1
|
Li Y, Xu B, Chen Z. Causal relationship between inflammatory cytokines and posttraumatic stress disorder: a Mendelian randomization study and potential mechanism analysis. Eur J Psychotraumatol 2025; 16:2494480. [PMID: 40314372 PMCID: PMC12051613 DOI: 10.1080/20008066.2025.2494480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 05/03/2025] Open
Abstract
Background: Post-traumatic stress disorder (PTSD) is a complex condition linked to inflammation. The causality between inflammatory cytokines and PTSD risk remains unclear.Methods: We conducted a bidirectional two-sample Mendelian randomization (MR) study using genome-wide association study (GWAS) data from 41 inflammatory cytokines and PTSD. Additional analyses included differential gene expression, protein-protein interaction, and functional enrichment to explore underlying mechanisms.Results: MR analysis indicated that higher levels of stem cell factor (SCF) and interleukin-4 (IL-4) are associated with a reduced risk of PTSD. Genes POGZ and LRIG2 were identified as mediators, implicated in the TGF-beta signalling pathway.Conclusion: Our findings suggest a protective role of certain cytokines against PTSD and highlight potential molecular mediators. This knowledge could inform future therapeutic strategies for PTSD.
Collapse
Affiliation(s)
- Yingchong Li
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Bangliang Xu
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Zhitao Chen
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, People’s Republic of China
| |
Collapse
|
2
|
Xie Y, Cheng Q, Xu ML, Xue J, Wu H, Du Y. Itaconate: A Potential Therapeutic Strategy for Autoimmune Disease. Scand J Immunol 2025; 101:e70026. [PMID: 40289463 DOI: 10.1111/sji.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Itaconate is a metabolite of the Krebs cycle, and endogenous itaconate is driven by a variety of innate signals that inhibit the production of inflammatory cytokines. The key mechanism of action of itaconate was initially found to be the competitive inhibition of succinate dehydrogenase (SDH), which inhibits the production of inflammatory factors, as well as its antioxidant effects. With increasing research, it was discovered that it modifies cysteine residues of related proteins through the Michael addition, such as modifying the Kelch-like ECH-associated protein 1 (KEAP1) protein and activating the nuclear factor erythroid 2-related factor 2 (NRF2) signalling pathway, as well as glycolytic enzymes and cellular pathway-associated factors that attenuate inflammatory responses and oxidative stress. It also acts on a variety of immune cells, affecting their function and activity, and has been increasingly shown to play a therapeutic role in a variety of inflammatory and autoimmune diseases through a combination of these mechanisms. In conclusion, there has been a great breakthrough in the research of itaconate, from the initial industrial application to the redefinition of the biological functions of itaconate. However, with the deepening of the research, we also found that there are more questions: the mechanism of action of itaconate, more functions of itaconate, clinical application of itaconate, and the use of itaconate still needs to be solved.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Li Xu
- Department of Nephrology, The Third Affiliate Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Wang S, Wang J, Zhang X, Xu S, Peng Q, Li Y, Ding R, Jiang B, Wang S, Zhang S, Hu S, Rastegar‐Kashkooli Y, Xing N, Li N, Wang M, Wang J, Chen X, Jiang C, Fan X, Wang J. Distribution of Intranasally Administered rIL-10 Along the Olfactory Nerve and Perivascular Space After Intracerebral Hemorrhage. CNS Neurosci Ther 2025; 31:e70372. [PMID: 40237247 PMCID: PMC12000929 DOI: 10.1111/cns.70372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
RATIONALE The utilization of anti-inflammatory therapy for treating brain diseases holds promise; however, research on intranasal administration of drug compounds remains limited. Quantitative data, particularly pharmacokinetics, are scant, and direct evidence of the distribution of intranasally administered recombinant interleukin 10 (rIL-10) within the brain is lacking. METHODS Employing fluorescent labeling, in vivo imaging, and confocal microscopy, we meticulously monitored the distribution and delivery pathways of intranasally administered rIL-10 in the brain. RESULTS AND CONCLUSIONS Our findings demonstrate that rIL-10 can permeate the blood-brain barrier and reach the perihematomal area in the striatum of mice with intracerebral hemorrhage. Intranasally administered rIL-10 primarily targets the cerebral cortex, striatum, and thalamus, traversing the olfactory nerve pathway and perivascular space to access these brain regions. This mode of delivery effectively mitigated secondary brain injury after intracerebral hemorrhage. This study contributes to intranasal drug delivery research, offering compelling evidence to support the intranasal delivery of anti-inflammatory cytokines or alternative drug candidates for treating brain diseases.
