1
|
Sheng L, Sheng K, Lü P. Applications of Nanobodies in Biological Imaging. Cancer Biother Radiopharm 2025. [PMID: 40274307 DOI: 10.1089/cbr.2025.0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Background: Nanobodies (Nbs), derived from Camelidae heavy-chain antibodies, are single-domain fragments (15 kDa) with high antigen-binding specificity, enhanced tissue penetration, and low immunogenicity. These attributes address limitations of conventional antibodies, positioning Nbs as pivotal tools for targeted molecular imaging in diagnostics and therapeutics. Methods: Nbs are screened through phage/mRNA display or single B-cell sequencing, expressed in prokaryotic or yeast systems, and humanized via CDR grafting. Functional probes are engineered by conjugating Nbs with radionuclides (68Ga, 99mTc) or fluorophores (IRDye 800CW) for compatibility with PET, SPECT, NIRF, and ultrasound modalities. Results: Clinical trials validated Nb efficacy: 68Ga-HER2-Nb PET/CT achieved tumor-specific uptake in HER2+ cancers (NCT04467515), while 99mTc-PD-L1-Nb enabled quantitative SPECT-guided immunotherapy in NSCLC. NIRF-Nb conjugates (e.g., 11A4-800CW) enhanced intraoperative tumor delineation in murine models. Dual-targeted ultrasound microbubbles demonstrated multi-biomarker imaging via acoustic pressure modulation. Conclusion: Nbs advance biological imaging through superior resolution and rapid pharmacokinetics. Challenges persist in optimizing probe stability, minimizing immunogenicity, and scaling production. Future priorities include integrating multi-modal platforms, expanding applications to neurodegenerative disorders, and refining personalized diagnostic paradigms, underscoring their transformative potential in precision medicine.
Collapse
Affiliation(s)
- Liangjü Sheng
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kai Sheng
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Gómez‐Mulas A, Cano‐Muñoz M, Salido Ruiz E, Pey AL. Thermodynamic versus kinetic basis for the high conformational stability of nanobodies for therapeutic applications. FEBS Lett 2025; 599:766-776. [PMID: 39593207 PMCID: PMC11891404 DOI: 10.1002/1873-3468.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
Nanobodies (NB) are powerful tools for biotechnological and therapeutic applications. They strongly bind to their targets and are very stable. Early studies showed that NB unfolding is reversible and can be analyzed by equilibrium thermodynamics, whereas more recent studies focused on their kinetic stability in very harsh conditions that are far from storage or physiological temperatures (4-37 °C). Here, we show that the thermodynamic view of NB stability holds in a wide range of temperatures (18-100 °C). The thermodynamic stability of three different NBs did not correlate with binding affinity for their target. Alpha-Fold 2 analyses of these NBs showed structural differences in the binding site and hydrogen bond networks. We expect that our approach will be helpful to improve our capacity to enhance structure-function-stability relationships of NB.
Collapse
Affiliation(s)
| | | | - Eduardo Salido Ruiz
- Center for Rare Diseases (CIBERER)Hospital Universitario de Canarias, Universidad de la LagunaTenerifeSpain
| | - Angel Luis Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de BiotecnologíaUniversidad de GranadaSpain
| |
Collapse
|
3
|
Gómez-Mulas A, Naganathan AN, Pey AL. The lack of trade-off between conformational stability and binding affinity in a nanobody with therapeutic potential for a misfolding disease. Int J Biol Macromol 2025; 284:138046. [PMID: 39603302 DOI: 10.1016/j.ijbiomac.2024.138046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/11/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
To improve protein pharmaceuticals, we need to balance protein stability and binding affinity with in vivo efficiency. We have recently developed a nanobody (NB-AGT-2) against the alanine:glyoxylate aminotransferase with high stability (Tm ∼ 86 °C) that may be useful to treat a misfolding disease called primary hyperoxaluria type 1. In this work, we characterize the relationships between protein stability and binding affinity in NB-AGT-2 by generating single and double cavity-creating mutants in its hydrophobic core. These mutations decrease thermal stability by 10-20 °C, reflecting changes in thermodynamic stability of up to 8 kcal·mol-1, hardly affecting their binding affinity for its target. Statistical mechanical analysis support long-range propagation of stability effects due to mutations. Our results thus show that NB stability can be largely challenged without an effect on its binding.
