1
|
Peng Q, Zhang H, Li Z. KAT2A-mediated H3K79 succinylation promotes ferroptosis in diabetic nephropathy by regulating SAT2. Life Sci 2025; 376:123746. [PMID: 40409584 DOI: 10.1016/j.lfs.2025.123746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/27/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) remains difficult to treat due to its complex mechanisms. This study explores the ferroptosis mechanism in DN, focusing on the regulation of SAT2 expression by KAT2A-mediated H3K79 succinylation (H3K79succ). METHODS A DN rat model was created using streptozotocin (STZ) and a high-fat diet (HFD). KAT2A expression in rat kidney tissue was analyzed by RT-qPCR, WB, and immunohistochemistry. Renal pathology and function were assessed, and ferroptosis markers (ROS, GSH, MDA, and iron content) were measured. A high-glucose-induced HPo cell model was used for in vitro validation. KAT2A knockdown and CUT&Tag/RNA-seq were used to identify potential targets, and the regulation of SAT2 by KAT2A was confirmed through RT-qPCR, WB, and ChIP-qPCR. RESULTS Elevated KAT2A and H3K79succ expression were observed in DN rat kidney tissues and HPo cells. KAT2A knockdown reversed kidney damage, improved renal function, and suppressed inflammation and ferroptosis. CUT&Tag and RNA-seq identified SAT2 as a KAT2A target, and we confirmed that KAT2A-mediated H3K79succ enhances SAT2 expression, promoting ferroptosis in DN. CONCLUSION This study uncovers the role of KAT2A in DN, demonstrating its promotion of inflammation and ferroptosis through H3K79succ and SAT2 upregulation, offering insights into DN pathogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Qunyong Peng
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hanyong Zhang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Provincial first-class applied discipline (pharmacy), Changsha 410000, China
| | - Zhenyu Li
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Uzun O, Heybeli C, Kutlu FSA, Celebioglu Pekiner M, Yıldırım F, Cavdar C, Sarioglu S. Relationship between complement and macrophage markers with kidney survival in patients with diabetic nephropathy. Acta Diabetol 2025:10.1007/s00592-025-02521-3. [PMID: 40338344 DOI: 10.1007/s00592-025-02521-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/21/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease (ESKD) worldwide. Macrophages and the complement system have interrelated roles in DN. We aimed to determine associations between macrophage and complement markers with the progression of DN. METHODS This retrospective cohort study included patients diagnosed with sole DN by kidney biopsy. Using immunohistochemistry, CD68+ and CD163+ cells and complement markers were counted in glomerular and tubulointerstitial areas. The primary outcome was evolution to ESKD and/or doubling serum creatinine (SCr). RESULTS Forty-six patients were included. The median SCr at baseline was 2.7 (1.41-3.1) mg/dL. During the median follow-up of 32 months (range 6-54), 50% of patients reached the primary outcome. Most of the clinical and histological findings were comparable between progressors and non-progressors, while progressors had a higher median number of glomerular CD68+ cells and a higher percentage of glomerulosclerosis. After adjustments for age, sex, and SCr, the median glomerular CD68+ cell number was the sole independent predictor of progression. Glomerular C4d was associated with nephrotic-range proteinuria but not with the progression of kidney failure. CONCLUSIONS Glomerular CD68+ cell count may serve as a promising predictor of kidney disease progression among patients with DN. Glomerular C4d was associated with nephrotic-range proteinuria but not with the progression of kidney failure.
Collapse
Affiliation(s)
- Ozcan Uzun
- Yalova Research and Training Hospital, Yalova, Turkey
| | - Cihan Heybeli
- Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey.
| | | | | | | | - Caner Cavdar
- Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Sulen Sarioglu
- Department of Pathology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| |
Collapse
|
3
|
Yu S, Han Z, Li C, Lu X, Li Y, Yuan X, Guo D. Cross Talk Between Macrophages and Podocytes in Diabetic Nephropathy: Potential Mechanisms and Novel Therapeutics. Mediators Inflamm 2025; 2025:8140479. [PMID: 40352596 PMCID: PMC12064321 DOI: 10.1155/mi/8140479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/11/2024] [Accepted: 04/12/2025] [Indexed: 05/14/2025] Open
Abstract
Diabetic nephropathy (DN) is a leading cause of chronic kidney disease and end-stage renal failure worldwide. Podocytes, essential components of the glomerular filtration barrier (GFB), are profoundly affected in the diabetic milieu, resulting in structural and functional alterations. Concurrently, macrophages, pivotal innate immune cells, infiltrate the diabetic kidney and exhibit diverse activation states influenced by the local environment, playing a crucial role in kidney physiology and pathology. This review synthesizes current insights into how the dynamic cross talk between these two cell types contributes to the progression of DN, exploring the molecular and cellular mechanisms underlying this interaction, with a particular focus on how macrophages influence podocyte survival through various forms of cell death, including apoptosis, pyroptosis, and autophagy. The review also discusses the potential of targeting macrophages to develop more effective treatments for DN.
Collapse
Affiliation(s)
- Siming Yu
- Department of Nephrology II, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150036, China
| | - Zehui Han
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chunsheng Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xinxin Lu
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yue Li
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Dandan Guo
- Department of Cardiology, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150001, China
| |
Collapse
|
4
|
Fujimoto D, Umemoto S, Mizumoto T, Kanki T, Hata Y, Nishiguchi Y, Date R, Zhang J, Kakizoe Y, Izumi Y, Adachi M, Kojima H, Yokoi H, Mukoyama M, Kuwabara T. Alvespimycin is identified as a novel therapeutic agent for diabetic kidney disease by chemical screening targeting extracellular vesicles. Sci Rep 2025; 15:14436. [PMID: 40281012 PMCID: PMC12032101 DOI: 10.1038/s41598-025-98894-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication and play key roles in the regulation of pathophysiological processes. In diabetic kidney disease (DKD), it has been reported that macrophages recruited in the mesangial region may play pathogenic roles through inducing local inflammation in glomeruli. We focused on EV-mediated crosstalk between mesangial cells (MC) and macrophages as a novel therapeutic target for DKD. EVs released from MC induced inflammation in macrophages and the effect was enhanced under high-glucose conditions. For discovering novel therapeutic agents which can inhibit such EV-mediated mechanisms, drug repositioning is considered as an effective tool. We established a unique screening strategy and screened agents to aim at maximizing their specificity and potency to inhibit EV mechanisms, along with minimizing their toxicity. We succeeded in identifying alvespimycin, an HSP90 inhibitor. Treatment of diabetic rats with alvespimycin significantly suppressed mesangial expansion, inflammatory gene activation including macrophage markers, and proteinuria. The inhibitory effect on EV uptake was specific to alvespimycin compared with other known HSP90 inhibitors. MC-derived EVs are crucial for inflammation by intercellular crosstalk between MC and macrophages in DKD, and alvespimycin effectively ameliorated the progression of DKD by suppressing EV-mediated actions, suggesting that EV-targeted agents can be a novel therapeutic strategy.
Collapse
Affiliation(s)
- Daisuke Fujimoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shuro Umemoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Teruhiko Mizumoto
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tomoko Kanki
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yusuke Hata
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshihiko Nishiguchi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryosuke Date
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Jingxuan Zhang
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yutaka Kakizoe
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuichiro Izumi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masataka Adachi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, Tokyo, Japan
| | - Hideki Yokoi
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
5
|
Alonazi AS, Aloraini RM, Albulayhi LM, Alshehri LM, Bin Dayel AF, Alamin MA, Aldamri NT, Alshammari TK, Alkhelb DA, Sarawi WS, Alghibiwi HK, Alrasheed NM, Elnagar DM, Alrasheed NM. Macrophage Depletion Alleviates Immunosenescence in Diabetic Kidney by Modulating GDF-15 and Klotho. Int J Mol Sci 2025; 26:3990. [PMID: 40362229 PMCID: PMC12071727 DOI: 10.3390/ijms26093990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Cellular senescence is a hallmark of aging and contributes to age-related diseases, including diabetic nephropathy (DN). Additionally, macrophage-mediated inflammation has been linked with DKD. Therefore, we investigated the effect of macrophage depletion on kidney cell senescence in DN, focusing on the relationship between the GDF-15 and Klotho signaling pathways. Wistar albino rats (n = 24) were divided into four groups: healthy control, liposomal clodronate (LC)-treated healthy, diabetic, and LC-treated diabetic groups. Rats in the LC-treated healthy, diabetic, and LC-treated diabetic groups were intravenously administered LC once a week for 4 weeks. Rat models of type 2 diabetes were successfully established via the administration of streptozotocin and a high-fat diet, as evidenced by increased blood glucose levels, kidney weight to body weight (KW/BW) ratio, serum albumin, creatinine, and urea levels, kidney damage, and oxidative stress. However, LC-mediated macrophage depletion reduced the KW/BW ratio, improved serum and oxidative parameters, decreased inflammatory markers (IL-6 and TNF-α), and ameliorated oxidative stress. Additionally, LC treatment promoted macrophage polarization towards the anti-inflammatory phenotype, downregulated GDF-15 expression, upregulated Klotho expression, and ameliorated kidney damage. In conclusion, macrophage depletion combats kidney senescence by modulating Klotho and GDF-15, indicating their potential as novel targets in DN treatment.
Collapse
Affiliation(s)
- Asma S. Alonazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Rana M. Aloraini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Lama M. Albulayhi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Layal M. Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Anfal F. Bin Dayel
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Maha A. Alamin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Nouf T. Aldamri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Tahani K. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Dalal A. Alkhelb
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Hanan K. Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Nawal M. Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| | - Doaa M. Elnagar
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Zoology, Faculty of Woman, Ain Shams University, Cairo 11566, Egypt
| | - Nouf M. Alrasheed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.S.A.); (R.M.A.); (L.M.A.); (L.M.A.); (A.F.B.D.); (M.A.A.); (N.T.A.); (T.K.A.); (D.A.A.); (W.S.S.); (H.K.A.); (N.M.A.)
| |
Collapse
|
6
|
Schulz MC, Wolff N, Kopf M, Gekle M. Acidosis-induced p38-kinase activation triggers an IL-6-mediated crosstalk of renal proximal tubule cells with fibroblasts leading to their inflammatory response. Cell Commun Signal 2025; 23:180. [PMID: 40217316 PMCID: PMC11987431 DOI: 10.1186/s12964-025-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Local interstitial acidosis in chronic kidney disease (CKD) induces inflammatory responses and dedifferentiation of proximal tubule cells (PTCs), disrupting cellular crosstalk through cytokine and COX-2 metabolite secretion. This promotes a switch to an inflammatory fibroblast phenotype, further exacerbating inflammation and PTC dedifferentiation. p38-signaling and downstream transcription factors, including P-CREB and c-fos, contribute to these responses. This study investigates the impact of acidosis on inflammatory responses in PTCs and fibroblasts, focusing on cellular crosstalk and the role of p38-signaling. METHODS HK-2 (human PTCs) and CCD-1092Sk (human fibroblasts) were exposed to acidic or control media in mono- and coculture for 30 min, 3 h, or 48 h. Protein expression of IL-6, phosphorylated (P-) and total CREB, P- and total SRF, c-fos, and P- and total p38 was analyzed by western blot. IL-6 secretion was measured using ELISA. The impact of p38 and IL-6 receptor activity was assessed by pharmacological intervention. RESULTS In coculture, acidosis initially caused a transient decrease in IL-6 secretion but significantly increased IL-6 levels after 48 h. Acidosis induced intracellular IL-6 expression in HK-2 cells within 3 h independent of culture conditions, with sustained IL-6 protein increase after 48 h only in coculture. Acidosis also enhanced P-CREB and c-fos expression in coculture during the first 3 h. Regardless of culture conditions, acidosis increased IL-6, c-fos, and P-SRF expression in CCDSK cells after 48 h. P-CREB and COX-2 expression were elevated in CCDSK in coculture. Acidosis-mediated effects on IL-6, P-CREB, and P-SRF expression were p38-dependent in both cell lines. Finally, we assessed the pH-dependency of IL-6 action and found that IL-6 addition increased COX-2 expression via the IL-6 receptor in acidic but not control media. Thus, acidosis enhances IL-6 secretion and potentiates its receptor-mediated biological effects. CONCLUSION This study identifies IL-6 as a key mediator of tubule-fibroblast crosstalk in an acidic milieu, promoting inflammatory processes. Acidosis induces IL-6 expression, secretion, and biological effects, with p38 kinase as a crucial mediator. If validated in vivo, these findings could enhance understanding of CKD and support early interventions.
