1
|
Ndzouboukou JLB, Kamara AA, Ullah N, Lei Q, Fan XL. A Meta-Analysis on the Immunogenicity of Homologous versus Heterologous Immunization Regimens against SARS-CoV-2 Beta, Delta, and Omicron BA.1 VoCs in Healthy Adults. J Microbiol Biotechnol 2025; 35:e2411059. [PMID: 40147926 PMCID: PMC11985416 DOI: 10.4014/jmb.2411.11059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 03/29/2025]
Abstract
Since the outbreak of the COVID-19 pandemic, SARS-CoV-2 has not stopped evolving, leading to the emergence of variants of concern (VoCs) involved in significant immune escape. Here, we compared the immunogenicity of different prime-boost vaccination regimens against SARS-CoV-2 wildtype (WT) and its Beta, Delta, and Omicron BA.1 VoCs. We used 5 databases to retrieve publications and random-effect models to estimate pooled neutralization titers. We included 11 randomized controlled trials (RCTs) and 16 non-RCTs, 10 prime-boost vaccination regimens, and 4598 subjects. We found neutralization activity against SARS-CoV-2 decreased with virus evolution. The heterologous immunization was more effective. The increase in neutralization titers against SARS-CoV-2 WT and Beta, Delta, and Omicron BA.1 VoCs after heterologous immunization was 1.41(95%CI:0.82-2.01), 0.90(95%CI:0.39-1.41), 1.23 (95%CI: 0.81-1.65), and 1.32 (95%CI: 0.99-1.65), respectively. Furthermore, the booster dose of viral vector vaccine did not show a higher increase in neutralization titers against SARS-CoV-2 WT(MD=0.48; 95%CI:-1.12-1.09), Beta (MD=0.20; 95%CI:-0.26-0.67), Delta (MD=0.35; 95%CI:-0.09-0.79), and Omicron BA.1 (MD=0.38; 95%CI:-0.14-0.89) VoCs. The combination of inactivated-recombinant protein vaccines showed a higher increase in neutralization titers (Beta: MD=1.88 and Delta: MD=1.70) than other combinations of vaccines. However, only a combination of mRNA-viral vector vaccines showed a higher increase in neutralization titers (MD:1.52; 95%CI:0.34-2.70) against Omicron BA.1 VoC. Interestingly, the viral vector-mRNA immunization regimen appears better compared to mRNA-viral vector regimen, especially against Beta and Delta VoCs. Overall, the type of combination followed by the order of administration of COVID-19 vaccines could be a potential vaccine strategy against the occurrence of SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jo-Lewis Banga Ndzouboukou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Abdul A. Kamara
- Department of Mathematica and Statistics, Fourah Bay College, University of Sierra Leone, Sierra Leone
| | - Nadeem Ullah
- Department of Clinical Microbiology, Umeå University 90187, Umeå, Sweden
| | - Qing Lei
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiong-lin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
2
|
Lee Y, Lee K, Lee H, Park J, Cho S, Park J, Mun J, Park S, Lee C, Lee J, Seo J, Kim Y, Kim S, Chung Y. Genomic Analysis and Tracking of SARS-CoV-2 Variants in Gwangju, South Korea, From 2020 to 2022. Influenza Other Respir Viruses 2024; 18:e13350. [PMID: 38923353 PMCID: PMC11196956 DOI: 10.1111/irv.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Since severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, in December 2019, it has spread rapidly, and many coronavirus disease (COVID-19) cases have occurred in Gwangju, South Korea. Viral mutations following the COVID-19 epidemic have increased interest in the characteristics of epidemics in this region, and pathogen genetic analysis is required for infection control and prevention. METHODS In this study, SARS-CoV-2 whole-genome analysis was performed on samples from patients with COVID-19 in Gwangju from 2020 to 2022 to identify the trends in COVID-19 prevalence and to analyze the phylogenetic relationships of dominant variants. B.41 and B.1.497 prevailed in 2020, the early stage of the COVID-19 outbreak; then, B.1.619.1 mainly occurred until June 2021. B.1.617.2, classified as sublineages AY.69 and AY.122, occurred continuously from July to December 2021. Since strict measures to strengthen national quarantine management had been implemented in South Korea until this time, the analysis of mutations was also able to infer the epidemiological relationship between infection transmission routes. Since the first identification of the Omicron variant in late December 2021, the spread of infection has been very rapid, and weekly whole-genome analysis of specimens has enabled us to monitor new Omicron sublineages occurring in Gwangju. CONCLUSIONS Our study suggests that conducting regional surveillance in addition to nation-level genomic surveillance will enable more rapid and detailed variant surveillance, which will be helpful in the overall prevention and management of infectious diseases.
