1
|
Piano Mortari E, Ferrucci F, Zografaki I, Carsetti R, Pacelli L. T and B cell responses in different immunization scenarios for COVID-19: a narrative review. Front Immunol 2025; 16:1535014. [PMID: 40170841 PMCID: PMC11959168 DOI: 10.3389/fimmu.2025.1535014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/25/2025] [Indexed: 04/03/2025] Open
Abstract
Vaccines against COVID-19 have high efficacy and low rates of adverse events. However, none of the available vaccines provide sterilizing immunity, and reinfections remain possible. This review aims to summarize the immunological responses elicited by different immunization strategies, examining the roles of homologous and heterologous vaccination and hybrid immunity. Homologous vaccination regimens exhibit considerable variation in immune responses depending on the vaccine platform, particularly concerning antibody titers, B cell activation, and T cell responses. mRNA vaccines, such as mRNA-1273 and BNT162b2, consistently generate higher and more durable levels of neutralizing antibodies and memory B cells compared to adenovirus-based vaccines like Ad26.COV2.S and ChAdOx1. The combination of two distinct vaccine platforms, each targeting different immune pathways, seems to be more effective in promoting long-lasting B cell responses and potent T cell responses. The high heterogeneity of the available studies, the different dosing schemes, the succession of new variants, and the subjects' immunological background do not allow for a definitive conclusion. Overall, heterologous vaccination strategies, combining sequentially viral vector and mRNA may deliver a more balanced and robust humoral and cellular immune response compared to homologous regimens. Hybrid immunity, which arises from SARS-CoV-2 infection preceded or followed by vaccination produces markedly stronger immune responses than either vaccination or infection alone. The immune response to SARS-CoV-2 variants of concern varies depending on both the vaccine platform and prior infection status. Hybrid immunity leads to a broader antibody repertoire, providing enhanced neutralization of variants of concern. Heterologous vaccination and hybrid immunity may provide further opportunities to enhance immune responses, offering broader protection and greater durability of immunity. However, from all-cause mortality, symptomatic or severe COVID, and serious adverse events at present it is not possible to infer different effects between homologous and heterologous schemes. Next-generation vaccines could involve tweaks to these designs or changes to delivery mechanisms that might improve performance.
Collapse
Affiliation(s)
- Eva Piano Mortari
- B Lymphocytes Unit, Bambino Gesù Children’s Hospital, istituto di ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | | | - Irini Zografaki
- mRNA & Antivirals Medical & Scientific Affairs International Developed Markets, Pfizer, Athens, Greece
| | - Rita Carsetti
- B Lymphocytes Unit, Bambino Gesù Children’s Hospital, istituto di ricovero e cura a carattere scientifico (IRCCS), Rome, Italy
| | - Luciano Pacelli
- Medical Department, Internal Medicine, Pfizer s.r.l., Rome, Italy
| |
Collapse
|
2
|
Tsampalieros A, Zemek R, Barrowman N, Langlois MA, Arnold C, McGahern C, Plint AC, Pham-Huy A, Bhatt M. Hybrid immunity after BNT162b2 Covid-19 vaccine administration in children aged 5 to 11 years. Vaccine 2024; 42:125981. [PMID: 38789373 DOI: 10.1016/j.vaccine.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The immune response to coronavirus disease 2019 (COVID-19) vaccination is stronger among adults with prior infection (hybrid immunity). It is important to understand if children demonstrate a similar response to better inform vaccination strategies. Our study investigated the humoral response after BNT162b2 COVID-19 vaccine doses in SARS-CoV-2 naïve and recovered children (5-11 years). METHODS A multi-institutional, longitudinal, prospective cohort study was conducted. Children were enrolled in a case-ascertained antibody surveillance study in Ottawa, Ontario from September/2020-March/2021; at least one household member was severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) positive on RT-PCR. In November 2021, BNT162b2 COVID-19 vaccine was authorized for children aged 5-11 in Canada. Children enrolled in the surveillance study intending to receive two vaccine doses were invited to participate in this study from November 2021-April 2022. Main exposure was prior SARS-CoV-2 infection, defined by positive RT-PCR or SARS-CoV-2 anti-N IgG antibody presence. Primary outcome was spike IgG antibody levels measured following the first vaccine dose (2-3 weeks) and second vaccine dose (3-4 weeks). RESULTS Of the 153 eligible children, 75 participants (median age 8.9 IQR (7.4, 10.2) years; 38 (50.7 %) female; 59 (78.7 %) Caucasian) had complete follow-up. Fifty-four (72 %) children had prior SARS-COV-2 infection. Spike IgG antibody levels are significantly higher in SARS-CoV-2 recovered participants after receiving the first dose (p < 0.001) and the second (p = 0.01) compared to infection naïve children. CONCLUSIONS AND RELEVANCE SARS-CoV-2 recovered children (5-11 years) demonstrated higher antibody levels following first BNT162b2 vaccine dose compared with naïve children. Most reached antibody saturation two to three weeks after the first dose; a second dose didn't change the saturation level. A single vaccine dose in SARS-CoV-2 recovered children may be equivalent or superior to a 2-dose primary series in naïve children. Further research is needed on the durability and quality of a single vaccine dose in this population.
