and/or suppression of NLRP3 by MCC950 attenuated CwpFM-induced inflammatory responses in Caco-2 cells. Collectively, CwpFM induced oxidative stress and NLRP3/NF-κB activation by inhibiting the NFE2L2/HO-1 signaling and ROS accumulation, leading to the development of intestinal inflammation. Our data elucidate the role of oxidative stress and innate immunity in CwpFM enterotoxicity and contribute to developing diagnostic and therapeutic products for B. cereus-related food safety issues.
Collapse
Affiliation(s)
- Qiang Shan
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Xue Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Hao Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yaohong Zhu
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Jiufeng Wang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, Sanya 572025, China.
| | - Guiyan Yang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Jung HR, Lee YJ. Prevalence and characterization of non-typhoidal Salmonella in egg from grading and packing plants in Korea. Food Microbiol 2024; 120:104464. [PMID: 38431312 DOI: 10.1016/j.fm.2024.104464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024]
Abstract
Egg washing guidelines vary across countries; however, since 2020, Korea has required that all eggs produced from farms with more than 10,000 laying hens must be washed through egg grading and packing (GP) plant. This study investigated the prevalence and characterization of non-typhoidal Salmonella in eggs after washing at GP plants. In total, 16,800 eggs were collected from 60 egg GP plants located inside commercial layer farms, and 840 pooled eggshell and egg contents were tested for Salmonella, respectively. Of the 60 GP plants tested, 11 (18.3%) and 12 (20.0%) plants were positive for Salmonella spp. In the eggshells and egg contents, respectively. In particular, High Salmonella prevalence in the eggshells and egg contents occurred most often in farms with laying hens older than 80 weeks (33.3% and 40.0%, respectively). However, among 840 pooled eggshells and egg content samples, only 19 (2.3%) of each sample type were positive only for non-typhoidal Salmonella spp. The most common Salmonella serovar in both eggshells and egg contents was S. Infantis, which was found in five (8.3%) of 60 GP plants for both samples types. The other Salmonella serovars detected in eggshells were S. Bareilly (5.0%), S. Agona (3.3%), S. Enteritidis (1.7%), and S. Montevideo (1.7%), whereas those detected in egg contents were S. Enteritidis (5.0%), S. Agona (3.3%), S. Newport (3.3%), S. Senftenberg (3.3%), and S. Derby (1.7%). Of the 19 virulence genes tested, 14 genes were detected in all Salmonella. Interestingly, the spvB gene was detected only in S. Enteritidis, and the sefC gene was detected only in S. Enteritidis and S. Senftenberg. Moreover, all S. Infantis isolates showed multidrug resistance (MDR) against five or more classes, and the other serovars only showed MDR against three to four classes or no MDR. These results suggest that comprehensive surveillance and advanced management approaches for egg GP plants are required to minimize egg contamination with non-typhoidal Salmonella.
Collapse
Affiliation(s)
- Hye-Ri Jung
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Young Ju Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Qiu B, Zhang T, Qin X, Ma S, Wang Q. The immune factors have complex causal regulation effects on inflammatory bowel disease. Front Immunol 2024; 14:1322673. [PMID: 38264669 PMCID: PMC10803565 DOI: 10.3389/fimmu.2023.1322673] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Background Although a correlation between immune cell phenotypes and inflammatory bowel disease (IBD) has been established, a causal relationship remains unestablished. Methods To assess causal associations between immune cell phenotypes and IBD and its subtypes, we employed Mendelian randomization (MR) methods and genome-wide association studies (GWAS) summary statistics. The primary outcomes were determined based on the inverse variance weighting (IVW) results, with the assessment of heterogeneity and pleiotropy conducted through Cochrane's Q-test and MR-Egger. The stability of the MR results was then examined using leave-one-out analysis, and false discovery rate (FDR) correction was applied to evaluate the strength of the causal relationship between exposure and outcome. Furthermore, to identify immunophenotypes strongly associated with IBD, a meta-integration of the effect values of all positive results in both datasets was conducted. Results The analysis of 731 immune cell phenotypes and IBD using MR techniques revealed potential causal associations between 26 phenotypes and IBD. Subsequent meta-integration of the two datasets provided evidence of solid causal associations between 18 immune phenotypes and IBD and its subtypes. Nominal causal associations were also identified in the remaining eight immune phenotypes and IBD and its subtypes. Conclusion Our study confirms causal solid associations between 18 immune phenotypes and IBD, thus guiding future clinical studies.