Collapse
Affiliation(s)
- Yeong‐Un Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Kwangho Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Hongsu Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Jung Wook Park
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Sun‐Ju Cho
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Ji‐Su Park
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Jeongeun Mun
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Sujung Park
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Cheong‐mi Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Juhye Lee
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Jinjong Seo
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Yonghwan Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Sun‐Hee Kim
- Division of Emerging Infectious Disease, Department of Infectious Disease ResearchHealth and Environment Research Institute of GwangjuGwangjuRepublic of Korea
| | - Yoon‐Seok Chung
- Division of High‐Risk Pathogens, Bureau of Infectious Diseases Diagnosis ControlKorea Disease Control and Prevention Agency (KDCA)CheongjuRepublic of Korea
| |
Collapse
|
3
|
Hannula L, Kuivanen S, Lasham J, Kant R, Kareinen L, Bogacheva M, Strandin T, Sironen T, Hepojoki J, Sharma V, Saviranta P, Kipar A, Vapalahti O, Huiskonen JT, Rissanen I. Nanobody engineering for SARS-CoV-2 neutralization and detection. Microbiol Spectr 2024; 12:e0419922. [PMID: 38363137 PMCID: PMC10986514 DOI: 10.1128/spectrum.04199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain antibody fragments, i.e., "nanobodies." Here, we explore the potential of nanobody engineering in the development of antivirals and diagnostic tools. Through fusion of nanobody domains that target distinct binding sites, we engineered multimodular nanobody constructs that neutralize wild-type SARS-CoV-2 and the Alpha and Delta variants at high potency, with IC50 values as low as 50 pM. Despite simultaneous binding to distinct epitopes, Beta and Omicron variants were more resistant to neutralization by the multimodular nanobodies, which highlights the importance of accounting for antigenic drift in the design of biologics. To further explore the applications of nanobody engineering in outbreak management, we present an assay based on fusions of nanobodies with fragments of NanoLuc luciferase that can detect sub-nanomolar quantities of the SARS-CoV-2 spike protein in a single step. Our work showcases the potential of nanobody engineering to combat emerging infectious diseases. IMPORTANCE Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as candidates for specific therapies, including high stability and low production costs. In this work, we leverage the unique properties of nanobodies and apply them as building blocks for new therapeutic and diagnostic tools. We report ultra-potent SARS-CoV-2 inhibition by engineered nanobodies comprising multiple modules in structure-guided combinations and develop nanobodies that carry signal molecules, allowing rapid detection of the SARS-CoV-2 spike protein. Our results highlight the potential of engineered nanobodies in the development of effective countermeasures, both therapeutic and diagnostic, to manage outbreaks of emerging viruses.
