1
|
Huang R, Kravchik V, Zaatry R, Habib M, Geva-Zatorsky N, Daniel R. Engineering coupled consortia-based biosensors for diagnostic. Nat Commun 2025; 16:3761. [PMID: 40263365 DOI: 10.1038/s41467-025-58996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Synthetic multicellular systems have great potential for performing complex tasks, including multi-signal detection and computation through cell-to-cell communication. However, engineering these systems is challenging, requiring precise control over the cell concentrations of distinct members and coordination of their activity. Here, we develop a bacterial consortia-based biosensor for Heme and Lactate, wherein members are coupled through a global shared quorum-sensing signal that simultaneously controls the activity of the diverse biosensing strains. The multicellular system incorporates a gene circuit that computes the minimum between each biosensor's activity and the shared signal. We evaluate three consortia configurations: one where the shared signal is externally supplied, another directly produced via an inducible gene circuit, and a third generated through an incoherent feedforward loop (IFFL) gene circuit. Among these configurations, the IFFL system, which maintains the shared signal at low and stable levels over an extended period, demonstrates improved performance and robustness against perturbations in cell populations. Finally, we examine these coupled consortia to monitor Lactate and Heme in humanized fecal samples for diagnostics.
Collapse
Affiliation(s)
- Rongying Huang
- Department of Biotechnology Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Valeriia Kravchik
- Department of Biomedical Engineering Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Rawan Zaatry
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
| | - Mouna Habib
- Department of Biomedical Engineering Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Naama Geva-Zatorsky
- Department of Cell Biology and Cancer Science, Rappaport Technion Integrated Cancer Center (RTICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, 3525422, Haifa, Israel
- CIFAR, MaRS Centre, West Tower 661 University Avenue, Suite 505, Toronto, ON, M5G 1M1, Canada
| | - Ramez Daniel
- Department of Biomedical Engineering Technion-Israel Institute of Technology, Technion City, Haifa, Israel.
| |
Collapse
|
2
|
Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW, Wei J. Deep insight into cytokine storm: from pathogenesis to treatment. Signal Transduct Target Ther 2025; 10:112. [PMID: 40234407 PMCID: PMC12000524 DOI: 10.1038/s41392-025-02178-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/22/2024] [Accepted: 02/12/2025] [Indexed: 04/17/2025] Open
Abstract
Cytokine storm (CS) is a severe systemic inflammatory syndrome characterized by the excessive activation of immune cells and a significant increase in circulating levels of cytokines. This pathological process is implicated in the development of life-threatening conditions such as fulminant myocarditis (FM), acute respiratory distress syndrome (ARDS), primary or secondary hemophagocytic lymphohistiocytosis (HLH), cytokine release syndrome (CRS) associated with chimeric antigen receptor-modified T (CAR-T) therapy, and grade III to IV acute graft-versus-host disease following allogeneic hematopoietic stem cell transplantation. The significant involvement of the JAK-STAT pathway, Toll-like receptors, neutrophil extracellular traps, NLRP3 inflammasome, and other signaling pathways has been recognized in the pathogenesis of CS. Therapies targeting these pathways have been developed or are currently being investigated. While novel drugs have demonstrated promising therapeutic efficacy in mitigating CS, the overall mortality rate of CS resulting from underlying diseases remains high. In the clinical setting, the management of CS typically necessitates a multidisciplinary team strategy encompassing the removal of abnormal inflammatory or immune system activation, the preservation of vital organ function, the treatment of the underlying disease, and the provision of life supportive therapy. This review provides a comprehensive overview of the key signaling pathways and associated cytokines implicated in CS, elucidates the impact of dysregulated immune cell activation, and delineates the resultant organ injury associated with CS. In addition, we offer insights and current literature on the management of CS in cases of FM, ARDS, systemic inflammatory response syndrome, treatment-induced CRS, HLH, and other related conditions.
Collapse
Grants
- 82070217, 81873427 National Natural Science Foundation of China (National Science Foundation of China)
- 82100401 National Natural Science Foundation of China (National Science Foundation of China)
- 81772477, 81201848, 82473220 National Natural Science Foundation of China (National Science Foundation of China)
- 82330010,81630010,81790624 National Natural Science Foundation of China (National Science Foundation of China)
- National High Technology Research and Development Program of China, Grant number: 2021YFA1101500.
- The Hubei Provincial Natural Science Foundation (No.2024AFB050)
- Project of Shanxi Bethune Hospital, Grant Numbber: 2023xg02); Fundamental Research Program of Shanxi Province, Grant Numbber: 202303021211224
- The Key Scientific Research Project of COVID-19 Infection Emergency Treatment of Shanxi Bethune Hospital (2023xg01), 2023 COVID-19 Research Project of Shanxi Provincial Health Commission (No.2023XG001, No. 2023XG005), Four “Batches” Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province (2023XM003), Cancer special Fund research project of Shanxi Bethune Hospital (No. 2020-ZL04), and External Expert Workshop Fund Program of Shanxi Provincial Health Commission(Proteomics Shanxi studio for Huanghe professor)
- Fundamental Research Program of Shanxi Province(No.202303021221192); 2023 COVID-19 Emergency Project of Shanxi Health Commission (Nos.2023XG001,2023XG005)
Collapse
Affiliation(s)
- Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
| | - Weiwei Tian
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xiansheng Liu
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liping Yang
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Branch of National Clinical Research Center for Infectious Diseases, Wuhan Pulmonary Hospital (Wuhan Tuberculosis Prevention and Control Institute), Wuhan, China.
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Ding CW, Huang SS, Xu YH, Chu X, Wang L, Mao YM, Yuan YD, Qiu JY. Lactate dehydrogenase to albumin ratio and prognosis in patients with acute exacerbation of chronic obstructive pulmonary disease: a retrospective cohort study. BMC Pulm Med 2025; 25:154. [PMID: 40186178 PMCID: PMC11971885 DOI: 10.1186/s12890-025-03622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a global public health challenge and a major cause of death. The lactate dehydrogenase to albumin ratio (LAR) is a simple and practical indicator of disease prognosis, but its prognostic value in acute exacerbation of COPD (AECOPD) remains unclear. Therefore, we aimed to explore the prognostic value of LAR for the short-term all-cause mortality risk in patients with AECOPD. METHODS This retrospective cohort study included 654 patients with AECOPD from the MIMIC-IV database. LAR was analyzed after natural logarithm transformation and the patients were divided into three groups. The clinical outcome was the 1-month and 3-months all-cause mortality. The relationship between LAR and all-cause mortality was assessed using Kaplan-Meier survival analysis and a Cox regression model. Generalized additive models were employed to identify non-linear relationships, and a subgroup analysis was performed to determine the stability of the results. RESULTS The study showed that LAR levels significantly and positively correlated with short-term all-cause mortality in patients with AECOPD. Compared to the low LAR group, patients in the medium LAR group had a significantly increased 1-month all-cause mortality risk, with a hazard ratio (HR) of 1.74 (95% [Confidence Interval, CI] 1.16-2.63, P = 0.008). Patients in the high LAR group had an even higher 1-month all-cause mortality risk, with an HR of 2.58 (95% CI 1.75-3.80, P < 0.001). For 3-month all-cause mortality, patients in the medium LAR group had an HR of 1.54 (95% CI 1.10-2.16, P = 0.012), while those in the high LAR group had an HR of 2.18 (95% CI 1.58-3.01, P < 0.001). The results remained stable in all three adjusted models and in the subgroup analyses. The relationship between LAR and all-cause mortality due to AECOPD was non-linear, with inflection points at 8.13 and 6.05 for 1-month and 3-month all-cause mortality, respectively. CONCLUSIONS Elevated LAR is an independent predictive indicator of short-term all-cause mortality risk in patients with AECOPD and can be used to improve decision-making for the clinical management of these patients. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Chao-Wei Ding
- Department of Respiratory and Critical Care Medicine, Xiamen Humanity Hospital Fujian Medical University, Xiamen, Fujian, 361000, China
| | - Shen-Shen Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Yan-Hong Xu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, China
| | - Xu Chu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Lan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Yi-Min Mao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China
| | - Ya-Dong Yuan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, China.
| | - Jia-Yong Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, College of Clinical Medicine of Henan, University of Science and Technology, Luoyang, 471003, China.
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, China.
| |
Collapse
|
4
|
Sickinger M, Jörling J, Büttner K, Roth J, Wehrend A. Association of Stress and Inflammatory Diseases with Serum Ferritin and Iron Concentrations in Neonatal Calves. Animals (Basel) 2025; 15:1021. [PMID: 40218414 PMCID: PMC11987952 DOI: 10.3390/ani15071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025] Open
Abstract
This study investigated the effects of iron supplementation and inflammatory disease on cortisol, white blood cell (WBC) count, total protein (TP), lactate, interleukin 1 β (IL1β), interleukin 6 (IL6), substance P (SP), hepcidin, haptoglobin, and ferric-reducing ability of plasma (FRAP) in calves. Correlation analyses for the aforementioned parameters with serum iron and ferritin were performed in 40 neonatal calves over the first 10 days of life. Neither iron supplementation, disease status, nor sex had statistically significant effects on the areas under the curve of ferritin, WBC, TP, IL1β, IL6, SP, hepcidin, haptoglobin, or FRAP. However, cortisol concentrations were influenced by disease development. Cortisol concentrations were higher at birth (44.1 ± 1.95 ng/mL) than on day 2 (38.8 ± 1.87 ng/mL) (p = 0.0477), and healthy animals exhibited lower cortisol concentrations than diseased calves (p = 0.0028). Correlation analyses indicated weak positive correlations between ferritin and IL1β (p = 0.0015; ρ = 0.49) and IL6 (p = 0.0011; ρ = 0.50), respectively. The clinical significance of these findings and resulting therapeutic consequences, especially with respect to iron supplementation, should be further investigated in calves and adult cattle.
Collapse
Affiliation(s)
- Marlene Sickinger
- Clinic for Ruminants and Herd Health Management, Justus-Liebig-University of Giessen, 35392 Giessen, Germany
| | | | - Kathrin Büttner
- Department for Biomathematics and Data Processing, Justus-Liebig-University of Giessen, 35392 Giessen, Germany;
| | - Joachim Roth
- Institute for Veterinary Physiology, Justus-Liebig-University of Giessen, 35390 Giessen, Germany;
| | - Axel Wehrend
- Veterinary Clinic for Reproduction and Neonatology, Justus-Liebig-University of Giessen, 35392 Giessen, Germany;
| |
Collapse
|
5
|
Xiao C, Su Z, Zhao J, Tan S, He M, Li Y, Liu J, Xu J, Hu Y, Li Z, Fan C, Liu X. Novel regulation mechanism of histone methyltransferase SMYD5 in rheumatoid arthritis. Cell Mol Biol Lett 2025; 30:38. [PMID: 40165083 PMCID: PMC11959843 DOI: 10.1186/s11658-025-00707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/19/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Fibroblast-like synoviocytes (FLS) are crucial for maintaining synovial homeostasis. SMYD5, a member of the histone lysine methyltransferase subfamily SMYDs, is involved in many pathological processes. This study aimed to investigate the role of SMYD5 in regulating synovial fibroblast homeostasis and the pathogenesis of rheumatoid arthritis (RA). METHODS Proteomic screening was conducted to assess SMYD5 expression in the synovium of patients with osteoarthritis (OA) and RA. In vitro, interleukin-1 beta (IL-1β) was used to induce proliferation and inflammation in FLS. Further, we performed loss-of-function and gain-of-function experiments to investigate the biological function of SMYD5. In vivo, adeno-associated virus (AAV) vectors carrying SMYD5 short-hairpin RNA (AAV-shSMYD5) were injected into the knee joints to knock down SMYD5 in a collagen-induced arthritis (CIA) mouse model to evaluate its role in joint damage. RESULTS We observed a significant elevation of SMYD5 expression in the synovial tissues of patients with RA and IL-1β-induced FLS. SMYD5 facilitated posttranslational modifications and activated downstream signaling pathways, thereby promoting proliferation and inflammation in FLS. Mechanistically, SMYD5 mediated the methylation of Forkhead box protein O1 (FoxO1), which accelerated its degradation through ubiquitination, resulting in substantial FLS proliferation. Additionally, SMYD5 promoted lactate release to activate NF-κB signaling pathways by upregulating hexokinases-2 (HK2) expression, a key glycolytic enzyme, thereby intensifying the inflammatory response in FLS. Supporting these findings, intraarticular delivery of AAV-mediated SMYD5 knockdown in the CIA mice model effectively alleviated joint swelling, bone erosion, and overall arthritis severity. CONCLUSIONS Together, these findings suggest that SMYD5 is a dual target for regulating synovial fibroblast homeostasis and the pathogenesis of RA. Targeting SMYD5 through local treatment strategies may provide a novel therapeutic approach for RA, particularly when combined with immunotherapy.