Collapse
Affiliation(s)
| | | | | | | | - Quan Wang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Vinueza-Burgos C, Medina-Santana J, Maldonado R, Vásquez Y, Lincango L, Villagomez E, Gómez C, Ron-Garrido L, Cevallos-Almeida MB. Evaluation of Virulence of Salmonella Infantis and Salmonella Enteritidis with In Vitro and In Vivo Models. Foodborne Pathog Dis 2023; 20:484-491. [PMID: 37668605 DOI: 10.1089/fpd.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023] Open
Abstract
Salmonella Infantis and Enteritidis serovars have been reported as important causes of salmonellosis in humans worldwide. However, the virulence of these two serovars has yet to be compared. To evaluate the virulence of Salmonella Infantis (n = 23) and Salmonella Enteritidis (n = 7), we used two models: the Caco2 cells model (in vitro) and the Galleria mellonella model (in vivo). Additionally, the virulence genes of all tested strains were contrasted with phenotypic outcomes. Results showed that adhesion means were 18.2% for Salmonella Enteritidis and 38.2% for Salmonella Infantis strains. Invasion means were 77.1% for Salmonella Enteritidis and 56.2% for Salmonella Infantis strains. Significant differences were found between serovars in adherence and invasion assays. Mortality rates (58% for Salmonella Enteritidis and 62.6% for Salmonella Infantis) were not significantly different between serotypes. The distribution of virulence genes showed that genes fae (fimbrial adherence determinants) and shdA (nonfimbrial adherence determinants) were only found in Salmonella Infantis strains. On the other hand, the rck gene (invasion) and Plasmid-encoded fimbriae genes (pef A, B, C, D) were present in Salmonella Enteritidis exclusively. In conclusion, this study shows that Salmonella Enteritidis has a higher virulence potential under experimental conditions than Salmonella Infantis. However, more studies are needed to determine the risk that Salmonella Infantis could represent compared with Salmonella Enteritidis. Moreover, other in vivo models should be considered to assess the virulence of these serovars.
Collapse
Affiliation(s)
- Christian Vinueza-Burgos
- Unidad de Investigación en Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Universidad Central del Ecuador, Quito, Ecuador
| | - Jose Medina-Santana
- Unidad de Investigación en Enfermedades Transmitidas por Alimentos y Resistencia a los Antimicrobianos (UNIETAR), Universidad Central del Ecuador, Quito, Ecuador
| | - Ruben Maldonado
- Laboratorio de Sanidad Animal Agencia de Regulación y Control Fito y Zoosanitario, Quito, Ecuador
| | - Yuly Vásquez
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Lisseth Lincango
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Emilia Villagomez
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Carlos Gómez
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| | - Lenin Ron-Garrido
- Centro Internacional de Zoonosis, Universidad Central del Ecuador, Quito, Ecuador
| | - María Belén Cevallos-Almeida
- Laboratorio de Bacteriología y Micología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
9
|
Li W, Ren Q, Ni T, Zhao Y, Sang Z, Luo R, Li Z, Li S. Strategies adopted by Salmonella to survive in host: a review. Arch Microbiol 2023; 205:362. [PMID: 37904066 DOI: 10.1007/s00203-023-03702-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.
Collapse
Affiliation(s)
- Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qili Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ting Ni
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yifei Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Renli Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
10
|
Qin W, Ren Z, Xu C, Cao YN, Sun MA, Huang R, Bao W. Chromatin Accessibility and Transcriptional Landscape during Inhibition of Salmonella enterica by Lactobacillus reuteri in IPEC-J2 Cells. Cells 2023; 12:cells12060968. [PMID: 36980306 PMCID: PMC10046971 DOI: 10.3390/cells12060968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Lactobacillus reuteri is a probiotic with bacteriostatic effects, which can effectively inhibit the activity of pathogens. However, the molecular mechanism underlying the inhibition of pathogens by L. reuteri in intestinal cells remains unclear. Using the porcine intestinal cell line IPEC-J2 as a model, we combined RNA-seq and ATAC-seq methods to delineate the porcine genome-wide changes in biological processes and chromatin accessibility in IPEC-J2 cells stimulated by Salmonella enterica BNCC186354, as well as L. reuteri ATCC 53608. Overall, we found that many porcine transcripts were altered after S. enterica BNCC186354 treatment, while L. reuteri ATCC 53608 treatment partially restored this alteration, such as salmonella infection and PI3K/AKT and MAPK pathways. Combined analysis of these two datasets revealed that 26 genes with similar trends overlapped between gene expression and chromatin accessibility. In addition, we identified potential host functional transcription factors (TFs), such as GATA1, TAL1, TBP, RUNX1, Gmeb1, Gfi1b, RARA, and RXRG, in IPEC-J2 cells that might play a critical role and are targeted by L. reuteri ATCC 53608. Moreover, we verified that PI3K/AKT, MAPK, and apoptosis pathways are potentially regulated by S. enterica BNCC186354 but restored by L. reuteri ATCC 53608. The PI3K/AKT pathway was activated by L. reuteri ATCC 53608, thereby potentially inhibiting S. enterica BNCC186354 infection. In conclusion, our data provide new insights into the expression pattern of functional genes and the epigenetic alterations in IPEC-J2 cells underlying the bacteriostatic action of L. reuteri ATCC 53608.