Collapse
Affiliation(s)
- Atanasio Gómez-Mulas
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Angel L Pey
- Departamento de Química Física, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente e Instituto de Biotecnología, Universidad de Granada, Spain.
| |
Collapse
|
4
|
Fridy PC, Rout MP, Ketaren NE. Nanobodies: From High-Throughput Identification to Therapeutic Development. Mol Cell Proteomics 2024; 23:100865. [PMID: 39433212 PMCID: PMC11609455 DOI: 10.1016/j.mcpro.2024.100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
The camelid single-domain antibody fragment, commonly referred to as a nanobody, achieves the targeting power of conventional monoclonal antibodies (mAbs) at only a fraction of their size. Isolated from camelid species (including llamas, alpacas, and camels), their small size at ∼15 kDa, low structural complexity, and high stability compared with conventional antibodies have propelled nanobody technology into the limelight of biologic development. Nanobodies are proving themselves to be a potent complement to traditional mAb therapies, showing success in the treatment of, for example, autoimmune diseases and cancer, and more recently as therapeutic options to treat infectious diseases caused by rapidly evolving biological targets such as the SARS-CoV-2 virus. This review highlights the benefits of applying a proteomic approach to identify diverse nanobody sequences against a single antigen. This proteomic approach coupled with conventional yeast/phage display methods enables the production of highly diverse repertoires of nanobodies able to bind the vast epitope landscape of an antigen, with epitope sampling surpassing that of mAbs. Additionally, we aim to highlight recent findings illuminating the structural attributes of nanobodies that make them particularly amenable to comprehensive antigen sampling and to synergistic activity-underscoring the powerful advantage of acquiring a large, diverse nanobody repertoire against a single antigen. Lastly, we highlight the efforts being made in the clinical development of nanobodies, which have great potential as powerful diagnostic reagents and treatment options, especially when targeting infectious disease agents.
Collapse
Affiliation(s)
- Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
5
|
Li X, Li Y, Xie A, Chen F, Wang J, Zhou J, Xu X, Xu Z, Wang Y, Qiu X. A potent and selective anti-glutathione peroxidase 4 nanobody as a ferroptosis inducer. Chem Sci 2024; 15:19420-19431. [PMID: 39568902 PMCID: PMC11575642 DOI: 10.1039/d4sc05448b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Glutathione peroxidase 4 (GPX4) plays a crucial role in the ferroptosis pathway, emerging as a potential drug target in the treatment of refractory tumors. Unfortunately, the development of GPX4-targeted treatment has been very limited due to the poor selectivity and drug-like properties of current GPX4 inhibitors. Here, we report a proof-of-concept study of potent anti-GPX4 nanobodies, successfully identified through immunizing Bactrian camels and constructing a phage library. Utilizing a cell-penetrating peptide fusion strategy, these nanobodies with high affinities to GPX4 efficiently internalized in cells and formed the basis for further applications. In particular, 12E significantly inhibited cellular GPX4 and consequently induced remarkable ferroptosis in cancer cells. Furthermore, 12E could impair zebrafish dorsal organizer formation in vivo, as evidenced by a phenotype comparable to that observed in zebrafish with the gpx4b gene knocked out. The new GPX4-inhibiting nanobody described here exhibits superior proteome-wide selectivity and a vastly improved safety profile compared to existing GPX4 inhibitors. These incredible features of 12E, as an anti-GPX4 nanobody, may not only contribute to ferroptosis-related anticancer treatment but also establish a new paradigm for nanobodies in drug development for traditionally undruggable targets.
