1
|
Ma X, Li H, Zhao Z, Li C, Wang M, Zhang L, Zhao Y, Su H, Wang F, Hua J. The HNRNPC/CELF2 signaling pathway drives glycolytic reprogramming and mitochondrial dysfunction in drug-resistant acute myeloid leukemia. Cell Biosci 2025; 15:61. [PMID: 40380235 PMCID: PMC12083169 DOI: 10.1186/s13578-025-01386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/29/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive cancer with high treatment resistance, often leading to poor patient outcomes. Metabolic reprogramming plays a critical role in AML progression, influencing drug resistance (DR) and tumor survival. This study investigates the HNRNPC/CELF2 signaling pathway and its impact on AML cell metabolism and DR. RESULTS The study identified that HNRNPC regulates the expression of CELF2 through m6 A modification. In drug-resistant AML cells, increased HNRNPC expression and decreased CELF2 expression were associated with upregulated glycolysis, enhanced glucose consumption, lactate production, and mitochondrial dysfunction. Knockdown of HNRNPC reduced glycolysis and cell invasion, while CELF2 knockdown reversed these effects. Conversely, HNRNPC overexpression enhanced glycolysis and cell migration, which were counteracted by CELF2 overexpression. CONCLUSIONS The HNRNPC/CELF2 axis plays a pivotal role in metabolic reprogramming, driving AML progression and chemotherapy resistance. Targeting this pathway may offer new therapeutic strategies to overcome resistance and improve treatment outcomes in AML patients.
Collapse
Affiliation(s)
- Xiang Ma
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, 030008, Shanxi, People's Republic of China
| | - Haodong Li
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, 030008, Shanxi, People's Republic of China
| | - Ziqi Zhao
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, 030008, People's Republic of China
| | - Changchun Li
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, 030008, People's Republic of China
| | - Man Wang
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, 030008, Shanxi, People's Republic of China
| | - Lele Zhang
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, 030008, Shanxi, People's Republic of China
| | - Yutong Zhao
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, 030008, Shanxi, People's Republic of China
| | - Haipeng Su
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, 030008, Shanxi, People's Republic of China
| | - Feng Wang
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, 030008, People's Republic of China
| | - Jiai Hua
- Laboratory of Biochemistry and Pharmacy, Taiyuan Institute of Technology, No. 31, Xinlan Road, Jiancaoping District, Taiyuan, 030008, Shanxi, People's Republic of China.
- Chemistry and Chemical Engineering Department, Taiyuan Institute of Technology, Taiyuan, 030008, People's Republic of China.
| |
Collapse
|
2
|
Ge H, Wolters-Eisfeld G, Hackert T, Li Y, Güngör C. Development of a hypoxia-responsive macrophage prognostic model using single-cell and bulk RNA sequencing in pancreatic cancer. PLoS One 2025; 20:e0322618. [PMID: 40315225 PMCID: PMC12047781 DOI: 10.1371/journal.pone.0322618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/24/2025] [Indexed: 05/04/2025] Open
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is characterized by a low survival rate and limited responsiveness to current therapies. The role of hypoxia in the tumor microenvironment is critical, influencing tumor progression and therapy resistance. The aim of this study was to implement the complex dynamics of the hypoxic tumor microenvironment in PDAC in a hypoxia-related prognosis model. METHODS We utilized single-cell RNA sequencing (scRNA-seq) data and integrated it with TCGA-PAAD database to identify hypoxia-responsive macrophage subsets and related genes. Kaplan-Meier survival analysis, Cox regression, and Lasso regression methods were employed to construct and validate a hypoxia-related prognostic model. The model's effectiveness was evaluated through its predictive capabilities regarding chemotherapy sensitivity and overall survival. RESULTS Our research integrated data from scRNA-seq and the TCGA-PAAD database to construct a hypoxia-related prognostic model that encompassed 13 critical genes. This hypoxia model independently predicted chemotherapy response and poor outcomes, outperforming traditional clinicopathologic features. Additionally, a pan-cancer analysis affirmed the relevance of our hypoxia-related genes across multiple malignancies, particularly highlighting KRTCAP2 as a pivotal biomarker associated with worse prognosis and reduced immune infiltration. CONCLUSION Our findings underscored the prognostic potential of hypoxia-related model and offered a novel avenue for therapeutic targeting, aiming to ameliorate outcomes in pancreatic cancer.
Collapse
Affiliation(s)
- Heming Ge
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yuqiang Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Zhang J, Chen K, Chen F. Exploring the impact of the liver-intestine-brain axis on brain function in non-alcoholic fatty liver disease. J Pharm Anal 2025; 15:101077. [PMID: 40433559 PMCID: PMC12104701 DOI: 10.1016/j.jpha.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 05/29/2025] Open
Abstract
This study investigates the molecular complexities of non-alcoholic fatty liver disease (NAFLD)-induced brain dysfunction, with a focus on the liver-intestine-brain axis and potential therapeutic interventions. The main objectives include understanding critical microbiota shifts in NAFLD, exploring altered metabolites, and identifying key regulatory molecules influencing brain function. The methods employed encompassed 16S ribosomal RNA (rRNA) sequencing to scrutinize stool microbiota in NAFLD patients and healthy individuals, non-targeted metabolomics using LC-MS to uncover elevated levels of deoxycholic acid (DCA) in NAFLD mice, and single-cell RNA sequencing (scRNA-seq) to pinpoint the pivotal gene Hpgd in microglial cells and its downstream Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling pathway. Behavioral changes and brain function were assessed in NAFLD mice with and without Fecal microbiota transplantation (FMT) treatment, utilizing various assays and analyses. The results revealed significant differences in microbiota composition, with increased levels of Bacteroides in NAFLD patients. Additionally, elevated DCA levels were observed in NAFLD mice, and FMT treatment demonstrated efficacy in ameliorating liver function and brain dysfunction. Hpgd inhibition by DCA activated the JAK2/STAT3 pathway in microglial cells, leading to inflammatory activation, inhibition of mitochondrial autophagy, induction of neuronal apoptosis, and reduction in neuronal action potentials. This study elucidates the intricate molecular mechanisms underlying the liver-gut-brain axis in NAFLD, and the identification of increased DCA and the impact of JAK2/STAT3 signaling on microglial cells highlight potential therapeutic targets for addressing NAFLD-induced brain dysfunction.