Collapse
Affiliation(s)
- Marie-Christin Schulz
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany.
| | - Nathalie Wolff
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| | - Michael Kopf
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| | - Micheal Gekle
- Julius-Bernstein-Institut für Physiologie, Universität Halle- Wittenberg, Magdeburger Straße 6, 06112, Halle (Saale), Germany
| |
Collapse
|
7
|
Chapple ILC, Hirschfeld J, Cockwell P, Dietrich T, Sharma P. Interplay between periodontitis and chronic kidney disease. Nat Rev Nephrol 2025; 21:226-240. [PMID: 39658571 DOI: 10.1038/s41581-024-00910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Periodontitis is a ubiquitous chronic inflammatory disease affecting the supporting tissues of the teeth and is a major cause of multiple tooth loss. Despite being preventable, periodontitis and dental caries are responsible for more years lost to disability than any other human condition. The most severe form of periodontitis affects 1 billion individuals, and its prevalence is increasing globally. Periodontitis arises from a dysregulated and hyperactive inflammatory response to dysbiosis in the periodontal microbiome. This response has systemic effects associated with premature mortality and elevated risk of several systemic non-communicable diseases (NCDs), including atheromatous cardiovascular disease, type 2 diabetes and chronic kidney disease (CKD). This risk association between periodontitis and NCDs is independent of their shared common risk factors, suggesting that periodontitis is a non-traditional risk factor for NCDs such as CKD. As periodontitis progresses, the immune cells and mediators underpinning its pathophysiology leak into the systemic circulation through the ulcerated oral mucosal lining, inducing in a systemic inflammatory profile that closely mirrors that observed in patients with CKD. The relationship between periodontitis and CKD seems to be bi-directional, but large-scale intervention studies are required to clarify causality and could lead to new care pathways for managing each condition as an exposure for the other.
Collapse
Affiliation(s)
- Iain L C Chapple
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK.
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK.
| | - Josefine Hirschfeld
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK
| | - Paul Cockwell
- Department of Nephrology, University Hospital Birmingham, Birmingham, UK
| | - Thomas Dietrich
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK
| | - Praveen Sharma
- Periodontal Research Group, Institute of Clinical Sciences, University of Birmingham and Birmingham Community Healthcare NHS Foundation Trust, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre in Inflammation, Birmingham, UK
| |
Collapse
|
8
|
Ikeda A, Peng G, Zhao W, Abudouwanli A, Ikeda S, Niyonsaba F, Suzuki Y. Impact of atopic dermatitis on renal dysfunction: insights from patient data and animal models. Front Immunol 2025; 16:1558596. [PMID: 40191205 PMCID: PMC11968387 DOI: 10.3389/fimmu.2025.1558596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by pruritus, immune dysregulation, and compromised skin barrier function. Although there are some reports that indicate a link between AD and chronic kidney disease (CKD), the prevalence and underlying mechanism of the association between AD and CKD are still unclear. We aimed to clarify the mechanism underlying the association between AD and CKD using an AD-like mouse model. Methods Human serum and urine samples from adults in the U.S. were analyzed using data from the National Health and Nutrition Examination Survey (NHANES). An AD-like mouse model was established by repeatedly applying 2,4-dinitrochlorobenzene to the backs and ears of the mice. Kidney inflammation and podocyte function were evaluated via PAS and H&E staining, immunofluorescence staining, and electron microscopy. Results We found that compared to healthy subjects in the NHANES cohort study, patients with AD had altered kidney function. AD-like model mice exhibited albuminuria and renal dysfunction one to three months after the induction of AD. In addition, there were remarkable decreases in triglyceride and very-low-density lipoprotein levels and increases in low-density lipoprotein and non-high-density lipoprotein levels in AD-like model mice. After histological staining of the kidneys of AD-like model mice, macrophage and neutrophil infiltration was detected, and the foot process effacement of podocytes was observed via electron microscopy. In addition, the gene expression of slit diaphragm- and podocyte-related proteins such as nephrin, podocin, and synaptopodin decreased, whereas the gene expression of inflammatory mediators such as S100A8 and S100A9 increased. Discussion Following improvements in skin inflammation, alleviation of albuminuria, renal dysfunction and dyslipidemia were observed. These findings suggest that AD-related cutaneous inflammation is associated with albuminuria and podocyte dysfunction.
Collapse
Affiliation(s)
- Arisa Ikeda
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ge Peng
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Wanchen Zhao
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Alafate Abudouwanli
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Dermatology and Allergology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Rykova EY, Klimontov VV, Shmakova E, Korbut AI, Merkulova TI, Kzhyshkowska J. Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. Int J Mol Sci 2025; 26:1670. [PMID: 40004134 PMCID: PMC11854991 DOI: 10.3390/ijms26041670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
A growing body of evidence indicates that nonglycemic effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors play an important role in the protective effects of these drugs in diabetes, chronic kidney disease, and heart failure. In recent years, the anti-inflammatory potential of SGLT2 inhibitors has been actively studied. This review summarizes results of clinical and experimental studies on the anti-inflammatory activity of SGLT2 inhibitors, with a special focus on their effects on macrophages, key drivers of metabolic inflammation. In patients with type 2 diabetes, therapy with SGLT2 inhibitors reduces levels of inflammatory mediators. In diabetic and non-diabetic animal models, SGLT2 inhibitors control low-grade inflammation by suppressing inflammatory activation of tissue macrophages, recruitment of monocytes from the bloodstream, and macrophage polarization towards the M1 phenotype. The molecular mechanisms of the effects of SGLT2 inhibitors on macrophages include an attenuation of inflammasome activity and inhibition of the TLR4/NF-κB pathway, as well as modulation of other signaling pathways (AMPK, PI3K/Akt, ERK 1/2-MAPK, and JAKs/STAT). The review discusses the state-of-the-art concepts and prospects of further investigations that are needed to obtain a deeper insight into the mechanisms underlying the effects of SGLT2 inhibitors on the molecular, cellular, and physiological levels.
Collapse
Affiliation(s)
- Elena Y. Rykova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
| | - Vadim V. Klimontov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Elena Shmakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Anton I. Korbut
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Tatyana I. Merkulova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
| | - Julia Kzhyshkowska
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
10
|
Tan RZ, Bai QX, Jia LH, Wang YB, Li T, Lin JY, Liu J, Su HW, Kantawong F, Wang L. Epigenetic regulation of macrophage function in kidney disease: New perspective on the interaction between epigenetics and immune modulation. Biomed Pharmacother 2025; 183:117842. [PMID: 39809127 DOI: 10.1016/j.biopha.2025.117842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/01/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
The interaction between renal intrinsic cells and macrophages plays a crucial role in the onset and progression of kidney diseases. In recent years, epigenetic mechanisms such as DNA methylation, histone modification, and non-coding RNA regulation have become essential windows for understanding these processes. This review focuses on how renal intrinsic cells (including tubular epithelial cells, podocytes, and endothelial cells), renal cancer cells, and mesenchymal stem cells influence the function and polarization status of macrophages through their own epigenetic alterations, and how the epigenetic regulation of macrophages themselves responds to kidney damage, thus participating in renal inflammation, fibrosis, and repair. Moreover, therapeutic studies targeting these epigenetic interaction mechanisms have found that the application of histone deacetylase inhibitors, histone methyltransferase inhibitors, various nanomaterials, and locked nucleic acids against non-coding RNA have positive effects on the treatment of multiple kidney diseases. This review summarizes the latest research advancements in these epigenetic regulatory mechanisms and therapies, providing a theoretical foundation for further elucidating the pathogenesis of kidney diseases and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Rui-Zhi Tan
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Qiu-Xiang Bai
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Long-Hao Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Yi-Bing Wang
- Department of Medical Imaging, Southwest Medical University, Luzhou 646000, China
| | - Tong Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Lin
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jian Liu
- Department of Nephrology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hong-Wei Su
- Department of Urology, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China; Institute of Integrated Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
11
|
Ma J, Yiu WH, Tang SCW. Complement anaphylatoxins: Potential therapeutic target for diabetic kidney disease. Diabet Med 2025; 42:e15427. [PMID: 39189098 PMCID: PMC11733663 DOI: 10.1111/dme.15427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Diabetic kidney disease (DKD) is the most common cause of kidney failure, characterized by chronic inflammation and fibrosis. The complement system is increasingly implicated in the development and progression of diabetic nephropathy. The important complement anaphylatoxins C3a and C5a are key mediators of the innate immune system, which regulates cellular inflammation, oxidative stress, mitochondrial homeostasis and tissue fibrosis. This review summarizes the involvement of anaphylatoxins in the pathogenesis of diabetic kidney disease, highlights their important roles in the pathophysiologic changes of glomerulopathy, tubulointerstitial damage and immune cell infiltration, and discusses the modulatory effects of new anti-diabetic drugs acting on the complement system. Based on available clinical data and findings from the preclinical studies of complement blockade, anaphylatoxin-targeted therapeutics may become a promising approach for patients with DKD in the future.
Collapse
Affiliation(s)
- Jingyuan Ma
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Wai Han Yiu
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| | - Sydney C. W. Tang
- Division of Nephrology, Department of Medicine, School of Clinical MedicineThe University of Hong Kong, Queen Mary HospitalHong KongChina
| |
Collapse
|
12
|
Li Y, Zhang J, Zhu Y. METTL14 derived from exosomes of M1 macrophages promotes high glucose-induced apoptosis, inflammation and oxidative stress in glomerular endothelial cells by mediating PAQR3 m6A modification. Clin Exp Nephrol 2024; 28:1221-1231. [PMID: 39080055 DOI: 10.1007/s10157-024-02536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/01/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Methyltransferase 14 (METTL14) mediated N6-methyladenine (m6A) RNA methylation and progestin and AdipoQ receptor family member 3 (PAQR3) are reported to be involved in diabetic nephropathy (DN) progression. Here, we explored whether the effects of PAQR3 on DN was associated with METTL14-induced m6A and their relationship with macrophage-related exosomes in DN progression. METHODS Human glomerular endothelial cells (GECs) were incubated in high glucose (HG) condition to mimic DN condition in vitro. Exosomes were isolated from M1 macrophages and co-cultured with GECs. qRT-PCR and western blotting detected the levels of genes and proteins. Cell functions were determined using cell counting kit-8 assay and flow cytometry. ELISA analysis detected inflammatory factors, and oxidative stress was evaluated by measuring reactive oxygen species and malondialdehyde. The m6A modification profile was determined by methylated RNA immunoprecipitation assay and the interaction was verified by dual-luciferase reporter assay. RESULTS HG elevated PAQR3 expression levels in GECs. PAQR3 silencing reversed HG-induced viability arrest, apoptosis, inflammatory response, and oxidative stress. M1 macrophage co-culture could suppress HG-induced GEC injury. PAQR3 was packaged into M1 macrophage-derived exosomes, and M1 macrophages regulated HG-induced GEC injury by secreting PAQR3 into cells via exosomes. Mechanistically, METTL14 induced PAQR3 m6A modification. METTL14 was enriched in M1 macrophage-derived exosomes. METTL14 knockdown in M1 macrophage-derived exosomes protected GEC from HG-induced viability arrest, apoptosis, inflammation and oxidative stress by regulating PAQR3. CONCLUSION Exosomal METTL14 derived from M1 macrophages promoted HG-induced apoptosis, inflammation and oxidative stress in GECs by mediating PAQR3 m6A modification.