Collapse
Affiliation(s)
- Chenxi Xiao
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhenghua Su
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jialin Zhao
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Subei Tan
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Mengting He
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Yuhui Li
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jiayao Liu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Jie Xu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Yajie Hu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China
| | - Zhongzheng Li
- The 9th Hospital of Ningbo, 68, Xiangbei Road, Jiangbei District, Ningbo, 315020, Zhejiang, China.
| | - Chunxiang Fan
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| | - Xinhua Liu
- Department of Traditional Chinese Medicine, Shanghai Pudong Hospital, Pharmacophenomics Laboratory, Phenome Research Center of TCM, Human Phenome Institute, Fudan University, 825, Zhangheng Road, Pudong New District, Shanghai, China.
| |
Collapse
|
6
|
Vidal-Dos-Santos M, Armstrong-Jr R, van Zil M, Ricardo-da-Silva FY, da Anunciação LF, de Assis Ramos MM, Correia CDJ, Ottens PJ, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. Sex differences in kidney and lung status in an animal model of brain death. Clinics (Sao Paulo) 2025; 80:100623. [PMID: 40147183 PMCID: PMC11985142 DOI: 10.1016/j.clinsp.2025.100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND In transplantation, sex-mismatched procedures correlate with poorer outcomes. Previous research has indicated that females respond worst to Brain Death (BD) and that organ damage varies with the speed of BD induction. The authors aimed to investigate the effects of slow BD-induction on lung and kidney responses in male and female rats. METHODS Males and female rats were subjected to slow induction of BD and kept for 4h. Blood gas samples were taken at 0 h and 4h. At 4 h, blood, urine and tissue samples were collected. IL-1β was measured in plasma, lung homogenate and lung culture. IL-6 was quantified in plasma, lung culture, and kidney homogenate. Leukocyte infiltration/activation was evaluated. Biochemical analyses of creatinine were performed in the plasma. Naïve animals were used as controls. RESULTS Males presented reduced testosterone levels after 4h. Females presented reduced progesterone, whereas estradiol remained similar at 0 h and 4h. Compared with Naive, BD-groups presented increased plasma IL-1β and IL-6. Males and females presented reduced pO2 after BD, with females presenting even lower values at 4h. In lung tissue, males presented increased expression of IL-1β, whereas IL-1β was elevated in females in lung culture. Females presented increased cell infiltration/activation. In the kidney, males presented increased plasma creatinine, increased expression of caspase-3, and increased leukocyte migration to renal tissue than females. CONCLUSIONS The authors observed an organ and sex-dependent response to the slow-induction of BD. These results suggest that management strategies should consider the sex of the donor to achieve the best treatment, improving graft quality.
Collapse
Affiliation(s)
- Marina Vidal-Dos-Santos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Department of Surgery, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Roberto Armstrong-Jr
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Department of Surgery, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Maryna van Zil
- Department of Surgery, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lucas Ferreira da Anunciação
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mayara Munhoz de Assis Ramos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Department of Surgery, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Cristiano de Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Petra J Ottens
- Department of Surgery, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, The Netherlands
| | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Ma J, Tang L, Xiao J, Tang K, Zhang H, Huang B. Burning lactic acid: a road to revitalizing antitumor immunity. Front Med 2025:10.1007/s11684-025-1126-6. [PMID: 40119026 DOI: 10.1007/s11684-025-1126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/16/2024] [Indexed: 03/24/2025]
Abstract
Lactic acid (LA) accumulation in tumor microenvironments (TME) has been implicated in immune suppression and tumor progress. Diverse roles of LA have been elucidated, including microenvironmental pH regulation, signal transduction, post-translational modification, and metabolic remodeling. This review summarizes LA functions within TME, focusing on the effects on tumor cells, immune cells, and stromal cells. Reducing LA levels is a potential strategy to attack cancer, which inevitably affects the physiological functions of normal tissues. Alternatively, transporting LA into the mitochondria as an energy source for immune cells is intriguing. We underscore the significance of LA in both tumor biology and immunology, proposing the burning of LA as a potential therapeutic approach to enhance antitumor immune responses.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| | - Liang Tang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Jingxuan Xiao
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Huang
- Department of Immunology & State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Wang FX, Mu G, Yu ZH, Shi ZA, Li XX, Fan X, Chen Y, Zhou J. Lactylation: a promising therapeutic target in ischemia-reperfusion injury management. Cell Death Discov 2025; 11:100. [PMID: 40082399 PMCID: PMC11906755 DOI: 10.1038/s41420-025-02381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 12/25/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Ischemia-reperfusion injury (IRI) is a critical condition that poses a significant threat to patient safety. The production of lactate increases during the process of IRI, and lactate serves as a crucial indicator for assessing the severity of such injury. Lactylation, a newly discovered post-translational modification in 2019, is induced by lactic acid and predominantly occurs on lysine residues of histone or nonhistone proteins. Extensive studies have demonstrated the pivotal role of lactylation in the pathogenesis and progression of various diseases, including melanoma, myocardial infarction, hepatocellular carcinoma, Alzheimer's disease, and nonalcoholic fatty liver disease. Additionally, a marked correlation between lactylation and inflammation has been observed. This article provides a comprehensive review of the mechanism underlying lactylation in IRI to establish a theoretical foundation for better understanding the interplay between lactylation and IRI.
Collapse
Affiliation(s)
- Fei-Xiang Wang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Guo Mu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Department of Anesthesiology, Zigong Fourth People's Hospital, Zigong, Sichuan, China
| | - Zi-Hang Yu
- Department of Anesthesiology, Fushun County People's Hospital, Zigong, Sichuan, China
| | - Zu-An Shi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Xue-Xin Li
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Xin Fan
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
9
|
Ashokcoomar S, Pillay M. Differential expression of genes associated with lipid import, β-oxidation and lactate oxidation induced by Mycobacterium tuberculosis curli pili in broth culture compared to intracellular bacilli within THP-1 macrophages. J Med Microbiol 2025; 74:001994. [PMID: 40162564 PMCID: PMC11956070 DOI: 10.1099/jmm.0.001994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction. The adhesin, Mycobacterium tuberculosis curli pili (MTP), assists the pathogen in attachment, invasion and disease progression. Previously, this adhesin was demonstrated to contribute to the pathogen's cell wall functions and fatty acid metabolism and affects total metabolite abundance in central carbon metabolism and fatty acid metabolism of the host. The accumulation/depletion of metabolites is reliant on the gene expression of proteins involved in the import, transport and breakdown of substrates.Gap statement. MTP has not been investigated in relation to genes involved in import/transport/breakdown of substrates.Aim. This study aimed to investigate the possible regulatory role of MTP in modulating metabolic changes of the pathogen in different microenvironments.Methods. Ribonucleic acid was harvested from bacterial broth cultures of adhesin-proficient and adhesin-deficient M. tuberculosis. These strains were also used to infect differentiated THP-1 macrophages for 4 h prior to isolation of intracellular bacteria, RNA extraction and reverse transcription real-time quantitative PCR. The expression levels of selected genes involved in fatty acid transport (lucA, mce1D, mceG, Rv2799, Rv0966c and omamB), β-oxidation (fadA5 and fadB), lactate oxidation (lldD1 and lldD2) and gluconeogenic carbon flow (pckA) were analysed by absolute quantification.Results. The gene expression levels of lucA, mce1D and pckA were significantly lower, and those of Rv2799, Rv0966c, mceG, fadA5 and lldD2 were significantly higher in the adhesin-proficient cultured bacterial strains relative to the Δmtp strain. The intracellular adhesin-proficient bacteria displayed significantly higher gene expression levels of Rv2799 and significantly lower gene expression levels of Rv0966c, fadA5, lldD1 and pckA relative to the Δmtp strain. Interestingly, during early infection, the intracellular Δmtp displayed significantly increased expression of omamB, mceG, fadB, lldD1 and lldD2 relative to the broth culture. This trend was inverted in the WT models.Conclusion. MTP are significantly associated with the regulation of genes involved in lipid transport, β-oxidation and lactate oxidation.
Collapse
Affiliation(s)
- Shinese Ashokcoomar
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban 4013, South Africa
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 1st floor Doris Duke Medical Research Institute, Congella, Private Bag 7, Durban 4013, South Africa
| |
Collapse
|
10
|
Tahir MN, Wagner K, Hassan U. An assessment of machine learning methods to quantify blood lactate from neutrophils phagocytic activity. Sci Rep 2025; 15:6626. [PMID: 39994314 PMCID: PMC11850909 DOI: 10.1038/s41598-025-90883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/17/2025] [Indexed: 02/26/2025] Open
Abstract
Phagocytosis is a critical component of innate immunity that helps the body defend itself against infection, foreign particles, and cellular debris. Investigating and quantifying phagocytosis can help understand how the immune system identifies foreign particles and how phagocytosis relates to other biomarkers, e.g., cytokines, cell surface receptors, or blood lactate levels. In particular, increased blood lactate levels can be a potential biomarker to study diseases, e.g., septic shock. Establishing a relationship between phagocytosis and lactate levels can serve as an effective tool to monitor the immune response and may help stratify patients. In this study, we use phagocytosis activity data to classify the patients into two groups of blood lactate levels (High and Low) with machine learning models. The neutrophils extracted from the whole blood samples of 19 patients were used to collect data on phagocytosis, where the neutrophils were allowed to internalize IgG coated fluorescent bioparticles. The data collection process involved collecting whole blood samples, neutrophil isolation, adding fluorescent beads, incubating, and imaging the sample using a fluorescence microscope. The phagocytosis assay images were used to generate a numerical dataset by manually counting the number of particles engulfed by each cell. The study first presents an improved understanding by employing hierarchical clustering and heatmaps to generate the graphical representation of phagocytosis data. By comparing the results of heat maps and clustering techniques, it can be observed that the phagocytosis activity data can be used to differentiate blood lactate levels in two groups (control and high-risk). Later, three machine learning models (Decision Tree, k-nearest Neighbor, and Naïve Bayes) were trained on the original and pruned datasets after the outliers were removed. The AI models classified the data into high-risk and low-risk groups of blood lactate levels. A maximum classification accuracy of 78% and an area under the curve of 0.78 was achieved using the trained models.
Collapse
Affiliation(s)
- Muhammad Nabeel Tahir
- Department of Electrical and Computer Engineering, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Kurt Wagner
- Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA
- Medtronic, Inc., Minneapolis, Minnesota, USA
| | - Umer Hassan
- Department of Electrical and Computer Engineering, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Global Health Institute, Rutgers The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Yue L, Yan Y. Metabolic Regulation in Acute Respiratory Distress Syndrome: Implications for Inflammation and Oxidative Stress. Int J Chron Obstruct Pulmon Dis 2025; 20:373-388. [PMID: 39991071 PMCID: PMC11846517 DOI: 10.2147/copd.s491687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/01/2024] [Indexed: 02/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe and life-threatening pulmonary condition characterized by intense inflammation and disrupted oxygen exchange, which can lead to multiorgan failure. Recent findings have established ARDS as a systemic inflammatory disorder involving complex interactions between lung injury, systemic inflammation, and oxidative stress. This review examines the pivotal role of metabolic disturbances in the pathogenesis of ARDS, emphasizing their influence on inflammatory responses and oxidative stress. Common metabolic abnormalities in ARDS patients, including disruptions in carbohydrate, amino acid, and lipid metabolism, contribute significantly to the disease's severity. These metabolic dysfunctions interplay with systemic inflammation and oxidative stress, further exacerbating lung injury and worsening patient outcomes. By analyzing the regulatory mechanisms of various metabolites implicated in ARDS, we underscore the potential of targeting metabolic pathways as a therapeutic approach. Such interventions could help attenuate inflammation and oxidative stress, presenting a promising strategy for ARDS treatment. Additionally, we review potential drugs that modulate metabolic pathways, providing valuable insights into the etiology of ARDS and potential therapeutic directions. This comprehensive analysis enhances our understanding of ARDS and highlights the importance of metabolic regulation in the development of effective treatment strategies. Key findings from this review demonstrate that metabolic disturbances, particularly those affecting carbohydrate, amino acid, and lipid metabolism, play critical roles in amplifying inflammation and oxidative stress, underscoring the potential of metabolic-targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Lixia Yue
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| | - Yihe Yan
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| |
Collapse
|
12
|
Wang X, Tang X, Wang Y, Zhao S, Xu N, Wang H, Kuang M, Han S, Jiang Z, Zhang W. Plant-Derived Treatments for Different Types of Muscle Atrophy. Phytother Res 2025; 39:1107-1138. [PMID: 39743857 PMCID: PMC11832362 DOI: 10.1002/ptr.8420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/24/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
With the development of medicine and chemistry, an increasing number of plant-derived medicines have been shown to exert beneficial therapeutic on the treatment of various physical and psychological diseases. In particular, by using physical chemistry methods, we are able to examine the chemical components of plants and the effects of these substances on the human body. Muscle atrophy (MA) is characterized by decreased muscle mass and function, is caused by multiple factors and severely affects the quality of life of patients. The multifactorial and complex pathogenesis of MA hinders drug research and disease treatment. However, phytotherapy has achieved significant results in the treatment of MA. We searched PubMed and the Web of Science for articles related to plant-derived substances and muscle atrophy. After applying exclusion and inclusion criteria, 166 and 79 articles met the inclusion criteria, respectively. A total of 173 articles were included in the study after excluding duplicates. The important role of phytoactives such as curcumin, resveratrol, and ginsenosides in the treatment of MA (e.g., maintaining a positive nitrogen balance in muscles and exerting anti-inflammatory and antioxidant effects) has been extensively studied. Unfortunately, MA dose not have to a single cause, and each cause has its own unique mechanism of injury. This review focuses on the therapeutic mechanisms of active plant components in MA and provides insights into the personalized treatment of MA.