Collapse
Affiliation(s)
- Anne Tsampalieros
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Roger Zemek
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Omntario, University of Ottawa, Ottawa, Canada
| | - Nick Barrowman
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Candice McGahern
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Amy C Plint
- Department of Pediatrics and Emergency Medicine, Children's Hospital of Eastern Omntario, University of Ottawa, Ottawa, Canada
| | - Anne Pham-Huy
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada
| | - Maala Bhatt
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
3
|
Mastronuzzi A, Carsetti R, De Ioris MA, Agrati C, Del Baldo G, Russo C, Cefalo MG, Merli P, Perno CF, dell'Anna VA, Serra A, Bordoni V, Piano Mortari E, Marcellini V, Albano C, Linardos G, Costabile V, Sinibaldi M, Guercio M, di Cecca S, Quintarelli C, Locatelli F. Humoral and cellular immune response after mRNA SARS-CoV-2 vaccine in children on treatment for cancer: A pilot observational study. Heliyon 2024; 10:e34503. [PMID: 39713186 PMCID: PMC11659958 DOI: 10.1016/j.heliyon.2024.e34503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 12/24/2024] Open
Abstract
Immunocompromised children are at risk of developing severe COVID-19 infection. We conducted a pilot prospective study to evaluate the impact of cancer treatment and stem cell transplantation on immunogenicity of two doses of BNT162b2 vaccine in pediatric patients. Humoral, B- and T-cell responses to the BNT162b2 vaccine were assessed before, after the first and the second dose in patients aged 5-12 years (n = 35) and in a group of healthy donors (HD, n = 12). Patients were divided in three groups: solid tumors (ST, n = 11), hematological malignancies (HM, n = 14) and Hematopoietic Stem Cell Transplantation (HSCT) recipients (n = 10). After two vaccine doses, the seroconversion rate was 79.3 % (72.7 % in ST, 66.7 % in HM and 100 % in HSCT). The antibodies production was not associated to the presence of memory B and T-cells. Memory B-cells were measurable in 45.5 % ST, 66.6 % HSCT and in 22.0 % HM. The specific T-cell response was observed in most ST (81.8 %) and HSCT (85.7 %) patients and at lesser extent in those with HM (55.5 %). The combination of all immunological parameters (antibodies, memory B and T cells) showed that a significant fraction of HM (33.3 %) and ST (18.2 %) patients completely failed to respond to vaccination. Although able to produce antibodies, 11.1 % of HM and 27.3 % of ST had no B- and T-cell memory. HSCT subgroup showed the best immune function, with 80 % complete response and optimal T-cell function. Combination of anti-RBD antibody, and specific memory B- and T-cell responses represents a reliable read-out of vaccine immune efficacy in frail patients.