Collapse
Affiliation(s)
- Yiqun Li
- Department of Nephrology, Dingxi Municipal People's Hospital, No. 22, Anding Road, Dingxi, 743000, China
| | - Jiarong Zhang
- Department of Nephrology, Dingxi Municipal People's Hospital, No. 22, Anding Road, Dingxi, 743000, China
| | - Yanli Zhu
- Department of Nephrology, Dingxi Municipal People's Hospital, No. 22, Anding Road, Dingxi, 743000, China.
| |
Collapse
|
13
|
Zhu Y, Liu J, Wang B. Integrated approach of machine learning, Mendelian randomization and experimental validation for biomarker discovery in diabetic nephropathy. Diabetes Obes Metab 2024; 26:5646-5660. [PMID: 39370621 DOI: 10.1111/dom.15933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/08/2024]
Abstract
AIM To identify potential biomarkers and explore the mechanisms underlying diabetic nephropathy (DN) by integrating machine learning, Mendelian randomization (MR) and experimental validation. METHODS Microarray and RNA-sequencing datasets (GSE47184, GSE96804, GSE104948, GSE104954, GSE142025 and GSE175759) were obtained from the Gene Expression Omnibus database. Differential expression analysis identified the differentially expressed genes (DEGs) between patients with DN and controls. Diverse machine learning algorithms, including least absolute shrinkage and selection operator, support vector machine-recursive feature elimination, and random forest, were used to enhance gene selection accuracy and predictive power. We integrated summary-level data from genome-wide association studies on DN with expression quantitative trait loci data to identify genes with potential causal relationships to DN. The predictive performance of the biomarker gene was validated using receiver operating characteristic (ROC) curves. Gene set enrichment and correlation analyses were conducted to investigate potential mechanisms. Finally, the biomarker gene was validated using quantitative real-time polymerase chain reaction in clinical samples from patients with DN and controls. RESULTS Based on identified 314 DEGs, seven characteristic genes with high predictive performance were identified using three integrated machine learning algorithms. MR analysis revealed 219 genes with significant causal effects on DN, ultimately identifying one co-expressed gene, carbonic anhydrase II (CA2), as a key biomarker for DN. The ROC curves demonstrated the excellent predictive performance of CA2, with area under the curve values consistently above 0.878 across all datasets. Additionally, our analysis indicated a significant association between CA2 and infiltrating immune cells in DN, providing potential mechanistic insights. This biomarker was validated using clinical samples, confirming the reliability of our findings in clinical practice. CONCLUSION By integrating machine learning, MR and experimental validation, we successfully identified and validated CA2 as a promising biomarker for DN with excellent predictive performance. The biomarker may play a role in the pathogenesis and progression of DN via immune-related pathways. These findings provide important insights into the molecular mechanisms underlying DN and may inform the development of personalized treatment strategies for this disease.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bo Wang
- Department of Endocrinology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Huang Y, Yuan X. Significance of pyroptosis-related genes in the diagnosis and classification of diabetic kidney disease. Ren Fail 2024; 46:2409331. [PMID: 39378104 PMCID: PMC11463007 DOI: 10.1080/0886022x.2024.2409331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/06/2024] [Accepted: 09/21/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE This study aimed to identify the potential biomarkers associated with pyroptosis in diabetic kidney disease (DKD). METHODS Three datasets from the Gene Expression Omnibus (GEO) were downloaded and merged into an integrated dataset. Differentially expressed genes (DEGs) were filtered and intersected with pyroptosis-related genes (PRGs). Pyroptosis-related DEGs (PRDEGs) were obtained and analyzed using functional enrichment analysis. Random forest, Least Absolute Shrinkage and Selection Operator, and logistic regression analyses were used to select the features of PRDEGs. These feature genes were used to build a diagnostic prediction model, identify the subtypes of the disease, and analyze their interactions with transcription factors (TFs)/miRNAs/drugs and small molecules. We conducted a comparative analysis of immune cell infiltration at different risk levels of pyroptosis. qRT-PCR was used to validate the expression of the feature genes. RESULTS A total of 25 PRDEGs were obtained. These genes were coenriched in biological processes and pathways, such as the regulation of inflammatory responses. Five key genes (CASP1, CITED2, HTRA1, PTGS2, S100A12) were identified and verified using qRT-PCR. The diagnostic model based on key genes has a good diagnostic prediction ability. Five key genes interacted with TFs and miRNAs in 67 and 80 pairs, respectively, and interacted with 113 types of drugs or molecules. Immune infiltration of samples with different pyroptosis risk levels showed significant differences. Thus, CASP1, CITED2, HTRA1, PTGS2 and S100A12 are potential DKD biomarkers. CONCLUSION Genes that regulate pyroptosis can be used as predictors of DKD. Early diagnosis of DKD can aid in its effective treatment.
Collapse
Affiliation(s)
- Yixiong Huang
- Department of Laboratory Medicine, Blood Transfusion Department, Hunan Second People’s Hospital (Hunan Brain Hospital), Changsha, Hunan, China
| | - Xinke Yuan
- Department of Nephrology, The First Hospital of Changsha (The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University), Changsha, Hunan, China
| |
Collapse
|
15
|
Li W, Liu Z, Song M, Shi Z, Zhang J, Zhou J, Liu Y, Qiao Y, Liu D. Mechanism of Yi-Qi-Bu-Shen Recipe for the Treatment of Diabetic Nephropathy Complicated with Cognitive Dysfunction Based on Network Pharmacology and Experimental Validation. Diabetes Metab Syndr Obes 2024; 17:3943-3963. [PMID: 39465123 PMCID: PMC11512782 DOI: 10.2147/dmso.s481740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/05/2024] [Indexed: 10/29/2024] Open
Abstract
Context Diabetic nephropathy (DN) and cognitive dysfunction (CD) are common complications of diabetes. Yi-Qi-Bu-Shen Recipe (YQBS) can effectively reduce blood glucose, improve insulin resistance, and delay the progression of diabetic complications. The underlying mechanisms of its effects need to be further studied. Objective This study elucidates the mechanism of YQBS in DN with CD through network pharmacology and experimental validation. Materials and Methods Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. Male Sprague-Dawley (SD) rats were divided into 6 groups: model, YQBS (2, 4, 8 g/kg), positive control (metformin, 200 mg/kg), and control; the DN model was established by high sugar and high fat diet combined with intraperitoneal streptozotocin injection. After the DN model was established, the rats were gavaged for 10 weeks. Serum, kidneys, and hippocampus tissues were collected to measure the expression levels of TLR4, NF-κB, TNF-α, and IL-6. Results The network pharmacology analysis showed that quercetin and kaempferol were the main active components of YQBS. TNF and IL-6 were the key targets, and TLR4/NF-κB pathway was crucial to YQBS in treating DN complicated with CD. Experimental validation showed that the intervention of YQBS can reduce TNF-α and IL-6 in serum, and also significantly decreases the protein expression of TLR4 and NF-κB. Conclusion YQBS exerts anti-inflammatory effects on DN with CD through TLR4/NF-κB pathway. This study provides a biological basis for the scientific usage of YQBS in inflammation diseases and supplies experimental evidence for future traditional Chinese medicine development.
Collapse
Affiliation(s)
- Wenyi Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
- Research Center for Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Zhenguo Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Min Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Zhenpeng Shi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jihang Zhang
- Traditional Chinese Medicine College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Junyu Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yidan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Yun Qiao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
16
|
Sinha SK, Carpio MB, Nicholas SB. Fiery Connections: Macrophage-Mediated Inflammation, the Journey from Obesity to Type 2 Diabetes Mellitus and Diabetic Kidney Disease. Biomedicines 2024; 12:2209. [PMID: 39457523 PMCID: PMC11503991 DOI: 10.3390/biomedicines12102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
The high prevalence of diabetes mellitus (DM) poses a significant public health challenge, with diabetic kidney disease (DKD) as one of its most serious consequences. It has become increasingly clear that type 2 DM (T2D) and the complications of DKD are not purely metabolic disorders. This review outlines emerging evidence related to the step-by-step contribution of macrophages to the development and progression of DKD in individuals who specifically develop T2D as a result of obesity. The macrophage is a prominent inflammatory cell that contributes to obesity, where adipocyte hypertrophy leads to macrophage recruitment and eventually to the expansion of adipose tissue. The recruited macrophages secrete proinflammatory cytokines, which cause systemic inflammation, glucose dysregulation, and insulin sensitivity, ultimately contributing to the development of T2D. Under such pathological changes, the kidney is susceptible to elevated glucose and thereby activates signaling pathways that ultimately drive monocyte recruitment. In particular, the early recruitment of proinflammatory macrophages in the diabetic kidney produces inflammatory cytokines/chemokines that contribute to inflammation and tissue damage associated with DKD pathology. Macrophage activation and recruitment are crucial inciting factors that also persist as DKD progresses. Thus, targeting macrophage activation and function could be a promising therapeutic approach, potentially offering significant benefits for managing DKD at all stages of progression.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Maria Beatriz Carpio
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
17
|
Wang SY, Yu Y, Ge XL, Pan S. Causal role of immune cells in diabetic nephropathy: a bidirectional Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1357642. [PMID: 39345891 PMCID: PMC11427287 DOI: 10.3389/fendo.2024.1357642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Background Diabetic nephropathy (DN) stands as a pervasive chronic renal disease worldwide, emerging as the leading cause of renal failure in end-stage renal disease. Our objective is to pinpoint potential immune biomarkers and evaluate the causal effects of prospective therapeutic targets in the context of DN. Methods We employed Mendelian randomization (MR) analysis to examine the causal associations between 731 immune cell signatures and the risk of DN. Various analytical methods, including inverse-variance weighted (IVW), MR-Egger, weighted median, simple mode, and weighted mode, were employed for the analysis. The primary analytical approach utilized was the inverse-variance weighted (IVW) method. To ensure the reliability of our findings, we conducted comprehensive sensitivity analyses to assess the robustness, heterogeneity, and presence of horizontal pleiotropy in the results. Statistical powers were also calculated. Ultimately, a reverse Mendelian randomization (MR) analysis was conducted to assess the potential for reverse causation. Results After Benjamini & Hochberg (BH) correction, four immunophenotypes were identified to be significantly associated with DN risk: HLA DR on Dendritic Cell (OR=1.4460, 95% CI = 1.2904~1.6205, P=2.18×10-10, P.adjusted= 1.6×10-7), HLA DR on CD14+ CD16- monocyte (OR=1.2396, 95% CI=1.1315~1.3580, P=3.93×10-6, P.adjusted = 0.00143). HLA DR on CD14+ monocyte (OR=1.2411, 95% CI=1.12957~1.3637, P=6.97×10-6, P.adjusted=0.0016), HLA DR on plasmacytoid Dendritic Cell (OR=1.2733, 95% CI= 1.1273~1.4382, P= 0.0001, P.adjusted = 0.0183). Significant heterogeneity of instrumental variables was found in the four exposures, and significant horizontal pleiotropy was only found in HLA DR on Dendritic Cell. The bidirectional effects between the immune cells and DN were not supported. Conclusion Our research illustrated the intimate association between immune cells and DN, which may contribute to a deeper understanding of the intricate mechanisms underlying DN and aid in the identification of novel intervention target pathways.