Collapse
Affiliation(s)
- Xingpeng Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xiaofu Tang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Yunhui Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shengyin Zhao
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Ning Xu
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Haoyu Wang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Mingjie Kuang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Shijie Han
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Zhensong Jiang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Wen Zhang
- Department of Spine SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
13
|
Choudhary R, Kumar P, Shukla SK, Bhagat A, Anal JMH, Kour G, Ahmed Z. Synthesis and potential anti-inflammatory response of indole and amide derivatives of ursolic acid in LPS-induced RAW 264.7 cells and systemic inflammation mice model: Insights into iNOS, COX2 and NF-κB. Bioorg Chem 2025; 155:108091. [PMID: 39755101 DOI: 10.1016/j.bioorg.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Ursolic acid (3-hydroxy-urs-12-ene-28-oic acid, UA) is a pentacyclic triterpene present in numerous plants, fruits and herbs and exhibits various pharmacological effects. However, UA has limited clinical applicability since it is classified as BCS class IV molecule, characterized by low solubility, low oral bioavailability and low permeability. In the present study, UA was isolated from the biomass marc of Lavandula angustifolia and was structurally modified by an induction of indole ring at the C-3 position and amide group at the C-17 position with the aim to enhance its pharmacological potential. This modification resulted in the synthesis of a series of compounds which were investigated for their anti-inflammatory potential both in-vitro and in animal models in comparison to UA. In RAW 264.7 cells, UA and its derivatives were non-cytotoxic up to 10 µM. The derivative UA-1 exhibited a significantly lower IC50 (2.2 ± 0.4 µM) for NO inhibition compared to UA (17.5 ± 2.0 µM). Molecular docking showed strong interactions of UA-1 with TNF-α and NF-κB. UA-1 significantly reduced LPS-induced pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in RAW 264.7 macrophages with the inhibition levels of 74.2 ± 2.1 % for TNF-α, 55.9 ± 3.7 % for IL-6 and 59.7 ± 4.2 % for IL-1β at 5.0 µM, respectively and reactive oxygen species while upregulating anti-inflammatory cytokine, IL-10. It also downregulated iNOS, COX-2, p-NF-κB p65, and p-IκBα at both mRNA and protein levels. In LPS-induced systemic inflammation mice model, UA-1 significantly lowered NO, TNF-α, IL-6, IL-1β and serum biochemical parameters, reduced tissue damage, and exhibited improved aqueous solubility and moderate lipophilicity. Overall, UA-1 demonstrated superior anti-inflammatory potential, improved solubility, and better therapeutic potential compared to UA.
Collapse
Affiliation(s)
- Rupali Choudhary
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puneet Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanket K Shukla
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asha Bhagat
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Jasha Momo H Anal
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Gurleen Kour
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Zabeer Ahmed
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Shi P, Ma Y, Zhang S. Non-histone lactylation: unveiling its functional significance. Front Cell Dev Biol 2025; 13:1535611. [PMID: 39925738 PMCID: PMC11802821 DOI: 10.3389/fcell.2025.1535611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/09/2025] [Indexed: 02/11/2025] Open
Abstract
Lactylation, a newly discovered protein posttranslational modification (PTM) in 2019, primarily occurs on lysine residues. Lactylation of histones was initially identified, and subsequent studies have increasingly demonstrated its widespread presence on non-histone proteins. Recently, high-throughput proteomics studies have identified a large number of lactylated proteins and sites, revealing their global regulatory role in disease development. Notably, this modification is catalyzed by lactyltransferase and reversed by delactylase, with numerous new enzymes, such as AARS1/2, reported to be involved. Specifically, these studies have revealed how lactylation exerts its influence through alterations in protein spatial conformation, molecular interactions, enzyme activity and subcellular localization. Indeed, lactylation is implicated in various physiological and pathological processes, including tumor development, cardiovascular and cerebrovascular diseases, immune cell activation and psychiatric disorders. This review provides the latest advancements in research on the regulatory roles of non-histone protein lactylation, highlighting its crucial scientific importance for future studies.
Collapse
Affiliation(s)
- Pusong Shi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yongjie Ma
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China
| | - Shaolu Zhang
- Laboratory of Cancer Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin, China
| |
Collapse
|
15
|
Yang M, Hutchinson N, Ye N, Timek H, Jennings M, Yin J, Guan M, Wang Z, Chen P, Yang S, Crane JD, Zhang K, He X, Li J. Engineered Bacillus subtilis as Oral Probiotics To Enhance Clearance of Blood Lactate. ACS Synth Biol 2025; 14:101-112. [PMID: 39739838 DOI: 10.1021/acssynbio.4c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Elevated lactate concentrations are implicated in various acute and chronic diseases, such as sepsis and mitochondrial dysfunction, respectively. Conversely, ineffective lactate clearance is associated with poor clinical prognoses and high mortality in these diseases. While several groups have proposed using small molecule inhibitors and enzyme replacement to reduce circulating lactate, there are few practical and effective ways to manage this condition. Recent evidence suggests that lactate is exchanged between the systemic circulation and the gut, allowing bidirectional modulation between the gut microbiota and peripheral tissues. Inspired by these findings, this work seeks to engineer spore-forming probiotic Bacillus subtilis strains to enable intestinal delivery of lactate oxidase as a therapeutic enzyme. After strain optimization, we showed that oral administration of engineered B. subtilis spores to the gut of mice reduced the level of blood lactate in two different mouse models involving exogenous challenge or pharmacologic perturbation without disrupting gut microbiota composition, liver function, or immune homeostasis. Taken together, through the oral delivery of engineered probiotic spores to the gastrointestinal tract, our proof-of-concept study offers a practical strategy to aid in the management of disease states with elevated blood lactate and provides a new approach to "knocking down" circulating metabolites to help understand their roles in host physiological and pathological processes.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Noah Hutchinson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hania Timek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Maria Jennings
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianing Yin
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Justin D Crane
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts 02139, United States
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, Massachusetts 02142, United States
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Li W, Zhou H, Li X, Hu G, Wei D. Astrocytic Acid-Sensing Ion Channel 1a Contributes to the Development of Epileptic Cognitive Impairment. Biomolecules 2025; 15:142. [PMID: 39858536 PMCID: PMC11764220 DOI: 10.3390/biom15010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice. Behavioral assessments were conducted using the Morris water maze (MWM). Western blotting and immunofluorescence were applied to evaluate ASIC1a and Gfap expression while analyzing intracellular calcium and extracellular glutamate (Glu) concentrations in primary cultured astrocytes isolated from the brains of 1 to 3-day-old mice and treated LPS. Results showed enhanced astrocyte proliferation and ASIC1a expression in the dentate gyrus of epileptic mice 7, 21, and 28 days post-SE (all p < 0.05). Escape latency in the MWM further suggested that ASIC1a regulates cognitive function in mice with chronic epilepsy. LPS stimulation in vitro mimicked inflammatory responses, increasing ASIC1a after 24 h, which increased the concentration of intracellular calcium and extracellular expression of Glu; inhibition of ASIC1a expression reversed this process. To sum up, these data confirm that astrocytic ASIC1a may facilitate cognitive dysfunction post-epilepsy, presenting a potential therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | - Dong Wei
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (W.L.); (H.Z.); (X.L.); (G.H.)
| |
Collapse
|
17
|
Shen L, Wu J, Lan J, Chen C, Wang Y, Li Z. Interpretable machine learning-based prediction of 28-day mortality in ICU patients with sepsis: a multicenter retrospective study. Front Cell Infect Microbiol 2025; 14:1500326. [PMID: 39844844 PMCID: PMC11751000 DOI: 10.3389/fcimb.2024.1500326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Background Sepsis is a major cause of mortality in intensive care units (ICUs) and continues to pose a significant global health challenge, with sepsis-related deaths contributing substantially to the overall burden on healthcare systems worldwide. The primary objective was to construct and evaluate a machine learning (ML) model for forecasting 28-day all-cause mortality among ICU sepsis patients. Methods Data for the study was sourced from the eICU Collaborative Research Database (eICU-CRD) (version 2.0). The main outcome was 28-day all-cause mortality. Predictor selection for the final model was conducted using the least absolute shrinkage and selection operator (LASSO) regression analysis and the Boruta feature selection algorithm. Five machine learning algorithms including logistic regression (LR), decision tree (DT), extreme gradient boosting (XGBoost), support vector machine (SVM), and light gradient boosting machine (lightGBM) were employed to construct models using 10-fold cross-validation. Model performance was evaluated using AUC, accuracy, sensitivity, specificity, recall, and F1 score. Additionally, we performed an interpretability analysis on the model that showed the most stable performance. Results The final study cohort comprised 4564 patients, among whom 568 (12.4%) died within 28 days of ICU admission. The XGBoost algorithm demonstrated the most reliable performance, achieving an AUC of 0.821, balancing sensitivity (0.703) and specificity (0.798). The top three risk predictors of mortality included APACHE score, serum lactate levels, and AST. Conclusion ML models reliably predicted 28-day mortality in critically ill sepsis patients. Of the models evaluated, the XGBoost algorithm exhibited the most stable performance in identifying patients at elevated mortality risk. Model interpretability analysis identified crucial predictors, potentially informing clinical decisions for sepsis patients in the ICU.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Department of Pharmacy, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Jiaqiang Wu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, Shenyang, China
| | - Jianger Lan
- Department of Clinical Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Chao Chen
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
18
|
Rahimpour S, Clary BL, Nasoohi S, Berhanu YS, Brown CM. Immunometabolism In Brain Aging and Neurodegeneration: Bridging Metabolic Pathways and Immune Responses. Aging Dis 2024:AD.2024.1293. [PMID: 39751865 DOI: 10.14336/ad.2024.1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
The complex set of interactions between the immune system and metabolism, known as immunometabolism, has emerged as a critical regulator of disease outcomes in the central nervous system. Numerous studies have linked metabolic disturbances to impaired immune responses in brain aging, neurodegenerative disorders, and brain injury. In this review, we will discuss how disruptions in brain immunometabolism balance contribute to the pathophysiology of brain dysfunction. The first part of the review summarizes the contributions of critical immune cell populations such as microglia, astrocytes, and infiltrating immune cells in mediating inflammation and metabolism in CNS disorders. The remainder of the review addresses the impact of metabolic changes on immune cell activation and disease progression in brain aging, Alzheimer's disease, Parkinson's disease, multiple sclerosis, stroke, spinal cord injury, and traumatic brain injury. Furthermore, we also address the therapeutic potential of targeting immunometabolic pathways to reduce neuroinflammation and slow disease progression. By focusing on the interactions among brain immune cells and the metabolic mechanisms they recruit in disease, we present a comprehensive overview of brain immunometabolism in human health and disease.
Collapse
Affiliation(s)
- Shokofeh Rahimpour
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Briana L Clary
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Sanaz Nasoohi
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| | - Yohanna S Berhanu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Candice M Brown
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
19
|
Gao J, Yang X, Fang X, Zhang Z, Wang D, Wang J. Clinical significance of lactate-to-albumin ratio in patients with influenza A virus-induced acute respiratory distress syndrome: a single-center retrospective study. BMC Anesthesiol 2024; 24:459. [PMID: 39695390 DOI: 10.1186/s12871-024-02843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The lactate-to-albumin ratio (LAR) is predictive of disease prognosis in some cases. However, the clinical significance of LAR in patients with influenza A virus-induced acute respiratory distress syndrome (ARDS) has yet to be explored. This study aims to investigate whether LAR can be used as a predictor of influenza A virus-induced ARDS. METHODS In this single-center retrospective study, we enrolled 105 patients with influenza A virus pneumonia into the study and divided the patients into an ARDS group (74 patients) and a non-ARDS group (31 patients) during hospitalization. Clinical characteristics and laboratory data were collected within 24 h after admission. We explored the risk factors for ARDS using logistic regression analysis. The predictive performance of potential risk factors for ARDS and ARDS-associated complications were evaluated by receiver operating characteristic (ROC) curves, and Pearson's correlation analysis was used to evaluate the correlations between risk factors and clinical and laboratory variables. RESULTS LAR was an independent predictor for the development of ARDS in patients with influenza A virus pneumonia and was significantly predictive for ARDS. LAR's area under the curve (AUC) was higher than that of lactate and albumin alone; its AUC was 0.878, with a sensitivity of 71.6% and a specificity of 96.8%. The optimal ROC threshold for distinguishing ARDS from non-ARDS cases was 44.81 × 10- 3. Correlation analysis indicated that LAR was positively associated with duration of invasive ventilation, and APACHE II and SOFA scores in ARDS patients but was negatively associated with PaO2/FiO2 (p < 0.001). Subsequent ROC curve analysis determined that LAR was a robust predictor for the 14-day invasive ventilation (AUC = 0.924), septic shock (AUC = 0.860), and hepatic injury (AUC = 0.905) in hospitalized ARDS patients. It also showed a promising predictive value for 28-day mortality (AUC = 0.881). CONCLUSION LAR strongly predicted ARDS development in patients with influenza A virus pneumonia. It showed a significant correlation with disease severity and provided promising predictive efficiency for extrapulmonary complications and 28-day mortality in patients with influenza A virus-induced ARDS.