Collapse
Affiliation(s)
- Jingting Zhang
- College of Management, Liaoning Economy Vocational and Technical College, Shenyang, 110122, China
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Shenyang, 110122, China
| | - Fu Chen
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| |
Collapse
|
4
|
Su Y, Xu B, Gao C, Pei W, Ma M, Zhang W, Hu T, Zhang F, Zhang S. HNF4α-Mediated LINC02560 Promotes Papillary Thyroid Carcinoma Progression by Targeting the miR-505-5p/PDE4C Axis. Biomolecules 2025; 15:630. [PMID: 40427523 PMCID: PMC12108885 DOI: 10.3390/biom15050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common subtype of thyroid malignancy, and its progression is closely associated with patient outcomes. This study investigated the role of the long non-coding RNA LINC02560 in the pathogenesis and aggressiveness of PTC through cell culture, transfection, RT-qPCR, Western blot analysis, and various functional assays, such as MTT, EdU, colony formation, wound healing, and Transwell migration assays. Our results revealed a significant upregulation of LINC02560 in PTC tissues, correlating with poor prognosis in affected patients. Functional analyses demonstrated that silencing of LINC02560 markedly inhibited the proliferation, migration, and invasion of the PTC cell lines, KTC-1, and BCPAP, whereas overexpression promoted these aggressive traits. Mechanistically, LINC02560 acted as a competitive endogenous RNA, sponging miR-505-5p and alleviating its suppression on PDE4C degradation, thereby activating the P-AKT and epithelial-mesenchymal transition (EMT) signaling pathways. Additionally, HNF4α was identified as a transcription factor capable of enhancing the expression of LINC02560. In conclusion, our findings elucidate the critical HNF4α/LINC02560/miR-505-5p/PDE4C axis in PTC pathology, presenting this regulatory network as a promising biomarker combination and potential therapeutic target to improve patient outcomes and survival rates, warranting further clinical investigation to validate these insights and support the development of targeted therapies in PTC management.
Collapse
Affiliation(s)
- Yongcheng Su
- Department of Traditional Chinese Medicine and Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (C.G.); (W.P.); (M.M.); (W.Z.); (T.H.)
- Department of Breast Surgery, The First Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Chunyi Gao
- Department of Traditional Chinese Medicine and Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (C.G.); (W.P.); (M.M.); (W.Z.); (T.H.)
| | - Wenbin Pei
- Department of Traditional Chinese Medicine and Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (C.G.); (W.P.); (M.M.); (W.Z.); (T.H.)
| | - Miaomiao Ma
- Department of Traditional Chinese Medicine and Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (C.G.); (W.P.); (M.M.); (W.Z.); (T.H.)
| | - Wenqing Zhang
- Department of Traditional Chinese Medicine and Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (C.G.); (W.P.); (M.M.); (W.Z.); (T.H.)
| | - Tianhui Hu
- Department of Traditional Chinese Medicine and Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (C.G.); (W.P.); (M.M.); (W.Z.); (T.H.)
- Department of General Surgery, The First Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Fuxing Zhang
- Department of General Surgery, The First Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Shaoliang Zhang
- Department of Traditional Chinese Medicine and Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (C.G.); (W.P.); (M.M.); (W.Z.); (T.H.)
| |
Collapse
|
5
|
Jiang J. Silver Nanoparticles Prepared Using Magnolia officinalis Are an Effective Antimicrobial Agent on Candida albicans, Escherichia coli, and Staphylococcus aureus. Probiotics Antimicrob Proteins 2025; 17:625-639. [PMID: 37843750 DOI: 10.1007/s12602-023-10179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Silver nanoparticles (AgNPs) prepared by plants are simple, eco-friendly, and economical. In this study, Magnolia officinalis (MO) extract was applied to synthesize MO@AgNPs. Ultraviolet-visible (UV-vis) spectrum analysis indicated a peak at 440 nm. Most of the particles were spherical with sizes from 1 to approximately 60 nm based on transmission electron microscopy (TEM). X-ray diffraction (XRD) patterns showed a face-centered cubic crystal structure. The zeta value of MO@AgNPs was - 36.5 ± 0.6 mV, which was stable at 25 °C and 4 °C. Growth kinetic studies and the Kirby-Bauer diffusion method showed significant inhibitory activity on Candida albicans (ATCC 10231), Escherichia coli (ATCC BAA-2340), and Staphylococcus aureus (ATCC 25923); the minimum inhibitory concentrations (MIC) were 3, 9, and 9 μg/mL, and corresponding minimum bactericidal concentrations (MBC) were 5, 11, and 9 μg/mL, respectively. MO@AgNPs exhibited better antifungal activity compared to AgNPs prepared using sodium citrate. Further research revealed that MO@AgNPs increased the permeability of bacterial cell membranes. Moreover, the effect of MO@AgNPs on Candida albicans was significantly enhanced by blocking autophagy. The reactive oxygen species (ROS) induced by MO@AgNPs in Candida albicans was limited and may be related to its good antioxidant activity. Finally, MO@AgNPs have no significant cytotoxicity to the human liver LO2 cell line under 20 μg/mL.