Collapse
Affiliation(s)
- Shang-Yuan Wang
- Department of Emergency Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yu
- Department of Emergency Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Li Ge
- Department of Emergency Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuming Pan
- Department of Emergency Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
He M, Niu J, Cheng H, Guo C. Identification and validation of diagnostic genes associated with neutrophil extracellular traps of type 2 diabetes mellitus. Front Genet 2024; 15:1373807. [PMID: 39296548 PMCID: PMC11408200 DOI: 10.3389/fgene.2024.1373807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Background Neutrophil extracellular traps (NETs) cause delayed wound closed up in type 2 diabetes mellitus (T2DM), but the specific regulatory mechanism of NETs-related genes (NETs-RGs) in T2DM is unclear. Methods We acquired GSE21321 and GSE15932 datasets from gene expression omnibus (GEO) database. First, differentially expressed genes (DEGs) between T2DM and control samples of GSE21321 dataset were sifted out by differential expression analysis. NETs scores were calculated for all samples in GSE21321 dataset, and key module genes associated with NETs scores were screened by constructing co-expression network. Then, DEGs and key module genes were intersected to yield intersection genes, and candidate genes were identified by constructing a protein protein interaction (PPI) network. Least absolute shrinkage and selection operator (LASSO) regression analysis was implemented on candidate genes to screen out diagnostic genes, and they were subjected to single sample gene set enrichment analysis (ssGSEA). Finally, immune characteristic analysis was carried out, and we constructed the gene-drug and transcription factor (TF)-miRNA-mRNA networks. Besides, we validated the expression of diagnostic genes by quantitative real-time polymerase chain reaction (qRT-PCR). Results In total, 23 candidate genes were gained by PPI analysis. The 5 diagnostic genes, namely, inter-trypsin inhibitor heavy chain 3 (ITIH3), fibroblast growth factor 1 (FGF1), neuron cell adhesion molecule (NRCAM), advanced glycosylation end-product-specific receptor (AGER), and calcium voltage-gated channel subunit alpha1 C (CACNA1C), were identified via LASSO analysis, and they were involved in carboxylic acid transport, axonogenesis, etc. M2 Macrophage, Monocyte, Natural killer (NK) cell, and Myeloid dendritic cells (DC) were remarkably different between T2DM and control samples. Diagnostic genes had the strongest and the most significant positive correlation with B cells. The gene-drug network included CACNA1C-Isradipine, CACNA1C-Benidipine and other relationship pairs. Totally 76 nodes and 44 edges constituted the TF-miRNA-mRNA network, including signal transducer and activator of transcription 1(STAT1) -hsa-miR-3170-AGER, CCCTC-binding factor (CTCF)-hsa-miR-455-5p-CACNA1C, etc. Moreover, qRT-PCR suggested that the expression trends of FGF1 and AGER were in keeping with the results of bioinformatic analysis. FGF1 and AGER were markedly regulated downwards in the T2DM group. Conclusion Through bioinformatic analysis, we identified NETs-related diagnostic genes (ITIH3, FGF1, NRCAM, AGER, CACNA1C) in T2DM, and explored their mechanism of action from different aspects, providing new ideas for the studies related to diagnosis and treatment of T2DM.
Collapse
Affiliation(s)
- Meifang He
- Endocrinoloy Department, Peking University First Hospital Taiyuan Hospital (Taiyuan Central Hospital), Taiyuan, China
| | - Jin Niu
- Endocrinoloy Department, Peking University First Hospital Taiyuan Hospital (Taiyuan Central Hospital), Taiyuan, China
| | - Haihua Cheng
- Endocrinoloy Department, Peking University First Hospital Taiyuan Hospital (Taiyuan Central Hospital), Taiyuan, China
| | - Chaoying Guo
- Endocrinoloy Department, Peking University First Hospital Taiyuan Hospital (Taiyuan Central Hospital), Taiyuan, China
| |
Collapse
|
19
|
Li X, Yang L, Xu S, Tian Y, Meng X. Exosomes and Macrophages: Bidirectional Mutual Regulation in the Treatment of Diabetic Complications. Cell Mol Bioeng 2024; 17:243-261. [PMID: 39372550 PMCID: PMC11450116 DOI: 10.1007/s12195-024-00816-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/22/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose The bidirectional regulation of macrophages and exosomes provides a meaningful research direction for the treatment of complications arising from both type 1 and type 2 diabetes mellitus. However, there is currently no comprehensive evaluation of the bidirectional regulatory role of macrophages and exosomes in diabetic complications. In this review, we aim to provide the detailed process of the bidirectional regulation mechanism of macrophages and exosomes, and how macrophage-associated exosomes use this mechanism to make it better applied to clinical practice through biotechnology. Methods Therefore, we summarized the bidirectional regulation mechanism of macrophages and exosomes and the application based on the bidirectional regulation mechanism from two aspects of inflammation and insulin resistance. Results As key regulators of the immune system, macrophages are crucial in the progression of diabetic complications due to their significant impact on the regulation of cellular metabolism, inflammation, and insulin sensitivity. Furthermore, exosomes, as innovative mediators of intercellular communication, transport miRNAs, proteins, and various bioactive molecules, influencing the occurrence and progression of diabetic complications through the regulation of inflammation and insulin resistance. The bidirectional regulation between macrophages and exosomes provides a promising pathway for the treatment of diabetic complications aimed at regulating the immune response and improving insulin sensitivity. Conclusions Understanding the complexity of the interaction between macrophages and exosomes can advance the treatment of diabetic complications and drug development, and bringing more innovative and effective treatment strategies for diabetic complications.
Collapse
Affiliation(s)
- Xue Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| | - Lianrong Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| | - Shujun Xu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| | - Yuan Tian
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| | - Xin Meng
- School of Pharmacy, Heilongjiang University of Chinese Medicine, NO.24 Heping Road, Harbin, 150040 P. R. China
| |
Collapse
|
20
|
Su W, Yin Y, Zhao J, Hu R, Zhang H, Hu J, Ren R, Zhang Y, Wang A, Lyu Z, Mu Y, Cheng Y. Exosomes derived from umbilical cord-derived mesenchymal stem cells exposed to diabetic microenvironment enhance M2 macrophage polarization and protect against diabetic nephropathy. FASEB J 2024; 38:e23798. [PMID: 38989582 DOI: 10.1096/fj.202400359r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
The role of mesenchymal-stem-cell-derived exosomes (MSCs-Exo) in the regulation of macrophage polarization has been recognized in several diseases. There is emerging evidence that MSCs-Exo partially prevent the progression of diabetic nephropathy (DN). This study aimed to investigate whether exosomes secreted by MSCs pre-treated with a diabetic environment (Exo-pre) have a more pronounced protective effect against DN by regulating the balance of macrophages. Exo-pre and Exo-Con were isolated from the culture medium of UC-MSCs pre-treated with a diabetic mimic environment and natural UC-MSCs, respectively. Exo-pre and Exo-Con were injected into the tail veins of db/db mice three times a week for 6 weeks. Serum creatinine and serum urea nitrogen levels, the urinary protein/creatinine ratio, and histological staining were used to determine renal function and morphology. Macrophage phenotypes were analyzed by immunofluorescence, western blotting, and quantitative reverse transcription polymerase chain reaction. In vitro, lipopolysaccharide-induced M1 macrophages were incubated separately with Exo-Con and Exo-pre. We performed microRNA (miRNA) sequencing to identify candidate miRNAs and predict their target genes. An miRNA inhibitor was used to confirm the role of miRNAs in macrophage modulation. Exo-pre were more potent than Exo-Con at alleviating DN. Exo-pre administration significantly reduced the number of M1 macrophages and increased the number of M2 macrophages in the kidney compared to Exo-Con administration. Parallel outcomes were observed in the co-culture experiments. Moreover, miR-486-5p was distinctly expressed in Exo-Con and Exo-pre groups, and it played an important role in macrophage polarization by targeting PIK3R1 through the PI3K/Akt pathway. Reducing miR-486-5p levels in Exo-pre abolished macrophage polarization modulation. Exo-pre administration exhibited a superior effect on DN by remodeling the macrophage balance by shuttling miR-486-5p, which targets PIK3R1.
Collapse
Affiliation(s)
- Wanlu Su
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yaqi Yin
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jian Zhao
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Ruofan Hu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Haixia Zhang
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jia Hu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Rui Ren
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yue Zhang
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Anning Wang
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yiming Mu
- School of Medicine, Nankai University, Tianjin, China
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yu Cheng
- Department of Endocrinology, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
21
|
Cliff CL, Squires PE, Hills CE. Tonabersat suppresses priming/activation of the NOD-like receptor protein-3 (NLRP3) inflammasome and decreases renal tubular epithelial-to-macrophage crosstalk in a model of diabetic kidney disease. Cell Commun Signal 2024; 22:351. [PMID: 38970061 PMCID: PMC11225428 DOI: 10.1186/s12964-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Accompanied by activation of the NOD-like receptor protein 3 (NLRP3) inflammasome, aberrant connexin 43 (Cx43) hemichannel-mediated ATP release is situated upstream of inflammasome assembly and inflammation and contributes to multiple secondary complications of diabetes and associated cardiometabolic comorbidities. Evidence suggests there may be a link between Cx43 hemichannel activity and inflammation in the diabetic kidney. The consequences of blocking tubular Cx43 hemichannel-mediated ATP release in priming/activation of the NLRP3 inflammasome in a model of diabetic kidney disease (DKD) was investigated. We examined downstream markers of inflammation and the proinflammatory and chemoattractant role of the tubular secretome on macrophage recruitment and activation. METHODS Analysis of human transcriptomic data from the Nephroseq repository correlated gene expression to renal function in DKD. Primary human renal proximal tubule epithelial cells (RPTECs) and monocyte-derived macrophages (MDMs) were cultured in high glucose and inflammatory cytokines as a model of DKD to assess Cx43 hemichannel activity, NLRP3 inflammasome activation and epithelial-to-macrophage paracrine-mediated crosstalk. Tonabersat assessed a role for Cx43 hemichannels. RESULTS Transcriptomic analysis from renal biopsies of patients with DKD showed that increased Cx43 and NLRP3 expression correlated with declining glomerular filtration rate (GFR) and increased proteinuria. In vitro, Tonabersat blocked glucose/cytokine-dependant increases in Cx43 hemichannel-mediated ATP release and reduced expression of inflammatory markers and NLRP3 inflammasome activation in RPTECs. We observed a reciprocal relationship in which NLRP3 activity exacerbated increased Cx43 expression and hemichannel-mediated ATP release, events driven by nuclear factor kappa-B (NFκB)-mediated priming and Cx43 hemichannel opening, changes blocked by Tonabersat. Conditioned media (CM) from RPTECs treated with high glucose/cytokines increased expression of inflammatory markers in MDMs, an effect reduced when macrophages were pre-treated with Tonabersat. Co-culture using conditioned media from Tonabersat-treated RPTECs dampened macrophage inflammatory marker expression and reduced macrophage migration. CONCLUSION Using a model of DKD, we report for the first time that high glucose and inflammatory cytokines trigger aberrant Cx43 hemichannel activity, events that instigate NLRP3-induced inflammation in RPTECs and epithelial-to-macrophage crosstalk. Recapitulating observations previously reported in diabetic retinopathy, these data suggest that Cx43 hemichannel blockers (i.e., Tonabersat) may dampen multi-system damage observed in secondary complications of diabetes.