Collapse
Affiliation(s)
- Jinhui Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Pinghai Road No. 899, Suzhou, 215000, China
| | | | - Xiang Fang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Pinghai Road No. 899, Suzhou, 215000, China
| | - Ziyi Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Pinghai Road No. 899, Suzhou, 215000, China
| | - Dapeng Wang
- Department of Intensive Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Qingyang Road No. 299, Wuxi, 214023, China.
| | - Jiajia Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Pinghai Road No. 899, Suzhou, 215000, China.
| |
Collapse
|
20
|
Cao Z, Jiang X, He Y, Zheng X. Metabolic landscape in venous thrombosis: insights into molecular biology and therapeutic implications. Ann Med 2024; 56:2401112. [PMID: 39297312 DOI: 10.1080/07853890.2024.2401112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 05/12/2024] [Indexed: 09/21/2024] Open
Abstract
The findings of the last decade suggest a complex link between inflammatory cells, coagulation, and the activation of platelets and their synergistic interaction to promote venous thrombosis. Inflammation is present throughout the process of venous thrombosis, and various metabolic pathways of erythrocytes, endothelial cells, and immune cells involved in venous thrombosis, including glucose metabolism, lipid metabolism, homocysteine metabolism, and oxidative stress, are associated with inflammation. While the metabolic microenvironment has been identified as a marker of malignancy, recent studies have revealed that for cancer thrombosis, alterations in the metabolic microenvironment appear to also be a potential risk. In this review, we discuss how the synergy between metabolism and thrombosis drives thrombotic disease. We also explore the great potential of anti-inflammatory strategies targeting venous thrombosis and the complex link between anti-inflammation and metabolism. Furthermore, we suggest how we can use our existing knowledge to reduce the risk of venous thrombosis.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
21
|
Zhang S, Han P, Sun H, Su Y, Chen C, Chen C, Li J, Lv X, Tian X, Xu Y. Discovery of Active Ingredient of Yinchenhao Decoction Targeting TLR4 for Hepatic Inflammatory Diseases Based on Deep Learning Approach. Interdiscip Sci 2024:10.1007/s12539-024-00670-7. [PMID: 39560852 DOI: 10.1007/s12539-024-00670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
Yinchenhao Decoction (YCHD), a classic formula in traditional Chinese medicine, is believed to have the potential to treat liver diseases by modulating the Toll-like receptor 4 (TLR4) target. Therefore, a thorough exploration of the effective components and therapeutic mechanisms targeting TLR4 in YCHD is a promising strategy for liver diseases. In this study, the AIGO-DTI deep learning framework was proposed to predict the targeting probability of major components in YCHD for TLR4. Comparative evaluations with four machine learning models (RF, SVM, KNN, XGBoost) and two deep learning models (GCN, GAT) demonstrated that the AIGO-DTI framework exhibited the best overall performance, with Recall and AUC reaching 0.968 and 0.991, respectively.This study further utilized the AIGO-DTI model to identify the potential impact of Isoscopoletin, a major component of YCHD, on TLR4. Subsequent wet experiments revealed that Isoscopoletin could influence the maturation of Dendritic Cells (DCs) induced by Lipopolysaccharide (LPS) through TLR4, suggesting its therapeutic potential for liver diseases, especially hepatitis. Additionally, based on the AIGO-DTI framework, this study established an online platform named TLR4-Predict to facilitate domain experts in discovering more compounds related to TLR4. Overall, the proposed AIGO-DTI framework accurately predicts unique compounds in YCHD that interact with TLR4, providing new insights for identifying and screening lead compounds targeting TLR4.
Collapse
Affiliation(s)
- Sizhe Zhang
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Haiqing Sun
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Ying Su
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Chen Chen
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi, 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi, 830046, China.
| | - Xuecong Tian
- College of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Yandan Xu
- Quzhou Kecheng People' S Hospital, Quzhou, 324000, China.
| |
Collapse
|
22
|
de Boer E, Sokolova M, Jager NM, Schjalm C, Weiss MG, Liavåg OM, Maassen H, van Goor H, Thorgersen EB, Pettersen K, Christiansen D, Ludviksen JK, Jespersen B, Mollnes TE, Leuvenink HGD, Pischke SE. Normothermic Machine Perfusion Reconstitutes Porcine Kidney Tissue Metabolism But Induces an Inflammatory Response, Which Is Reduced by Complement C5 Inhibition. Transpl Int 2024; 37:13348. [PMID: 39606689 PMCID: PMC11598510 DOI: 10.3389/ti.2024.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Normothermic machine perfusion (NMP) is a clinical strategy to reduce renal ischemia-reperfusion injury (IRI). Optimal NMP should restore metabolism and minimize IRI induced inflammatory responses. Microdialysis was used to evaluate renal metabolism. This study aimed to assess the effect of complement inhibition on NMP induced inflammatory responses. Twenty-two pig kidneys underwent 18 h of static cold storage (SCS) followed by 4 h of NMP using a closed-circuit system. Kidneys were randomized to receive a C5-inhibitor or placebo during SCS and NMP. Perfusion resulted in rapidly stabilized renal flow, low renal resistance, and urine production. During SCS, tissue microdialysate levels of glucose and pyruvate decreased significantly, whereas glycerol increased (p < 0.001). In the first hour of NMP, glucose and pyruvate increased while glycerol decreased (p < 0.001). After 4 h, all metabolites had returned to baseline. Inflammatory markers C3a, soluble C5b-9, TNF, IL-6, IL-1β, IL-8, and IL-10 increased significantly during NMP in perfusate and kidney tissue. C5-inhibition significantly decreased perfusate and urine soluble C5b-9 (p < 0.001; p = 0.002, respectively), and tissue IL-1β (p = 0.049), but did not alter other inflammatory markers. Microdialysis can accurately monitor the effect of NMP on renal metabolism. Closed-circuit NMP induces inflammation, which appeared partly complement-mediated. Targeting additional immune inhibitors should be the next step.
Collapse
Affiliation(s)
- Eline de Boer
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marina Sokolova
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Neeltina M. Jager
- Department of Surgery, Division of Organ Donation and Transplantation, University Medical Center Groningen, Groningen, Netherlands
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Marc G. Weiss
- Department of Medicine and Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - Olav M. Liavåg
- Section for Transplantation Surgery, Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Hanno Maassen
- Department of Surgery, Division of Organ Donation and Transplantation, University Medical Center Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, Netherlands
| | - Ebbe Billmann Thorgersen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Department of Gastroenterological Surgery, Oslo University Hospital the Radium Hospital, Oslo, Norway
| | | | | | | | - Bente Jespersen
- Department of Medicine and Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - Tom E. Mollnes
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Henri G. D. Leuvenink
- Department of Surgery, Division of Organ Donation and Transplantation, University Medical Center Groningen, Groningen, Netherlands
- Department of Medicine and Nephrology, Aarhus University Hospital, Aarhus, Denmark
| | - Søren E. Pischke
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Emergencies and Critical Care, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
23
|
Sun Z, He W, Meng H, Ji Z, Qu J, Yu G. Lactate activates ER stress to promote alveolar epithelial cells apoptosis in pulmonary fibrosis. Respir Res 2024; 25:401. [PMID: 39522031 PMCID: PMC11550544 DOI: 10.1186/s12931-024-03016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic, progressive lung disease characterized by fibroblast proliferation, extensive extracellular matrix and collagen deposition, accompanied by inflammatory damage, ultimately leading to death due to respiratory failure. Endoplasmic reticulum (ER) stress in pulmonary fibrotic tissue is indeed recognized as a significant factor exacerbating PF development. Emerging evidences indicated a potential association between ER stress induced by lactate and cellular apoptosis in PF. However, the mechanisms in this process need further elucidation. In this paper, pulmonary fibrosis model was induced by bleomycin (BLM) intratracheally in mice. In the cellular model, type II epithelial cells were treated by lactate and TGF-β to detect ER stress and apoptosis markers. Lactate could promote ER stress response and apoptosis. Mechanically, lactate activated Caspase-12 via ATF4-Chop axis to induce cell apoptosis and promote fibrosis. ER stress inhibitor could effectively suppress alveolar epithelial cells apoptosis and pulmonary fibrosis. We concluded that pro-fibrotic properties of lactate are associated with alveolar epithelial cells apoptosis by causing ER stress and thus provide new potential therapeutic targets for pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhiheng Sun
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| | - Wanyu He
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Huiwen Meng
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Zhihua Ji
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China
| | - Junxing Qu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China.
- Xinxiang Key Laboratory for Tumor Drug Screening and Targeted Therapy, Xinxiang, Henan, China.
| | - Guoying Yu
- College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, China.
- State Key Laboratory of Cell Differentiation and Regulation, Xinxiang, Henan, China.
| |
Collapse
|
24
|
Sui Q, Yang H, Hu Z, Jin X, Chen Z, Jiang W, Sun F. The Research Progress of Metformin Regulation of Metabolic Reprogramming in Malignant Tumors. Pharm Res 2024; 41:2143-2159. [PMID: 39455505 DOI: 10.1007/s11095-024-03783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Metabolism reprogramming is a crucial hallmark of malignant tumors. Tumor cells demonstrate enhanced metabolic efficiency, converting nutrient inputs into glucose, amino acids, and lipids essential for their malignant proliferation and progression. Metformin, a commonly prescribed medication for type 2 diabetes mellitus, has garnered attention for its potential anticancer effects beyond its established hypoglycemic benefits. METHODS This review adopts a comprehensive approach to delineate the mechanisms underlying metabolite abnormalities within the primary metabolic processes of malignant tumors. RESULTS This review examines the abnormal activation of G protein-coupled receptors (GPCRs) in these metabolic pathways, encompassing aerobic glycolysis with increased lactate production in glucose metabolism, heightened lipid synthesis and cholesterol accumulation in lipid metabolism, and glutamine activation alongside abnormal protein post-translational modifications in amino acid and protein metabolism. Furthermore, the intricate metabolic pathways and molecular mechanisms through which metformin exerts its anticancer effects are synthesized and analyzed, particularly its impacts on AMP-activated protein kinase activation and the mTOR pathway. The analysis reveals a multifaceted understanding of how metformin can modulate tumor metabolism, targeting key nodes in metabolic reprogramming essential for tumor growth and progression. The review compiles evidence that supports metformin's potential as an adjuvant therapy for malignant tumors, highlighting its capacity to interfere with critical metabolic pathways. CONCLUSION In conclusion, this review offers a comprehensive overview of the plausible mechanisms mediating metformin's influence on tumor metabolism, fostering a deeper comprehension of its anticancer mechanisms. By expanding the clinical horizons of metformin and providing insight into metabolism-targeted tumor therapies, this review lays the groundwork for future research endeavors aimed at refining and advancing metabolic intervention strategies for cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Fenghao Sun
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
25
|
He Y, Song T, Ning J, Wang Z, Yin Z, Jiang P, Yuan Q, Yu W, Cheng F. Lactylation in cancer: Mechanisms in tumour biology and therapeutic potentials. Clin Transl Med 2024; 14:e70070. [PMID: 39456119 PMCID: PMC11511673 DOI: 10.1002/ctm2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Lactylation, a recently identified form of protein post-translational modification (PTM), has emerged as a key player in cancer biology. The Warburg effect, a hallmark of tumour metabolism, underscores the significance of lactylation in cancer progression. By regulating gene transcription and protein function, lactylation facilitates metabolic reprogramming, enabling tumours to adapt to nutrient limitations and sustain rapid growth. Over the past decade, extensive research has revealed the intricate regulatory network underlying lactylation in tumours. Large-scale sequencing and machine learning have confirmed the widespread occurrence of lactylation sites across the tumour proteome. Targeting lactylation enzymes or metabolic pathways has demonstrated promising anti-tumour effects, highlighting the therapeutic potential of this modification. This review comprehensively explores the mechanisms of lactylation in cancer cells and the tumour microenvironment. We expound on the application of advanced omics technologies for target identification and data modelling within the lactylation field. Additionally, we summarise existing anti-lactylation drugs and discuss their clinical implications. By providing a comprehensive overview of recent advancements, this review aims to stimulate innovative research and accelerate the translation of lactylation-based therapies into clinical practice. KEY POINTS: Lactylation significantly influences tumour metabolism and gene regulation, contributing to cancer progression. Advanced sequencing and machine learning reveal widespread lactylation sites in tumours. Targeting lactylation enzymes shows promise in enhancing anti-tumour drug efficacy and overcoming chemotherapy resistance. This review outlines the clinical implications and future research directions of lactylation in oncology.