Collapse
Affiliation(s)
- Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Carsetti
- B cell Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Maria Antonietta De Ioris
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Agrati
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristina Russo
- Multimodal Research Area, Unit of Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Giuseppina Cefalo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Pietro Merli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Multimodal Research Area, Unit of Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vito Andrea dell'Anna
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Annalisa Serra
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Veronica Bordoni
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- B cell Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | | | - Christian Albano
- B cell Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giulia Linardos
- Multimodal Research Area, Unit of Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentino Costabile
- Multimodal Research Area, Unit of Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matilde Sinibaldi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marika Guercio
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano di Cecca
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Lu W, Zeng S, Yao Y, Luo Y, Ruan T. The effect of COVID-19 vaccine to the Omicron variant in children and adolescents: a systematic review and meta-analysis. Front Public Health 2024; 12:1338208. [PMID: 38660347 PMCID: PMC11041831 DOI: 10.3389/fpubh.2024.1338208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background Omicron (B.1.1.529), a variant of SARS-CoV-2, has emerged as a dominant strain in COVID-19 pandemic. This development has raised concerns about the effectiveness of vaccination to Omicron, particularly in the context of children and adolescents. Our study evaluated the efficacy of different COVID-19 vaccination regimens in children and adolescents during the Omicron epidemic phase. Methods We searched PubMed, Cochrane, Web of Science, and Embase electronic databases for studies published through March 2023 on the association between COVID-19 vaccination and vaccine effectiveness (VE) against SARS-CoV-2 infection in children and adolescents at the Omicron variant period. The effectiveness outcomes included mild COVID-19 and severe COVID-19. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and was prospectively registered in PROSPERO (CRD42023390481). Results A total of 33 studies involving 16,532,536 children were included in the analysis. First, in children and adolescents aged 0-19 years, the overall VE of the COVID-19 vaccine is 45% (95% confidence interval [CI]: 40 to 50%). Subgroup analysis of VE during Omicron epidemic phase for different dosage regimens demonstrated that the VE was 50% (95% CI: 44 to 55%) for the 2-dose vaccination and 61% (95% CI: 45 to 73%) for the booster vaccination. Upon further analysis of different effectiveness outcomes during the 2-dose vaccination showed that the VE was 41% (95% CI: 35 to 47%) against mild COVID-19 and 71% (95% CI: 60 to 79%) against severe COVID-19. In addition, VE exhibited a gradual decrease over time, with the significant decline in the efficacy of Omicron for infection before and after 90 days following the 2-dose vaccination, registering 54% (95% CI: 48 to 59%) and 34% (95% CI: 21 to 56%), respectively. Conclusion During the Omicron variant epidemic, the vaccine provided protection against SARS-CoV-2 infection in children and adolescents aged 0-19 years. Two doses of vaccination can provide effective protection severe COVID-19, with booster vaccination additionally enhancing VE.
Collapse
Affiliation(s)
- Wenting Lu
- Institute of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Integrated Care Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai Zeng
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), National Center for Healthcare Quality Management in Obstetrics, Peking University Third Hospital, Peking University, Beijing, China
| | - Yuan Yao
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiting Luo
- Institute of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Integrated Care Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tiechao Ruan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Conti MG, Piano Mortari E, Nenna R, Pierangeli A, Sorrentino L, Frasca F, Petrarca L, Mancino E, Di Mattia G, Matera L, Fracella M, Albano C, Scagnolari C, Capponi M, Cinicola B, Carsetti R, Midulla F. SARS-CoV-2-specific mucosal immune response in vaccinated versus infected children. Front Cell Infect Microbiol 2024; 14:1231697. [PMID: 38601739 PMCID: PMC11004290 DOI: 10.3389/fcimb.2024.1231697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
The anti-COVID-19 intramuscular vaccination induces a strong systemic but a weak mucosal immune response in adults. Little is known about the mucosal immune response in children infected or vaccinated against SARS-CoV-2. We found that 28% of children had detectable salivary IgA against SARS-CoV-2 even before vaccination, suggesting that, in children, SARS-CoV-2 infection may be undiagnosed. After vaccination, only receptor-binding domain (RBD)-specific IgA1 significantly increased in the saliva. Conversely, infected children had significantly higher salivary RBD-IgA2 compared to IgA1, indicating that infection more than vaccination induces a specific mucosal immune response in children. Future efforts should focus on development of vaccine technologies that also activate mucosal immunity.