Collapse
Affiliation(s)
- C L Cliff
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - P E Squires
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - C E Hills
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
22
|
Long Z, Luo Y, Yu M, Wang X, Zeng L, Yang K. Targeting ferroptosis: a new therapeutic opportunity for kidney diseases. Front Immunol 2024; 15:1435139. [PMID: 39021564 PMCID: PMC11251909 DOI: 10.3389/fimmu.2024.1435139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Ferroptosis is a form of non-apoptotic regulated cell death (RCD) that depends on iron and is characterized by the accumulation of lipid peroxides to lethal levels. Ferroptosis involves multiple pathways including redox balance, iron regulation, mitochondrial function, and amino acid, lipid, and glycometabolism. Furthermore, various disease-related signaling pathways also play a role in regulating the process of iron oxidation. In recent years, with the emergence of the concept of ferroptosis and the in-depth study of its mechanisms, ferroptosis is closely associated with various biological conditions related to kidney diseases, including kidney organ development, aging, immunity, and cancer. This article reviews the development of the concept of ferroptosis, the mechanisms of ferroptosis (including GSH-GPX4, FSP1-CoQ1, DHODH-CoQ10, GCH1-BH4, and MBOAT1/2 pathways), and the latest research progress on its involvement in kidney diseases. It summarizes research on ferroptosis in kidney diseases within the frameworks of metabolism, reactive oxygen biology, and iron biology. The article introduces key regulatory factors and mechanisms of ferroptosis in kidney diseases, as well as important concepts and major open questions in ferroptosis and related natural compounds. It is hoped that in future research, further breakthroughs can be made in understanding the regulation mechanism of ferroptosis and utilizing ferroptosis to promote treatments for kidney diseases, such as acute kidney injury(AKI), chronic kidney disease (CKD), diabetic nephropathy(DN), and renal cell carcinoma. This paves the way for a new approach to research, prevent, and treat clinical kidney diseases.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanfang Luo
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Min Yu
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Wang
- Department of Nephrology, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Liuting Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Yan Y, Lu H, Zheng Y, Lin S. Association Between Systemic Immune Inflammation Index and Diabetes Mellitus in the NHANES 2003-2018 Population. J Endocr Soc 2024; 8:bvae124. [PMID: 38974989 PMCID: PMC11226779 DOI: 10.1210/jendso/bvae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Indexed: 07/09/2024] Open
Abstract
Objects This study aimed to explore the association between the Systemic Immune-Inflammation Index (SII) and diabetes mellitus (DM) and to assess its influence on the prognosis of the DM and no-DM groups. Methods The study used data from the National Health and Nutrition Examination Survey; 9643 participants were included. Logistic regression analysis was employed to evaluate connections between SII and DM. We used the Cox proportional hazards model, restricted cubic spline, and Kaplan-Meier curve to analyze the relationship between SII and mortality. Results The logistic regression analysis indicated that a significant increase in the likelihood of developing DM with higher SII levels (odds ratio, 1.31; 95% CI, 1.09-1.57, P = .003). The Cox model showed that there is a positive association between increased SII and higher all-cause mortality. The hazard ratios for SII were 1.53 (1.31, 1.78), 1.61 (1.31, 1.98), and 1.41 (1.12, 1.78) in the total, DM and non-DM groups, respectively. We observed a linear correlation between SII and all-cause mortality in DM participants, whereas non-DM participants and the total population showed a nonlinear correlation. Conclusion Elevated SII levels are linked to an augmented risk of DM. Those with DM and higher SII levels demonstrated an elevated risk of mortality.
Collapse
Affiliation(s)
- Yufeng Yan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Hongjing Lu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Yaguo Zheng
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Song Lin
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210008, Jiangsu, China
| |
Collapse
|
24
|
Zhou T, Fang YL, Tian TT, Wang GX. Pathological mechanism of immune disorders in diabetic kidney disease and intervention strategies. World J Diabetes 2024; 15:1111-1121. [PMID: 38983817 PMCID: PMC11229953 DOI: 10.4239/wjd.v15.i6.1111] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetic kidney disease is one of the most severe chronic microvascular complications of diabetes and a primary cause of end-stage renal disease. Clinical studies have shown that renal inflammation is a key factor determining kidney damage during diabetes. With the development of immunological technology, many studies have shown that diabetic nephropathy is an immune complex disease, and that most patients have immune dysfunction. However, the immune response associated with diabetic nephropathy and autoimmune kidney disease, or caused by ischemia or infection with acute renal injury, is different, and has a com-plicated pathological mechanism. In this review, we discuss the pathogenesis of diabetic nephropathy in immune disorders and the intervention mechanism, to provide guidance and advice for early intervention and treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Fang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun 130021, Jilin Province, China
| | - Tian-Tian Tian
- School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Gui-Xia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
25
|
Cui Y, Chen C, Tang Z, Yuan W, Yue K, Cui P, Qiu X, Zhang H, Li T, Zhu X, Luo J, Sun S, Li Y, Feng C, Peng L, Xie X, Guo Y, Xie Y, Jiang X, Qi Z, Thomson AW, Dai H. TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway in mice. Cell Death Dis 2024; 15:401. [PMID: 38849370 PMCID: PMC11161629 DOI: 10.1038/s41419-024-06756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024]
Abstract
The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-β1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.
Collapse
Affiliation(s)
- Yan Cui
- Medical College, Guangxi University, Nanning, 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Chen
- Medical College, Guangxi University, Nanning, 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zhouqi Tang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Kaiye Yue
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Pengcheng Cui
- Medical College, Guangxi University, Nanning, 530004, China
| | - Xia Qiu
- Medical College, Guangxi University, Nanning, 530004, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xuejing Zhu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Siyu Sun
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yaguang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xubiao Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yong Guo
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yixin Xie
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, 450000, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, 530004, China.
| | - Angus W Thomson
- Starzl Transplantation Institute, Department of Surgery and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Helong Dai
- Medical College, Guangxi University, Nanning, 530004, China.
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
26
|
Lin J, Chen Z, Lu Y, Shi H, Lin P. Bruton tyrosine kinase degrader BP001 attenuates the inflammation caused by high glucose in raw264.7 cell. In Vitro Cell Dev Biol Anim 2024; 60:667-677. [PMID: 38775977 DOI: 10.1007/s11626-024-00919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/22/2024] [Indexed: 07/31/2024]
Abstract
BP001 is a promising small molecule compound that has been specifically designed to target and degrade Bruton's tyrosine kinases (BTK), which is known to play a crucial role in lymphoma development. Macrophages are important immune cells in inflammation regulation and immune response. In this study, we aimed to investigate the effect of BP001 on RAW264.7 macrophage activation stimulated by a high glucose environment. Our findings revealed that treatment with BP001 significantly inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) in RAW264.7 macrophages exposed to high glucose conditions. Furthermore, we observed that BP001 treatment also down-regulated the expression of BTK in these activated macrophages. To elucidate the underlying mechanism behind these observations, we investigated the phosphorylation level of NF-κB. Our results demonstrated that BP001 treatment led to decreased phosphorylation levels of NF-κB, thereby inhibiting the level of inflammation. In addition, we also found that BP001 could restore RAW264.7 macrophages from the pro-inflammatory state to the normal phenotype and reduce the occurrence of inflammation. The regulatory function of BP001 in autoimmunity is mediated through the degradation of BTK protein, thereby attenuating macrophage activation. Additionally, BTK plays a pivotal role in transcriptional regulation by inducing NF-κB activity. Consequently, it is not difficult to understand that BP001 effectively inhibits inflammation. In conclusion, the present study provides evidence that BP001, a BTK degrader, can serve as a novel immunomodulator of inflammation induced by high glucose, making it an attractive candidate for further investigation.
Collapse
Affiliation(s)
- Jun Lin
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Zhendong Chen
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Yinying Lu
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Hongyu Shi
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Pei Lin
- School of Life Sciences and Health Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China.
| |
Collapse
|
27
|
Han X, Wei J, Zheng R, Tu Y, Wang M, Chen L, Xu Z, Zheng L, Zheng C, Shi Q, Ying H, Liang G. Macrophage SHP2 Deficiency Alleviates Diabetic Nephropathy via Suppression of MAPK/NF-κB- Dependent Inflammation. Diabetes 2024; 73:780-796. [PMID: 38394639 DOI: 10.2337/db23-0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Increasing evidence implicates chronic inflammation as the main pathological cause of diabetic nephropathy (DN). Exploration of key targets in the inflammatory pathway may provide new treatment options for DN. We aimed to investigate the role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) in macrophages and its association with DN. The upregulated phosphorylation of SHP2 was detected in macrophages in both patients with diabetes and in a mouse model. Using macrophage-specific SHP2-knockout (SHP2-MKO) mice and SHP2fl/fl mice injected with streptozotocin (STZ), we showed that SHP2-MKO significantly attenuated renal dysfunction, collagen deposition, fibrosis, and inflammatory response in mice with STZ-induced diabetes. RNA-sequencing analysis using primary mouse peritoneal macrophages (MPMs) showed that SHP2 deletion mainly affected mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways as well as MAPK/NF-κB-dependent inflammatory cytokine release in MPMs. Further study indicated that SHP2-deficient macrophages failed to release cytokines that induce phenotypic transition and fibrosis in renal cells. Administration with a pharmacological SHP2 inhibitor, SHP099, remarkably protected kidneys in both type 1 and type 2 diabetic mice. In conclusion, these results identify macrophage SHP2 as a new accelerator of DN and suggest that SHP2 inhibition may be a therapeutic option for patients with DN. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xue Han
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiajia Wei
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Ruyi Zheng
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Yu Tu
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Lingfeng Chen
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Zheng Xu
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Lei Zheng
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
| | - Chao Zheng
- Department of Endocrinology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojuan Shi
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Huazhong Ying
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, China
| | - Guang Liang
- Zhejiang Traditional Chinese Medicine Key Laboratory of Pharmacology and Translational Research of Natural Products, School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
28
|
Peng QY, An Y, Jiang ZZ, Xu Y. The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies. J Inflamm Res 2024; 17:2103-2118. [PMID: 38601771 PMCID: PMC11005934 DOI: 10.2147/jir.s457526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetic kidney disease (DKD), is a common microvascular complication and a major cause of death in patients with diabetes. Disorders of immune cells and immune cytokines can accelerate DKD development of in a number of ways. As the kidney is composed of complex and highly differentiated cells, the interactions among different cell types and immune cells play important regulatory roles in disease development. Here, we summarize the latest research into the molecular mechanisms underlying the interactions among various immune and renal cells in DKD. In addition, we discuss the most recent studies related to single cell technology and bioinformatics analysis in the field of DKD. The aims of our review were to explore immune cells as potential therapeutic targets in DKD and provide some guidance for future clinical treatments.