Collapse
Affiliation(s)
- Yipeng He
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Tianbao Song
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Jinzhuo Ning
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zefeng Wang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Zhen Yin
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Pengcheng Jiang
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Qin Yuan
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Weimin Yu
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| | - Fan Cheng
- Department of UrologyRenmin Hospital of Wuhan UniversityWuhanHubeiP.R. China
| |
Collapse
|
26
|
Xie L, Deng X, Li X, Li X, Wang X, Yan H, Zhao L, Yang D, Luo T, Yang Y, Xiao Z, Lu X. CircMETTL3-156aa reshapes the glycolytic metabolism of macrophages to promote M1 polarization and induce cytokine storms in sHLH. Cell Death Discov 2024; 10:431. [PMID: 39384750 PMCID: PMC11464708 DOI: 10.1038/s41420-024-02202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Persistent macrophage activation and cytokine storms are critical causes for the rapid disease progression and high mortality rate of Secondary Hemophagocytic lymphohistiocytosis (sHLH). Identification of key regulatory factors that govern the activation of macrophages is vital. Plasma exosomal circular RNAs (circRNAs) are considered important biomarkers and potential therapeutic targets for various diseases, however, their function in sHLH is still unclear. In this study, we demonstrated for the first time that circMETTL3, derived from METTL3, is upregulated in sHLH patient plasma exosomes, which may plays an important role in the diagnosis of sHLH. Significantly, we also revealed that a novel peptide encoded by circMETTL3, METTL3-156aa, is an inducer of M1 macrophage polarization, which is responsible for the development of cytokine storms during sHLH. We then identified that METTL3-156aa binding with lactate dehydrogenase A (LDHA) and promotes M1 macrophage polarization by enhancing macrophage glycolysis. Additionally, the glycolysis metabolite lactate upregulates the cleavage factor SRSF10 expression by lactylation. This results in increased splicing of the pre-METTL3 mRNA, leading to an enchance in the production of cirMETTL3. Therefore, our results suggest that the circMETTL3/METTL3-156aa/LDHA/Lactate/SRSF10 axis forms a positive feedback loop and may be a novel therapeutic target for the treatment of sHLH.
Collapse
Affiliation(s)
- Longlong Xie
- Department of Radiology, Hunan Provincial Key Laboratory of Pediatric Orthopedics, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Xiangying Deng
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Li
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Xun Li
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Xiangyu Wang
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Haipeng Yan
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Yang
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Ting Luo
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
- Pediatrics Research Institute of Hunan, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Yufan Yang
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China
| | - Zhenghui Xiao
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China.
| | - Xiulan Lu
- Department of Pediatric Intensive Care Unit (PICU) and Hunan Provincial Key Laboratory of Emergency Medicine for Children, The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University (Hunan children's hospital), Changsha, Hunan, China.
| |
Collapse
|
27
|
Ferrini S, Cagnotti G, Ala U, Avilii E, Bellino C, Biasibetti E, Borriello G, Corona C, Di Muro G, Iamone G, Iulini B, Pezzolato M, Bozzetta E, D’Angelo A. Cerebrospinal fluid L-lactate as a diagnostic marker for infectious-inflammatory disorders in the central nervous system of cattle. Front Vet Sci 2024; 11:1466920. [PMID: 39444739 PMCID: PMC11496040 DOI: 10.3389/fvets.2024.1466920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bacterial infection of the central nervous system (CNS) poses a clinical challenge and is a leading cause of neurological disorders in cattle. Human studies have demonstrated an increase in cerebrospinal fluid (CSF) L-lactate levels in bacterial meningitis. The aims of this study were to establish a Reference Interval (RI) for L-lactate in bovine CSF and assess its potential as a biomarker for detecting infectious-inflammatory disorders. Methods CSF L-lactate was measured in the field using a commercially available lactate monitor. The RI for CSF L-lactate was calculated on healthy animals; univariate and receiver operating characteristic (ROC) analyses were performed to disclose an association between CSF L-lactate levels and interpretation of CSF in sick animals. Results Twenty-seven healthy cattle and 86 sick cattle with either CNS infectious-inflammatory disorders (47/86) or CNS disorders of other etiology (39/86) were included in this prospective study. The RI for CSF L-lactate was 1.1-2.4 mmol/L. The concentration was higher in the cattle with neutrophilic pleocytosis and the area under the ROC curve was 0.92 compared to other animals. Based on a cut-off of 3.15 mmol/L, CSF L-lactate had diagnostic sensitivity and specificity for neutrophilic pleocytosis of 93 and 80%, respectively. Discussion This is the first study to determine a RI for CSF L-lactate in cattle. Elevated CSF L-lactate levels indicated neutrophilic pleocytosis, which is often manifested in acute bacterial infection. The present findings may aid in diagnosis and correct use of antimicrobial drugs.
Collapse
Affiliation(s)
- Sara Ferrini
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Giulia Cagnotti
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Eleonora Avilii
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Claudio Bellino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Elena Biasibetti
- Istituto Zooprofilattico del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | | | - Cristiano Corona
- Istituto Zooprofilattico del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Giorgia Di Muro
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Giulia Iamone
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Barbara Iulini
- Istituto Zooprofilattico del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico del Piemonte Liguria e Valle d'Aosta, Turin, Italy
| | - Antonio D’Angelo
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
28
|
Zeng J, Liu J, Zhao N, Wong IN, Huang R. Caulerpa chemnitzia polysaccharide exerts immunomodulatory activity in macrophages by mediating the succinate/PHD2/HIF-1α/IL-1β pathway. Int J Biol Macromol 2024; 277:134450. [PMID: 39098690 DOI: 10.1016/j.ijbiomac.2024.134450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Algal polysaccharide is an important food functional factor with diverse bioactive and low toxicity. Previous studies have confirmed Caulerpa chemnitzia polysaccharides (CRVP) have immunomodulatory activity, but the immunomodulatory mechanism of CRVP in macrophages has not been thoroughly explored yet. In our research, we found that CRVP has outstanding immunomodulatory activity in macrophages, which is reflected in promoting cell proliferation, upregulating cytokines (IL-1β, IL-6, and TNF-α) expression, and increasing NO and ROS levels. Additionally, the result of joint analysis of untargeted metabolomics showed metabolism played a major role in the immunomodulatory of CRVP and suggested succinic acid was a key metabolite. Further verification indicated that the accumulation of succinic acid in macrophages after administered with CRVP, induced the down-regulation of prolyl hydroxylase domain 2 (PHD2) and up-regulation of hypoxia-inducible factor-1α (HIF-1α), thereby enhancing IL-1β expression. Together, the immunomodulatory activity of CRVP in macrophages via succinate/PHD2/HIF-1α/IL-1β pathway.
Collapse
Affiliation(s)
- Jinzi Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- Laboratory of Pathogenic Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Ning Zhao
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, China
| | - Io Nam Wong
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, Macau.
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Meng X, Wu W, Tang Y, Peng M, Yang J, Yuan S, Hu Z, Liu W. Lactate/Hydroxycarboxylic Acid Receptor 1 in Alzheimer's Disease: Mechanisms and Therapeutic Implications-Exercise Perspective. Mol Neurobiol 2024; 61:7717-7731. [PMID: 38427215 DOI: 10.1007/s12035-024-04067-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Lactate has a novel function different from previously known functions despite its traditional association with hypoxia in skeletal muscle. It plays various direct and indirect physiological functions. It is a vital energy source within the central nervous system (CNS) and a signal transmitter regulating crucial processes, such as angiogenesis and inflammation. Activating lactate and its associated receptors elicits effects like synaptic plasticity and angiogenesis alterations. These effects can significantly influence the astrocyte-neuron lactate shuttle, potentially impacting cognitive performance. Decreased cognitive function relates to different neurodegenerative conditions, including Alzheimer's disease (AD), ischemic brain injury, and frontotemporal dementia. Therefore, lactic acid has significant potential for treating neurodegenerative disorders. Exercise is a method that induces the production of lactic acid, which is similar to the effect of lactate injections. It is a harmless and natural way to achieve comparable results. Animal experiments demonstrate that high-intensity intermittent exercise can increase vascular endothelial growth factor (VEGF) levels, thus promoting angiogenesis. In vivo, lactate receptor-hydroxycarboxylic acid receptor 1 (HCAR1) activation can occur by various stimuli, including variations in ion concentrations, cyclic adenosine monophosphate (cAMP) level elevations, and fluctuations in the availability of energy substrates. While several articles have been published on the benefits of physical activity on developing Alzheimer's disease in the CNS, could lactic acid act as a bridge? Understanding how HCAR1 responds to these signals and initiates associated pathways remains incomplete. This review comprehensively analyzes lactate-induced signaling pathways, investigating their influence on neuroinflammation, neurodegeneration, and cognitive decline. Consequently, this study describes the unique role of lactate in the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
30
|
Thiem DGE, Stephan D, Ziebart A, Ruemmler R, Riedel J, Vinayahalingam S, Al-Nawas B, Blatt S, Kämmerer PW. Effects of volume management on free flap perfusion and metabolism in a large animal model study. Lab Anim (NY) 2024; 53:268-275. [PMID: 39122993 PMCID: PMC11439732 DOI: 10.1038/s41684-024-01410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/27/2024] [Indexed: 08/12/2024]
Abstract
Free flap failure represents a substantial clinical burden. The role of intraoperative volume management remains controversial, with valid studies lacking. Here, using a large animal model, we investigated the influence of volume management on free flap perfusion and metabolism. Autotransfer of a musculocutaneous gracilis flap was performed on 31 German domestic pigs, with arterial anastomosis and catheterization of the pedicle vein for sequential blood sampling. Flap reperfusion was followed by induction of a hemorrhagic shock with maintenance for 30 min and subsequent circulation stabilization with crystalloid solution, crystalloid solution and catecholamine, autotransfusion or colloidal solution. Flap perfusion and oxygenation were periodically assessed using hyperspectral imaging. Flap metabolism was assessed via periodic blood gas analyses. Hyperspectral imaging revealed no difference in either superficial or deep tissue oxygen saturation, tissue hemoglobin or tissue water content between the test groups at any time point. Blood gas analyses showed that lactate levels were significantly increased in the group that received crystalloid solution and catecholamine, after circulatory stabilization and up to 2 h after. We conclude that, in hemorrhagic shock, volume management impacts acid-base balance in free flaps. Crystalloid solutions with norepinephrine increase lactate levels, yet short-term effects on flap perfusion seem minimal, suggesting that vasopressors are not detrimental.
Collapse
Affiliation(s)
- Daniel G E Thiem
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| | - Daniel Stephan
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Ziebart
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Robert Ruemmler
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julian Riedel
- Department of Anaesthesiology, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Shankeeth Vinayahalingam
- Department of Oral and Maxillofacial Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sebastian Blatt
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peer W Kämmerer
- Department of Oral and Maxillofacial Surgery, Facial Plastic Surgery, University Medical Centre of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
31
|
Davidson CB, El Sabbagh DES, Machado AK, Pappis L, Sagrillo MR, Somacal S, Emanuelli T, Schultz JV, Augusto Pereira da Rocha J, Santos AFD, Fagan SB, Silva IZD, Andreazza AC, Machado AK. Euterpe oleracea Mart. Bioactive Molecules: Promising Agents to Modulate the NLRP3 Inflammasome. BIOLOGY 2024; 13:729. [PMID: 39336156 PMCID: PMC11428631 DOI: 10.3390/biology13090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Inflammation is a vital mechanism that defends the organism against infections and restores homeostasis. However, when inflammation becomes uncontrolled, it leads to chronic inflammation. The NLRP3 inflammasome is crucial in chronic inflammatory responses and has become a focal point in research for new anti-inflammatory therapies. Flavonoids like catechin, apigenin, and epicatechin are known for their bioactive properties (antioxidant, anti-inflammatory, etc.), but the mechanisms behind their anti-inflammatory actions remain unclear. This study aimed to explore the ability of various flavonoids (isolated and combined) to modulate the NLRP3 inflammasome using in silico and in vitro models. Computer simulations, such as molecular docking, molecular dynamics, and MM/GBSA calculations examined the interactions between bioactive molecules and NLRP3 PYD. THP1 cells were treated with LPS + nigericin to activate NLRP3, followed by flavonoid treatment at different concentrations. THP1-derived macrophages were also treated following NLRP3 activation protocols. The assays included colorimetric, fluorometric, microscopic, and molecular techniques. The results showed that catechin, apigenin, and epicatechin had high binding affinity to NLRP3 PYD, similar to the known NLRP3 inhibitor MCC950. These flavonoids, particularly at 1 µg/mL, 0.1 µg/mL, and 0.01 µg/mL, respectively, significantly reduced LPS + nigericin effects in both cell types and decreased pro-inflammatory cytokine, caspase-1, and NLRP3 gene expression, suggesting their potential as anti-inflammatory agents through NLRP3 modulation.