Collapse
Affiliation(s)
- Liina Hannula
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Lauri Kareinen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mariia Bogacheva
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Petri Saviranta
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Anja Kipar
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Olli Vapalahti
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Juha T. Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Boulton S, Poutou J, Gill R, Alluqmani N, He X, Singaravelu R, Crupi MJ, Petryk J, Austin B, Angka L, Taha Z, Teo I, Singh S, Jamil R, Marius R, Martin N, Jamieson T, Azad T, Diallo JS, Ilkow CS, Bell JC. A T cell-targeted multi-antigen vaccine generates robust cellular and humoral immunity against SARS-CoV-2 infection. Mol Ther Methods Clin Dev 2023; 31:101110. [PMID: 37822719 PMCID: PMC10562195 DOI: 10.1016/j.omtm.2023.101110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
SARS-CoV-2, the etiological agent behind the coronavirus disease 2019 (COVID-19) pandemic, has continued to mutate and create new variants with increased resistance against the WHO-approved spike-based vaccines. With a significant portion of the worldwide population still unvaccinated and with waning immunity against newly emerging variants, there is a pressing need to develop novel vaccines that provide broader and longer-lasting protection. To generate broader protective immunity against COVID-19, we developed our second-generation vaccinia virus-based COVID-19 vaccine, TOH-VAC-2, encoded with modified versions of the spike (S) and nucleocapsid (N) proteins as well as a unique poly-epitope antigen that contains immunodominant T cell epitopes from seven different SARS-CoV-2 proteins. We show that the poly-epitope antigen restimulates T cells from the PBMCs of individuals formerly infected with SARS-CoV-2. In mice, TOH-VAC-2 vaccination produces high titers of S- and N-specific antibodies and generates robust T cell immunity against S, N, and poly-epitope antigens. The immunity generated from TOH-VAC-2 is also capable of protecting mice from heterologous challenge with recombinant VSV viruses that express the same SARS-CoV-2 antigens. Altogether, these findings demonstrate the effectiveness of our versatile vaccine platform as an alternative or complementary approach to current vaccines.
Collapse
Affiliation(s)
- Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rida Gill
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Nouf Alluqmani
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Xiaohong He
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Mathieu J.F. Crupi
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Leonard Angka
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Zaid Taha
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Iris Teo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Siddarth Singh
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rameen Jamil
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Nikolas Martin
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Taylor Jamieson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Farriol-Duran R, López-Aladid R, Porta-Pardo E, Torres A, Fernández-Barat L. Brewpitopes: a pipeline to refine B-cell epitope predictions during public health emergencies. Front Immunol 2023; 14:1278534. [PMID: 38124749 PMCID: PMC10730938 DOI: 10.3389/fimmu.2023.1278534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The application of B-cell epitope identification to develop therapeutic antibodies and vaccine candidates is well established. However, the validation of epitopes is time-consuming and resource-intensive. To alleviate this, in recent years, multiple computational predictors have been developed in the immunoinformatics community. Brewpitopes is a pipeline that curates bioinformatic B-cell epitope predictions obtained by integrating different state-of-the-art tools. We used additional computational predictors to account for subcellular location, glycosylation status, and surface accessibility of the predicted epitopes. The implementation of these sets of rational filters optimizes in vivo antibody recognition properties of the candidate epitopes. To validate Brewpitopes, we performed a proteome-wide analysis of SARS-CoV-2 with a particular focus on S protein and its variants of concern. In the S protein, we obtained a fivefold enrichment in terms of predicted neutralization versus the epitopes identified by individual tools. We analyzed epitope landscape changes caused by mutations in the S protein of new viral variants that were linked to observed immune escape evidence in specific strains. In addition, we identified a set of epitopes with neutralizing potential in four SARS-CoV-2 proteins (R1AB, R1A, AP3A, and ORF9C). These epitopes and antigenic proteins are conserved targets for viral neutralization studies. In summary, Brewpitopes is a powerful pipeline that refines B-cell epitope bioinformatic predictions during public health emergencies in a high-throughput capacity to facilitate the optimization of experimental validation of therapeutic antibodies and candidate vaccines.