Collapse
Affiliation(s)
- Jiacheng Jiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Ren HL, Zhang SH, Li PY. The multifaceted role of phosphodiesterase 4 in tumor: from tumorigenesis to immunotherapy. Front Immunol 2025; 16:1528932. [PMID: 40129976 PMCID: PMC11931042 DOI: 10.3389/fimmu.2025.1528932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Phosphodiesterase 4 (PDE4) is an enzyme that specifically hydrolyzes the second messenger cAMP and has a critical role in the regulation of a variety of cellular functions. In recent years, PDE4 has attracted great interest in cancer research, and its role in tumorigenesis and development has been gradually elucidated. Research indicates that abnormal expression or heightened activity of PDE4 is associated with the initiation and progression of multiple cancers, including lung, colorectal, and hematological cancers, by facilitating cell proliferation, migration, invasion, and anti-apoptosis. Moreover, PDE4 also influences the tumor immune microenvironment, significantly immune evasion by suppressing anti-tumor immune responses, reducing T-cell activation, and promoting the polarization of tumor-associated macrophages toward a pro-tumorigenic phenotype. However, the PDE4 family may have both oncogenic and tumor-suppressive effects, which could depend on the specific type and grade of the tumor. PDE4 inhibitors have garnered substantial interest as potential anti-cancer therapeutics, directly inhibiting tumor cell growth and restoring immune surveillance capabilities to enhance the clearance of tumor cells. Several PDE4 inhibitors are currently under investigation with the aim of exploring their potential in cancer therapy, particularly in combination strategies with immune checkpoint inhibitors, to improve therapeutic efficacy and mitigate the side effects of conventional chemotherapy. This review provides an overview of PDE4 in tumorigenesis, drug resistance, immunotherapy, and the anti-tumor actions of its inhibitors, intending to guide the exploration of PDE4 as a new target in tumor therapy.
Collapse
Affiliation(s)
- Huili-li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Wenchang People’s Hospital, Wenchang, Hainan, China
| |
Collapse
|
7
|
Li T, Ding L, Wang Q, Ma J, Wang S. Enhancing cardiac repair post-myocardial infarction: a study on GATM/Gel hydrogel therapeutics. Cell Biol Toxicol 2025; 41:44. [PMID: 39937362 PMCID: PMC11821695 DOI: 10.1007/s10565-025-09987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND AND PURPOSE Significant advancements in therapeutic approaches are imperative to address the prevalent impact of myocardial infarction (MI) on morbidity and mortality rates worldwide. This study explores the therapeutic potential of GATM/Gel hydrogel, focusing on its ability to enhance cardiac repair and functionality after MI through modulation of inflammatory and repair pathways. EXPERIMENTAL APPROACH The effects of GATM/Gel hydrogel on cardiac recovery were studied in a murine MI model. HA-CHO and gelatin solutions were mixed in situ using a dual syringe with a static mixing needle, and the resulting hydrogel was applied directly to the epicardium during MI modeling, followed by repositioning of the heart and closure of the thorax. Comprehensive in vivo assessments-including echocardiography, electrocardiography, and histopathological analysis-were combined with molecular techniques such as RT-qPCR, Western blotting, and immunofluorescence to elucidate the underlying mechanisms. Key cellular and molecular changes were tracked, focusing on macrophage polarization, angiogenesis, and modulation of the TNF/TNFR2 signaling pathway. KEY RESULTS Employing the GATM/Gel hydrogel led to a substantial improvement in heart function, shown through enhanced ejection fraction and fractional shortening, and reduced infarction size compared to control groups. Mechanistically, the hydrogel promoted the polarization of anti-inflammatory M2 macrophages and stimulated angiogenesis. Moreover, treatment with GATM/Gel hydrogel altered the TNF/TNFR2 pathway, pivotal in mediating inflammatory responses and facilitating myocardial repair. The discoveries highlight the possibility of GATM/Gel hydrogels as an innovative remedy for MI, providing a twofold role in regulating inflammation and fostering recovery.
Collapse
Affiliation(s)
- Te Li
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lijuan Ding
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Qiang Wang
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Jianing Ma
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, China
| | - Shudong Wang
- Department of Cardiology, The First Hospital of Jilin University, No. 1 Xinmin Street Avenue, Chaoyang District, Changchun, 130021, China.
| |
Collapse
|
8
|
Chen Y, Wang H, Yang M, Shen Z, Gao Y. Exploring the Effects of Metformin on the Body via the Urine Proteome. Biomolecules 2025; 15:241. [PMID: 40001544 PMCID: PMC11853151 DOI: 10.3390/biom15020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Metformin is the first-line medication for treating type 2 diabetes mellitus, with more than 200 million patients taking it daily. Its effects are extensive and play a positive role in multiple areas. Can its effects and potential mechanisms be explored through the urine proteome? In this study, 166 differential proteins were identified following the administration of 150 mg/(kg·d) of metformin to rats for five consecutive days. These included complement component C6, pyruvate kinase, coagulation factor X, growth differentiation factor 15, carboxypeptidase A4, chymotrypsin-like elastase family member 1, and L-lactate dehydrogenase C chain. Several of these proteins have been reported to be directly affected by metformin or associated with its effects. Multiple biological pathways enriched by these differential proteins, or proteins containing differentially modified peptides, have been reported to be associated with metformin, such as the glutathione metabolic process, negative regulation of gluconeogenesis, and the renin-angiotensin system. Additionally, some significantly changed proteins and enriched biological pathways, not yet reported to be associated with metformin's effects, may provide clues for exploring its potential mechanisms. In conclusion, the application of the urine proteome offers a comprehensive and systematic approach to exploring the effects of drugs, providing a new perspective on the study of metformin's mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Youhe Gao
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.C.); (H.W.); (M.Y.); (Z.S.)