Collapse
Affiliation(s)
- Carolina Bordin Davidson
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | | | - Amanda Kolinski Machado
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Lauren Pappis
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | | | - Sabrina Somacal
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Tatiana Emanuelli
- Department of Technology and Food Science, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Júlia Vaz Schultz
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - João Augusto Pereira da Rocha
- Federal Institute of Pará, Bragança Campus, Computational Chemistry and Modeling Laboratory, Bragança 68600-000, PA, Brazil
| | | | - Solange Binotto Fagan
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Ivana Zanella da Silva
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Alencar Kolinski Machado
- Graduate Program in Nanosciences, Franciscan University, Santa Maria 97010-030, RS, Brazil
- Laboratory of Cell Culture and Bioactive Effects, Franciscan University, Santa Maria 97010-030, RS, Brazil
| |
Collapse
|
32
|
Papadopoulou D, Chrysikopoulou V, Rampaouni A, Tsoupras A. Antioxidant and anti-inflammatory properties of water kefir microbiota and its bioactive metabolites for health promoting bio-functional products and applications. AIMS Microbiol 2024; 10:756-811. [PMID: 39628717 PMCID: PMC11609422 DOI: 10.3934/microbiol.2024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/05/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
Inflammation and oxidative stress are implicated in several chronic disorders, while healthy foods and especially fermented beverages and those containing probiotics can provide anti-inflammatory and antioxidant protection against such manifestations and the associated disorders. Water kefir is such a beverage that is rich in both probiotic microbiota and anti-inflammatory bioactives, with an increasing demand as an alternative to a fermented product based on non-dairy matrix with potential health properties. Within this study, the health-promoting properties of the most representative species and strains of microorganisms present in water kefir grains, as well as the health benefits attributed to the bioactive metabolites produced by each individual strain in a series of their cultures, were thoroughly reviewed. Emphasis was given to the antioxidant, antithrombotic, and anti-inflammatory bio-functionalities of both the cultured microorganisms and the bioactive metabolites produced in each case. Moreover, an extensive presentation of the antioxidant and anti-inflammatory health benefits observed from the overall water kefir cultures and classic water kefir beverages obtained were also conducted. Finally, the use of water kefir for the production of several other bio-functional products, including fermented functional foods, supplements, nutraceuticals, nutricosmetics, cosmeceuticals, and cosmetic applications with anti-inflammatory and antioxidant health promoting potential was also thoroughly discussed. Limitations and future perspectives on the use of water kefir, its microorganisms, and their bioactive metabolites are also outlined.
Collapse
Affiliation(s)
| | | | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Science, Democritus University of Thrace, Kavala University Campus, 65404, Kavala, Greece
| |
Collapse
|
33
|
Chong SG, Ismail IS, Chong CM, Mad Nasir N, Saleh Hodin NA. 1H NMR-metabolomics studies on acute toxicity effect of lead in adult zebrafish ( Danio rerio) model. Drug Chem Toxicol 2024; 47:573-586. [PMID: 38726945 DOI: 10.1080/01480545.2024.2346751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 09/04/2024]
Abstract
Zebrafish (Danio rerio) is ideal for studying the effects of toxins like lead or plumbum (Pb) which persist in the environment and harm body systems when absorbed. Increasing Pb concentration could result in a higher mortality rate and alteration of behavior and metabolism. The present study evaluates the acute toxicity effect of Pb on metabolome and behavior in adult zebrafish. The zebrafish were exposed to various Pb concentrations ranging from 0 to 30 mg/L for different periods (24, 48, and 72 h) before the fish samples were subjected to Nuclear Magnetic Resonance (NMR)-multivariate data analysis (MVDA) with additional support from behavioral assessment. The behavior of zebrafish was significantly altered after Pb inducement and the differential metabolites increased in low (5 mg/L) while decreased in high (10 mg/L) Pb concentrations. An ideal Pb induction could be achieved by 5 mg/L concentration in 24 h, which induced significant metabolite changes without irreversible damage. Continuing research on the effects of lead toxicity is crucial to develop effective prevention and treatment strategies.
Collapse
Affiliation(s)
- Siok-Geok Chong
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Intan Safinar Ismail
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Chou-Min Chong
- Department of Aquaculture, Faculty of Agricultural Sciences, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Nadiah Mad Nasir
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Nur Atikah Saleh Hodin
- Natural Medicines and Products Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
34
|
Raza W, Öhman A, Kanninen KM, Jalava P, Zeng XW, de Crom TOE, Ikram MA, Oudin A. Metabolic profiles associated with exposure to ambient particulate air pollution: findings from the Betula cohort. Front Public Health 2024; 12:1401006. [PMID: 39193206 PMCID: PMC11348805 DOI: 10.3389/fpubh.2024.1401006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/01/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction Air pollution is a significant contributor to morbidity and mortality globally and has been linked to an increased risk of dementia. Previous studies within the Betula cohort in Northern Sweden have demonstrated associations between air pollution and dementia, as well as distinctive metabolomic profiles in dementia patients compared to controls. This study aimed to investigate whether air pollution is associated with quantitative changes in metabolite levels within this cohort, and whether future dementia status would modify this association. Methods Both short-term and long-term exposure to air pollution were evaluated using high spatial resolution models and measured data. Air pollution from vehicle exhaust and woodsmoke were analyzed separately. Metabolomic profiling was conducted on 321 participants, including 58 serum samples from dementia patients and a control group matched for age, sex, and education level, using nuclear magnetic resonance spectroscopy. Results No statistically significant associations were found between any metabolites and any measures of short-term or long-term exposure to air pollution. However, there were trends potentially suggesting associations between both long-term and short-term exposure to air pollution with lactate and glucose metabolites. Notably, these associations were observed despite the lack of correlation between long-term and short-term air pollution exposure in this cohort. There were also tendencies for associations between air pollution from woodsmoke to be more pronounced in participants that would later develop dementia, suggesting a potential effect depending on urban/rural factors. Discussion While no significant associations were found, the trends observed in the data suggest potential links between air pollution exposure and changes in lactate and glucose metabolites. These findings provide some new insights into the link between air pollution and metabolic markers in a low-exposure setting. However, addressing existing limitations is crucial to improve the robustness and applicability of future research in this area. The pronounced associations in participants who later developed dementia may indicate an influence of urban/rural factors, warranting further investigation.
Collapse
Affiliation(s)
- Wasif Raza
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anders Öhman
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Xiao-wen Zeng
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | | | - M. Arfan Ikram
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
35
|
Yuan H, Chen S, Duncan MR, de Rivero Vaccari JP, Keane RW, Dalton Dietrich W, Chou TH, Benny M, Schmidt AF, Young K, Park KK, Porciatti V, Elizabeth Hartnett M, Wu S. IC100, a humanized therapeutic monoclonal anti-ASC antibody alleviates oxygen-induced retinopathy in mice. Angiogenesis 2024; 27:423-440. [PMID: 38709389 PMCID: PMC11303442 DOI: 10.1007/s10456-024-09917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Retinopathy of prematurity (ROP), which often presents with bronchopulmonary dysplasia (BPD), is among the most common morbidities affecting extremely premature infants and is a leading cause of severe vision impairment in children worldwide. Activations of the inflammasome cascade and microglia have been implicated in playing a role in the development of both ROP and BPD. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly. Utilizing mouse models of both oxygen-induced retinopathy (OIR) and BPD, this study was designed to test the hypothesis that hyperoxia induces ASC speck formation, which leads to microglial activation and retinopathy, and that inhibition of ASC speck formation by a humanized monoclonal antibody, IC100, directed against ASC, will ameliorate microglial activation and abnormal retinal vascular formation. METHODS We first tested ASC speck formation in the retina of ASC-citrine reporter mice expressing ASC fusion protein with a C-terminal citrine (fluorescent GFP isoform) using a BPD model that causes both lung and eye injury by exposing newborn mice to room air (RA) or 85% O2 from postnatal day (P) 1 to P14. The retinas were dissected on P14 and retinal flat mounts were used to detect vascular endothelium with AF-594-conjugated isolectin B4 (IB4) and citrine-tagged ASC specks. To assess the effects of IC100 on an OIR model, newborn ASC citrine reporter mice and wildtype mice (C57BL/6 J) were exposed to RA from P1 to P6, then 75% O2 from P7 to P11, and then to RA from P12 to P18. At P12 mice were randomized to the following groups: RA with placebo PBS (RA-PBS), O2 with PBS (O2-PBS), O2 + IC100 intravitreal injection (O2-IC100-IVT), and O2 + IC100 intraperitoneal injection (O2-IC100-IP). Retinal vascularization was evaluated by flat mount staining with IB4. Microglial activation was detected by immunofluorescence staining for allograft inflammatory factor 1 (AIF-1) and CD206. Retinal structure was analyzed on H&E-stained sections, and function was analyzed by pattern electroretinography (PERG). RNA-sequencing (RNA-seq) of the retinas was performed to determine the transcriptional effects of IC100 treatment in OIR. RESULTS ASC specks were significantly increased in the retinas by hyperoxia exposure and colocalized with the abnormal vasculature in both BPD and OIR models, and this was associated with increased microglial activation. Treatment with IC100-IVT or IC100-IP significantly reduced vaso-obliteration and intravitreal neovascularization. IC100-IVT treatment also reduced retinal microglial activation, restored retinal structure, and improved retinal function. RNA-seq showed that IC100 treatment corrected the induction of genes associated with angiogenesis, leukocyte migration, and VEGF signaling caused by O2. IC100 also corrected the suppression of genes associated with cell junction assembly, neuron projection, and neuron recognition caused by O2. CONCLUSION These data demonstrate the crucial role of ASC in the pathogenesis of OIR and the efficacy of a humanized therapeutic anti-ASC antibody in treating OIR mice. Thus, this anti-ASC antibody may potentially be considered in diseases associated with oxygen stresses and retinopathy, such as ROP.
Collapse
Affiliation(s)
- Huijun Yuan
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Shaoyi Chen
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Matthew R Duncan
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Merline Benny
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Augusto F Schmidt
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Karen Young
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Kevin K Park
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Shu Wu
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA.
| |
Collapse
|
36
|
Sheikhrobat SB, Mahmoudvand S, Kazemipour-Khabbazi S, Ramezannia Z, Baghi HB, Shokri S. Understanding lactate in the development of Hepatitis B virus-related hepatocellular carcinoma. Infect Agent Cancer 2024; 19:31. [PMID: 39010155 PMCID: PMC11247867 DOI: 10.1186/s13027-024-00593-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Hepatitis B Virus (HBV) is a hepatotropic virus that can establish a persistent and chronic infection in humans. Chronic hepatitis B (CHB) infection is associated with an increased risk of hepatic decompensation, cirrhosis, and hepatocellular carcinoma (HCC). Lactate level, as the end product of glycolysis, plays a substantial role in metabolism beyond energy production. Emerging studies indicate that lactate is linked to patient mortality rates, and HBV increases overall glucose consumption and lactate production in hepatocytes. Excessive lactate plays a role in regulating the tumor microenvironment (TME), immune cell function, autophagy, and epigenetic reprogramming. The purpose of this review is to gather and summarize the existing knowledge of the lactate's functions in the dysregulation of the immune system, which can play a crucial role in the development of HBV-related HCC. Therefore, it is reasonable to hypothesize that lactate with intriguing functions can be considered an immunomodulatory metabolite in immunotherapy.
Collapse
Affiliation(s)
- Sheida Behzadi Sheikhrobat
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Mahmoudvand
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Salva Kazemipour-Khabbazi
- Department of English Language and Persian Literature, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Ramezannia
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Somayeh Shokri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
37
|
Xiong W, Yeo T, May JTM, Demmers T, Ceronie B, Ramesh A, McGinty RN, Michael S, Torzillo E, Sen A, Anthony DC, Irani SR, Probert F. Distinct plasma metabolomic signatures differentiate autoimmune encephalitis from drug-resistant epilepsy. Ann Clin Transl Neurol 2024; 11:1897-1908. [PMID: 39012808 PMCID: PMC11251473 DOI: 10.1002/acn3.52112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 07/18/2024] Open
Abstract
OBJECTIVE Differentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)-based metabolomics could differentiate AE from drug-resistant epilepsy (DRE), and stratify AE subtypes. METHODS This study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin-associated protein-like 2 (CASPR2), 29 with leucine-rich glioma inactivated 1 (LGI1) and 20 with N-methyl-d-aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS-DA). RESULTS The OPLS-DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS-DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high-density lipoprotein (HDL, -(CH2)n-, -CH3), phosphatidylcholine and albumin (lysyl moiety). AE subtype-specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, -CH2CH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR-antibody patients. INTERPRETATION This study presents the first non-antibody-based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics.