Collapse
Affiliation(s)
| | - Ruben López-Aladid
- CELLEX Research Laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Eduard Porta-Pardo
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Antoni Torres
- CELLEX Research Laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pneumology Department, Hospital Clínic, Barcelona, Spain
| | - Laia Fernández-Barat
- CELLEX Research Laboratories, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Pneumology Department, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
6
|
Zelenkov Y, Reshettsov I. Analysis of the COVID-19 pandemic using a compartmental model with time-varying parameters fitted by a genetic algorithm. EXPERT SYSTEMS WITH APPLICATIONS 2023; 224:120034. [PMID: 37033691 PMCID: PMC10072952 DOI: 10.1016/j.eswa.2023.120034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/13/2023] [Accepted: 04/01/2023] [Indexed: 05/21/2023]
Abstract
Analyzing the COVID-19 pandemic is a critical factor in developing effective policies to deal with similar challenges in the future. However, many parameters (e.g., the actual number of infected people, the effectiveness of vaccination) are still subject to considerable debate because they are unobservable. To model a pandemic and estimate unobserved parameters, researchers use compartmental models. Most often, in such models, the transition rates are considered as constants, which allows simulating only one epidemiological wave. However, multiple waves have been reported for COVID-19 caused by different strains of the virus. This paper presents an approach based on the reconstruction of real distributions of transition rates using genetic algorithms, which makes it possible to create a model that describes several pandemic peaks. The model is fitted on registered COVID-19 cases in four countries with different pandemic control strategies (Germany, Sweden, UK, and US). Mean absolute percentage error (MAPE) was chosen as the objective function, the MAPE values of 2.168%, 2.096%, 1.208% and 1.703% were achieved for the listed countries, respectively. Simulation results are consistent with the empirical statistics of medical studies, which confirms the quality of the model. In addition to observables such as registered infected, the output of the model contains variables that cannot be measured directly. Among them are the proportion of the population protected by vaccines, the size of the exposed compartment, and the number of unregistered cases of COVID-19. According to the results, at the peak of the pandemic, between 14% (Sweden) and 25% (the UK) of the population were infected. At the same time, the number of unregistered cases exceeds the number of registered cases by 17 and 3.4 times, respectively. The average duration of the vaccine induced immune period is shorter than claimed by vaccine manufacturers, and the effectiveness of vaccination has declined sharply since the appearance of the Delta and Omicron strains. However, on average, vaccination reduces the risk of infection by about 65-70%.
Collapse
Affiliation(s)
- Yuri Zelenkov
- HSE Graduate School of Business, HSE University, 109028, 11 Pokrovsky blv., Moscow, Russian Federation
| | - Ivan Reshettsov
- HSE Graduate School of Business, HSE University, 109028, 11 Pokrovsky blv., Moscow, Russian Federation
| |
Collapse
|
7
|
Gupta SL, Goswami S, Anand A, Naman N, Kumari P, Sharma P, Jaiswal RK. An assessment of the strategy and status of COVID-19 vaccination in India. Immunol Res 2023; 71:565-577. [PMID: 37041424 PMCID: PMC10089693 DOI: 10.1007/s12026-023-09373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
The COVID-19 disease continues to cause devastation for almost 3 years of its identification. India is one of the leading countries to set clinical trials, production, and administration of COVID-19 vaccination. Recent COVID-19 vaccine tracker record suggests that 12 vaccines are approved in India, including protein subunit, RNA/DNA, non-replicating viral vector, and inactivated vaccine. Along with that 16 more vaccines are undergoing clinical trials to counter COVID-19. The availability of different vaccines gives alternate and broad perspectives to fight against viral immune resistance and, thus, viruses escaping the immune system by mutations. Using the recently published literature on the Indian vaccine and clinical trial sites, we have reviewed the development, clinical evaluation, and registration of vaccines trial used in India against COVID-19. Moreover, we have also summarized the status of all approved vaccines in India, their associated registered clinical trials, manufacturing, efficacy, and their related safety and immunogenicity profile.
Collapse
Affiliation(s)
| | - Surbhi Goswami
- National Institute of Immunology, New Delhi, 110067 India
| | - Ananya Anand
- Department of Zoology, Patna Science College, Patna University, Bihar, India
| | - Namrata Naman
- Department of Zoology, Patna Science College, Patna University, Bihar, India
| | - Priya Kumari
- Department of Zoology, Patna Science College, Patna University, Bihar, India
| | - Priyanka Sharma
- Department of Zoology, Patna Science College, Patna University, Bihar, India
| | - Rishi K. Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153 USA
| |
Collapse
|
8
|
Barnieh L, Beckerman R, Jeyakumar S, Hsiao A, Jarrett J, Gottlieb RL. Remdesivir for Hospitalized COVID-19 Patients in the United States: Optimization of Health Care Resources. Infect Dis Ther 2023; 12:1655-1665. [PMID: 37222933 PMCID: PMC10206585 DOI: 10.1007/s40121-023-00816-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION In addition to significant morbidity and mortality, the coronavirus disease (COVID-19) has strained health care systems globally. This study investigated the cost-effectiveness of remdesivir + standard of care (SOC) for hospitalized COVID-19 patients in the USA. METHODS This cost-effectiveness analysis considered direct and indirect costs of remdesivir + SOC versus SOC alone among hospitalized COVID-19 patients in the US. Patients entered the model stratified according to their baseline ordinal score. At day 15, patients could transition to another health state, and on day 29, they were assumed to have either died or been discharged. Patients were then followed over a 1-year time horizon, where they could transition to death or be rehospitalized. RESULTS Treatment with remdesivir + SOC avoided, per patient, a total of 4 hospitalization days: two general ward days and a day for both the intensive care unit and the intensive care unit plus invasive mechanical ventilation compared to SOC alone. Treatment with remdesivir + SOC presented net cost savings due to lower hospitalization and lost productivity costs compared to SOC alone. In increased and decreased hospital capacity scenarios, remdesivir + SOC resulted in more beds and ventilators being available versus SOC alone. CONCLUSIONS Remdesivir + SOC alone represents a cost-effective treatment for hospitalized patients with COVID-19. This analysis can aid in future decisions on the allocation of healthcare resources.