Collapse
Affiliation(s)
- Qiu-Yue Peng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Ying An
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
29
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
30
|
Youssef N, Noureldein MH, Riachi ME, Haddad A, Eid AA. Macrophage polarization and signaling in diabetic kidney disease: a catalyst for disease progression. Am J Physiol Renal Physiol 2024; 326:F301-F312. [PMID: 38153850 DOI: 10.1152/ajprenal.00266.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/29/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes affecting millions of people worldwide. Macrophages, a critical immune cell type, are central players in the development and progression of DKD. In this comprehensive review, we delve into the intricate role of macrophages in DKD, examining how they can become polarized into proinflammatory M1 or anti-inflammatory M2 phenotypes. We explore the signaling pathways involved in macrophage recruitment and polarization in the kidneys, including the key cytokines and transcription factors that promote M1 and M2 polarization. In addition, we discuss the latest clinical studies investigating macrophages in DKD and explore the potential of hypoglycemic drugs for modulating macrophage polarization. By gaining a deeper understanding of the mechanisms that regulate macrophage polarization in DKD, we may identify novel therapeutic targets for this debilitating complication of diabetes. This review provides valuable insights into the complex interplay between macrophages and DKD, shedding light on the latest developments in this important area of research. This review aims to enhance understanding of the role that macrophages play in the pathogenesis of DKD.
Collapse
Affiliation(s)
- Natalie Youssef
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed H Noureldein
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mansour E Riachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Antony Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- American University of Beirut Diabetes, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
31
|
Chen L, Lu S, Wu Z, Zhang E, Cai Q, Zhang X. Innate immunity in diabetic nephropathy: Pathogenic mechanisms and therapeutic targets. MEDCOMM – FUTURE MEDICINE 2024; 3. [DOI: 10.1002/mef2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/18/2024] [Indexed: 01/02/2025]
Abstract
AbstractDiabetic nephropathy (DN) represents a prevalent chronic microvascular complication of diabetes mellitus (DM) and is a major cause of end‐stage renal disease. The anfractuous surrounding of DN pathogenesis and the intricate nature of this metabolic disorder often pose challenges in both the diagnosis and treatment of DN compared to other kidney diseases. Hyperglycaemia in DM predispose vulnerable renal cells into microenvironmental disequilibrium and thereby results in innate immunocytes infiltration including neutrophils, macrophages, myeloid‐derived suppressor cells, dendritic cells, and so forth. These immune cells play dual roles in kidney injury and closely correlated with the degree of proteinuria in DN patients. Additionally, innate immune signaling cascades, initiated by altered metabolic and hemodynamic in diabetic context, are crucial in instigating and perpetuating renal inflammation, which detrimentally contribute to DN pathogenesis. As such, anti‐inflammatory therapies, particularly those targeting innate immunity, hold renoprotective promise in DN. In this article, we reviewed the origin and feature of the above four prominent kidney innate immune cells, analyze their pathogenic role in DN, and discuss potential targeted‐therapeutic strategies, aiming to enhance the current understanding of renal innate immunity and hence help to discover promising therapeutic approaches for DN.
Collapse
Affiliation(s)
- Le‐Xin Chen
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Shu‐Ru Lu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Zhi‐Hao Wu
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| | - En‐Xin Zhang
- Shenzhen Bao'an Authentic TCM Therapy Hospital Shenzhen PR China
| | - Qing‐Qun Cai
- The First Affiliated Hospital Guangzhou University of Chinese Medicine Guangzhou PR China
| | - Xiao‐Jun Zhang
- School of Pharmaceutical Science Guangzhou University of Chinese Medicine Guangzhou PR China
| |
Collapse
|
32
|
Lou Y, Li PH, Liu XQ, Wang TX, Liu YL, Chen CC, Ma KL. ITGAM-mediated macrophages contribute to basement membrane damage in diabetic nephropathy and atherosclerosis. BMC Nephrol 2024; 25:72. [PMID: 38413872 PMCID: PMC10900706 DOI: 10.1186/s12882-024-03505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) and atherosclerosis (AS) are prevalent and severe complications associated with diabetes, exhibiting lesions in the basement membrane, an essential component found within the glomerulus, tubules, and arteries. These lesions contribute significantly to the progression of both diseases, however, the precise underlying mechanisms, as well as any potential shared pathogenic processes between them, remain elusive. METHODS Our study analyzed transcriptomic profiles from DN and AS patients, sourced from the Gene Expression Omnibus database. A combination of integrated bioinformatics approaches and machine learning models were deployed to identify crucial genes connected to basement membrane lesions in both conditions. The role of integrin subunit alpha M (ITGAM) was further explored using immune infiltration analysis and genetic correlation studies. Single-cell sequencing analysis was employed to delineate the expression of ITGAM across different cell types within DN and AS tissues. RESULTS Our analyses identified ITGAM as a key gene involved in basement membrane alterations and revealed its primary expression within macrophages in both DN and AS. ITGAM was significantly correlated with tissue immune infiltration within these diseases. Furthermore, the expression of genes encoding core components of the basement membrane was influenced by the expression level of ITGAM. CONCLUSION Our findings suggest that macrophages may contribute to basement membrane lesions in DN and AS through the action of ITGAM. Moreover, therapeutic strategies that target ITGAM may offer potential avenues to mitigate basement membrane lesions in these two diabetes-related complications.
Collapse
Affiliation(s)
- Yude Lou
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Peng Hui Li
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Qi Liu
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Tian Xiang Wang
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yi Lan Liu
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chen Chen Chen
- Department of Basic Medicine Sciences, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Kun Ling Ma
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
33
|
Shao X, Shi Y, Wang Y, Zhang L, Bai P, Wang J, Aniwan A, Lin Y, Zhou S, Yu P. Single-Cell Sequencing Reveals the Expression of Immune-Related Genes in Macrophages of Diabetic Kidney Disease. Inflammation 2024; 47:227-243. [PMID: 37777674 DOI: 10.1007/s10753-023-01906-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023]
Abstract
Diabetic kidney disease (DKD) is characterized by macrophage infiltration, which requires further investigation. This study aims to identify immune-related genes (IRGs) in macrophage and explore their potential as therapeutic targets. This study analyzed isolated glomerular cells from three diabetic mice and three control mice. A total of 59 glomeruli from normal kidney samples and 66 from DKD samples were acquired from four kidney transcriptomic profiling datasets. Bioinformatics analysis was conducted using both single-cell RNA (scRNA) and bulk RNA sequencing data to investigate inflammatory responses in DKD. Additionally, the "AUCell" function was used to investigate statistically different gene sets. The significance of each interaction pair was determined by assigning a probability using "CellChat." The study also analyzed the biological diagnostic importance of immune hub genes for DKD and validated the expression of these immune genes in mice models. The top 2000 highly variable genes (HVGs) were identified after data normalization. Subsequently, a total of eight clusters were identified. It is worth mentioning that macrophages showed the highest percentage increase among all cell types in the DKD group. Furthermore, the present study observed significant differences in gene sets related to inflammatory responses and complement pathways. The study also identified several receptor-ligand pairs and co-stimulatory interactions between endothelial cells and macrophages. Notably, SYK, ITGB2, FCER1G, and VAV1 were identified as immunological markers of DKD with promising predictive ability. This study identified distinct cell clusters and four marker genes. SYK, ITGB2, FCER1G, and VAV1 may be important roles. Consequently, the present study extends our understanding regarding IRGs in DKD and provides a foundation for future investigations into the underlying mechanisms.
Collapse
Affiliation(s)
- Xian Shao
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yueyue Shi
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300134, China
| | - Yao Wang
- Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081, People's Republic of China
| | - Li Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pufei Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - JunMei Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Ashanjiang Aniwan
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yao Lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
34
|
Liu W, Zheng S, Du X. Association of Systemic Immune-Inflammation Index and Systemic Inflammation Response Index with Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:517-531. [PMID: 38327734 PMCID: PMC10849098 DOI: 10.2147/dmso.s447026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Purpose To evaluate the association of the systemic immune-inflammatory index (SII) and systemic inflammatory response index (SIRI) with the clinical and pathological features and progression of diabetic kidney disease (DKD). Patients and Methods We analyzed 303 patients with type 2 diabetes mellitus (T2DM), classifying them into distinct groups: T2DM, early DKD (EDKD), and clinical DKD (Cli-DKD). Variations in SII and SIRI levels across these groups and their association with renal function were assessed. Logistic regression analysis was used to identify independent risk factors for DKD. Additionally, in 43 patients with biopsy-confirmed DKD, we analyzed the relationship between SII, SIRI, and pathological changes. Kaplan-Meier survival analysis and the Cox proportional hazards model were used to assess the influence of SII and SIRI levels on outcomes in patients with DKD. Results SII and SIRI were significantly higher in the Cli-DKD group than in the T2DM and EDKD groups, and were positively correlated with the urinary albumin-creatinine ratio and negatively correlated with estimated glomerular filtration rate. Notably, SIRI was identified as an independent risk factor for DKD development. Additionally, a lower SII score was associated with a higher cumulative survival rate. Conclusion This study demonstrates an association between SII, SIRI, and renal function in patients with T2DM. A high SIRI was an independent risk factor for DKD, while an elevated SII was associated with an increased risk of kidney disease progression in biopsy-confirmed DKD cases. Our findings underscore the potential implications of utilizing SII and SIRI as cost-effective and readily available inflammatory indicators for monitoring DKD in primary care settings.
Collapse
Affiliation(s)
- Wenli Liu
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shuran Zheng
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiaogang Du
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
35
|
Qi H. Desmosterol-driven atypical macrophage polarization regulates podocyte dynamics in diabetic nephropathy. Mol Biol Rep 2024; 51:213. [PMID: 38280039 PMCID: PMC10821991 DOI: 10.1007/s11033-023-09198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/28/2023] [Indexed: 01/29/2024]
Abstract
BACKGROUND Diabetic nephropathy (DN) stands as a leading diabetes complication, with macrophages intricately involved in its evolution. While glucose metabolism's impact on macrophage activity is well-established, cholesterol metabolism's contributions remain less explored. Our study seeks to elucidate this association. METHODS AND RESULTS Methods and Results: Gene expression analysis of monocytes from the blood of both normal and diabetic patients was conducted using public databases, showing that cholesterol metabolism pathways, especially Bloch and Kandutsch-Russell, were more altered in diabetic monocytes/macrophages than glucose-responsive pathways. When bone marrow-derived macrophages (BMDMs) were subjected to desmosterol, they exhibited an unconventional polarization. These BMDMs displayed heightened levels of both M1-related pro-inflammatory cytokines and M2-linked anti-inflammatory factors. Further, in co-culture, desmosterol-conditioned BMDMs paralleled M2 macrophages in augmenting Ki-67 + podocyte populations while mimicking M1 macrophages in elevating TUNEL + apoptotic podocytes. Comparable outcomes on podocytes were obtained using conditioned media from the respective BMDMs. CONCLUSIONS Our data underscores the pivotal role of cholesterol metabolism, particularly via desmosterol, in steering macrophages toward an unconventional polarization marked by both inflammatory and regulatory traits. Such unique macrophage behavior concurrently impacts podocyte proliferation and apoptosis, shedding fresh light on DN pathogenesis and hinting at potential therapeutic interventions.