| |
Collapse
|
9
|
Zhang S, Dong Z, Guo J, Li Z, Wu H, Zhang L, Min F, Zeng T. Exploratory analysis of a Novel RACK1 mutation and its potential role in epileptic seizures via Microglia activation. J Neuroinflammation 2025; 22:27. [PMID: 39891152 PMCID: PMC11786535 DOI: 10.1186/s12974-025-03350-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Seizures is a prevalent neurological disorder with a largely elusive pathogenesis. In this study, we identified the key gene RACK1 and its novel mutation RACK1-p.L206P as being associated with seizures through single-cell transcriptome sequencing (scRNA-seq) and whole exome sequencing (WES) techniques. Our findings reveal that the RACK1-p.L206P mutation significantly enhances proliferation, migration, phagocytic ability, and inflammatory activation in human microglia, which in turn affects neuronal excitability and synaptic function, culminating in typical seizure symptoms in the seizures. These effects were further validated in a mouse model using CRISPR/Cas9 gene editing technology. Mutant microglia exhibited increased activation and induced apoptosis in hippocampal neurons, leading to higher action potential frequency and excitatory synaptic marker expression. In vivo experiments demonstrated that RACK1-p.L206P mutant mice displayed classic seizure symptoms, with increased neuronal excitability and a tendency for action potential bursts during initial depolarization, along with more frequent spike discharges. Additionally, excitatory synapse density and size in the hippocampal CA1 region of mutant mice were significantly elevated, accompanied by increased expression of VGLUT1 and PSD95 within microglia. This study offers novel insights into the molecular mechanisms underlying seizures in the seizures and presents valuable clues for the development of future therapeutic strategies.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - Zhaofei Dong
- Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518000, China
| | - Jing Guo
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, 510000, China
| | - Ze Li
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - Hong Wu
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510000, Guangdong, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650000, China
| | - Fuli Min
- Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, No.1 Panfu Road, Yuexiu District, Guangzhou, 510000, Guangdong, China.
| | - Tao Zeng
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
10
|
Peng J, Sun J, Yu Y, Yuan Q, Zhang Y. Integrative multi-omics analysis reveals the role of toll-like receptor signaling in pancreatic cancer. Sci Rep 2025; 15:52. [PMID: 39747201 PMCID: PMC11696379 DOI: 10.1038/s41598-024-84062-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
As one of the most destructive and invasive cancers, pancreatic cancer exhibits complex tumor heterogeneity, which has been a major challenge for clinicians in terms of patient treatment and prognosis. The toll-like receptor (TLR) pathway is closely related to the immune microenvironment within various cancer tissues. To explore the development pattern of pancreatic cancer and find an ideal biomarker, our research has explored the mechanism of the TLR pathway in pancreatic cancer. We collected single-cell expression data from 57,024 cells and transcriptomic data from 945 pancreatic cancer patients, and conducted a series of analyses at both the single-cell and transcriptomic levels. By calculating the TLR pathway score, we clustered pancreatic cancer patients and conducted a series of analyses including metabolic pathways, immune microenvironment, drug sensitivity and so on. In the process of building prognostic models, we screened 33 core genes related to the prognosis of pancreatic cancer, and combined a series of machine learning algorithms to build the prognosis model of pancreatic cancer. We used single cell sequencing to clarify the complex intrinsic relationship between TLR pathway and pancreatic cancer. The strongest TLR signals were observed in macrophages and endothelial cells. With the occurrence of pancreatic cancer, the TLR signal of various cell types gradually increased, but with the increase of the malignant degree of ductal epithelial cells, the TLR signal gradually weakened. Cluster analysis showed that patients with the most active TLR pathway had severe dysregulation of immune microenvironment and the worst prognosis. Finally, we combined a series of machine learning algorithms to build a pancreatic cancer prognosis model that includes four genes (NT5E, TGFBI, ANLN, and FAM83A). The model showed strong performance in predicting the survival state of pancreatic cancer samples. We explored the important role of TLR pathway in pancreatic cancer and established and validated a new prognosis model for pancreatic cancer based on TLR-related genes.
Collapse
Affiliation(s)
- Jie Peng
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Jiaao Sun
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Youfeng Yu
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China
| | - Qihang Yuan
- First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Yong Zhang
- Ningde Clinical Medical College of Fujian Medical University, Fujian, China.
- Ningde Municipal Hospital of Ningde Normal University, Fujian, China.
| |
Collapse
|
11
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Zhong J. Oncogenic mechanisms of COL10A1 in cancer and clinical challenges (Review). Oncol Rep 2024; 52:162. [PMID: 39392043 PMCID: PMC11487528 DOI: 10.3892/or.2024.8821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024] Open
Abstract
Collagen type X α1 chain (COL10A1), a gene encoding the α‑1 chain of type X collagen, serves a key role in conferring tensile strength and structural integrity to tissues. Upregulation of COL10A1 expression has been observed in different malignancies, including lung, gastric and pancreatic cancer, and is associated with poor prognosis. The present review provides an updated synthesis of the evolving biological understanding of COL10A1, with a particular focus on its mechanisms of action and regulatory functions within the context of tumorigenesis. For example, it has been established that increased COL10A1 expression promotes cancer progression by activating multiple signaling pathways, including the TGF‑β1/Smad, MEK/ERK and focal adhesion kinase signaling pathways, thereby inducing proliferation, invasion and migration. Additionally, COL10A1 has been demonstrated to induce epithelial‑mesenchymal transition and reshapes the extracellular matrix within tumor tissues. Furthermore, on the basis of methyltransferase‑like 3‑mediated N6‑methyladenosine methylation, COL10A1 intricately regulates the epitranscriptomic machinery, thereby augmenting its oncogenic role. However, although COL10A1 serves a pivotal role in gene transcription and the orchestration of tumor growth, the question of whether COL10A1 would serve as a viable therapeutic target remains a subject of scientific hypothesis requiring rigorous examination. Variables such as distinct tumor microenvironments and treatment associations necessitate further experimental validation. Therefore, a comprehensive assessment and understanding of the functional and mechanistic roles of COL10A1 in cancer may pave the way for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
12
|
Chen L, Ying X, Wang H, Xie J, Tang Q, Liu W. Identification and Validation of Senescence-Related Signature by Combining Single Cell and Bulk Transcriptome Data Analysis to Predict the Prognosis and Identify the Key Gene CAV1 in Pancreatic Cancer. J Inflamm Res 2024; 17:9391-9406. [PMID: 39600676 PMCID: PMC11590645 DOI: 10.2147/jir.s489985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Background The role of cellular senescence in the tumor microenvironment of pancreatic cancer (PC) remains unclear, particularly regarding its impact on prognosis and immunotherapy outcomes. Methods We utilized single-cell sequencing datasets (GSE155698 and GSE154778) for pancreatic cancer from the Gene Expression Omnibus (GEO) database and bulk RNA-seq data from the University of California, Santa Cruz (UCSC) and International Cancer Genome Consortium (ICGC) repositories, creating three patient cohorts: The Cancer Genome Atlas (TCGA) cohort, PAAD-AU cohort, and PAAD-CA cohort. Dimensionality reduction cluster analysis processed the single-cell data, while weighted gene co-expression network analysis (WGCNA) and differential expression gene analysis were applied to bulk RNA-seq data. Prognostic models were developed using Cox proportional hazards (COX) and least absolute shrinkage and selection operator (LASSO) regression, with validation through survival analysis, decision curve analysis, and principal component analysis (PCA). Tumor mutation data were analyzed using the "maftools" package, and the immune microenvironment was assessed with TIMER2 data. Results We developed a senescence-related (SENR) six-gene prognostic signature for PC, which stratifies patients by risk, with high-risk groups showing poorer prognoses. This model also offers predictive insights into tumor mutations and immune microenvironment characteristics. Caveolin-1 (CAV1) emerged as a significant prognostic biomarker, with functional validation showing its role in promoting cancer cell proliferation and migration, highlighting its potential as a therapeutic target. Conclusion This study provides a novel senescence-related prognostic tool for PC, enhancing patient stratification for prognosis and immunotherapy, and identifies CAV1 as a key gene with clinical significance for targeted interventions.