Collapse
Affiliation(s)
| | | | | | | | - James Jarrett
- Gilead Sciences, 2 Roundwood Ave, Hayes, Uxbridge, UB11 1AF, UK.
| | - Robert L Gottlieb
- Baylor University Medical Center, Dallas, TX, USA
- Baylor Scott and White Research Institute, Dallas, TX, USA
| |
Collapse
|
9
|
Zahl S, Mondal D, Tolentino D, Fischer JA, Jimenez S. Physician stress in the era of COVID-19 vaccine disparity: a multi-institutional survey. J Osteopath Med 2023:jom-2022-0194. [PMID: 37079908 DOI: 10.1515/jom-2022-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
CONTEXT Healthcare workers are at a high risk of infection during infectious disease outbreaks, such as the COVID-19 pandemic. Despite the availability of several vaccines against COVID-19, the absence of vaccination in patients and colleagues remains a continuous source of stress in healthcare workers. We conducted a survey of physician preceptors, both MDs and DOs, to explore the impact of differences in the patients' and colleagues' vaccination status on their well-being, stress, and burnout. OBJECTIVES The objective of this study is to determine whether exposure to unvaccinated patients and/or colleagues increases stress and burnout in physician preceptors by utilizing a self-reported survey. METHODS This multi-institutional study was carried out in the United States in 2022. An online survey questionnaire was utilized to collect data from physicians working as preceptors for multiple academic institutions. The anonymous Qualtrics® survey utilized a modified version of the questionnaire from the expanded Physician Well-being Index (ePWBI) designed by MedEd Web Solutions (MEWS). Statistical analysis on both descriptive and qualitative data were performed. Utilizing a threshold of p≤0.05, data analysis revealed many statistically significant relationships between the variables. RESULTS A total of 218 physician preceptors completed the survey. The survey results showed that physicians overwhelmingly (p < 0.001) felt that all patients (and healthcare workers) should be vaccinated. The results also indicated that physicians experienced more stress when working with unvaccinated patients (p<0.001), and these stressors were often associated with the physician's gender and age. Furthermore, physicians stated that both their assessment and treatment plans were significantly different for vaccinated vs unvaccinated patients (p=0.039 and p=0.0167, respectively). Most importantly, stress levels (p<0.001) and burnout characteristics (p=0.024) were noted by physicians, both in themselves and in their colleagues. CONCLUSIONS Findings suggest that physician stress and burnout is a common theme due to the differences in vaccination status of patients admitted to COVID-19 clinics. Due to a more rapid progression of COVID-19 in unvaccinated patients, treatment plans for vaccinated vs unvaccinated patients were also considerably different.