Collapse
Affiliation(s)
- Xinyu Li
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Yaru Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China
| | - Aowei Xie
- School of Food Science and Engineering, Ocean University of China Qingdao 266003 China
| | - Fenglin Chen
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Jing Wang
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Ximing Xu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
- Marine Biomedical Research Institute of Qingdao, School of Medicine and Pharmacy, Ocean University of China Qingdao 266071 Shandong P. R. China
| | - Zhenlin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University Guangzhou 510642 China
| | - Yong Wang
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology Qingdao 266237 China
| |
Collapse
|
6
|
Yang M, Gu K, Xu Q, Wen R, Li J, Zhou C, Zhao Y, Shi M, Weng Y, Guo B, Lei C, Sun Y, Wang H. Recombinant Lactococcus lactis secreting FliC protein nanobodies for resistance against Salmonella enteritidis invasion in the intestinal tract. J Nanobiotechnology 2024; 22:629. [PMID: 39407284 PMCID: PMC11481460 DOI: 10.1186/s12951-024-02904-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Salmonella Enteritidis is a major foodborne pathogen throughout the world and the increase in antibiotic resistance of Salmonella poses a significant threat to public safety. Natural nanobodies exhibit high affinity, thermal stability, ease of production, and notably higher diversity, making them widely applicable for the treatment of viral and bacterial infections. Recombinant expression using Lactococcus lactis leverages both acid resistance and mucosal colonization properties of these bacteria, allowing the effective expression of exogenous proteins for therapeutic effects. In this study, nine specific nanobodies against the flagellar protein FliC were identified and expressed. In vitro experiments demonstrated that FliC-Nb-76 effectively inhibited the motility of S. Enteritidis and inhibited its adhesion to and invasion of HIEC-6, RAW264.7, and chicken intestinal epithelial cells. Additionally, a recombinant L. lactis strain secreting the nanobody, L. lactis-Nb76, was obtained. Animal experiments confirmed that it could significantly reduce the mortality rates of chickens infected with S. Enteritidis, together with alleviating the inflammatory response caused by the pathogen. These results provide a novel strategy for the treatment of antibiotic-resistant S. Enteritidis infection in the intestinal tract.
Collapse
Affiliation(s)
- Ming Yang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kui Gu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Qiang Xu
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Renqiao Wen
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jinpeng Li
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changyu Zhou
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yu Zhao
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Miwan Shi
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yuan Weng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Boyan Guo
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changwei Lei
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongning Wang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Aulia D, Lim MW, Jang IK, Seo JM, Jeon H, Kim H, Kang KM, Ogun AO, Yoon S, Lee S, Hur J, Choi TJ, Kim JO, Lee S. Safety Assessment of Camelid-Derived Single-Domain Antibody as Feed Additive for Juvenile Whiteleg Shrimp ( Litopenaeus vannamei) Against White Spot Syndrome Virus. Animals (Basel) 2024; 14:2965. [PMID: 39457895 PMCID: PMC11503928 DOI: 10.3390/ani14202965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
A six-week feeding trial was conducted to assess the safety of single-domain antibodies (sdAbs) derived from camelids against the white spot syndrome virus (WSSV) (WSSVvp28 was used as the antigen), focusing on the whole-organism responses and molecular-level changes in juvenile whiteleg shrimp (Litopenaeus vannamei). Five experimental diets with varying levels of sdAbs were formulated: CON (no sdAb supplementation); SDA8.2 (8.20% of sdAbs); SDA16.4 (16.40% of sdAbs); SDA24.6 (24.60% of sdAbs); and SDA32.8 (32.80% of sdAbs). In the CON diet, 450 mL of water per kg of diet (45%) was used to form a feed dough, while sdAbs were used to replace the water in the treatment diets. A total of 450 shrimp, with an initial body weight of 3.27 ± 0.02 g (mean ± SEM), were randomly distributed in 15 tanks (30 shrimp per tank; three tanks per treatment). Each tank was filled with 30 L of seawater (77 L capacity) in