Collapse
Affiliation(s)
- Huiying Qi
- Department of Cardiology, Branch of Tianjin Third Central Hospital, 220 Jiangdu Road, Tianjin, 300250, China.
| |
Collapse
|
36
|
Yang M, Zhang C. The role of innate immunity in diabetic nephropathy and their therapeutic consequences. J Pharm Anal 2024; 14:39-51. [PMID: 38352948 PMCID: PMC10859537 DOI: 10.1016/j.jpha.2023.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 09/05/2023] [Indexed: 02/16/2024] Open
Abstract
Diabetic nephropathy (DN) is an enduring condition that leads to inflammation and affects a substantial number of individuals with diabetes worldwide. A gradual reduction in glomerular filtration and emergence of proteins in the urine are typical aspects of DN, ultimately resulting in renal failure. Mounting evidence suggests that immunological and inflammatory factors are crucial for the development of DN. Therefore, the activation of innate immunity by resident renal and immune cells is critical for initiating and perpetuating inflammation. Toll-like receptors (TLRs) are an important group of receptors that identify patterns and activate immune responses and inflammation. Meanwhile, inflammatory responses in the liver, pancreatic islets, and kidneys involve inflammasomes and chemokines that generate pro-inflammatory cytokines. Moreover, the activation of the complement cascade can be triggered by glycated proteins. This review highlights recent findings elucidating how the innate immune system contributes to tissue fibrosis and organ dysfunction, ultimately leading to renal failure. This review also discusses innovative approaches that can be utilized to modulate the innate immune responses in DN for therapeutic purposes.
Collapse
Affiliation(s)
- Min Yang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
37
|
Sun X, Xi Y, Yan M, Sun C, Tang J, Dong X, Yang Z, Wu L. Lactiplantibacillus plantarum NKK20 Increases Intestinal Butyrate Production and Inhibits Type 2 Diabetic Kidney Injury through PI3K/Akt Pathway. J Diabetes Res 2023; 2023:8810106. [PMID: 38162631 PMCID: PMC10757665 DOI: 10.1155/2023/8810106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024] Open
Abstract
Nephropathy injury is a prevalent complication observed in individuals with diabetes, serving as a prominent contributor to end-stage renal disease, and the advanced glycation products (AGEs) are important factors that induce kidney injury in patients with diabetes. Addressing this condition remains a challenging aspect in clinical practice. The aim of this study was to explore the effects of Lactiplantibacillus plantarum NKK20 strain (NKK20) which protects against diabetic kidney disease (DKD) based on animal and cell models. The results showed that the NKK20 can significantly reduce renal inflammatory response, serum oxidative stress response, and AGE concentration in diabetic mice. After treatment with NKK20, the kidney damage of diabetic mice was significantly improved, and more importantly, the concentration of butyrate, a specific anti-inflammatory metabolite of intestinal flora in the stool of diabetic mice, was significantly increased. In addition, nontargeted metabolomics analysis showed a significant difference between the metabolites in the mouse serum contents of the NKK20 administration group and those in the nephropathy injury group, in which a total of 24 different metabolites that were significantly affected by NKK20 were observed, and these metabolites were mainly involved in glycerophospholipid metabolism and arachidonic acid metabolism. Also, the administration of butyrate to human kidney- (HK-) 2 cells that were stimulated by AGEs resulted in a significant upregulation of ZO-1, Occludin, and E-cadherin gene expressions and downregulation of α-SMA gene expression. This means that butyrate can maintain the tight junction structure of HK-2 cells and inhibit fibrosis. Butyrate also significantly inhibited the activation of PI3K/Akt pathway. These results indicate that NKK20 can treat kidney injury in diabetic mice by reducing blood glucose and AGE concentration and increasing butyrate production in the intestine. By inhibiting PI3K pathway activation in HK-2 cells, butyrate maintains a tight junction structure of renal tubule epithelial cells and inhibits renal tissue fibrosis. These results suggest that NKK20 is helpful to prevent and treat the occurrence and aggravation of diabetic kidney injury.
Collapse
Affiliation(s)
- Xiaohong Sun
- Department of Clinical Laboratory, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng 210008, China
| | - Yue Xi
- Medical Laboratory Department, Huai'an Second People's Hospital, Huai'an 223022, China
| | - Man Yan
- Department of Clinical Laboratory, Zhenjiang City Central Blood Station, Zhenjiang 212399, China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Chang Sun
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Tang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xueyun Dong
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhengnan Yang
- Department of Clinical Laboratory, Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng 210008, China
| | - Liang Wu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
38
|
Liu D, Song Y, Chen H, You Y, Zhu L, Zhang J, Xu X, Hu J, Huang X, Wu X, Xu X, Jiang S, Du Y. Anti-VEGFR2 F(ab') 2 drug conjugate promotes renal accumulation and glomerular repair in diabetic nephropathy. Nat Commun 2023; 14:8268. [PMID: 38092739 PMCID: PMC10719340 DOI: 10.1038/s41467-023-43847-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
Poor renal distribution of antibody-based drugs is the key factor contributing to low treatment efficiency for renal diseases and side effects. Here, we prepare F(ab')2 fragmented vascular endothelial growth factor receptor 2 antibody (anti-VEGFR2 (F(ab')2) to block VEGFR2 overactivation in diabetic nephropathy (DN). We find that the anti-VEGFR2 F(ab')2 has a higher accumulation in DN male mice kidneys than the intact VEGFR2 antibody, and simultaneously preserves the binding ability to VEGFR2. Furthermore, we develop an antibody fragment drug conjugate, anti-VEGFR2 F(ab')2-SS31, comprising the anti-VEGFR2 F(ab')2 fragment linked to the mitochondria-targeted antioxidant peptide SS31. We find that introduction of SS31 potentiates the efficacy of anti-VEGFR2 F(ab')2. These findings provide proof of concept for the premise that antibody fragment drug conjugate improves renal distribution and merits drug validation in renal disease therapy.
Collapse
Affiliation(s)
- Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yanling Song
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Hui Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yuchan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Luwen Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jucong Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xinyi Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jiahao Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiajie Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiaochuan Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310015, Hangzhou, China.
| | - Saiping Jiang
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, 321299, Jinhua, China.
| |
Collapse
|
39
|
Li J, Li L, Zhang Z, Chen P, Shu H, Yang C, Chu Y, Liu J. Ferroptosis: an important player in the inflammatory response in diabetic nephropathy. Front Immunol 2023; 14:1294317. [PMID: 38111578 PMCID: PMC10725962 DOI: 10.3389/fimmu.2023.1294317] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/15/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a chronic inflammatory disease that affects millions of diabetic patients worldwide. The key to treating of DN is early diagnosis and prevention. Once the patient enters the clinical proteinuria stage, renal damage is difficult to reverse. Therefore, developing early treatment methods is critical. DN pathogenesis results from various factors, among which the immune response and inflammation play major roles. Ferroptosis is a newly discovered type of programmed cell death characterized by iron-dependent lipid peroxidation and excessive ROS production. Recent studies have demonstrated that inflammation activation is closely related to the occurrence and development of ferroptosis. Moreover, hyperglycemia induces iron overload, lipid peroxidation, oxidative stress, inflammation, and renal fibrosis, all of which are related to DN pathogenesis, indicating that ferroptosis plays a key role in the development of DN. Therefore, this review focuses on the regulatory mechanisms of ferroptosis, and the mutual regulatory processes involved in the occurrence and development of DN and inflammation. By discussing and analyzing the relationship between ferroptosis and inflammation in the occurrence and development of DN, we can deepen our understanding of DN pathogenesis and develop new therapeutics targeting ferroptosis or inflammation-related regulatory mechanisms for patients with DN.
Collapse
Affiliation(s)
- Jialing Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Haiying Shu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Can Yang
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
40
|
Tseng CH, Shah KM, Chiu IJ, Hsiao LL. The Role of Autophagy in Type 2 Diabetic Kidney Disease Management. Cells 2023; 12:2691. [PMID: 38067119 PMCID: PMC10705810 DOI: 10.3390/cells12232691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD), or diabetic nephropathy (DN), is one of the most prevalent complications of type 2 diabetes mellitus (T2DM) and causes severe burden on the general welfare of T2DM patients around the world. While several new agents have shown promise in treating this condition and potentially halting the progression of the disease, more work is needed to understand the complex regulatory network involved in the disorder. Recent studies have provided new insights into the connection between autophagy, a physiological metabolic process known to maintain cellular homeostasis, and the pathophysiological pathways of DKD. Typically, autophagic activity plays a role in DKD progression mainly by promoting an inflammatory response to tissue damage, while both overactivated and downregulated autophagy worsen disease outcomes in different stages of DKD. This correlation demonstrates the potential of autophagy as a novel therapeutic target for the disease, and also highlights new possibilities for utilizing already available DN-related medications. In this review, we summarize findings on the relationship between autophagy and DKD, and the impact of these results on clinical management strategies.
Collapse
Affiliation(s)
- Che-Hao Tseng
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kavya M. Shah
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
| | - I-Jen Chiu
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
| |
Collapse
|
41
|
Wang Y, Liu T, Cai Y, Liu W, Guo J. SIRT6's function in controlling the metabolism of lipids and glucose in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1244705. [PMID: 37876546 PMCID: PMC10591331 DOI: 10.3389/fendo.2023.1244705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes mellitus (DM) and the main cause of excess mortality in patients with type 2 DM. The pathogenesis and progression of DN are closely associated with disorders of glucose and lipid metabolism. As a member of the sirtuin family, SIRT6 has deacetylation, defatty-acylation, and adenosine diphosphate-ribosylation enzyme activities as well as anti-aging and anticancer activities. SIRT6 plays an important role in glucose and lipid metabolism and signaling, especially in DN. SIRT6 improves glucose and lipid metabolism by controlling glycolysis and gluconeogenesis, affecting insulin secretion and transmission and regulating lipid decomposition, transport, and synthesis. Targeting SIRT6 may provide a new therapeutic strategy for DN by improving glucose and lipid metabolism. This review elaborates on the important role of SIRT6 in glucose and lipid metabolism, discusses the potential of SIRT6 as a therapeutic target to improve glucose and lipid metabolism and alleviate DN occurrence and progression of DN, and describes the prospects for future research.