Collapse
Affiliation(s)
- Sarah Zahl
- Clinical Affairs at Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
| | - Debasis Mondal
- Department of Microbiology and Infectious Disease, Lincoln Memorial University, DeBusk College of Osteopathic Medicine, Knoxville, TN, USA
| | - David Tolentino
- Clinical Affairs at Campbell University School of Osteopathic Medicine, Buies Creek, NC, USA
| | - Jennifer A Fischer
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Sherry Jimenez
- Center for Interprofessional Education and Simulation, Lincoln Memorial University, DeBusk College of Osteopathic Medicine, Harrogate, TN, USA
| |
Collapse
|
10
|
Identification of novel antiviral drug candidates using an optimized SARS-CoV-2 phenotypic screening platform. iScience 2023; 26:105944. [PMID: 36644320 PMCID: PMC9822553 DOI: 10.1016/j.isci.2023.105944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/07/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a readout for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in numerous cell culture models, independently of cytopathogenic effect formation. Compared to other models, the Caco-2 subline Caco-2-F03 displayed superior performance. It possesses a stable SARS-CoV-2 susceptibility phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1,796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of phosphoglycerate dehydrogenase (PHGDH), CDC like kinase 1 (CLK-1), and colony stimulating factor 1 receptor (CSF1R). The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the hexokinase II (HK2) inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2-F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false-positive hits.
Collapse
|
11
|
Wang H, Gan M, Wu B, Zeng R, Wang Z, Xu J, Li J, Zhang Y, Cao J, Chen L, Di D, Peng S, Lei J, Zhao Y, Song X, Yuan T, Zhou T, Liu Q, Yi J, Wang X, Cai H, Lei Y, Wen Y, Li W, Chen Q, Wang Y, Long P, Yuan Y, Wang C, Pan A, Wang Q, Gong R, Fan X, Wu T, Liu L. Humoral and cellular immunity of two-dose inactivated COVID-19 vaccination in Chinese children: A prospective cohort study. J Med Virol 2023; 95:e28380. [PMID: 36478357 PMCID: PMC9877748 DOI: 10.1002/jmv.28380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/18/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Children are the high-risk group for COVID-19, and in need of vaccination. However, humoral and cellular immune responses of COVID-19 vaccine remain unclear in vaccinated children. To establish the rational immunization strategy of inactivated COVID-19 vaccine for children, the immunogenicity of either one dose or two doses of the vaccine in children was evaluated. A prospective cohort study of 322 children receiving inactivated COVID-19 vaccine was established in China. The baseline was conducted after 28 days of the first dose, and the follow-up was conducted after 28 days of the second dose. The median titers of receptor binding domain (RBD)-IgG, and neutralizing antibody (NAb) against prototype strain and Omicron variant after the second dose increased significantly compared to those after the first dose (first dose: 70.0, [interquartile range, 30.0-151.0] vs. second dose: 1261.0 [636.0-2060.0] for RBD-IgG; 2.5 [2.5-18.6] vs. 252.0 [138.6-462.1] for NAb against prototype strain; 2.5 [2.5-2.5] vs. 15.0 [7.8-26.5] for NAb against Omicron variant, all p < 0.05). The flow cytometry results showed that the first dose elicited SARS-CoV-2 specific cellular immunity, while the second dose strengthened SARS-CoV-2 specific IL-2+ or TNF-α+ monofunctional, IFN-γ+ TNF-α+ bifunctional, and IFN-γ- IL-2+ TNF-α+ multifunctional CD4+ T cell responses (p < 0.05). Moreover, SARS-CoV-2 specific memory T cells were generated after the first vaccination, including the central memory T cells and effector memory T cells. The present findings provide scientific evidence for the vaccination strategy of the inactive vaccines among children against COVID-19 pandemic.