an indoor semi-recirculating system with a constant water flow rate of 1.2 L min-1. The photoperiod was maintained at 12 h of light and 12 h of dark. The water temperature, pH, salinity, and dissolved oxygen were 27.3 ± 0.1 °C, 7.61 ± 0.01, 34 ± 1 ppt, and 5.94 ± 0.04 mg L-1, respectively. During the feeding trial, the shrimp were fed the experimental diet (40% protein and 11% lipid) three times a day for six weeks. Following the feeding trial, an acute cold-water-temperature stress test was conducted by abruptly exposing the shrimp from each treatment to 15 °C for 4 h, down from 27 °C. The results showed no significant differences in the growth performance (weight gain, feed utilization efficiency, survival, etc.), plasma metabolites (aspartate aminotransferase activity, alanine aminotransferase activity, total protein, and glucose), or antioxidant enzymes (superoxide dismutase and glutathione peroxidase) among all the experimental diets (p > 0.05). In the acute cold-temperature stress test, there was no significant interaction between sdAb supplementation and temperature stress, nor any main effect from either factor, except for the main effect of temperature stress on the glucose levels, which was significantly higher in shrimp exposed to cold-temperature stress (p < 0.05). The next-generation sequencing of differentially expressed genes (DEGs) in the hepatopancreases of shrimp fed the CON, SDA16.4, and SDA32.8 diets, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, indicated that DEGs were significantly enriched in signaling pathways associated with growth, cold stress, and antioxidant systems. Overall, the results from conventional measurements suggest that the use of sdAbs against the WSSV may be safe for juvenile whiteleg shrimp. However, findings from the sophisticated analysis indicate that further research is needed to understand the molecular mechanisms underlying the observed changes, and to evaluate the long-term effects of sdAb supplementation in shrimp diets.
Collapse
Affiliation(s)
- Deni Aulia
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Myung Woon Lim
- Joongkyeom Co., Ltd., Goyang-si 10260, Republic of Korea; (M.W.L.); (I.K.J.)
| | - In Kwon Jang
- Joongkyeom Co., Ltd., Goyang-si 10260, Republic of Korea; (M.W.L.); (I.K.J.)
| | - Jeong Min Seo
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea; (J.M.S.); (K.-M.K.); (T.-J.C.)
| | - Hyuncheol Jeon
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Haham Kim
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Kyung-Min Kang
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea; (J.M.S.); (K.-M.K.); (T.-J.C.)
| | - Abayomi Oladimeji Ogun
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Sooa Yoon
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Suhyun Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Junhyeok Hur
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| | - Tae-Jin Choi
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea; (J.M.S.); (K.-M.K.); (T.-J.C.)
| | - Jong-Oh Kim
- Department of Microbiology, Pukyong National University, Busan 48513, Republic of Korea; (J.M.S.); (K.-M.K.); (T.-J.C.)
| | - Seunghyung Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (D.A.); (H.J.); (H.K.); (A.O.O.); (S.Y.); (S.L.); (J.H.)
| |
Collapse
|
8
|
Yin X, Shan J, Dou L, Cheng Y, Liu S, Hassan RY, Wang Y, Wang J, Zhang D. Multiple bacteria recognition mechanisms and their applications. Coord Chem Rev 2024; 517:216025. [DOI: 10.1016/j.ccr.2024.216025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
9
|
Liu ML, Liang XM, Jin MY, Huang HW, Luo L, Wang H, Shen X, Xu ZL. Food-Borne Biotoxin Neutralization in Vivo by Nanobodies: Current Status and Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10753-10771. [PMID: 38706131 DOI: 10.1021/acs.jafc.4c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Food-borne biotoxins from microbes, plants, or animals contaminate unclean, spoiled, and rotten foods, posing significant health risks. Neutralizing such toxins is vital for human health, especially after food poisoning. Nanobodies (Nbs), a type of single-domain antibodies derived from the genetic cloning of a variable domain of heavy chain antibodies (VHHs) in camels, offer unique advantages in toxin neutralization. Their small size, high stability, and precise binding enable effective neutralization. The use of Nbs in neutralizing food-borne biotoxins offers numerous benefits, and their genetic malleability allows tailored optimization for diverse toxins. As nanotechnology continues to evolve and improve, Nbs are poised to become increasingly efficient and safer tools for toxin neutralization, playing a pivotal role in safeguarding human health and environmental safety. This review not only highlights the efficacy of these agents in neutralizing toxins but also proposes innovative solutions to address their current challenges. It lays a solid foundation for their further development in this crucial field and propels their commercial application, thereby contributing significantly to advancements in this domain.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Min Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Ming-Yu Jin