Collapse
Affiliation(s)
- Wenzheng Xiong
- Department of ChemistryUniversity of OxfordOxfordUK
- Department of Pharmacology, Medical Sciences DivisionUniversity of OxfordOxfordUK
| | - Tianrong Yeo
- Department of Pharmacology, Medical Sciences DivisionUniversity of OxfordOxfordUK
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingaporeSingapore
| | - Jeanne Tan May May
- Department of NeurologyNational Neuroscience InstituteSingaporeSingapore
- Duke‐NUS Medical SchoolSingaporeSingapore
| | - Tor Demmers
- Department of Pharmacology, Medical Sciences DivisionUniversity of OxfordOxfordUK
| | - Bryan Ceronie
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Archana Ramesh
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Ronan N. McGinty
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Sophia Michael
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Emma Torzillo
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Arjune Sen
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Daniel C. Anthony
- Department of Pharmacology, Medical Sciences DivisionUniversity of OxfordOxfordUK
| | - Sarosh R. Irani
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Department of NeurologyJohn Radcliffe Hospital, Oxford University HospitalsOxfordUK
- Departments of Neurology and NeurosciencesMayo ClinicJacksonvilleFloridaUSA
| | - Fay Probert
- Department of ChemistryUniversity of OxfordOxfordUK
| |
Collapse
|
38
|
Tassinari ID, Rodrigues FDS, Bertram C, Mendes-da-Cruz DA, Guedes RP, Paz AH, Bambini-Junior V, de Fraga LS. Lactate Protects Microglia and Neurons from Oxygen-Glucose Deprivation/Reoxygenation. Neurochem Res 2024; 49:1762-1781. [PMID: 38551797 DOI: 10.1007/s11064-024-04135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 06/02/2024]
Abstract
Lactate has received attention as a potential therapeutic intervention for brain diseases, particularly those including energy deficit, exacerbated inflammation, and disrupted redox status, such as cerebral ischemia. However, lactate roles in metabolic or signaling pathways in neural cells remain elusive in the hypoxic and ischemic contexts. Here, we tested the effects of lactate on the survival of a microglial (BV-2) and a neuronal (SH-SY5Y) cell lines during oxygen and glucose deprivation (OGD) or OGD followed by reoxygenation (OGD/R). Lactate signaling was studied by using 3,5-DHBA, an exogenous agonist of lactate receptor GPR81. Inhibition of lactate dehydrogenase (LDH) or monocarboxylate transporters (MCT), using oxamate or 4-CIN, respectively, was performed to evaluate the impact of lactate metabolization and transport on cell viability. The OGD lasted 6 h and the reoxygenation lasted 24 h following OGD (OGD/R). Cell viability, extracellular lactate concentrations, microglial intracellular pH and TNF-ɑ release, and neurite elongation were evaluated. Lactate or 3,5-DHBA treatment during OGD increased microglial survival during reoxygenation. Inhibition of lactate metabolism and transport impaired microglial and neuronal viability. OGD led to intracellular acidification in BV-2 cells, and reoxygenation increased the release of TNF-ɑ, which was reverted by lactate and 3,5-DHBA treatment. Our results suggest that lactate plays a dual role in OGD, acting as a metabolic and a signaling molecule in BV-2 and SH-SY5Y cells. Lactate metabolism and transport are vital for cell survival during OGD. Moreover, lactate treatment and GPR81 activation during OGD promote long-term adaptations that potentially protect cells against secondary cell death during reoxygenation.
Collapse
Affiliation(s)
- Isadora D'Ávila Tassinari
- Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 90050-003, Brazil
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Craig Bertram
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Ana Helena Paz
- Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 90050-003, Brazil
| | - Victorio Bambini-Junior
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Luciano Stürmer de Fraga
- Graduate Program in Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, 90050-003, Brazil.
| |
Collapse
|
39
|
Guo D, Shi C, Suo L, Ji X, Yue H, Yuan D, Luo J. "Click" amphotericin B in prodrug nanoformulations for enhanced systemic fungemia treatment. J Control Release 2024; 370:626-642. [PMID: 38734314 PMCID: PMC11923797 DOI: 10.1016/j.jconrel.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Severe nephrotoxicity and infusion-related side effects pose significant obstacles to the clinical application of Amphotericin B (AmB) in life-threatening systemic fungal infections. In pursuit of a cost-effective and safe formulation, we have introduced multiple phenylboronic acid (PBA) moieties onto a linear dendritic telodendrimer (TD) scaffold, enabling effective AmB conjugation via boronate chemistry through a rapid, high yield, catalysis-free and dialysis-free "Click" drug loading process. Optimized AmB-TD prodrugs self-assemble into monodispersed micelles characterized by small particle sizes and neutral surface charges. AmB prodrugs sustain drug release in circulation, which is accelerated in response to the acidic pH and Reactive Oxygen Species (ROS) in the infection and inflammation. Prodrugs mitigate the AmB aggregation status, reduce cytotoxicity and hemolytic activity compared to Fungizone®, and demonstrate superior antifungal activity to AmBisome®. AmB-PEG5kBA4 has a comparable maximum tolerated dose (MTD) to AmBisome®, while over 20-fold increase than Fungizone®. A single dose of AmB-PEG5kBA4 demonstrates superior efficacy to Fungizone® and AmBisome® in treating systemic fungal infections in both immunocompetent and immunocompromised mice.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Changying Shi
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Liye Suo
- Department of Pathology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Xiaotian Ji
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Hao Yue
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Dekai Yuan
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Juntao Luo
- Department of Pharmacology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, State University of New York Upstate Medical University, Syracuse, NY 13210, USA; Sepsis Interdisciplinary Research Center (SIRC), State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
40
|
Jin H, Wen G, Zhu J, Liu J, Li J, Yao S, Zhao Z, Dong Z, Zhang X, An J, Liu X, Tuo B. Pantoprazole suppresses carcinogenesis and growth of hepatocellular carcinoma by inhibiting glycolysis and Na +/H + exchange. Drug Dev Res 2024; 85:e22198. [PMID: 38764200 DOI: 10.1002/ddr.22198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The prevention and therapy for this deadly disease remain a global medical challenge. In this study, we investigated the effect of pantoprazole (PPZ) on the carcinogenesis and growth of HCC. Both diethylnitrosamine (DEN) plus CCl4-induced and DEN plus high fat diet (HFD)-induced HCC models in mice were established. Cytokines and cell proliferation-associated gene in the liver tissues of mice and HCC cells were analyzed. Cellular glycolysis and Na+/H+ exchange activity were measured. The preventive administration of pantoprazole (PPZ) at a clinically relevant low dose markedly suppressed HCC carcinogenesis in both DEN plus CCl4-induced and HFD-induced murine HCC models, whereas the therapeutic administration of PPZ at the dose suppressed the growth of HCC. In the liver tissues of PPZ-treated mice, inflammatory cytokines, IL1, CXCL1, CXCL5, CXCL9, CXCL10, CCL2, CCL5, CCL6, CCL7, CCL20, and CCL22, were reduced. The administration of CXCL1, CXCL5, CCL2, or CCL20 all reversed PPZ-suppressed DEN plus CCL4-induced HCC carcinogenesis in mice. PPZ inhibited the expressions of CCNA2, CCNB2, CCNE2, CDC25C, CDCA5, CDK1, CDK2, TOP2A, TTK, AURKA, and BIRC5 in HCC cells. Further results showed that PPZ reduced the production of these inflammatory cytokines and the expression of these cell proliferation-associated genes through the inhibition of glycolysis and Na+/H+ exchange. In conclusion, PPZ suppresses the carcinogenesis and growth of HCC, which is related to inhibiting the production of inflammatory cytokines and the expression of cell proliferation-associated genes in the liver through the inhibition of glycolysis and Na+/H+ exchange.
Collapse
Affiliation(s)
- Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jielong Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jingguo Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenglan Zhao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiqi Dong
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xue Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
41
|
Yang M, Hutchinson N, Ye N, Yin J, Guan M, Wang Z, Chen P, Yang S, Crane JD, Zhang K, He X, Li J. Engineered Bacillus subtilis as oral probiotics to enhance clearance of blood lactate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569300. [PMID: 38076834 PMCID: PMC10705430 DOI: 10.1101/2023.11.30.569300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Elevated lactate concentrations are implicated in various acute and chronic diseases such as sepsis and mitochondrial dysfunction, respectively. Conversely, ineffective lactate clearance is associated with poor clinical prognoses and high mortality in these diseases. While several groups have proposed using small molecule inhibitors and enzyme replacement to reduce circulating lactate, there are few practical and effective ways to manage this condition. Recent evidence suggests that lactate is exchanged between systemic circulation and the gut, allowing bidirectional modulation between the gut microbiota and peripheral tissues. Inspired by these findings, this work seeks to engineer spore-forming probiotic B. subtilis strains to enable intestinal delivery of lactate oxidase as a therapeutic enzyme. After strain optimization, we showed that oral administration of engineered B. subtilis spores to the gut of mice reduced elevations in blood lactate in two different mouse models involving exogenous challenge or pharmacologic perturbation without disrupting gut microbiota composition, liver function, or immune homeostasis. Taken together, through the oral delivery of engineered probiotic spores to the gastrointestinal tract, our proof-of-concept study offers a practical strategy to aid in the management of disease states with elevated blood lactate and provides a new approach to 'knocking down' circulating metabolites to help understand their roles in host physiological and pathological processes.
Collapse
Affiliation(s)
- Mengdi Yang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Noah Hutchinson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Ningyuan Ye
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Jianing Yin
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Ming Guan
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Zongqi Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Peiru Chen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, United States
| | - Shaobo Yang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
| | - Justin D. Crane
- Internal Medicine Research Unit, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139
| | - Ke Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, United States
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, 02142, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, 02115, United States
| | - Jiahe Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| |
Collapse
|
42
|
Rahman A, Casarcia N, Frederick J. A Case Report of Refractory Hyperlactatemia Secondary to Thiamine Deficiency. Cureus 2024; 16:e60760. [PMID: 38903294 PMCID: PMC11188005 DOI: 10.7759/cureus.60760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Thiamine is an essential water-soluble vitamin that must be obtained through diet. This vitamin is crucial for various biochemical reactions and is vital for aerobic metabolism. When individuals are deficient in thiamine, which can be due to hypermetabolism (such as in inflammation, ischemia, or malnutrition, among other reasons), anaerobic metabolism may be utilized to maintain energy needs. Such chemical processes produce lactic acid. Excess lactic acid can cause various clinical signs and symptoms, though lactate dehydrogenase (LDH) can typically break down this compound. The following case presents a very unusual instance where a 51-year-old Caucasian woman presented with the chief complaint of ongoing and severe abdominal pain. After an extensive work-up ruling out numerous diagnoses and an eight-day hospital stay, it was believed that she may be suffering from hyperlactatemia secondary to thiamine deficiency, as she improved significantly after administration of this vitamin. It was thought that this was likely due to her previous systemic lupus erythematosus (SLE) diagnosis, vasculitis, chronic inflammation, and a hypermetabolic state, in addition to concurrent LDH malfunction.
Collapse
Affiliation(s)
- Austin Rahman
- Emergency Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, USA
| | - Nicolette Casarcia
- Internal Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, USA
| | | |
Collapse
|
43
|
Li X, Qian J, Liu Q, Guo M, Zhang H, Li H, Chen W. Yogurt Prevents Colorectal Tumorigenesis in Apc Min/+ Mice. Mol Nutr Food Res 2024; 68:e2300737. [PMID: 38700077 DOI: 10.1002/mnfr.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Indexed: 05/05/2024]
Abstract
SCOPE Yogurt consumption is related to a decreased risk of colorectal cancer (CRC), but whether such association is causal remains unclear. Patients with familial adenomatous polyposis (FAP) are at increased risk of CRC development. Here, the study investigates the efficacy of yogurt for intestinal polyposis chemoprevention in ApcMin/+ mice, a preclinical model for human FAP. METHODS AND RESULTS A 10-week yogurt supplementation (15 g kg-1) in ApcMin/+ mice significantly reduces the intestinal polyp number (6.50 ± 0.97 versus 1.80 ± 0.49; p < 0.001) compared to controls. 16S rRNA gene-based microbiota analysis suggests that yogurt supplementation may greatly modulate the gut microbiome composition, especially in the relative abundance of Lactobacillus and Bifidobacterium. Importantly, the fecal concentration of d-lactate (d-Lac, 0.39 ± 0.04 µmol g-1 versus 8.14 ± 0.62 µmol g-1; p < 0.001) is boosted by yogurt, while oral administration with d-Lac (125 or 250 mg kg-1) reduces the polyp number by 71.43% or 77.14% (p < 0.001), respectively. The study also observes that d-Lac does not affect cell viability and anchorage-independence in CRC cells, but it greatly suppresses epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced cell transformation in preneoplastic cells. Mechanistically, it demonstrates that d-Lac may attenuate epithelial cell transformation by targeting PI3K/AKT/β-catenin axis. CONCLUSION Yogurt protects against intestinal polyposis in ApcMin/+ mice, and d-Lac may partially account for the chemopreventive effects above.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Qinglong Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Min Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
44
|
Li X, Cai P, Tang X, Wu Y, Zhang Y, Rong X. Lactylation Modification in Cardiometabolic Disorders: Function and Mechanism. Metabolites 2024; 14:217. [PMID: 38668345 PMCID: PMC11052226 DOI: 10.3390/metabo14040217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiovascular disease (CVD) is recognized as the primary cause of mortality and morbidity on a global scale, and developing a clear treatment is an important tool for improving it. Cardiometabolic disorder (CMD) is a syndrome resulting from the combination of cardiovascular, endocrine, pro-thrombotic, and inflammatory health hazards. Due to their complex pathological mechanisms, there is a lack of effective diagnostic and treatment methods for cardiac metabolic disorders. Lactylation is a type of post-translational modification (PTM) that plays a regulatory role in various cellular physiological processes by inducing changes in the spatial conformation of proteins. Numerous studies have reported that lactylation modification plays a crucial role in post-translational modifications and is closely related to cardiac metabolic diseases. This article discusses the molecular biology of lactylation modifications and outlines the roles and mechanisms of lactylation modifications in cardiometabolic disorders, offering valuable insights for the diagnosis and treatment of such conditions.
Collapse
Affiliation(s)
- Xu Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingdong Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinyuan Tang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yingzi Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China; (X.L.); (P.C.); (X.T.); (Y.W.)