Collapse
Affiliation(s)
- Hao Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bihao Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Rui Zeng
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Jun Xu
- Qichun Center for Disease Control and PreventionHuanggangChina
| | - Jia Li
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Dongsheng Di
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Siyuan Peng
- Qichun Center for Disease Control and PreventionHuanggangChina
| | - Jinfeng Lei
- Qichun Center for Disease Control and PreventionHuanggangChina
| | - Yingying Zhao
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Xuemei Song
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Yuan
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Tingting Zhou
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Qian Liu
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Jing Yi
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Xi Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Hao Cai
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yanshou Lei
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yuying Wen
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Wenhui Li
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Qinlin Chen
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yufei Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Pinpin Long
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Yu Yuan
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Chaolong Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - An Pan
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Qi Wang
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega‐ScienceChinese Academy of SciencesWuhanChina
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tangchun Wu
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| | - Li Liu
- Department of Occupational and Environmental Health and Department of Epidemiology and Biostatistics, Ministry of Education and State Key Laboratory of Environmental HealthHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
12
|
Zhang Y, Ndzouboukou JB, Lin X, Hou H, Wang F, Yuan L, Gan M, Yao Z, Fu H, Cao J, Fan X. SARS-CoV-2 evolves to reduce but not abolish neutralizing action. J Med Virol 2023; 95:e28207. [PMID: 36217880 PMCID: PMC9874811 DOI: 10.1002/jmv.28207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 10/02/2022] [Indexed: 01/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have prolonged coronavirus disease 2019 (COVID-19) pandemic by escaping pre-existing immunity acquired by natural infection or vaccination. Elucidation of VOCs' mutation trends and evasion of neutralization is required to update current control measures. Mutations and the prevalence of VOCs were analyzed in the global immunization coverage rate context. Lentivirus-based pseudovirus neutralization analysis platforms for SARS-CoV-2 prototype strain (PS) and VOCs, containing Alpha, Beta, Gamma, Delta, and Omicron, were constructed based on the spike protein of each variant and HEK 293T cell line expressing the human angiotensin-converting enzyme 2 (hACE2) receptor on the surface, and an enhanced green fluorescent protein reporter. Serum samples from 65 convalescent individuals and 20 WIBP-CorV vaccine recipients and four therapeutic monoclonal antibodies (mAbs) namely imdevimab, casirivimab, bamlanivimab, and etesevimab were used to evaluate the neutralization potency against the variants. Pseudovirus-based neutralization assay platforms for PS and VOCs were established, and multiplicity of infection (MOI) was the key factor influencing the assay result. Compared to PS, VOCs may enhance the infectivity of hACE2-293T cells. Except for Alpha, other VOCs escaped neutralization to varying degrees. Attributed to favorable and emerging mutations, the current pandemic Omicron variant of all VOCs demonstrated the most significant neutralization-escaping ability to the sera and mAbs. Compared with the PS pseudovirus, Omicron had 15.7- and 3.71-fold decreases in the NT50 value (the highest serum dilution corresponding to a neutralization rate of 50%); and correspondingly, 90% and 43% of immunization or convalescent serum samples lost their neutralizing activity against the Omicron variant, respectively. Therefore, SARS-CoV-2 has evolved persistently with a strong ability to escape neutralization and prevailing against the established immune barrier. Our findings provide important clues to controlling the COVID-19 pandemic caused by new variants.
Collapse
Affiliation(s)
- Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jo‐Lewis B. Ndzouboukou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaosong Lin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongyan Hou
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Feng Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Leyong Yuan
- Department of Clinical LaboratorySouthern University of Science and Technology HospitalShenzhenChina
| | - Mengze Gan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zongjie Yao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui Fu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinge Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
13
|
Elmancy L, Alkhatib H, Daou A. SARS-CoV-2: An Analysis of the Vaccine Candidates Tested in Combatting and Eliminating the COVID-19 Virus. Vaccines (Basel) 2022; 10:2086. [PMID: 36560496 PMCID: PMC9785262 DOI: 10.3390/vaccines10122086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), better known as COVID-19, is a highly contagious virus, transferable via air droplets from close human-human contact. The pandemic has led to over 6.5 million deaths worldwide, making it the largest global health crisis since the influenza pandemic in 1918. SARS-CoV-2 rapidly spread around the world, forcing the World Health Organization (WHO) to deem it a global health pandemic after three months of its initiation. The virus has wreaked havoc on many countries worldwide, overwhelming healthcare systems, hence damaging many economies. Even though research has progressed the understanding of the SARS-CoV-2 virus, the information gathered about the vaccine trials and their findings have been scarcely distributed to the public in a single study. The information available to scientists has therefore given researchers a pathway to building an efficacious vehicle to substantially decrease the spread of the virus. The vaccines formulated had many challenges due to multiple factors such as viral mutations and clinical trial delays. This paper will aim to educate readers on the processes that the vaccine candidates took, and better understand the procedures; additionally, we'll look at all candidates' findings that went into clinical trials, assessing, analyzing, and evaluating the 27 vaccine candidates that went into phase III trials and the 13 candidates that went into either phase I/II trials.