Collapse
Affiliation(s)
- Shaoshuai Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
- Non‐Commissioned Officer School of Army Medical UniversityShijiazhuangChina
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Xinru Zhang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Shijun Xu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Qinfeng Peng
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Yifei Li
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Ruoqi Ding
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Bing Jiang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Shuyu Wang
- Nanozyme Laboratory in Zhongyuan, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Shuaibing Zhang
- Nanozyme Laboratory in ZhongyuanHenan Academy of Innovations in Medical ScienceZhengzhouChina
| | - Siyuan Hu
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | | | - Na Xing
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Nan Li
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Menglu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Junyang Wang
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Chao Jiang
- Department of NeurologyPeople's Hospital of Zhengzhou University and Henan Provincial People's HospitalZhengzhouChina
| | - Xiaochong Fan
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jian Wang
- Department of Pain MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Human Anatomy, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
4
|
Li X, Zhao Z, Ke Y, Jiang Y, Liu Y, Liu Z. Links Between Cellular Energy Metabolism and Pain Sensation. Anesth Analg 2025; 140:616-627. [PMID: 39110636 PMCID: PMC11805490 DOI: 10.1213/ane.0000000000007096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 02/09/2025]
Abstract
One of the functions of organism cells is to maintain energy homeostasis to promote metabolism and adapt to the environment. The 3 major pathways of cellular energy metabolism are glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS). Neurons, astrocytes, and microglia are crucial in allodynia, hyperalgesia, and sensitization in nociceptive pathways. This review focused on these 3 major cellular energy metabolism pathways, aiming to elucidate the relationship between neurocyte and pain sensation and present the reprogramming of energy metabolism on pain, as well as the cellular and molecular mechanism underlying various forms of pain. The clinical and preclinical drugs involved in pain treatment and molecular mechanisms via cellular energy metabolism were also discussed.
Collapse
Affiliation(s)
- Xiongjuan Li
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhao Zhao
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuwen Ke
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yonghan Jiang
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Yuqiang Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| | - Zhiheng Liu
- From the Department of Anesthesiology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, China
| |
Collapse
|
5
|
Hakim S, Jain A, Woolf CJ. Immune drivers of pain resolution and protection. Nat Immunol 2024; 25:2200-2208. [PMID: 39528810 DOI: 10.1038/s41590-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Immune cells are involved in the pathogenesis of pain by directly activating or sensitizing nociceptor sensory neurons. However, because the immune system also has the capacity to self-regulate through anti-inflammatory mechanisms that drive the resolution of inflammation, it might promote pain resolution and prevention. Here, we describe how immune cell-derived cytokines can act directly on sensory neurons to inhibit pain hypersensitivity and how immune-derived endogenous opioids promote analgesia. We also discuss how immune cells support healthy tissue innervation by clearing debris after nerve injury, protecting against axon retraction from target tissues and enhancing regeneration, preventing the development of chronic neuropathic pain. Finally, we review the accumulating evidence that manipulating immune activity positively alters somatosensation, albeit with currently unclear molecular and cellular mechanisms. Exploration of immune-mediated analgesia and pain prevention could, therefore, be important for the development of novel immune therapies for the treatment of clinical pain states.
Collapse
Affiliation(s)
- Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Rahimi K, Abbaszadeh M, Bakhtazad S, Ghotbeddin Z. Effects of dimethyl itaconate on expressions of NGFI-A and NGFI-B and inflammatory cytokines in the spinal cord in the formalin test. Brain Commun 2024; 6:fcae397. [PMID: 39568551 PMCID: PMC11577613 DOI: 10.1093/braincomms/fcae397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/06/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Neural sensitization can cause neuroinflammation, which is a type of inflammation that occurs in both the peripheral nervous system and central nervous system. The purpose of this study was to investigate the effect of dimethyl itaconate (DMI) on the expression of NGFI-A and NGFI-B and inflammatory cytokines in the spinal cord in the formalin test. The rats were divided into five groups: control, formalin, DMI 10 mg/kg + formalin, DMI 20 mg/kg + formalin and diclofenac sodium 10 mg/kg + formalin. We evaluated the impact of DMI on the spinal cords NGFI-A and NGFI-B expressions and inflammatory and anti-inflammatory cytokines [interleukin-1 beta (IL-1β), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-10 (IL-10)]. The findings indicate that DMI 10, DMI 20 and diclofenac sodium 10 mg/kg can relieve pain in rats during the formalin test. In addition, these substances were found to reduce the expression of NGFI-A and NGFI-B in the spinal cord. Moreover, DMI 10, DMI 20 and diclofenac sodium 10 mg/kg were observed to increase the expression of IL-10 while decreasing IL-1β, TNF-α and IL-6 in the spinal cord when compared with the formalin group. We have found that administering DMI can alleviate pain in rats during formalin test. Through our research, we have observed that DMI decreases the expression of NGFI-A and NGFI-B in the spinal cord. Furthermore, DMI has been shown to increase the levels of IL-10 while decreasing IL-1β, TNF-α and IL-6 in the spinal cord.