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
- School of Life and Health Technology, Dongguan, University of Technology, Dongguan 523808, China
| | - Hui-Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
10
|
Koroleva EA, Goryainova OS, Ivanova TI, Rutovskaya MV, Zigangirova NA, Tillib SV. Anti-Idiotypic Nanobodies Mimicking an Epitope of the Needle Protein of the Chlamydial Type III Secretion System for Targeted Immune Stimulation. Int J Mol Sci 2024; 25:2047. [PMID: 38396724 PMCID: PMC10889375 DOI: 10.3390/ijms25042047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
The development of new approaches and drugs for effective control of the chronic and complicated forms of urogenital chlamydia caused by Chlamydia trachomatis, which is suspected to be one of the main causes of infertility in both women and men, is an urgent task. We used the technology of single-domain antibody (nanobody) generation both for the production of targeting anti-chlamydia molecules and for the subsequent acquisition of anti-idiotypic nanobodies (ai-Nbs) mimicking the structure of a given epitope of the pathogen (the epitope of the Chlamydial Type III Secretion System Needle Protein). In a mouse model, we have shown that the obtained ai-Nbs are able to induce a narrowly specific humoral immune response in the host, leading to the generation of intrinsic anti-Chlamydia antibodies, potentially therapeutic, specifically recognizing a given antigenic epitope of Chlamydia. The immune sera derived from mice immunized with ai-Nbs are able to suppress chlamydial infection in vitro. We hypothesize that the proposed method of the creation and use of ai-Nbs, which mimic and present to the host immune system exactly the desired region of the antigen, create a fundamentally new universal approach to generating molecular structures as a part of specific vaccine for the targeted induction of immune response, especially useful in cases where it is difficult to prepare an antigen preserving the desired epitope in its native conformation.
Collapse
Affiliation(s)
- Ekaterina A. Koroleva
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Oksana S. Goryainova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Tatiana I. Ivanova
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Marina V. Rutovskaya
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
| | - Naylia A. Zigangirova
- National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N. F. Gamaleya, 123098 Moscow, Russia
| | - Sergei V. Tillib
- Institute of Gene Biology of the Russian Academy of Sciences, Vavilova Str. 34/5, 119334 Moscow, Russia; (E.A.K.)
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| |
Collapse
|
11
|
Wei Z, Zhu J, Cai Y, Liu T, Ma X, Feng X, Wang Y, Li Y, Zhang W. Preparation of polyclonal antibodies against the Drosophila deacetylases SIRT 6 and SIRT 7. Protein Expr Purif 2023; 211:106338. [PMID: 37460032 DOI: 10.1016/j.pep.2023.106338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
SIRT6 and SIRT7, as members of the Sirtuins family, are indispensable for the growth and development of Drosophila. They play crucial roles in maintaining genome stability, regulating metabolic senescence, and controlling tumorigenesis. To investigate their involvement in the Drosophila life cycle, we focused on describing the expression and purification of recombinant Drosophila SIRT6 and SIRT7 proteins. Subsequently, these proteins were utilized for generating polyclonal antibodies against Drosophila SIRT6 and SIRT7. The recombinant expression plasmid was introduced into E. coli cells to enable the production of SIRT6 and SIRT7 proteins. Following immunizations of New Zealand white rabbits and guinea pigs with the recombinant proteins as antigens, specific polyclonal antisera against both proteins were obtained. After purification, the specificity of SIRT6 and SIRT7 was confirmed using ELISA and western blot analyses, demonstrating strong specificity. These antibodies hold promise for the development of detection assays required for further research.