Collapse
Affiliation(s)
- Maria Giulia Conti
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Eva Piano Mortari
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Raffaella Nenna
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Petrarca
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Enrica Mancino
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Greta Di Mattia
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Matera
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Christian Albano
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Capponi
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Bianca Cinicola
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Rita Carsetti
- B Cell Unit, Immunology Research Area, Bambino Gesù Children’s Hospital, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Fabio Midulla
- Department of Maternal, Child Health and Urological Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Sophonmanee R, Preampruchcha P, Ongarj J, Seeyankem B, Intapiboon P, Surasombatpattana S, Uppanisakorn S, Sangsupawanich P, Chusri S, Pinpathomrat N. Intradermal Fractional ChAdOx1 nCoV-19 Booster Vaccine Induces Memory T Cells: A Follow-Up Study. Vaccines (Basel) 2024; 12:109. [PMID: 38400093 PMCID: PMC10891531 DOI: 10.3390/vaccines12020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The administration of viral vector and mRNA vaccine booster effectively induces humoral and cellular immune responses. Effector T cell responses after fractional intradermal (ID) vaccination are comparable to those after intramuscular (IM) boosters. Here, we quantified T cell responses after booster vaccination. ChAdOx1 nCoV-19 vaccination induced higher numbers of S1-specific CD8+ memory T cells, consistent with the antibody responses. Effector memory T cell phenotypes elicited by mRNA vaccination showed a similar trend to those elicited by the viral vector vaccine booster. Three months post-vaccination, cytokine responses remained detectable, confirming effector T cell responses induced by both vaccines. The ID fractional dose of ChAdOx1 nCoV-19 elicited higher effector CD8+ T cell responses than IM vaccination. This study confirmed that an ID dose-reduction vaccination strategy effectively stimulates effector memory T cell responses. ID injection could be an improved approach for effective vaccination programs.
Collapse
Affiliation(s)
- Ratchanon Sophonmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| | - Perawas Preampruchcha
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| | - Jomkwan Ongarj
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| | - Bunya Seeyankem
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| | - Porntip Intapiboon
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.I.); (S.C.)
| | | | - Supattra Uppanisakorn
- Clinical Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (S.U.); (P.S.)
| | - Pasuree Sangsupawanich
- Clinical Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (S.U.); (P.S.)
| | - Sarunyou Chusri
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.I.); (S.C.)
| | - Nawamin Pinpathomrat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (R.S.); (P.P.); (J.O.); (B.S.)
| |
Collapse
|
7
|
Benede N, Tincho MB, Walters A, Subbiah V, Ngomti A, Baguma R, Butters C, Hahnle L, Mennen M, Skelem S, Adriaanse M, Facey-Thomas H, Scott C, Day J, Spracklen TF, van Graan S, Balla SR, Moyo-Gwete T, Moore PL, MacGinty R, Botha M, Workman L, Johnson M, Goldblatt D, Zar HJ, Ntusi NA, Zühlke L, Webb K, Riou C, Burgers WA, Keeton RS. Distinct T cell polyfunctional profile in SARS-CoV-2 seronegative children associated with endemic human coronavirus cross-reactivity. iScience 2024; 27:108728. [PMID: 38235336 PMCID: PMC10792240 DOI: 10.1016/j.isci.2023.108728] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
SARS-CoV-2 infection in children typically results in asymptomatic or mild disease. There is a paucity of studies on SARS-CoV-2 antiviral immunity in African children. We investigated SARS-CoV-2-specific T cell responses in 71 unvaccinated asymptomatic South African children who were seropositive or seronegative for SARS-CoV-2. SARS-CoV-2-specific CD4+ T cell responses were detectable in 83% of seropositive and 60% of seronegative children. Although the magnitude of the CD4+ T cell response did not differ significantly between the two groups, their functional profiles were distinct, with SARS-CoV-2 seropositive children exhibiting a higher proportion of polyfunctional T cells compared to their seronegative counterparts. The frequency of SARS-CoV-2-specific CD4+ T cells in seronegative children was associated with the endemic human coronavirus (HCoV) HKU1 IgG response. Overall, the presence of SARS-CoV-2-responding T cells in seronegative children may result from cross-reactivity to endemic coronaviruses and could contribute to the relative protection from disease observed in SARS-CoV-2-infected children.