Collapse
Affiliation(s)
- Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Abbaszadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sharareh Bakhtazad
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
7
|
Nosenko M, Anisov D, Gubernatorova E, Gorshkova E, Zeng YR, Ye D, Wang P, Finlay D, Drutskaya M, Nedospasov S. Itaconate and dimethyl itaconate upregulate IL-6 production in the LPS-induced inflammation in mice. J Leukoc Biol 2024; 116:611-620. [PMID: 38941443 DOI: 10.1093/jleuko/qiae149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/10/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024] Open
Abstract
Itaconate is one of the most studied immunometabolites produced by myeloid cells during inflammatory response. It mediates a wide range of anti-inflammatory and immunoregulatory effects and plays a role in a number of pathological states, including autoimmunity and cancer. Itaconate and its derivatives are considered potential therapeutic agents for the treatment of inflammatory diseases. While immunoregulatory effects of itaconate have been extensively studied in vitro and using knockout mouse models, less is known about how therapeutic administration of this metabolite regulates inflammatory response in vivo. Here, we investigate the immunoregulatory properties of exogenous administration of itaconate and its derivative dimethyl itaconate in a mouse model of lipopolysaccharide-induced inflammation. The data show that administration of itaconate or dimethyl itaconate controls systemic production of multiple cytokines, including increased IL-10 production. However, only dimethyl itaconate was able to suppress systemic production of IFNγ and IL-1β. In contrast to in vitro data, administration of itaconate or dimethyl itaconate in vivo resulted in systemic upregulation of IL-6 in the blood. Electrophilic stress due to itaconate or dimethyl itaconate was not responsible for IL-6 upregulation. However, inhibition of succinate dehydrogenase with dimethyl malonate also resulted in elevated systemic levels of IL-6 and IL-10. Taken together, our study reports a novel effect of exogenous itaconate and its derivative dimethyl itaconate on the production of IL-6 in vivo, with important implications for the development of itaconate-based anti-inflammatory therapies.
Collapse
Affiliation(s)
- Maxim Nosenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov str, Moscow 119991, Russia
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse street, Dublin D02R590, Ireland
| | - Denis Anisov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov str, Moscow 119991, Russia
| | - Ekaterina Gubernatorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov str, Moscow 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov str, Moscow 119991, Russia
| | - Ekaterina Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov str, Moscow 119991, Russia
| | - Yi-Rong Zeng
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, No. 131 Dong An Road, Shanghai 200032, China
| | - Dan Ye
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, No. 131 Dong An Road, Shanghai 200032, China
| | - Pu Wang
- Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, No. 131 Dong An Road, Shanghai 200032, China
| | - David Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse street, Dublin D02R590, Ireland
| | - Marina Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov str, Moscow 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov str, Moscow 119991, Russia
- Division of Immunobiology and Biomedicine, Centre of Genetics and Life Sciences, Sirius University of Science and Technology, Olympic Ave. 1, Federal Territory Sirius, Krasnodar region 354340, Russia
| | - Sergei Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov str, Moscow 119991, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov str, Moscow 119991, Russia
- Division of Immunobiology and Biomedicine, Centre of Genetics and Life Sciences, Sirius University of Science and Technology, Olympic Ave. 1, Federal Territory Sirius, Krasnodar region 354340, Russia
| |
Collapse
|
8
|
Zou Y, Liu C, Wang Z, Li G, Xiao J. Neural and immune roles in osteoarthritis pain: Mechanisms and intervention strategies. J Orthop Translat 2024; 48:123-132. [PMID: 39220678 PMCID: PMC11363721 DOI: 10.1016/j.jot.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Pain is the leading symptom for most individuals with osteoarthritis (OA), a complex condition marked by joint discomfort. Recently, the dynamic interplay between the nervous and immune systems has become a focal point for understanding pain regulation. Despite this, there is still a substantial gap in our comprehensive understanding of the neuroimmune interactions and their effects on pain in OA. This review examines the bidirectional influences between immune cells and nerves in OA progression. It explores current approaches that target neuroimmune pathways, including promoting M2 macrophage polarization and specific neuronal receptor targeting, for effective pain reduction. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the immune system and nervous system during the progression of OA, as well as their contributions to pain. Additionally, it compiles existing intervention strategies targeting neuroimmunity for the treatment of OA pain. This information offers valuable insights for researchers seeking to address the challenge of OA pain.