Collapse
Affiliation(s)
- Liang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Xiaomei Ying
- Department of General Surgery, Suzhou Hospital of Anhui Medical University, Suzhou, Anhui, People’s Republic of China
| | - Haohao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| | - Jiaheng Xie
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People’s Republic of China
| | - Qikai Tang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, People’s Republic of China
| | - Wen Liu
- Department of Hepatobiliary and Pancreatic Surgery, Conversion Therapy Center for Hepatobiliary and Pancreatic Tumors, First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Wang F, Liu J, Liao W, Zheng L, Qian S, Mao L. Matrine alkaloids modulating DNA damage repair in chemoresistant non-small cell lung cancer cells. BMC Cancer 2024; 24:1283. [PMID: 39415176 PMCID: PMC11481340 DOI: 10.1186/s12885-024-12991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) presents a significant challenge in the medical field due to its high incidence and resistance to chemotherapy. Chemoresistance in NSCLC diminishes treatment efficacy and contributes to poor patient outcomes. Matrine alkaloids have shown promise in reversing chemotherapy resistance in NSCLC by targeting DNA repair mechanisms. METHODS Utilizing molecular dynamics simulations, we explored the interactions between Matrine alkaloids and DNA repair-related proteins to elucidate their impact on NSCLC cells. In vitro experiments involved treating A549/DDP cells with Matrine alkaloids to evaluate their sensitizing effects on lung cancer cells. Additionally, animal model experiments were conducted to validate the therapeutic potential of Matrine alkaloids in NSCLC treatment. RESULTS Our findings demonstrate that Matrine alkaloids disrupt DNA damage repair processes in NSCLC cells, leading to increased sensitivity to chemotherapy. Molecular docking studies revealed the intricate mechanisms by which Matrine alkaloids interact with DNA repair proteins, impacting cell survival and proliferation. Both cell experiments and animal models confirmed the chemosensitizing effects of Matrine alkaloids in NSCLC treatment. CONCLUSION Matrine alkaloids offer a promising avenue for overcoming chemotherapy resistance in NSCLC by interfering with DNA repair pathways. This study lays a solid foundation for future clinical investigations into the potential of Matrine alkaloids as effective therapeutic agents for enhancing NSCLC treatment outcomes.
Collapse
Affiliation(s)
- Fengping Wang
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Jun Liu
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Wenliang Liao
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Lixiang Zheng
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, 324000, China
| | - Shuai Qian
- Department of Clinical Laboratory, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China
| | - Lisi Mao
- Department of Pharmacy, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No. 100, Minjiang Avenue, Kecheng District, Quzhou, Zhejiang Province, 324000, China.
| |
Collapse
|
14
|
Huang K, Yu L, Lu D, Zhu Z, Shu M, Ma Z. Long non-coding RNAs in ferroptosis, pyroptosis and necroptosis: from functions to clinical implications in cancer therapy. Front Oncol 2024; 14:1437698. [PMID: 39267831 PMCID: PMC11390357 DOI: 10.3389/fonc.2024.1437698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
As global population ageing accelerates, cancer emerges as a predominant cause of mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer cell growth and death, given their involvement in regulating downstream gene expression levels and numerous cellular processes. Cell death, especially non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis and necroptosis, significantly impacts cancer proliferation, invasion and metastasis. Understanding the interplay between lncRNAs and the diverse forms of cell death in cancer is imperative. Modulating lncRNA expression can regulate cancer onset and progression, offering promising therapeutic avenues. This review discusses the mechanisms by which lncRNAs modulate non-apoptotic RCDs in cancer, highlighting their potential as biomarkers for various cancer types. Elucidating the role of lncRNAs in cell death pathways provides valuable insights for personalised cancer interventions.