Collapse
Affiliation(s)
- Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Marius B. Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Vennesa Subbiah
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| | - Claire Butters
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Lina Hahnle
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Marguerite Adriaanse
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Christiaan Scott
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Jonathan Day
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
| | - Timothy F. Spracklen
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Strauss van Graan
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Sashkia R. Balla
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Rae MacGinty
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Maresa Botha
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Lesley Workman
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Marina Johnson
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - David Goldblatt
- Great Ormond Street Institute of Child Health Biomedical Research Centre, University College London, London, UK
| | - Heather J. Zar
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Medical Research Council (MRC) Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Ntobeko A.B. Ntusi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Liesl Zühlke
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Cape Heart Institute, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
- South African Medical Research Council, Francie Van Zijl Drive, Parow Cape Town, South Africa
| | - Kate Webb
- Division of Paediatric Rheumatology, Department of Paediatrics and Child Health, Red Cross War Memorial Children’s Hospital, University of Cape Town, Observatory, South Africa
- Crick African Network, The Francis Crick Institute, London, UK
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Wendy A. Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, South Africa
| | - Roanne S. Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory, South Africa
| |
Collapse
|
8
|
Verheul MK, Vos M, de Rond L, De Zeeuw-Brouwer ML, Nijhof KH, Smit D, Oomen D, Molenaar P, Bogaard M, van Bergen R, Middelhof I, Beckers L, Wijmenga-Monsuur AJ, Buisman AM, Boer MC, van Binnendijk R, de Wit J, Guichelaar T. Contribution of SARS-CoV-2 infection preceding COVID-19 mRNA vaccination to generation of cellular and humoral immune responses in children. Front Immunol 2023; 14:1327875. [PMID: 38193077 PMCID: PMC10773747 DOI: 10.3389/fimmu.2023.1327875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Primary COVID-19 vaccination for children, 5-17 years of age, was offered in the Netherlands at a time when a substantial part of this population had already experienced a SARS-CoV-2 infection. While vaccination has been shown effective, underlying immune responses have not been extensively studied. We studied immune responsiveness to one and/or two doses of primary BNT162b2 mRNA vaccination and compared the humoral and cellular immune response in children with and without a preceding infection. Antibodies targeting the original SARS-CoV-2 Spike or Omicron Spike were measured by multiplex immunoassay. B-cell and T-cell responses were investigated using enzyme-linked immunosorbent spot (ELISpot) assays. The activation of CD4+ and CD8+ T cells was studied by flowcytometry. Primary vaccination induced both a humoral and cellular adaptive response in naive children. These responses were stronger in those with a history of infection prior to vaccination. A second vaccine dose did not further boost antibody levels in those who previously experienced an infection. Infection-induced responsiveness prior to vaccination was mainly detected in CD8+ T cells, while vaccine-induced T-cell responses were mostly by CD4+ T cells. Thus, SARS-CoV-2 infection prior to vaccination enhances adaptive cellular and humoral immune responses to primary COVID-19 vaccination in children. As most children are now expected to contract infection before the age of five, the impact of infection-induced immunity in children is of high relevance. Therefore, considering natural infection as a priming immunogen that enhances subsequent vaccine-responsiveness may help decision-making on the number and timing of vaccine doses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Teun Guichelaar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
9
|
Philpott JD, Miller J, Boribong BP, Charles S, Davis JP, Kazimierczyk S, Jimena B, Leonard MM, Shreffler WG, Fasano A, Yonker LM, Jain N. Antigen-specific T cell responses in SARS-CoV-2 mRNA-vaccinated children. Cell Rep Med 2023; 4:101298. [PMID: 38016480 PMCID: PMC10772322 DOI: 10.1016/j.xcrm.2023.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
SARS-CoV-2 mRNA vaccines elicit humoral responses in children that are comparable to those in adults. However, early-life T cell responses are distinct from adult ones, and questions remain about the nature and kinetics of mRNA vaccine-induced T cell responses in children. We report that Pfizer BNT162b2 mRNA vaccination elicits a significant antigen-specific CD4+ T cell response in the ≥12-year-old cohort. This response is weaker in magnitude in the 5- to 11-year-old cohort and is not improved by a higher vaccine dose (Moderna mRNA1273, 100 μg), suggesting distinct developmental programming that may underscore early-life T cell immunity. Increased effector phenotypes of antigen-specific T cells in younger children correspond with elevated anti-receptor binding domain antibody levels, albeit at the cost of memory generation. These studies highlight aspects of age-specific adaptive immune responses and the need for careful consideration of priming conditions including vaccine dose and adjuvant in the pediatric population.