Collapse
Affiliation(s)
- Yi Zou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Changyu Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Guanghui Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| |
Collapse
|
9
|
Kong X, Xu L, Mou Z, Lyu W, Shan K, Wang L, Liu F, Rong F, Li J, Wei P. The anti-inflammatory effects of itaconate and its derivatives in neurological disorders. Cytokine Growth Factor Rev 2024; 78:37-49. [PMID: 38981775 DOI: 10.1016/j.cytogfr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Almost 16 % of the global population is affected by neurological disorders, including neurodegenerative and cerebral neuroimmune diseases, triggered by acute or chronic inflammation. Neuroinflammation is recognized as a common pathogenic mechanism in a wide array of neurological conditions including Alzheimer's disease, Parkinson's disease, postoperative cognitive dysfunction, stroke, traumatic brain injury, and multiple sclerosis. Inflammatory process in the central nervous system (CNS) can lead to neuronal damage and neuronal apoptosis, consequently exacerbating these diseases. Itaconate, an immunomodulatory metabolite from the tricarboxylic acid cycle, suppresses neuroinflammation and modulates the CNS immune response. Emerging human studies suggest that itaconate levels in plasma and cerebrospinal fluid may serve as biomarkers associated with inflammatory responses in neurological disorders. Preclinical studies have shown that itaconate and its highly cell-permeable derivatives are promising candidates for preventing and treating neuroinflammation-related neurological disorders. The underlying mechanism may involve the regulation of immune cells in the CNS and neuroinflammation-related signaling pathways and molecules including Nrf2/KEAP1 signaling pathway, reactive oxygen species, and NLRP3 inflammasome. Here, we introduce the metabolism and function of itaconate and the synthesis and development of its derivatives. We summarize the potential impact and therapeutic potential of itaconate and its derivatives on brain immune cells and the associated signaling pathways and molecules, based on preclinical evidence via various neurological disorder models. We also discuss the challenges and potential solutions for clinical translation to promote further research on itaconate and its derivatives for neuroinflammation-related neurological disorders.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Zheng Mou
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Kaiyue Shan
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Longfei Wang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fanghao Liu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Fei Rong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China; Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
10
|
Rosa CP, de Andrade DC, Barreto ESR, Antunes Júnior CR, Alencar VB, Lins-Kusterer LEF, Kraychete DC, Teixeira MJ. Immune response and cytokine profiles in post-laminectomy pain syndrome: comparative analysis after treatment with intrathecal opioids, oral opioids, and non-opioid therapies. Inflammopharmacology 2024:10.1007/s10787-024-01521-z. [PMID: 39039349 DOI: 10.1007/s10787-024-01521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION This study explores the interaction between cytokines, cell-mediated immunity (T cells, B cells, and NK cells), and prolonged morphine administration in chronic neuropathic pain patients without cancer-related issues. Despite evidence of opioid immunomodulation, few studies have compared these interactions. METHODS In a cross-sectional and comparative study, 50 patients with chronic low back radicular pain ("Failed Back Surgery Syndrome") were categorized into intrathecal morphine infusion (IT group, n = 18), oral morphine (PO group, n = 17), and non-opioid treatment (NO group, n = 15). Various parameters, including plasma and cerebrospinal fluid (CSF) cytokine concentrations, lymphocyte immunophenotyping, opioid escalation indices, cumulative morphine dose, and treatment duration, were assessed. RESULTS CSF IL-8 and IL-1β concentrations exceeded plasma levels in all patients. No differences in T, B, and NK lymphocyte numbers were observed between morphine-treated and non-treated patients. Higher plasma IL-5 and GM-CSF concentrations were noted in IT and PO groups compared to NO. CSF IFNγ concentrations were higher in PO and NO than IT. Positive correlations included CD4 concentrations with opioid escalation indices, and negative correlations involved NK cell concentrations, CSF TNFα concentrations, and opioid escalation indices. Positive correlations were identified between certain cytokines and pain intensity in IT patients, and between NK cells and cumulative morphine dose. Negative correlations were observed between CSF IL-5 concentrations and pain intensity in IT and PO, and between opioid escalation indices and CSF cytokine concentrations in PO and IT. CONCLUSION Associations between cytokines, cellular immunity, and prolonged morphine treatment, administered orally and intrathecally were identified.