Collapse
Affiliation(s)
- Ke Huang
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Li Yu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Dingci Lu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ziyi Zhu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Min Shu
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Zhaowu Ma
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
15
|
Jiang H, Liu M, Deng Y, Zhang C, Dai L, Zhu B, Ou Y, Zhu Y, Hu C, Yang L, Li J, Bai Y, Yang D. Identification of prostate cancer bone metastasis related genes and potential therapy targets by bioinformatics and in vitro experiments. J Cell Mol Med 2024; 28:e18511. [PMID: 39098992 PMCID: PMC11298316 DOI: 10.1111/jcmm.18511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/06/2024] Open
Abstract
The aetiology of bone metastasis in prostate cancer (PCa) remains unclear. This study aims to identify hub genes involved in this process. We utilized machine learning, GO, KEGG, GSEA, Single-cell analysis, ROC methods to identify hub genes for bone metastasis in PCa using the TCGA and GEO databases. Potential drugs targeting these genes were identified. We validated these results using 16 specimens from patients with PCa and analysed the relationship between the hub genes and clinical features. The impact of APOC1 on PCa was assessed through in vitro experiments. Seven hub genes with AUC values of 0.727-0.926 were identified. APOC1, CFH, NUSAP1 and LGALS1 were highly expressed in bone metastasis tissues, while NR4A2, ADRB2 and ZNF331 exhibited an opposite trend. Immunohistochemistry further confirmed these results. The oxidative phosphorylation pathway was significantly enriched by the identified genes. Aflatoxin B1, benzo(a)pyrene, cyclosporine were identified as potential drugs. APOC1 expression was correlated with clinical features of PCa metastasis. Silencing APOC1 significantly inhibited PCa cell proliferation, clonality, and migration in vitro. This study identified 7 hub genes that potentially facilitate bone metastasis in PCa through mitochondrial metabolic reprogramming. APOC1 emerged as a promising therapeutic target and prognostic marker for PCa with bone metastasis.
Collapse
Affiliation(s)
- Haiyang Jiang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yingfei Deng
- Pathology‐DepartmentThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Chongjian Zhang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Longguo Dai
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Bingyu Zhu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Yitian Ou
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yong Zhu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Chen Hu
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Libo Yang
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Jun Li
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Yu Bai
- Department of Urology IThe Third Affiliated Hospital of Kunming Medical University (Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Cancer Center of Yunnan Province)KunmingYunnanChina
| | - Delin Yang
- Department of Urology IIThe second Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| |
Collapse
|
16
|
Zhu W, Zhang Y, Zhou Q, Zhen C, Huang H, Liu X. Identification and Comprehensive Analysis of circRNA-miRNA-mRNA Regulatory Networks in A2780 Cells Treated with Resveratrol. Genes (Basel) 2024; 15:965. [PMID: 39062744 PMCID: PMC11276136 DOI: 10.3390/genes15070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Ovarian cancer (OC) is one of the most commonplace gynecological malignancies. This study explored the effects of resveratrol (RES) on OC cell proliferation and apoptosis. Proliferation activity was measured for A2780 cells treated with RES for 24 h and 48 h at concentrations of 0, 10, 25, 50, 75, 100, 150, 200, and 300 μM. RNA sequencing (RNA-seq) was performed to analyze the circular RNA (circRNA), microRNA (miRNA), and messenger RNA (mRNA) expression spectrum. The differentially expressed genes included 460 circRNAs, 1988 miRNAs, and 1671 mRNAs, and they were subjected to analyses including Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome enrichment. We selected signaling pathways enriched in the cell processes by mRNA KEGG, comprehensively analyzed the circRNA-miRNA-mRNA regulatory network, and verified several miRNAs expressed in the regulatory network diagram using the quantitative real-time polymerase chain reaction. The data showed that the cell proliferation of A2780 cells treated with RES for 24 h or 48 h decreased with increasing concentrations of RES. The circRNA-miRNA-mRNA regulatory network that we constructed provides new insights into the ability of RES to inhibit cell proliferation and promote apoptosis in A2780 cells.
Collapse
Affiliation(s)
- Weihua Zhu
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Yuanting Zhang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Qianqian Zhou
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Cheng Zhen
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Herong Huang
- Department of Basic Medical Sciences, Clinical College of Anhui Medical University, Hefei 230031, China
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
17
|
Ouyang Y, Shen R, Chu L, Fu C, Hu W, Huang H, Zhang Z, Jiang M, Chen X. Combining single-cell and bulk RNA sequencing, NK cell marker genes reveal a prognostic and immune status in pancreatic ductal adenocarcinoma. Sci Rep 2024; 14:15037. [PMID: 38951569 PMCID: PMC11217423 DOI: 10.1038/s41598-024-65917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/25/2024] [Indexed: 07/03/2024] Open
Abstract
The NK cell is an important component of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC), also plays a significant role in PDAC development. This study aimed to explore the relationship between NK cell marker genes and prognosis, immune response of PDAC patients. By scRNA-seq data, we found the proportion of NK cells were significantly downregulated in PDAC and 373 NK cell marker genes were screened out. By TCGA database, we enrolled 7 NK cell marker genes to construct the signature for predicting prognosis in PDAC patients. Cox analysis identified the signature as an independent factor for pancreatic cancer. Subsequently, the predictive power of signature was validated by 6 GEO datasets and had an excellent evaluation. Our analysis of relationship between the signature and patients' immune status revealed that the signature has a strong correlation with immunocyte infiltration, inflammatory reaction, immune checkpoint inhibitors (ICIs) response. The NK cell marker genes are closely related to the prognosis and immune capacity of PDAC patients, and they have potential value as a therapeutic target.
Collapse
Affiliation(s)
- Yonghao Ouyang
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, 305 Zhong Shan East Road, Nanjing, 210002, China.
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China.
| | - Rongxi Shen
- Research Institute of General Surgery, Jinling Hospital, Nanjing University Medical School, 305 Zhong Shan East Road, Nanjing, 210002, China.