Collapse
Affiliation(s)
- Jordan D Philpott
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Jordan Miller
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Brittany P Boribong
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Pediatric Allergy and Immunology and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA 02114, USA
| | - Saeina Charles
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Jameson P Davis
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Simon Kazimierczyk
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Brittany Jimena
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA
| | - Maureen M Leonard
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Wayne G Shreffler
- Pediatric Allergy and Immunology and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA 02114, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Pediatric Allergy and Immunology and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA 02114, USA
| | - Lael M Yonker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Pediatric Allergy and Immunology and Center for Immunology and Inflammatory Disease, Massachusetts General Hospital, 175 Cambridge Street, Boston, MA 02114, USA.
| | - Nitya Jain
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, 114 16(th) Street, Charlestown, MA 02129, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
10
|
Pérez-Nicado R, Massa C, Rodríguez-Noda LM, Müller A, Puga-Gómez R, Ricardo-Delgado Y, Paredes-Moreno B, Rodríguez-González M, García-Ferrer M, Palmero-Álvarez I, Garcés-Hechavarría A, Rivera DG, Valdés-Balbín Y, Vérez-Bencomo V, García-Rivera D, Seliger B. Comparative Immune Response after Vaccination with SOBERANA ® 02 and SOBERANA ® plus Heterologous Scheme and Natural Infection in Young Children. Vaccines (Basel) 2023; 11:1636. [PMID: 38005968 PMCID: PMC10675375 DOI: 10.3390/vaccines11111636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: In children, SARS-CoV-2 infection is mostly accompanied by mild COVID-19 symptoms. However, multisystem inflammatory syndrome (MIS-C) and long-term sequelae are often severe complications. Therefore, the protection of the pediatric population against SARS-CoV-2 with effective vaccines is particularly important. Here, we compare the humoral and cellular immune responses elicited in children (n = 15, aged 5-11 years) vaccinated with the RBD-based vaccines SOBERANA® 02 and SOBERANA® Plus combined in a heterologous scheme with those from children (n = 10, aged 4-11 years) who recovered from mild symptomatic COVID-19. (2) Methods: Blood samples were taken 14 days after the last dose for vaccinated children and 45-60 days after the infection diagnosis for COVID-19 recovered children. Anti-RBD IgG and ACE2-RBD inhibition were assessed by ELISA; IgA, cytokines, and cytotoxic-related proteins were determined by multiplex assays. Total B and T cell subpopulations and IFN-γ release were measured by multiparametric flow cytometry using a large panel of antibodies after in vitro stimulation with S1 peptides. (3) Results: Significant higher levels of specific anti-RBD IgG and IgA and ACE2-RBD inhibition capacity were found in vaccinated children in comparison to COVID-19 recovered children. Th1-like and Th2-like CD4+ T cells were also significantly higher in vaccinated subjects. IFN-γ secretion was higher in central memory CD4+ T cells of COVID-19 recovered children, but no differences between both groups were found in the CD4+ and CD8+ T cell effector, terminal effector, and naïve T cell subpopulations. In contrast to low levels of IL-4, high levels of IL-2, IL-6, IFN-γ, and IL-10 suggest a predominant Th1 cell polarization. Cytotoxic-related proteins granzyme A and B, perforin, and granulin were also found in the supernatant after S1 stimulation in both vaccinated and recovered children. (4) Conclusions: Vaccination with the heterologous scheme of SOBERANA® 02/SOBERANA® Plus induces a stronger antibody and cellular immune response compared to natural infections in young children.