Collapse
Affiliation(s)
| | | | - Eduardo Silva Reis Barreto
- Federal University of Bahia, Av. Reitor Miguel Calmon, S/N - Vale Do Canela, Salvador, Bahia State, 40110-100, Brazil.
| | - César Romero Antunes Júnior
- Federal University of Bahia, Av. Reitor Miguel Calmon, S/N - Vale Do Canela, Salvador, Bahia State, 40110-100, Brazil
| | - Vinicius Borges Alencar
- Federal University of Bahia, Av. Reitor Miguel Calmon, S/N - Vale Do Canela, Salvador, Bahia State, 40110-100, Brazil
| | | | - Durval Campos Kraychete
- Federal University of Bahia, Av. Reitor Miguel Calmon, S/N - Vale Do Canela, Salvador, Bahia State, 40110-100, Brazil
| | | |
Collapse
|
11
|
Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab 2024; 35:586-606. [PMID: 38448252 DOI: 10.1016/j.tem.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Pu Wang
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Cullgen Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
12
|
Zhang X, Yuan S, Fan H, Zhang W, Zhang H. Liensinine alleviates sepsis-induced acute liver injury by inhibiting the NF-κB and MAPK pathways in an Nrf2-dependent manner. Chem Biol Interact 2024; 396:111030. [PMID: 38692452 DOI: 10.1016/j.cbi.2024.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Sepsis remains a serious public health issue that needs to be addressed globally. Severe liver injury caused by sepsis increases the risk of death in patients with sepsis. Liensinine (Lie) is one of the primary active components in Plumula nelumbinis and has anti-inflammatory and antioxidant effects. Nevertheless, the effects of Lie on septic liver injury are unclear. This research investigated the protective effect of Lie (10, 20 and 40 mg/kg) on liver damage via intraperitoneal administration of LPS (10 mg/kg) to C57BL/6 mice. Lie was given through intraperitoneal injection once a day for five days. Mice were treated with LPS intraperitoneally for 6 h at 1 h after Lie administration on the last day. The results suggested that Lie could decrease AST and ALT levels in serum, ameliorate histopathological changes and inhibit cell apoptosis in mice with LPS-induced septic liver injury. In addition, Lie inhibited increases in the mRNA levels of TNF-α, IL-1β, iNOS and IL-6. Lie also increased the mRNA level of IL-10. Lie reduced the content of MDA, a marker of lipid peroxidation, and increased the activity of the antioxidant enzymes GSH-Px, CAT and SOD. Our results also showed that Lie could suppress the LPS-activated MAPK and NF-κB pathways and trigger the Nrf2 signaling pathway both in vitro and in vivo. Additionally, an Nrf2 inhibitor (ML385) weakened the suppressive effect of Lie on the MAPK and NF-κB pathways. Our results demonstrated that the suppressive effect of Lie on the MAPK and NF-κB pathways was partially reliant on activation of the Nrf2 pathway. In summary, these results indicate that Lie can improve inflammation and oxidative stress by activating Nrf2, which is a prospective therapeutic drug for alleviating septic liver injury.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China; Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Silong Yuan
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China
| | - Hui Fan
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Honggang Zhang
- Department of Vascular Surgery, The First People's Hospital of Lianyungang, Lianyungang, 222005, China.
| |
Collapse
|
13
|
Yang Y, Li Y, Yang W, Yang X, Luo M, Qin L, Zhu J. Protecting effects of 4-octyl itaconate on neonatal hypoxic-ischemic encephalopathy via Nrf2 pathway in astrocytes. J Neuroinflammation 2024; 21:132. [PMID: 38760862 PMCID: PMC11102208 DOI: 10.1186/s12974-024-03121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Neonatal hypoxic-ischemic encephalopathy (HIE) is one of the most common neurological problems occurring in the perinatal period. However, there still is not a promising approach to reduce long-term neurodevelopmental outcomes of HIE. Recently, itaconate has been found to exhibit anti-oxidative and anti-inflammatory effects. However, the therapeutic efficacy of itaconate in HIE remains inconclusive. Therefore, this study attempts to explore the pathophysiological mechanisms of oxidative stress and inflammatory responses in HIE as well as the potential therapeutic role of a derivative of itaconate, 4-octyl itaconate (4OI). METHODS We used 7-day-old mice to induce hypoxic-ischemic (HI) model by right common carotid artery ligation followed by 1 h of hypoxia. Behavioral experiments including the Y-maze and novel object recognition test were performed on HI mice at P60 to evaluate long-term neurodevelopmental outcomes. We employed an approach combining non-targeted metabolomics with transcriptomics to screen alterations in metabolic profiles and gene expression in the hippocampal tissue of the mice at 8 h after hypoxia. Immunofluorescence staining and RT-PCR were used to evaluate the pathological changes in brain tissue cells and the expression of mRNA and proteins. 4OI was intraperitoneally injected into HI model mice to assess its anti-inflammatory and antioxidant effects. BV2 and C8D1A cells were cultured in vitro to study the effect of 4OI on the expression and nuclear translocation of Nrf2. We also used Nrf2-siRNA to further validate 4OI-induced Nrf2 pathway in astrocytes. RESULTS We found that in the acute phase of HI, there was an accumulation of pyruvate and lactate in the hippocampal tissue, accompanied by oxidative stress and pro-inflammatory, as well as increased expression of antioxidative stress and anti-inflammatory genes. Treatment of 4OI could inhibit activation and proliferation of microglial cells and astrocytes, reduce neuronal death and relieve cognitive dysfunction in HI mice. Furthermore, 4OI enhanced nuclear factor erythroid-2-related factor (Nfe2l2; Nrf2) expression and nuclear translocation in astrocytes, reduced pro-inflammatory cytokine production, and increased antioxidant enzyme expression. CONCLUSION Our study demonstrates that 4OI has a potential therapeutic effect on neuronal damage and cognitive deficits in HIE, potentially through the modulation of inflammation and oxidative stress pathways by Nrf2 in astrocytes.