| | - Lihua Chu
- Jinggangshan University, Ji'an, 334000, China
| | - Chengchao Fu
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Wang Hu
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Haoxuan Huang
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Zhicheng Zhang
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Ming Jiang
- Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi, China
| | - Xin Chen
- Jiangxi University of Chinese Medicine, Nanchang, 330000, China
| |
Collapse
|
18
|
Ba Q, Wang X, Hu H, Lu Y. Single-Cell RNA Sequencing Analysis Reveals Metabolic Changes in Epithelial Glycosphingolipids and Establishes a Prognostic Risk Model for Pancreatic Cancer. Diagnostics (Basel) 2024; 14:1094. [PMID: 38893622 PMCID: PMC11171987 DOI: 10.3390/diagnostics14111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE Metabolic reprogramming serves as a distinctive feature of cancer, impacting proliferation and metastasis, with aberrant glycosphingolipid expression playing a crucial role in malignancy. Nevertheless, limited research has investigated the connection between glycosphingolipid metabolism and pancreatic cancer. METHODS This study utilized a single-cell sequencing dataset to analyze the cell composition in pancreatic cancer tissues and quantified single-cell metabolism using a newly developed computational pipeline called scMetabolism. A gene signature developed from the differential expressed genes (DEGs), related to epithelial cell glycosphingolipid metabolism, was established to forecast patient survival, immune response, mutation status, and reaction to chemotherapy with pancreatic adenocarcinoma (PAAD). RESULTS The single-cell sequencing analysis revealed a significant increase in epithelial cell proportions in PAAD, with high glycosphingolipid metabolism occurring in the cancerous tissue. A six-gene signature prognostic model based on abnormal epithelial glycosphingolipid metabolism was created and confirmed using publicly available databases. Patients with PAAD were divided into high- and low-risk categories according to the median risk score, with those in the high-risk group demonstrating a more unfavorable survival outcome in all three cohorts, with higher rates of gene mutations (e.g., KRAS, CDKN2A), increased levels of immunosuppressive cells (macrophages, Th2 cells, regulatory T cells), and heightened sensitivity to Acetalax and Selumetinlb. CONCLUSIONS Abnormal metabolism of glycosphingolipids in epithelial cells may promote the development of PAAD. A model utilizing a gene signature associated with epithelial glycosphingolipids metabolism has been established, serving as a valuable indicator for the prognostic stratification of patients with PAAD.
Collapse
Affiliation(s)
| | | | | | - Yanjun Lu
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Xu Z, Fan K, Li H, Wang L, Zhu W, Zou S, Zhang Y, Liu Y, Wu Z, Gong Q, Tan M, Wang J, Zhai L. The application of proteomics and phosphoproteomics to reveal the molecular mechanism of salidroside in ameliorating myocardial hypoxia. Heliyon 2024; 10:e30433. [PMID: 38737233 PMCID: PMC11088312 DOI: 10.1016/j.heliyon.2024.e30433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/14/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Salidroside (SAL), belonging to a kind of the main active ingredient of Rhodiola rosea, is extensively utilized for anti-hypoxia and prevention of altitude sickness in the plateau region of China. However, the research on the systemic changes induced by SAL at intracellular protein level is still limited, especially at protein phosphorylation level. These limitations hinder a comprehensive understanding of the regulatory mechanisms of SAL. This study aimed to investigate the potential molecular mechanism of SAL in ameliorating the acute myocardial hypoxia induced by cobalt chloride using integrated proteomics and phosphoproteomics. We successfully identified 165 differentially expressed proteins and 266 differentially expressed phosphosites in H9c2 cells following SAL treatment under hypoxic conditions. Bioinformatics analysis and biological experiment validation revealed that SAL significantly antagonized CoCl2-mediated cell cycle arrest by downregulating CCND1 expression and upregulating AURKA, AURKAB, CCND3 and PLK1 expression. Additionally, SAL can stabilize the cytoskeleton through upregulating the Kinesin Family (KIF) members expression. Our study systematically revealed that SAL had the ability to protect myocardial cells against CoCl2-induced hypoxia through multiple biological pathways, including enhancing the spindle stability, maintaining the cell cycle, relieving DNA damage, and antagonizing cell apoptosis. This study supplies a comprehension perspective on the alterations at protein and protein phosphorylation levels induced by SAL treatment, thereby expanded our knowledge of the anti-hypoxic mechanisms of SAL. Moreover, this study provides a valuable resource for further investigating the effects of SAL.
Collapse
Affiliation(s)
- Zhongwei Xu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Kaiyuan Fan
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Heng Li
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Lulu Wang
- State Key Laboratory of Pharmaceutical Research, Shanghai Institute of Materia Medica, CAS, Shanghai, 201203, China
| | - Wenqing Zhu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Shuang Zou
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Yan Zhang
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Yanan Liu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Zhidong Wu
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Qian Gong
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Minjia Tan
- State Key Laboratory of Pharmaceutical Research, Shanghai Institute of Materia Medica, CAS, Shanghai, 201203, China
| | - Jin Wang
- Department of Clinical Laboratory, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Linhui Zhai
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- State Key Laboratory of Pharmaceutical Research, Shanghai Institute of Materia Medica, CAS, Shanghai, 201203, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| |
Collapse
|
20
|
Gu J, Zhang J, Xia R, Wang X, Yang J, Xie F, Zhou Q, Li J, Zhang T, Chen Q, Fan Y, Guo S, Wang H. The role of histone H1.2 in pancreatic cancer metastasis and chemoresistance. Drug Resist Updat 2024; 73:101027. [PMID: 38290407 DOI: 10.1016/j.drup.2023.101027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024]
Abstract
AIMS Pancreatic cancer (PC) is a highly metastatic malignant tumor of the digestive system. Drug resistance frequently occurs during cancer treatment process. This study aimed to explore the link between chemoresistance and tumor metastasis in PC and its possible molecular and cellular mechanisms. METHODS A Metastasis and Chemoresistance Signature (MCS) scoring system was built and validated based on metastasis- and chemoresistance-related genes using gene expression data of PC, and the model was applied to single-cell RNA sequencing data. The influence of linker histone H1.2 (H1-2) on PC was explored through in vitro and in vivo experiments including proliferation, invasion, migration, drug sensitivity, rescue experiments and immunohistochemistry, emphasizing its regulation with c-MYC signaling pathway. RESULTS A novel MCS scoring system accurately predicted PC patient survival and was linked to chemoresistance and epithelial-mesenchymal transition (EMT) in PC single-cell RNA sequencing data. H1-2 emerged as a significant prognostic factor, with its high expression indicating increased chemoresistance and EMT. This upregulation was mediated by c-MYC, which was also found to be highly expressed in PC tissues. CONCLUSION The MCS scoring system offers insights into PC chemoresistance and metastasis potential. Targeting H1-2 could enhance therapeutic strategies and improve PC patient outcomes.