Collapse
Affiliation(s)
- Rocmira Pérez-Nicado
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Chiara Massa
- Institute for Translational Immunology, Brandenburg Medical School “Theodor Fontane”, 14770 Brandenburg, Germany;
- Medical Faculty, Martin Luther University, 06112 Halle (Saale), Germany;
| | - Laura Marta Rodríguez-Noda
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Anja Müller
- Medical Faculty, Martin Luther University, 06112 Halle (Saale), Germany;
| | - Rinaldo Puga-Gómez
- Pediatric Hospital “Juan Manuel Márquez”, Havana 11500, Cuba; (R.P.-G.); (Y.R.-D.)
| | | | - Beatriz Paredes-Moreno
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Meiby Rodríguez-González
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Marylé García-Ferrer
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Ilianet Palmero-Álvarez
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Aniurka Garcés-Hechavarría
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Daniel G. Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana, Havana 10400, Cuba;
| | - Yury Valdés-Balbín
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Vicente Vérez-Bencomo
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Dagmar García-Rivera
- Finlay Vaccine Institute, 200 and 21 Street, Havana 11600, Cuba; (R.P.-N.); (L.M.R.-N.); (B.P.-M.); (M.R.-G.); (M.G.-F.); (I.P.-Á.); (A.G.-H.); (Y.V.-B.); (V.V.-B.)
| | - Barbara Seliger
- Institute for Translational Immunology, Brandenburg Medical School “Theodor Fontane”, 14770 Brandenburg, Germany;
- Medical Faculty, Martin Luther University, 06112 Halle (Saale), Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Lalia JK, Schild R, Lütgehetmann M, Dunay GA, Kallinich T, Kobbe R, Massoud M, Oh J, Pietzsch L, Schulze-Sturm U, Schuetz C, Sibbertsen F, Speth F, Thieme S, Witkowski M, Berner R, Muntau AC, Gersting SW, Toepfner N, Pagel J, Paul K. Reduced Humoral and Cellular Immune Response to Primary COVID-19 mRNA Vaccination in Kidney Transplanted Children Aged 5-11 Years. Viruses 2023; 15:1553. [PMID: 37515239 PMCID: PMC10384144 DOI: 10.3390/v15071553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The situation of limited data concerning the response to COVID-19 mRNA vaccinations in immunocom-promised children hinders evidence-based recommendations. This prospective observational study investigated humoral and T cell responses after primary BNT162b2 vaccination in secondary immunocompromised and healthy children aged 5-11 years. Participants were categorized as: children after kidney transplantation (KTx, n = 9), proteinuric glomerulonephritis (GN, n = 4) and healthy children (controls, n = 8). Expression of activation-induced markers and cytokine secretion were determined to quantify the T cell response from PBMCs stimulated with peptide pools covering the spike glycoprotein of SARS-CoV-2 Wuhan Hu-1 and Omicron BA.5. Antibodies against SARS-CoV-2 spike receptor-binding domain were quantified in serum. Seroconversion was detected in 56% of KTx patients and in 100% of the GN patients and controls. Titer levels were significantly higher in GN patients and controls than in KTx patients. In Ktx patients, the humoral response increased after a third immunization. No differences in the frequency of antigen-specific CD4+ and CD8+ T cells between all groups were observed. T cells showed a predominant anti-viral capacity in their secreted cytokines; however, this capacity was reduced in KTx patients. This study provides missing evidence concerning the humoral and T cell response in immunocompromised children after COVID-19 vaccination.