Collapse
Affiliation(s)
| | - Hala Alkhatib
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Anis Daou
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
14
|
de Souza MO, Madan B, Teng IT, Huang A, Liu L, Fahad AS, Lopez Acevedo SN, Pan X, Sastry M, Gutierrez-Gonzalez M, Yin MT, Zhou T, Ho DD, Kwong PD, DeKosky BJ. Mapping monoclonal anti-SARS-CoV-2 antibody repertoires against diverse coronavirus antigens. Front Immunol 2022; 13:977064. [PMID: 36119018 PMCID: PMC9478573 DOI: 10.3389/fimmu.2022.977064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged continuously, challenging the effectiveness of vaccines, diagnostics, and treatments. Moreover, the possibility of the appearance of a new betacoronavirus with high transmissibility and high fatality is reason for concern. In this study, we used a natively paired yeast display technology, combined with next-generation sequencing (NGS) and massive bioinformatic analysis to perform a comprehensive study of subdomain specificity of natural human antibodies from two convalescent donors. Using this screening technology, we mapped the cross-reactive responses of antibodies generated by the two donors against SARS-CoV-2 variants and other betacoronaviruses. We tested the neutralization potency of a set of the cross-reactive antibodies generated in this study and observed that most of the antibodies produced by these patients were non-neutralizing. We performed a comparison of the specific and non-specific antibodies by somatic hypermutation in a repertoire-scale for the two individuals and observed that the degree of somatic hypermutation was unique for each patient. The data from this study provide functional insights into cross-reactive antibodies that can assist in the development of strategies against emerging SARS-CoV-2 variants and divergent betacoronaviruses.
Collapse
Affiliation(s)
- Matheus Oliveira de Souza
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Bharat Madan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Aric Huang
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Lihong Liu
- Aaron Diamond acquired immunodeficiency syndrome (AIDS) Research Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Ahmed S. Fahad
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Sheila N. Lopez Acevedo
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Xiaoli Pan
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Matias Gutierrez-Gonzalez
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Michael T. Yin
- Department of Medicine , Division of Infectious Diseases, Columbia University Irving Medical Center, New York, NY, United States
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - David D. Ho
- Aaron Diamond acquired immunodeficiency syndrome (AIDS) Research Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, United States
- Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
- Department of Chemical Engineering, The University of Kansas, Lawrence, KS, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
15
|
Muraille E, Naccache P, Pillot J. The Tragedy of Liberal Democratic Governance in the Face of Global Threats. Front Public Health 2022; 10:902724. [PMID: 35875018 PMCID: PMC9304815 DOI: 10.3389/fpubh.2022.902724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
In hindsight, the early response of liberal governments to the SARS-CoV-2 pandemic was chaotic and generally inefficient. Though one might be tempted to attribute these failures to the incompetence of certain political decision-makers, we propose another explanation. Global threats require a coordinated international response, which is only possible if the threat is perceived in the same way by all, and if government priorities are similar. The effectiveness of the response also relies on massive adhesion of citizens to the measures imposed, which in turn requires trust in government. Our hypothesis is that certain fundamental features of liberalism complicate such global and collective responses: neutrality of the state and primacy of the individual over collective society. Liberalism considers that institutions and public policy must not be designed to favor any specific conception of the common good. That which is best for all is usually determined by a "competition of opinions," which frequently leads to scientific expertise being considered as only one opinion among many. Liberalism also imposes strict respect for individual freedoms and private interests and tends to reject any form of collectivism or dictate imposed by the common good. In order to solve these structural problems and improve society's management of global threats, we make several proposals, such as the introduction of a minimal and consensual definition of the common good and the promotion of a health policy guided by One Health-like concepts. Overall, our analysis suggests that because political ideologies provide their own definitions of the common good and the place of scientific knowledge in the governance process and can thus affect the response to global threats, they should be urgently taken into consideration by public health experts.
Collapse
Affiliation(s)
- Eric Muraille
- Laboratoire de Parasitologie, ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | | | | |
Collapse
|