Collapse
Affiliation(s)
- Jianyou Gu
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China
| | - Junfeng Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, China
| | - Renpei Xia
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Xianxing Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China
| | - Jiali Yang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Fuming Xie
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Qiang Zhou
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Jinghe Li
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Tao Zhang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China
| | - Qing Chen
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China
| | - Yingfang Fan
- Department of Biliary Surgery, the Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Shixiang Guo
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China.
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, Chongqing, China; University of Chinese Academy of Sciences (UCAS) Chongqing School, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, Chongqing 401147, China.
| |
Collapse
|
21
|
Zhu J, Ye L, Sun S, Yuan J, Huang J, Zeng Z. Involvement of RFC3 in tamoxifen resistance in ER-positive breast cancer through the cell cycle. Aging (Albany NY) 2023; 15:13738-13752. [PMID: 38059884 PMCID: PMC10756131 DOI: 10.18632/aging.205260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 12/08/2023]
Abstract
Since the establishment of the molecular subtyping system, ER positive breast cancer was considered to be the most prevalent type of breast cancer, and endocrine therapy was a very important solution. However, numerous studies have shown that the cell cycle plays a key role in the progression and metastasis of breast cancer. The present study showed that RFC3 was involved in the cell cycle through DNA replication. Furthermore, RFC3 expression was significantly higher in breast cancer-resistant cells than in parental cells, which correlated with the cell cycle. We confirmed these results by established drug-resistant cell lines for breast cancer, raw letter analysis and immunohistochemical analysis of primary and recurrent tissues from three ER+ breast cancers. In addition, analysis of the results through an online database revealed that RFC3 expression was significantly associated with poor prognosis in ER+ breast cancer. We also demonstrated that in ER positive breast cancer-resistant cells, knockdown of RFC3 blocked the S-phase of cells and significantly attenuated cell proliferation, migration and invasion. Furthermore, RFC3 overexpression in ER positive breast cancer cells enhanced cell proliferation, migration and invasion. Taking all these findings into account, we could conclude that RFC3 was involved in endocrine resistance in breast cancer through the cell cycle. Thus, RFC3 may be a target to address endocrine therapy resistance in ER positive breast cancer and may be an independent prognostic factor in ER positive breast cancer.
Collapse
Affiliation(s)
- Jintao Zhu
- Department of Breast, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Lei Ye
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Shishen Sun
- Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| | - Jie Yuan
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Jianfeng Huang
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| | - Zhiqiang Zeng
- Department of Breast, Foshan Fosun Chancheng Hospital, Foshan, Guangdong, China
| |
Collapse
|
22
|
Wright TA, Gemmell AO, Tejeda GS, Blair CM, Baillie GS. Cancer: Phosphodiesterase type 4C (PDE4C), the forgotten subfamily as a therapeutic target. Int J Biochem Cell Biol 2023; 162:106453. [PMID: 37499270 DOI: 10.1016/j.biocel.2023.106453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Phosphodiesterase type 4 (PDE4) enzymes specifically hydrolyse cAMP in many cell signalling systems that are transduced by hormones and other primary messengers. The physiological function of the four PDE4 subfamilies (A, B, C and D) are numerous and varied due to the differentially localised plethora of isoforms that can be detected in cardiovascular, CNS and immune systems. Of the four subfamilies, least is known about PDE4C probably due to its restricted distribution pattern, scarcity of selective inhibitors and the lack of developed research tools. Here, for the first time, we chart the discovery of PDE4C, describe its regulation and highlight cancers where future development of PDE4C selective small molecules may have potential.
Collapse
Affiliation(s)
- Thomas A Wright
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Alistair O Gemmell
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Gonzalo S Tejeda
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - Connor M Blair
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK
| | - George S Baillie
- School of Cardiovascular and Metabolic Health, College of Veterinary Medical and Life Science, University of Glasgow, Glasgow, UK.
| |
Collapse
|
23
|
Li X, An Y, Wang Q, Han X. The new ceRNA crosstalk between mRNAs and miRNAs in intervertebral disc degeneration. Front Cell Dev Biol 2022; 10:1083983. [PMID: 36531954 PMCID: PMC9755594 DOI: 10.3389/fcell.2022.1083983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 01/28/2025] Open
Abstract
Degeneration of the intervertebral disc has been linked to lower back pain. To date, pathophysiological mechanisms of intervertebral disc degeneration (IDD) remain unclear; it is meaningful to find effective diagnostic biomarkers and new therapeutic strategies for IDD. This study aimed to reveal the molecular mechanism of IDD pathogenesis from the multidimensional transcriptomics perspective. Here, we acquired IDD bulk omics datasets (GSE67567 and GSE167199) including mRNA, microRNA expression profiles, and single-cell RNA sequencing (GSE199866) from the public Gene Expression Omnibus (GEO) database. Through principal component analysis and Venn analysis, we found different expression patterns in the IDD transcription level and identified 156 common DEGs in both bulk datasets. GO and KEGG functional analyses showed these dysregulators were mostly enriched in the collagen-containing extracellular matrix, cartilage development, chondrocyte differentiation, and immune response pathways. We also constructed a potentially dysregulated competing endogenous RNA (ceRNA) network between mRNAs and miRNAs related to IDD based on microRNA target information and co-expression analysis of RNA profiles and identified 36 ceRNA axes including ZFP36/miR-155-5p/FOS, BTG2/hsa-miR-185-5p/SOCS3, and COL9A2/hsa-miR-664a-5p/IBA57. Finally, in integrating bulk and single-cell transcriptome data analyses, a total of three marker genes, COL2A1, PAX1, and ZFP36L2, were identified. In conclusion, the key genes and the new ceRNA crosstalk we identified in intervertebral disc degeneration may provide new targets for the treatment of IDD.
Collapse
Affiliation(s)
- Xingye Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Beijing, China
| | | | | | | |
Collapse
|