Collapse
Affiliation(s)
- Weiyun Qin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhanshi Ren
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ya-Nan Cao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ming-An Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ruihua Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
11
|
Chen K, Wang J, Guo L, Wang J, Yang L, Hu T, Zhao Y, Wang X, Zhu Y. Lactobacillus johnsonii L531 Ameliorates Salmonella enterica Serovar Typhimurium Diarrhea by Modulating Iron Homeostasis and Oxidative Stress via the IRP2 Pathway. Nutrients 2023; 15:nu15051127. [PMID: 36904126 PMCID: PMC10005772 DOI: 10.3390/nu15051127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) has evolved mechanisms to evade the host's nutritional immunity and thus promote bacterial growth by using the iron in the host. However, the detailed mechanisms of S. Typhimurium induce dysregulation of iron homeostasis and whether Lactobacillus johnsonii L531 can alleviate the iron metabolism disorder caused by S. Typhimurium has not been fully elucidated. Here, we show that S. Typhimurium activated the expression of iron regulatory protein 2 (IRP2), transferrin receptor 1, and divalent metal transporter protein 1 and suppressed the expression of iron exporter ferroportin, which resulted in iron overload and oxidative stress, inhibiting the key antioxidant proteins NF-E2-related factor 2, Heme Oxygenase-1, and Superoxide Dismutase in vitro and in vivo. L. johnsonii L531 pretreatment effectively reversed these phenomena. IRP2 knockdown inhibited iron overload and oxidative damage induced by S. Typhimurium in IPEC-J2 cells, while IRP2 overexpression promoted iron overload and oxidative damage caused by S. Typhimurium. Interestingly, the protective effect of L. johnsonii L531 on iron homeostasis and antioxidant function was blocked following IRP2 overexpression in Hela cells, demonstrating that L. johnsonii L531 attenuates disruption of iron homeostasis and consequent oxidative damage caused by S. Typhimurium via the IRP2 pathway, which contributes to the prevention of S. Typhimurium diarrhea in mice.
Collapse
Affiliation(s)
- Keyuan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Liang Guo
- Sanya Institute of China Agricultural University, Sanya 572000, China
| | - Jing Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ting Hu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yiqing Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-6273-1094; Fax: +86-10-6273-1274
| |
Collapse
|
12
|
Ahmed N, El-Fateh M, Amer MS, El-Shafei RA, Bilal M, Diarra MS, Zhao X. Antioxidative and Cytoprotective Efficacy of Ethanolic Extracted Cranberry Pomace against Salmonella Enteritidis Infection in Chicken Liver Cells. Antioxidants (Basel) 2023; 12:antiox12020460. [PMID: 36830018 PMCID: PMC9952629 DOI: 10.3390/antiox12020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Salmonella enterica serovar Enteritidis is a globally significant zoonotic foodborne pathogen. Chicken liver is a vital organ that has been recently implicated in several reported human salmonellosis outbreaks in the U.S. One promising strategy for reducing Salmonella in chickens could be through supplementation with natural antimicrobial additives. Ethanolic extracted cranberry pomace (CPOH) is an excellent source of bioactive polyphenolic compounds with antioxidant and antimicrobial activities. However, the protective effect of CPOH against S. Enteritidis-induced chicken hepatic cell damage remains unclear. In this study, we used a chicken hepatoma cell (LMH) infection model to investigate the protective effects and potential mechanisms of CPOH. CPOH increased the viability of S. Enteritidis-infected LMH cells. Furthermore, CPOH reduced the adhesion and invasion of S. Enteritidis to LMH cells. CPOH downregulated the expression of Rho GTPase genes that are essential for Salmonella's entry into LMH cells. Additionally, the expression of antioxidant regulatory genes, such as Nrf2, HO-1, Txn, and Gclc, was increased. Our data show that CPOH effectively protected LMH cells from cell damage through the inhibition of S. Enteritidis adhesion and invasion, as well as the induction of the expression of master antioxidant genes. These findings offer opportunities to develop sustainable, safe, and economic strategies to reduce the colonization and pathogenesis of Salmonella.
Collapse
Affiliation(s)
- Nada Ahmed
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Mohamed El-Fateh
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Magdy S. Amer
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Reham A. El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Dakhelia, Mansoura 35516, Egypt
| | - Muhammad Bilal
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
| | - Moussa S. Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Xin Zhao
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada
- Correspondence: ; Tel.: +1-514-398-7975
| |
Collapse
|