Collapse
Affiliation(s)
- Jasmin K Lalia
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Raphael Schild
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Marc Lütgehetmann
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Inhoffenstr. 7, 38124 Brauschweig, Germany
| | - Gabor A Dunay
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Tilmann Kallinich
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Robin Kobbe
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Department of Infectious Disease Epidemiology, Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany
| | - Mona Massoud
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), An Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Jun Oh
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Leonora Pietzsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ulf Schulze-Sturm
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Freya Sibbertsen
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Fabian Speth
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Sebastian Thieme
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Mario Witkowski
- Institute of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), An Institute of the Leibniz Association, Charitéplatz 1, 10117 Berlin, Germany
| | - Reinhard Berner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Ania C Muntau
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Søren W Gersting
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nicole Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Julia Pagel
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Inhoffenstr. 7, 38124 Brauschweig, Germany
- Division of Pediatric Stem Cell Transplantation, Immunology and Rheumatology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Kevin Paul
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- University Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
12
|
Merid Y, Tekleselasie W, Tesfaye E, Gadisa A, Fentahun D, Abate A, Alemu A, Mihret A, Mulu A, Gelanew T. SARS-CoV-2 Infection-and mRNA Vaccine-induced Humoral Immunity among Schoolchildren in Hawassa, Ethiopia. Front Immunol 2023; 14:1163688. [PMID: 37398668 PMCID: PMC10308774 DOI: 10.3389/fimmu.2023.1163688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Background With the persisting low vaccination intake, particularly in children of low-and middle-income countries (LMICs), seroepidemiological studies are urgently needed to guide and tailor COVID-19 pandemic response efforts in schools and to put mitigation strategies in place for a future post-pandemic resurgence. However, there is limited data on SARS-CoV-2 infection-induced and vaccine-induced humoral immunity in schoolchildren in LMICs, including Ethiopia. Methods As the spike receptor binding domain (RBD) is the major target for neutralization antibodies and useful to predict the correlates of protection, we used an in-house anti-RBD IgG ELISA to assess and compare infection-induced antibody response at two-time points and BNT162b2 (BNT) vaccine-induced antibody response at a one-time point in schoolchildren in Hawassa, Ethiopia. In addition, we measured and compared the levels of binding IgA antibodies to spike RBD of SARS-CoV-2 Wild type, Delta, and Omicron variants in a small subset of unvaccinated and BNT-vaccinated schoolchildren. Results When we compare SARS-CoV-2 infection-induced seroprevalences among unvaccinated school children (7-19 years) at the two blood sampling points with a 5-month interval, we observed an over 10% increase, from 51.8% (219/419) in the first week of December 2021 (post-Delta wave) to 67.4% (60/89) by the end of May 2022 (post-Omicron wave). Additionally, we found a significant correlation (p = 0.001) between anti-RBD IgG seropositivity and a history of having COVID-19-like symptoms. Compared to the levels of SARS-CoV-2 infection-induced anti-RBD IgG antibodies before vaccination, higher levels of BNT vaccine-induced anti-RBD IgG antibodies were observed even in SARS-CoV-2 infection-naïve schoolchildren of all age groups (p = 0.0001). Importantly, one dose of the BNT vaccine was shown to be adequate to elicit a strong antibody response in schoolchildren with pre-existing anti-RBD IgG antibodies comparable to that of SARS-CoV-2 infection-naive schoolchildren receiving two doses of BNT vaccine, suggesting a single dose administration of the BNT vaccine could be considered for schoolchildren who had prior SARS-CoV-2 infection when a shortage of vaccine supply is a limiting factor to administer two doses irrespective of their serostatus. Despite the small sample size of study participants, the BNT vaccine is shown to be immunogenic and safe for schoolchildren. Irrespective of schoolchildren's vaccination status, we observed a similar pattern of significantly higher levels of IgA antibodies to Delta-RBD than to Omicron-RBD (p < 0.001) in a randomly selected subset of schoolchildren, yet comparable to Wuhan-RBD, suggesting these schoolchildren were more likely to have had SARS-CoV-2 infection with Delta variant. Additionally, we noted a broader IgA antibody reactivity to SARS-CoV-2 variants in vaccinated schoolchildren with prior SARS-CoV-2 infection, supporting the superiority of hybrid immunity. Conclusion Our serological data indicate a significant increase in SARS-CoV-2 seroprevalence in children at a post-Omicron five-month follow-up compared to a post-Delta enrolment. Despite the small sample size of study participants, the BNT vaccine is shown to be immunogenic and safe for schoolchildren. Hybrid immunity would likely provide a broader humoral immunity against Wuhan strain, Delta, and Omicron variants than natural infection or vaccination alone does. However, future longitudinal cohort studies in SARS-CoV-2-naïve and COVID-19-recovered schoolchildren receiving the BNT vaccine are needed for a better understanding of the kinetics, breadth, and durability of BNT vaccine-induced multivariant-cross reactive immunity.
Collapse
Affiliation(s)
- Yared Merid
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | | | - Emnet Tesfaye
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | - Anteneh Gadisa
- College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| | | | | | - Aynalem Alemu
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | |
Collapse
|