Collapse
Affiliation(s)
- Yanping Yang
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yang Li
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wenyi Yang
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xueying Yang
- Department of Physiology, China Medical University, Shenyang, Liaoning, China
| | - Man Luo
- Department of Anesthesiology, Shenzhen Cancer Hospital, Shenzhen, China
| | - Ling Qin
- Department of Physiology, China Medical University, Shenyang, Liaoning, China.
| | - Junchao Zhu
- Department of Anesthesiology, The Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
14
|
Ramalho T, Assis PA, Ojelabi O, Tan L, Carvalho B, Gardinassi L, Campos O, Lorenzi PL, Fitzgerald KA, Haynes C, Golenbock DT, Gazzinelli RT. Itaconate impairs immune control of Plasmodium by enhancing mtDNA-mediated PD-L1 expression in monocyte-derived dendritic cells. Cell Metab 2024; 36:484-497.e6. [PMID: 38325373 PMCID: PMC10940217 DOI: 10.1016/j.cmet.2024.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/27/2023] [Accepted: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Severe forms of malaria are associated with systemic inflammation and host metabolism disorders; however, the interplay between these outcomes is poorly understood. Using a Plasmodium chabaudi model of malaria, we demonstrate that interferon (IFN) γ boosts glycolysis in splenic monocyte-derived dendritic cells (MODCs), leading to itaconate accumulation and disruption in the TCA cycle. Increased itaconate levels reduce mitochondrial functionality, which associates with organellar nucleic acid release and MODC restraint. We hypothesize that dysfunctional mitochondria release degraded DNA into the cytosol. Once mitochondrial DNA is sensitized, the activation of IRF3 and IRF7 promotes the expression of IFN-stimulated genes and checkpoint markers. Indeed, depletion of the STING-IRF3/IRF7 axis reduces PD-L1 expression, enabling activation of CD8+ T cells that control parasite proliferation. In summary, mitochondrial disruption caused by itaconate in MODCs leads to a suppressive effect in CD8+ T cells, which enhances parasitemia. We provide evidence that ACOD1 and itaconate are potential targets for adjunct antimalarial therapy.
Collapse
Affiliation(s)
- Theresa Ramalho
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Patricia A Assis
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ogooluwa Ojelabi
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, University of Texas MD Cancer Center, Houston, TX, USA
| | - Brener Carvalho
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Gardinassi
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Osvaldo Campos
- Plataforma de Medicina Translacional, Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirao Preto, Ribeirao Preto, Sao Paulo, Brazil
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, University of Texas MD Cancer Center, Houston, TX, USA
| | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cole Haynes
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Douglas T Golenbock
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ricardo T Gazzinelli
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA; Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil; Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Michalaki C, Albers GJ, Byrne AJ. Itaconate as a key regulator of respiratory disease. Clin Exp Immunol 2024; 215:120-125. [PMID: 38018224 PMCID: PMC10847819 DOI: 10.1093/cei/uxad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023] Open
Abstract
Macrophage activation results in the accumulation of endogenous metabolites capable of adopting immunomodulatory roles; one such bioactive metabolite is itaconate. After macrophage stimulation, the TCA-cycle intermediate cis-aconitate is converted to itaconate (by aconitate decarboxylase-1, ACOD1) in the mitochondrial matrix. Recent studies have highlighted the potential of targeting itaconate as a therapeutic strategy for lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and respiratory infections. This review aims to bring together evidence which highlights a role for itaconate in chronic lung diseases (such as asthma and pulmonary fibrosis) and respiratory infections (such as SARS-CoV-2, influenza and Mycobacterium tuberculosis infection). A better understanding of the role of itaconate in lung disease could pave the way for novel therapeutic interventions and improve patient outcomes in respiratory disorders.