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou 510006, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Guangzhou 510006, China
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Guangzhou 510006, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
45
|
Gonçalves JPR, Melo ADB, Yang Q, de Oliveira MJK, Marçal DA, Ortiz MT, Righetti Arnaut P, França I, Alves da Cunha Valini G, Silva CA, Korth N, Pavlovikj N, Campos PHRF, Brand HG, Htoo JK, Gomes-Neto JC, Benson AK, Hauschild L. Increased Dietary Trp, Thr, and Met Supplementation Improves Performance, Health, and Protein Metabolism of Weaned Piglets under Mixed Management and Poor Housing Conditions. Animals (Basel) 2024; 14:1143. [PMID: 38672291 PMCID: PMC11047353 DOI: 10.3390/ani14081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
A sanitary challenge was carried out to induce suboptimal herd health while investigating the effect of amino acids supplementation on piglet responses. Weaned piglets of high sanitary status (6.33 ± 0.91 kg of BW) were distributed in a 2 × 2 factorial arrangement into two similar facilities with contrasting sanitary conditions and two different diets. Our results suggest that increased Trp, Thr, and Met dietary supplementation could support the immune systems of piglets under a sanitary challenge. In this manner, AA+ supplementation improved the performance and metabolism of piglets under mixed management and poor sanitary conditions. No major temporal microbiome changes were associated with differences in performance regardless of sanitary conditions or diets. Since piglets often become mixed in multiple-site production systems and facility hygiene is also often neglected, this study suggests that increased Trp, Thr, and Met (AA+) dietary supplementation could contribute to mitigating the side effects of these harmful risk factors in modern pig farms.
Collapse
Affiliation(s)
- Joseane Penteado Rosa Gonçalves
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Antonio Diego Brandão Melo
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
| | - Qinnan Yang
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Marllon José Karpeggiane de Oliveira
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Danilo Alves Marçal
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Manoela Trevisan Ortiz
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Pedro Righetti Arnaut
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Ismael França
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Graziela Alves da Cunha Valini
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Cleslei Alisson Silva
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| | - Nate Korth
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Natasha Pavlovikj
- Holland Computing Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | | | | | | | - João Carlos Gomes-Neto
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
- Department of Animal Science, Center for Food Animal Health, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Andrew K. Benson
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (Q.Y.); (N.K.); (J.C.G.-N.); (A.K.B.)
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Luciano Hauschild
- Department of Animal Science, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Campus Jaboticabal, São Paulo 14884-900, Brazil; (J.P.R.G.); (A.D.B.M.); (M.J.K.d.O.); (D.A.M.); (M.T.O.); (P.R.A.); (I.F.); (G.A.d.C.V.); (C.A.S.)
| |
Collapse
|
46
|
Jia Z, Wei X, Chen N, Xu X, Zhao G, Fu X, Wang H, Goldring MB, Goldring SR, Wang D. Thermoresponsive Polymeric Hydromorphone Prodrug Provides Sustained Local Analgesia without Apparent Adverse Effects. Mol Pharm 2024; 21:1838-1847. [PMID: 38413029 PMCID: PMC11210938 DOI: 10.1021/acs.molpharmaceut.3c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The extensive use of opioids for chronic pain management has contributed significantly to the current opioid epidemic. While many alternative nonopioid analgesics are available, opioids remain the most potent analgesics for moderate to severe pain management. In addition to the implementation of multimodal analgesia, there is a pressing need for the development of more effective and safer opioids. In this study, we developed a thermoresponsive N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based hydromorphone (HMP) prodrug (ProGel-HMP, HMP content = 16.2 wt %, in base form). The aqueous solution of ProGel-HMP was free-flowing at 4 °C but became a hydrogel when the temperature was raised to ≥37 °C, allowing sustained local retention when administered in vivo. When tested in the destabilization of the medial meniscus (DMM) mouse model of osteoarthritis (OA), ProGel-HMP was retained after intra-articular injection in the OA knee joint for at least 2 weeks postinjection, with low extra-articular distribution. ProGel-HMP was not detected in the central nervous system (CNS). A single dose of ProGel-HMP produced rapid and sustained joint pain resolution for greater than 14 days when compared to saline and dose-equivalent HMP controls, likely mediated through peripheral μ-opioid receptors in the knee joint. Systemic analgesia effect was absent in the DMM mice treated with ProGel-HMP, as evident in the lack of difference in tail flick response between the ProGel-HMP-treated mice and the controls (i.e., Healthy, Saline, and Sham). Repeated dosing of ProGel-HMP did not induce tolerance. Collectively, these data support the further development of ProGel-HMP as a potent, safe, long-acting and nonaddictive analgesic for better clinical pain management.
Collapse
Affiliation(s)
- Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Xiaoke Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
| | - Gang Zhao
- Ensign Pharmaceutical, Omaha, NE 68106, USA
| | - Xin Fu
- Ensign Pharmaceutical, Omaha, NE 68106, USA
| | - Hanjun Wang
- Department of Anesthesiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-4455, USA
| | | | - Steven R. Goldring
- Ensign Pharmaceutical, Omaha, NE 68106, USA
- Hospital for Special Surgery, New York, NY, 10021, USA
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA
- Ensign Pharmaceutical, Omaha, NE 68106, USA
- Department of Orthopaedic and Rehabilitation, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5640, USA
| |
Collapse
|
47
|
Li J, Zeng G, Zhang Z, Wang Y, Shao M, Li C, Lu Z, Zhao Y, Zhang F, Ding W. Urban airborne PM 2.5 induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116162. [PMID: 38458067 DOI: 10.1016/j.ecoenv.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Airborne fine particulate matter (PM2.5) can cause pulmonary inflammation and even fibrosis, however, the underlying molecular mechanisms of the pathogenesis of PM2.5 exposure have not been fully appreciated. In the present study, we explored the dynamics of glycolysis and modification of histone lactylation in macrophages induced by PM2.5-exposure in both in vivo and in vitro models. Male C57BL/6 J mice were anesthetized and administrated with PM2.5 by intratracheal instillation once every other day for 4 weeks. Mouse RAW264.7 macrophages and alveolar epithelial MLE-12 cells were treated with PM2.5 for 24 h. We found that PM2.5 significantly increased lactate dehydrogenase (LDH) activities and lactate contents, and up-regulated the mRNA expression of key glycolytic enzymes in the lungs and bronchoalveolar lavage fluids of mice. Moreover, PM2.5 increased the levels of histone lactylation in both PM2.5-exposed lungs and RAW264.7 cells. The pro-fibrotic cytokines secreted from PM2.5-treated RAW264.7 cells triggered epithelial-mesenchymal transition (EMT) in MLE-12 cells through activating transforming growth factor-β (TGF-β)/Smad2/3 and VEGFA/ERK pathways. In contrast, LDHA inhibitor (GNE-140) pretreatment effectively alleviated PM2.5-induced pulmonary inflammation and fibrosis via inhibiting glycolysis and subsequent modification of histone lactylation in mice. Thus, our findings suggest that PM2.5-induced glycolysis and subsequent modification of histone lactylation play critical role in the PM2.5-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Jingyi Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guodong Zeng
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuanli Wang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mengyao Shao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunjiang Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China.
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
48
|
Han SM. Predictive role of lactate in dogs with acute pancreatitis advanced to systemic inflammatory response syndrome. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:119-123. [PMID: 38770374 PMCID: PMC11102582 DOI: 10.30466/vrf.2023.1990137.3795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 12/02/2023] [Indexed: 05/22/2024]
Abstract
Acute pancreatitis (AP) can develop into life-threatening conditions such as systemic inflammatory response syndrome (SIRS) or multiple organ dysfunction syndrome. Thirty-nine of 54 client-owned dogs admitted to the Referral Animal Medical Center and diagnosed with AP within 24 hr of onset were retrospectively reviewed to assess early predictors of progression from AP to SIRS. The patients were divided into SIRS (SIRS occurring after AP) and non-SIRS (AP occurring but no SIRS) groups. The population and mean values of laboratory variables within 24 hr of admission were assessed and compared between both groups. There were significantly more dogs with abnormal lactate levels in the SIRS group (80.00%) than non-SIRS group (11.10%). Other parameters did not differ significantly. Mean lactate level values were significantly higher at 3.64 ± 1.75 mmol in the SIRS group compared to 1.68 ± 0.52 mmol in the non-SIRS group. The increased energy required by activated immune cells may lead to metabolic changes characterized by anaerobic glycolysis and increased lactate production. This study's results suggest blood lactate monitoring in the early stages of progression from AP to SIRS in small animal clinical practice. Measuring lactate levels at the early stages of pancreatitis could lead to rapid therapeutic intervention for SIRS and ultimately reduce mortality.
Collapse
Affiliation(s)
- Sei-Myoung Han
- Department of Animal Health and Welfare, College of Health and Biotechnology, Semyung University, Jecheon, South Korea
| |
Collapse
|
49
|
Li X, Yao Z, Qian J, Li H, Li H. Lactate Protects Intestinal Epithelial Barrier Function from Dextran Sulfate Sodium-Induced Damage by GPR81 Signaling. Nutrients 2024; 16:582. [PMID: 38474712 DOI: 10.3390/nu16050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
The dysregulation of the intestinal epithelial barrier significantly contributes to the inflammatory progression of ulcerative colitis. Recent studies have indicated that lactate, produced by gut bacteria or derived from fermented foods, plays a key role in modulating inflammation via G-protein-coupled receptor 81 (GPR81). In this study, we aimed to investigate the potential role of GPR81 in the progression of colitis and to assess the impact of lactate/GPR81 signaling on intestinal epithelial barrier function. Our findings demonstrated a downregulation of GPR81 protein expression in patients with colitis. Functional verification experiments showed that Gpr81-deficient mice exhibited more severe damage to the intestinal epithelial barrier and increased susceptibility to DSS-induced colitis, characterized by exacerbated oxidative stress, elevated inflammatory cytokine secretion, and impaired expression of tight-junction proteins. Mechanistically, we found that lactate could suppress TNF-α-induced MMP-9 expression and prevent the disruption of tight-junction proteins by inhibiting NF-κB activation through GPR81 in vitro. Furthermore, our study showed that dietary lactate could preserve intestinal epithelial barrier function against DSS-induced damage in a GPR81-dependent manner in vivo. Collectively, these results underscore the crucial involvement of the lactate/GPR81 signaling pathway in maintaining intestinal epithelial barrier function, providing a potential therapeutic strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhijie Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jin Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongling Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
50
|
Yunusbaeva M, Borodina L, Terentyeva D, Bogdanova A, Zakirova A, Bulatov S, Altinbaev R, Bilalov F, Yunusbayev B. Excess fermentation and lactic acidosis as detrimental functions of the gut microbes in treatment-naive TB patients. Front Cell Infect Microbiol 2024; 14:1331521. [PMID: 38440790 PMCID: PMC10910113 DOI: 10.3389/fcimb.2024.1331521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction The link between gut microbiota and host immunity motivated numerous studies of the gut microbiome in tuberculosis (TB) patients. However, these studies did not explore the metabolic capacity of the gut community, which is a key axis of impact on the host's immunity. Methods We used deep sequencing of fecal samples from 23 treatment-naive TB patients and 48 healthy donors to reconstruct the gut microbiome's metabolic capacity and strain/species-level content. Results We show that the systematic depletion of the commensal flora of the large intestine, Bacteroidetes, and an increase in Actinobacteria, Firmicutes, and Proteobacteria such as Streptococcaceae, Erysipelotrichaceae, Lachnospiraceae, and Enterobacteriaceae explains the strong taxonomic divergence of the gut community in TB patients. The cumulative expansion of diverse disease-associated pathobionts in patients reached 1/4 of the total gut microbiota, suggesting a heavy toll on host immunity along with MTB infection. Reconstruction of metabolic pathways showed that the microbial community in patients shifted toward rapid growth using glycolysis and excess fermentation to produce acetate and lactate. Higher glucose availability in the intestine likely drives fermentation to lactate and growth, causing acidosis and endotoxemia. Discussion Excessive fermentation and lactic acidosis likely characterize TB patients' disturbed gut microbiomes. Since lactic acidosis strongly suppresses the normal gut flora, directly interferes with macrophage function, and is linked to mortality in TB patients, our findings highlight gut lactate acidosis as a novel research focus. If confirmed, gut acidosis may be a novel potential host-directed treatment target to augment traditional TB treatment.
Collapse
Affiliation(s)
- Milyausha Yunusbaeva
- Laboratory of Evolutionary Biomedicine, International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, Saint Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Liliya Borodina
- Department of Tuberculosis Monitoring, Republican Clinical Antituberculous Dispensary, Ufa, Russia
| | - Darya Terentyeva
- Laboratory of Evolutionary Biomedicine, International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, Saint Petersburg, Russia
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, Saint Petersburg Pasteur Institute, Saint Petersburg, Russia
| | - Anna Bogdanova
- Laboratory of Evolutionary Biomedicine, International Institute “Solution Chemistry of Advanced Materials and Technologies”, ITMO University, Saint Petersburg, Russia
| | - Aigul Zakirova
- Department of Tuberculosis Monitoring, Republican Clinical Antituberculous Dispensary, Ufa, Russia
| | - Shamil Bulatov
- Department of Tuberculosis Monitoring, Republican Clinical Antituberculous Dispensary, Ufa, Russia
| | - Radick Altinbaev
- Laboratory of Neurophysiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Fanil Bilalov
- Laboratory of Molecular Genetics, Republic Medical Genetic Centre, Ufa, Russia
- Department of Public Health and Health Organization with a course of ICPE, Bashkir State Medical University, Ufa, Russia
| | - Bayazit Yunusbayev
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|