Collapse
Affiliation(s)
- Zhenhao Wei
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Jiejie Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Ta Liu
- QingHai Hai Nan Science and Technology Bureau, China
| | - Xianghua Ma
- QingHai Hai Nan Science and Technology Bureau, China
| | - Xiaodie Feng
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Yaoyao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Yushan Li
- College of Animal Science and Technology, Nanjing Agricultural University, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, China.
| |
Collapse
|
12
|
Yamazaki T, Nagatoishi S, Yamawaki T, Nozawa T, Matsunaga R, Nakakido M, Caaveiro JMM, Nakagawa I, Tsumoto K. Anti-InlA single-domain antibodies that inhibit the cell invasion of Listeria monocytogenes. J Biol Chem 2023; 299:105254. [PMID: 37716701 PMCID: PMC10582769 DOI: 10.1016/j.jbc.2023.105254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/24/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Listeriosis, caused by infection with Listeria monocytogenes, is a severe disease with a high mortality rate. The L. monocytogenes virulence factor, internalin family protein InlA, which binds to the host receptor E-cadherin, is necessary to invade host cells. Here, we isolated two single-domain antibodies (VHHs) that bind to InlA with picomolar affinities from an alpaca immune library using the phage display method. These InlA-specific VHHs inhibited the binding of InlA to the extracellular domains of E-cadherin in vitro as shown by biophysical interaction analysis. Furthermore, we determined that the VHHs inhibited the invasion of L. monocytogenes into host cells in culture. High-resolution X-ray structure analyses of the complexes of VHHs with InlA revealed that the VHHs bind to the same binding site as E-cadherin against InlA. We conclude that these VHHs have the potential for use as drugs to treat listeriosis.
Collapse
Affiliation(s)
- Taichi Yamazaki
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Tsukushi Yamawaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jose M M Caaveiro
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan; Medical Device Development and Regulation Research Center, School of Engineering, The University of Tokyo, Tokyo, Japan; Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Liu X, Sui J, Li C, Wang Q, Peng X, Meng F, Xu Q, Jiang N, Zhao G, Lin J. The preparation and therapeutic effects of β-glucan-specific nanobodies and nanobody-natamycin conjugates in fungal keratitis. Acta Biomater 2023; 169:398-409. [PMID: 37579912 DOI: 10.1016/j.actbio.2023.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Fungal keratitis (FK) is a severe infectious corneal disease. Since traditional eye drops exhibit poor dissolution and high corneal toxicity, the efficacy of current treatments for FK remains limited. It is needed to develop new approaches to control the cornea damage from FK. In this study, a nanobody (Nb) specific to β-glucan in the fungal cell wall was prepared. The conjugate of the Nb with natamycin (NAT), a traditional antifungal drug, was synthesized. Firstly, we found the Nb specific to β-glucan inhibited fungal growth by disrupting cell wall and biofilm formation.. In addition, the content of β-glucan in the fungal cell wall decreased after Nb treatment. The Nb also reduced the adhesion ability of fungal conidia to human corneal epithelial cells (HCECs). Further, we examined the difference between NAT and Nb-NAT in antifungal growth. Nb-NAT showed better antifungal effects than NAT which was caused by the interaction between Nb and β-glucan. Moreover, Nb concentration below 0.5 mg/mL did not affect the viability of HCECs. Nb-NAT had less cytotoxicity and ocular surface irritation than NAT. Nb specific to β-glucan attenuated Aspergillus fumigatus (A. fumigatus) virulence and relieved inflammatory responses in FK. Nb-NAT treatment of the cornea improved therapeutic effects compared with NAT. It decreased clinical scores and expression level of inflammatory factors. To our knowledge, this study is the first to report a Nb specific to β-glucan and Nb-NAT for the treatment of FK. These unique functions of the Nb specific to β-glucan and Nb-NAT would render it as an alternative molecule to control fungal infections including FK. STATEMENT OF SIGNIFICANCE: Fungal keratitis is a corneal disease with a high rate of blindness. Due to the poor dissolution and high corneal toxicity exhibited by traditional eye drops, the efficacy of current therapeutic treatments for fungal keratitis (FK) remains limited. To enhance the therapeutic effect of natamycin in treating fungal keratitis, this study developed an innovative approach by preparing a β-glucan-specific nanobody and loading it with the antifungal drug natamycin. The β-glucan-specific nanobody has the ability to control both fungal pathogen invasion and inflammation, which can cause damage to the cornea in FK. The conjugation with the β-glucan-specific nanobody significantly increased the antifungal capacity of natamycin and reduced its toxicity. The further application of natamycin conjugated with the β-glucan-specific nanobody could be expanded to other diseases caused by fungal pathogen infections.