Collapse
Affiliation(s)
- Christina Michalaki
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Gesa J Albers
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, SW7 2AZ, UK
- School of Medicine and Conway Institute of Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Liu R, Gong Y, Xia C, Cao Y, Zhao C, Zhou M. Itaconate: A promising precursor for treatment of neuroinflammation associated depression. Biomed Pharmacother 2023; 167:115521. [PMID: 37717531 DOI: 10.1016/j.biopha.2023.115521] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
Neuroinflammation triggers the production of inflammatory factors, influences neuron generation and synaptic plasticity, thus playing an important role in the pathogenesis of depression and becoming an important direction of depression prevention and treatment. Itaconate is a metabolite secreted by macrophages in immunomodulatory responses, that has potent immunomodulatory effects and has been proven to exert anti-inflammatory effects in a variety of diseases. Microglia are mononuclear macrophages that reside in the central nervous system (CNS), and may be the source of endogenous itaconate in the brain. Itaconate can directly inhibit succinate dehydrogenase (SDH), reduce the production of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), activate nuclear factor erythroid-2 related factor 2 (Nrf2), and block glycolysis, and thereby improving the depressive symptoms associated with the above mechanisms. Notably, itaconate also indirectly ameliorates the depressive symptoms associated with some inflammatory diseases. With the optimization of the structure and the development of new delivery systems, the application value and therapeutic potential of itaconate have been significantly improved. Dimethyl itaconate (DI) and 4-octyl itaconate (4-OI), cell-permeable derivatives of itaconate, are more suitable for crossing the blood-brain barrier (BBB), exhibiting therapeutic effects in the research of multiple diseases. This article provides an overview of the immunomodulatory effects of itaconate and its potential therapeutic efficacy in inflammatory depression, focusing on the promising application of itaconate as a precursor of antidepressants.
Collapse
Affiliation(s)
- Ruisi Liu
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueling Gong
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
17
|
Dou X, Chen R, Yang J, Dai M, Long J, Sun S, Lin Y. The potential role of T-cell metabolism-related molecules in chronic neuropathic pain after nerve injury: a narrative review. Front Immunol 2023; 14:1107298. [PMID: 37266437 PMCID: PMC10229812 DOI: 10.3389/fimmu.2023.1107298] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Neuropathic pain is a common type of chronic pain, primarily caused by peripheral nerve injury. Different T-cell subtypes play various roles in neuropathic pain caused by peripheral nerve damage. Peripheral nerve damage can lead to co-infiltration of neurons and other inflammatory cells, thereby altering the cellular microenvironment and affecting cellular metabolism. By elaborating on the above, we first relate chronic pain to T-cell energy metabolism. Then we summarize the molecules that have affected T-cell energy metabolism in the past five years and divide them into two categories. The first category could play a role in neuropathic pain, and we explain their roles in T-cell function and chronic pain, respectively. The second category has not yet been involved in neuropathic pain, and we focus on how they affect T-cell function by influencing T-cell metabolism. By discussing the above content, this review provides a reference for studying the direct relationship between chronic pain and T-cell metabolism and searching for potential therapeutic targets for the treatment of chronic pain on the level of T-cell energy metabolism.
Collapse
Affiliation(s)
- Xiaoke Dou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Maosha Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Belo TCA, Santos GX, da Silva BEG, Rocha BLG, Abdala DW, Freire LAM, Rocha FS, Galdino G. IL-10/β-Endorphin-Mediated Neuroimmune Modulation on Microglia during Antinociception. Brain Sci 2023; 13:brainsci13050789. [PMID: 37239261 DOI: 10.3390/brainsci13050789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Microglia are glial cells centrally related to pathophysiology and neuroimmunological regulation of pain through microglia-neuron crosstalk mechanisms. In contrast, anti-inflammatory mechanisms guided by immunological effectors such as IL-10 trigger the secretion of analgesic substances, culminating in the differential expression of genes encoding endogenous opioid peptides, especially β-endorphin. Thus, when β-endorphin binds to the µ-opioid receptor, it generates neuronal hyperpolarization, inhibiting nociceptive stimuli. This review aimed to summarize the recent advances in understanding the mechanism by which IL-10/β-endorphin can reduce pain. For this, databases were searched for articles from their inception up until November 2022. Two independent reviewers extracted the data and assessed the methodological quality of the included studies, and seventeen studies were considered eligible for this review. Several studies have demonstrated the impact of IL-10/β-endorphin in reducing pain, where IL-10 can stimulate GLP-1R, GRP40, and α7nAChR receptors, as well as intracellular signaling pathways, such as STAT3, resulting in increased β-endorphin expression and secretion. In addition, molecules such as gabapentinoids, thalidomide, cynandione A, morroniside, lemairamin, and cinobufagin, as well as non-pharmacological treatments such as electroacupuncture, reduce pain through IL-10 mediated mechanisms, reflecting a microglia-dependent β-endorphin differential increase. This process represents a cornerstone in pain neuroimmunology knowledge, and the results obtained by different studies about the theme are presented in this review.