Collapse
Affiliation(s)
- Ying Wang
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuzi Cai
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Country Renal Research Institution of Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Roger E, Chadjichristos CE, Kavvadas P, Price GW, Cliff CL, Hadjadj S, Renciot J, Squires PE, Hills CE. Connexin-43 hemichannels orchestrate NOD-like receptor protein-3 (NLRP3) inflammasome activation and sterile inflammation in tubular injury. Cell Commun Signal 2023; 21:263. [PMID: 37770948 PMCID: PMC10536814 DOI: 10.1186/s12964-023-01245-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/23/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Without a viable cure, chronic kidney disease is a global health concern. Inflammatory damage in and around the renal tubules dictates disease severity and is contributed to by multiple cell types. Activated in response to danger associated molecular patterns (DAMPs) including ATP, the NOD-like receptor protein-3 (NLRP3) inflammasome is integral to this inflammation. In vivo, we have previously observed that increased expression of Connexin 43 (Cx43) is linked to inflammation in chronic kidney disease (CKD) whilst in vitro studies in human proximal tubule cells highlight a role for aberrant Cx43 hemichannel mediated ATP release in tubule injury. A role for Cx43 hemichannels in priming and activation of the NLRP3 inflammasome in tubule epithelial cells remains to be determined. METHODS Using the Nephroseq database, analysis of unpublished transcriptomic data, examined gene expression and correlation in human CKD. The unilateral ureteral obstruction (UUO) mouse model was combined with genetic (tubule-specific Cx43 knockout) and specific pharmacological blockade of Cx43 (Peptide5), to explore a role for Cx43-hemichannels in tubule damage. Human primary tubule epithelial cells were used as an in vitro model of CKD. RESULTS Increased Cx43 and NLRP3 expression correlates with declining glomerular filtration rate and increased proteinuria in biopsies isolated from patients with CKD. Connexin 43-tubule deletion prior to UUO protected against tubular injury, increased expression of proinflammatory molecules, and significantly reduced NLRP3 expression and downstream signalling mediators. Accompanied by a reduction in F4/80 macrophages and fibroblast specific protein (FSP1+) fibroblasts, Cx43 specific hemichannel blocker Peptide5 conferred similar protection in UUO mice. In vitro, Peptide5 determined that increased Cx43-hemichannel activity primes and activates the NLRP3 inflammasome via ATP-P2X7 receptor signalling culminating in increased secretion of chemokines and cytokines, each of which are elevated in individuals with CKD. Inhibition of NLRP3 and caspase 1 similarly decreased markers of tubular injury, whilst preventing the perpetual increase in Cx43-hemichannel activity. CONCLUSION Aberrant Cx43-hemichannel activity in kidney tubule cells contributes to tubule inflammation via activation of the NLRP3 inflammasome and downstream paracrine mediated cell signalling. Use of hemichannel blockers in targeting Cx43-hemichannels is an attractive future therapeutic target to slow or prevent disease progression in CKD. Video Abstract.
Collapse
Affiliation(s)
- Elena Roger
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Christos E Chadjichristos
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Panagiotis Kavvadas
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Gareth W Price
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Chelsy L Cliff
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Safia Hadjadj
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Jessy Renciot
- Batiment Recherche, INSERM, UMR-S1155, Tenon Hospital, 4 Rue de la Chine, Paris, 75020, France
- Faculty of Medicine, Sorbonne University, Paris, 75013, France
| | - Paul E Squires
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK
| | - Claire E Hills
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, LN6 7DL, UK.
| |
Collapse
|
43
|
Yu JT, Fan S, Li XY, Hou R, Hu XW, Wang JN, Shan RR, Dong ZH, Xie MM, Dong YH, Shen XY, Jin J, Wen JG, Liu MM, Wang W, Meng XM. Novel insights into STAT3 in renal diseases. Biomed Pharmacother 2023; 165:115166. [PMID: 37473682 DOI: 10.1016/j.biopha.2023.115166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai Fan
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
44
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
45
|
Ma Y, Chen Y, Xu H, Du N. The influence of angiopoietin-like protein 3 on macrophages polarization and its effect on the podocyte EMT in diabetic nephropathy. Front Immunol 2023; 14:1228399. [PMID: 37638046 PMCID: PMC10450617 DOI: 10.3389/fimmu.2023.1228399] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Background Podocyte injury, which involves the podocyte epithelial-mesenchymal transition (EMT) process, is a crucial factor contributing to the progression of diabetic nephropathy (DN) and proteinuria. Our study aimed to examine the protective properties of Angiopoietin-like protein 3 (Angptl3) knockout on podocyte damage and macrophage polarization in DN mice and podocytes treated with HG. Furthermore, we also sought to investigate the underlying molecular mechanism responsible for these effects. Methods DN was induced in B6;129S5 mice through intraperitoneal injection of 40 mg/kg of streptozotocin (STZ). Subsequently, the changes in renal function, podocyte apoptosis, inflammatory factors (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6], and interleukin-1β [IL-1β]), IL-10, TGF-β1, IL-1Ra, IL-10Ra, and nephrin were evaluated. Moreover, we investigated the mechanism underlying the role of Angptl3 in macrophages polarization, podocyte injury, podocyte EMT. Results Our findings revealed that Angptl3 knockout significantly attenuated STZ or HG-induced renal dysfunction and podocyte EMT. In both in vivo and in vitro studies, Angptl3 knockout led to (1) promote the transformation of M1 type macrophages into M2 type macrophages; (2) amelioration of the reduced expression of nephrin, synaptopodin, and podocin; (3) inhibition of NLRP3 inflammasome activation and release of IL-1β; and (4) regulation of α-SMA expression via the macrophage polarization. (5) After HG treatment, there was an increase in pro-inflammatory factors and foot cell damage. These changes were reversed upon Angptle knockdown. Conclusion Our study suggests that the knockout of Angptl3 alleviates podocyte EMT and podocyte injury by regulating macrophage polarization.
Collapse
Affiliation(s)
- Yanli Ma
- Department of Pediatrics, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Chen
- Department of Pediatrics, Shanghai Fourth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Xu
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai, China
| | - Ni Du
- Department of Nephrology, Chongqing University Three Gorges Hospital, Chongqing, China
| |
Collapse
|
46
|
Wang S, Zhang L, Jin Z, Wang Y, Zhang B, Zhao L. Visualizing temporal dynamics and research trends of macrophage-related diabetes studies between 2000 and 2022: a bibliometric analysis. Front Immunol 2023; 14:1194738. [PMID: 37564641 PMCID: PMC10410279 DOI: 10.3389/fimmu.2023.1194738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Background Macrophages are considered an essential source of inflammatory cytokines, which play a pivotal role in the development of diabetes and its sequent complications. Therefore, a better understanding of the intersection between the development of diabetes and macrophage is of massive importance. Objectives In this study, we performed an informative bibliometric analysis to enlighten relevant research directions, provide valuable metrics for financing decisions, and help academics to gain a quick understanding of the current macrophage-related diabetes studies knowledge domain. Methods The Web of Science Core Collection database was used for literature retrieval and dataset export. Bibliometrix R-package was performed to conduct raw data screening, calculating, and visualizing. Results Between 2000 and 2022, the annual publication and citation trends steadily increased. Wu Yonggui was the scholar with the most published papers in this field. The institute with the highest number of published papers was the University of Michigan. The most robust academic collaboration was observed between China and the United States of America. Diabetologia was the journal that published the most relevant publications. The author's keywords with the highest occurrences were "inflammation", "diabetic nephropathy", and "obesity". In addition, "Macrophage polarization" was the current motor topic with potential research prospects. Conclusions These comprehensive and visualized bibliometric results summarized the significant findings in macrophage-related diabetes studies over the past 20 years. It would enlighten subsequent studies from a macro viewpoint and is also expected to strengthen investment policies in future macrophage-related diabetes studies.
Collapse
Affiliation(s)
- Sicheng Wang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zishan Jin
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yayun Wang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Changchun University of Chinese Medicine, Jilin, China
| | - Boxun Zhang
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Zhu HM, Liu N, Sun DX, Luo L. Machine-learning algorithm-based prediction of a diagnostic model based on oxidative stress-related genes involved in immune infiltration in diabetic nephropathy patients. Front Immunol 2023; 14:1202298. [PMID: 37554330 PMCID: PMC10406381 DOI: 10.3389/fimmu.2023.1202298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Diabetic nephropathy (DN) is the most prevalent microvascular consequence of diabetes and has recently risen to the position of the world's second biggest cause of end-stage renal diseases. Growing studies suggest that oxidative stress (OS) responses are connected to the advancement of DN. This study aimed to developed a novel diagnostic model based on OS-related genes. The differentially expressed oxidative stress-related genes (DE-OSRGs) experiments required two human gene expression datasets, which were given by the GEO database (GSE30528 and GSE96804, respectively). The potential diagnostic genes were identified using the SVM-RFE assays and the LASSO regression model. CIBERSORT was used to determine the compositional patterns of the 22 different kinds of immune cell fraction seen in DN. These estimates were based on the combined cohorts. DN serum samples and normal samples were both subjected to RT-PCR in order to investigate the degree to which certain genes were expressed. In this study, we were able to locate 774 DE-OSRGs in DN. The three marker genes (DUSP1, PRDX6 and S100A8) were discovered via machine learning on two different machines. The high diagnostic value was validated by ROC tests, which focused on distinguishing DN samples from normal samples. The results of the CIBERSORT study suggested that DUSP1, PRDX6, and S100A8 may be associated to the alterations that occur in the immunological microenvironment of DN patients. Besides, the results of RT-PCR indicated that the expression of DUSP1, PRDX6, and S100A8 was much lower in DN serum samples compared normal serum samples. The diagnostic value of the proposed model was likewise verified in our cohort, with an area under the curve of 9.946. Overall, DUSP1, PRDX6, and S100A8 were identified to be the three diagnostic characteristic genes of DN. It's possible that combining these genes will be effective in diagnosing DN and determining the extent of immune cell infiltration.
Collapse
Affiliation(s)
- Heng-Mei Zhu
- Department of Nephrology, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Nephrology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Na Liu
- Department of Nephrology, the Third Hospital of Nanchang, Nanchang, Jiangxi, China
| | - Dong-Xuan Sun
- Department of Nephrology, South China Hospital, Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Liang Luo
- Department of Cardiology, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
48
|
Yan J, Li X, Liu N, He JC, Zhong Y. Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines 2023; 11:1889. [PMID: 37509528 PMCID: PMC10377233 DOI: 10.3390/biomedicines11071889] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of end-stage kidney disease. Increasing evidence has suggested that inflammation is a key microenvironment involved in the development and progression of DN. Studies have confirmed that macrophage accumulation is closely related to the progression to human DN. Macrophage phenotype is highly regulated by the surrounding microenvironment in the diabetic kidneys. M1 and M2 macrophages represent distinct and sometimes coexisting functional phenotypes of the same population, with their roles implicated in pathological changes, such as in inflammation and fibrosis associated with the stage of DN. Recent findings from single-cell RNA sequencing of macrophages in DN further confirmed the heterogeneity and plasticity of the macrophages. In addition, intrinsic renal cells interact with macrophages directly or through changes in the tissue microenvironment. Macrophage depletion, modification of its polarization, and autophagy could be potential new therapies for DN.
Collapse
Affiliation(s)
- Jiayi Yan
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xueling Li
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ni Liu
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yifei Zhong
- Division of Nephrology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
49
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
50
|
Mouton AJ, do Carmo JM, da Silva AA, Omoto ACM, Hall JE. Targeting immunometabolism during cardiorenal injury: roles of conventional and alternative macrophage metabolic fuels. Front Physiol 2023; 14:1139296. [PMID: 37234412 PMCID: PMC10208225 DOI: 10.3389/fphys.2023.1139296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/14/2023] [Indexed: 05/28/2023] Open
Abstract
Macrophages play critical roles in mediating and resolving tissue injury as well as tissue remodeling during cardiorenal disease. Altered immunometabolism, particularly macrophage metabolism, is a critical underlying mechanism of immune dysfunction and inflammation, particularly in individuals with underlying metabolic abnormalities. In this review, we discuss the critical roles of macrophages in cardiac and renal injury and disease. We also highlight the roles of macrophage metabolism and discuss metabolic abnormalities, such as obesity and diabetes, which may impair normal macrophage metabolism and thus predispose individuals to cardiorenal inflammation and injury. As the roles of macrophage glucose and fatty acid metabolism have been extensively discussed elsewhere, we focus on the roles of alternative fuels, such as lactate and ketones, which play underappreciated roles during cardiac and renal injury and heavily influence macrophage phenotypes.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|