Collapse
Affiliation(s)
- Xing Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fanyue Meng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qiang Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Nan Jiang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Liu ML, He XT, Xu ZL, Deng H, Shen YD, Luo L, Shen X, Chen ZJ, Hammock B, Wang H. Development of a Biotinylated Nanobody-Based Gold Nanoparticle Immunochromatographic Assay for the Detection of Procymidone in Crops. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13137-13146. [PMID: 37611148 PMCID: PMC10849196 DOI: 10.1021/acs.jafc.3c03408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A heavy-chain antibody (VHH) library against procymidone (PRM) was constructed via immunizing Bactrian camels. Through careful biopanning, seven nanobodies (Nbs) with different sequences were obtained. The variability in their performance was primarily attributed to the amino acid differences in complementarity-determining region 3 (CDR3), as analyzed by molecular docking. The Nb exhibiting the highest sensitivity, named NbFM5, was biotinylated and conjugated to streptavidin-labeled gold nanoparticles to preserve the epitope's activity and prevent a decrease in sensitivity due to traditional random electrostatic adsorption. Subsequently, a simple and sensitive immunochromatographic assay (ICA) was developed for rapid detection of PRM based on biotinylated Nb (btNb). The developed btNb-ICA showed a cut-off value of 200 ng/mL for visual judgment and a half-inhibitory concentration (IC50) of 6.04 ng/mL for quantitative detection. The limit of detection (LOD) was as low as 0.88 ng/mL. The recoveries in actual samples of crops ranged from 82.2 to 117.3%, aligning well with the results obtained from GC-MS/MS (R2 = 0.995). In summary, the developed btNb-ICA demonstrated high specificity and good accuracy for the rapid detection of PRM residues in vegetables. The total analysis time from preparing the sample to obtaining the result was less than 25 min.
Collapse
Affiliation(s)
- Min-Ling Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ting He
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-chain of Hainan Province / Institute of Agro-products Processing and Design, Hainan Academy of Agricultural Sciences, Haikou, 570100, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Xing Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Laboratory of Quality & Safety Risk Assessment for Agro-products (Zhaoqing), Ministry of Agriculture and Rural Affairs, School of Food and Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Bruce Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Lim HT, Kok BH, Leow CY, Leow CH. Exploring shark VNAR antibody against infectious diseases using phage display technology. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108986. [PMID: 37541634 DOI: 10.1016/j.fsi.2023.108986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Antibody with high affinity and specificity to antigen has widely used as a tool to combat various diseases. The variable domain of immunoglobulin new antigen receptor (VNAR) naturally found in shark contains autonomous function as single-domain antibody. Due to its excellent characteristics, the small, non-complex, and highly stable have made shark VNAR can acquires the antigen-binding capability that might not be reached by conventional antibody. Phage display technology enables shark VNAR to be presented on the surface of phage, allowing the exploration of shark VNAR as an alternative antibody format to target antigens from various infectious diseases. The application of phage-displayed shark VNAR in antibody library and biopanning eventually leads to the discovery and isolation of antigen-specific VNARs with diagnostic and therapeutic potential towards infectious diseases. This review provides an overview of the shark VNAR antibody, the types of phage display technology with comparison to the other types of display system, as well as the application and case studies of phage-displayed shark VNAR antibodies against infectious diseases.
Collapse
Affiliation(s)
- Hui Ting Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Boon Hui Kok
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| |
Collapse
|