Collapse
Affiliation(s)
| | - Gabriela Xavier Santos
- Laboratory of Neuroimmunobiology of Pain, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | | | | | - Dennis William Abdala
- Laboratory of Movement Analysis, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | - Larissa Alves Moreira Freire
- Laboratory of Neuroscience, Neuroimmunomodulation and Pain Study, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | - Fernanda Santos Rocha
- Laboratory of Neuroimmunobiology of Pain, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | - Giovane Galdino
- Laboratory of Neuroimmunobiology of Pain, Federal University of Alfenas, Alfenas 37130-001, Brazil
| |
Collapse
|
19
|
Chen W, Wang X, Sun Q, Zhang Y, Liu J, Hu T, Wu W, Wei C, Liu M, Ding Y, Liu D, Chong Y, Wang P, Zhu H, Cui W, Zhang J, Li Q, Yang F. The upregulation of NLRP3 inflammasome in dorsal root ganglion by ten-eleven translocation methylcytosine dioxygenase 2 (TET2) contributed to diabetic neuropathic pain in mice. J Neuroinflammation 2022; 19:302. [PMID: 36527131 PMCID: PMC9756585 DOI: 10.1186/s12974-022-02669-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The nucleotide oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) in dorsal root ganglion (DRG) contributes to pain hypersensitivity in multiple neuropathic pain models, but the function of the NLRP3 in diabetic neuropathic pain (DNP) and the regulation mechanism are still largely unknown. Epigenetic regulation plays a vital role in the controlling of gene expression. Ten-eleven translocation methylcytosine dioxygenase 2 (TET2) is a DNA demethylase that contributes to transcriptional activation. TET2 is also involved in high glucose (HG)-induced pathology. METHODS DNP was induced in mice via the intraperitoneal injection of streptozotocin (STZ) for five consecutive days and the mechanical threshold was evaluated in STZ-diabetic mice by using von Frey hairs. The expression level of the NLRP3 pathway and TET2 in DRG were determined through molecular biology experiments. The regulation of the NLRP3 pathway by TET2 was examined in in vitro and in vivo conditions. RESULTS In the present research, we first established the DNP model and found that NLRP3 pathway was activated in DRG. The treatment of NLRP3 inhibitor MCC950 alleviated the mechanical allodynia of DNP mice. Then we revealed that in STZ-diabetic mice DRG, the genomic DNA was demethylated, and the expression of DNA demethylase TET2 was increased evidently. Using RNA-sequencing analysis, we found that the expression of Txnip, a gene that encodes a thioredoxin-interacting protein (TXNIP) which mediates NLRP3 activation, was elevated in the DRG after STZ treatment. In addition, knocking down of TET2 expression in DRG using TET2-siRNA suppressed the mRNA expression of Txnip and subsequently inhibited the expression/activation of NLRP3 inflammasome in vitro and in vivo as well as relieved the pain sensitivity of DNP animals. CONCLUSION The results suggested that the upregulation of the TXNIP/NLRP3 pathway by TET2 in DRG was involved in the pain hypersensitivity of the DNP model.
Collapse
Affiliation(s)
- Wen Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China ,grid.24695.3c0000 0001 1431 9176International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xiaotong Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Qingyu Sun
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yurui Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Jing Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Tingting Hu
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Weihua Wu
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Chao Wei
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Meng Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yumeng Ding
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Dianxin Liu
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Yingzi Chong
- grid.24696.3f0000 0004 0369 153XDepartment of Anesthesiology Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070 China
| | - Peipei Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Hongwei Zhu
- grid.24696.3f0000 0004 0369 153XBeijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Weihua Cui
- grid.24696.3f0000 0004 0369 153XDepartment of Anesthesiology Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070 China
| | - Jiannan Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Qian Li
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China ,grid.24696.3f0000 0004 0369 153XAdvanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China ,grid.24696.3f0000 0004 0369 153XKey Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, 100069 China
| | - Fei Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China ,grid.24696.3f0000 0004 0369 153XAdvanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069 China
| |
Collapse
|