1
|
Labrecque M, Brunet-Ratnasingham E, Hamilton LK, Auld D, Montpetit A, Richards B, Durand M, Rousseau S, Finzi A, Kaufmann DE, Tetreault M. Transcriptomic profiling of severe and critical COVID-19 patients reveals alterations in expression, splicing and polyadenylation. Sci Rep 2025; 15:13469. [PMID: 40251257 PMCID: PMC12008264 DOI: 10.1038/s41598-025-95905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/25/2025] [Indexed: 04/20/2025] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a multi-systemic illness that became a pandemic in March 2020. Although environmental factors and comorbidities can influence disease progression, there is a lack of prognostic markers to predict the severity of COVID-19 illness. Identifying these markers is crucial for improving patient outcomes and appropriately allocating scarce resources. Here, an RNA-sequencing study was conducted on blood samples from unvaccinated, hospitalized patients divided by disease severity; 367 moderate, 173 severe, and 199 critical. Using a bioinformatics approach, we identified differentially expressed genes (DEGs), alternative splicing (AS) and alternative polyadenylation (APA) events that were severity-dependent. In the severe group, we observed a higher expression of kappa immunoglobulins compared to the moderate group. In the critical cohort, a majority of AS events were mutually exclusive exons and APA genes mostly had longer 3'UTRs. Interestingly, multiple genes associated with cytoskeleton, TUBA4A, NRGN, BSG, and CD300A, were differentially expressed, alternatively spliced and polyadenylated in the critical group. Furthermore, several inflammation-related pathways were observed predominantly in critical vs. moderate. We demonstrate that integrating multiple downstream analyses of transcriptomics, from moderate, severe, and critical patients confers a significant advantage in identifying relevant dysregulated genes and pathways.
Collapse
Affiliation(s)
- Marjorie Labrecque
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | | | - Laura K Hamilton
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daniel Auld
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill Genome Centre, McGill University, Montreal, QC, Canada
| | | | - Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Department of Epidemiology, Department of Human Genetics, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Madeleine Durand
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Simon Rousseau
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Andrés Finzi
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Daniel E Kaufmann
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martine Tetreault
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
2
|
Weiss S, Lin HM, Acosta E, Komarova NL, Chen P, Wodarz D, Baine I, Duerr R, Wajnberg A, Gervais A, Bastard P, Casanova JL, Arinsburg SA, Swartz TH, Aberg JA, Bouvier NM, Liu ST, Alvarez RA, Chen BK. Post-transfusion activation of coagulation pathways during severe COVID-19 correlates with COVID-19 convalescent plasma antibody profiles. J Clin Invest 2025; 135:e181136. [PMID: 40091845 PMCID: PMC11910229 DOI: 10.1172/jci181136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
Early antibody therapy can prevent severe SARS-CoV-2 infection (COVID-19). However, the effectiveness of COVID-19 convalescent plasma (CCP) therapy in treating severe COVID-19 remains inconclusive. To test a hypothesis that some CCP units are associated with a coagulopathy hazard in severe disease that offsets its benefits, we tracked 304 CCP units administered to 414 hospitalized COVID-19 patients to assess their association with the onset of unfavorable post-transfusion D-dimer trends. CCP recipients with increasing or persistently elevated D-dimer trajectories after transfusion experienced higher mortality than those whose D-dimer levels were persistently low or decreasing after transfusion. Within the CCP donor-recipient network, recipients with increasing or persistently high D-dimer trajectories were skewed toward association with a minority of CCP units. In in vitro assays, CCP from "higher-risk" units had higher cross-reactivity with the spike protein of human seasonal betacoronavirus OC43. "Higher-risk" CCP units also mediated greater Fcγ receptor IIa signaling against cells expressing SARS-CoV-2 spike compared with "lower-risk" units. This study finds that post-transfusion activation of coagulation pathways during severe COVID-19 is associated with specific CCP antibody profiles and supports a potential mechanism of immune complex-activated coagulopathy.
Collapse
Affiliation(s)
| | - Hung-Mo Lin
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Dominik Wodarz
- Department of Ecology, Behavior and Evolution, UCSD, La Jolla, California, USA
| | - Ian Baine
- Department of Transfusion Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ralf Duerr
- Department of Medicine
- Department of Microbiology, and
- Vaccine Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Ania Wajnberg
- Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian Gervais
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
| | | | | | | | - Nicole M. Bouvier
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sean T.H. Liu
- Division of Infectious Diseases and
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | |
Collapse
|
3
|
Moriishi M, Takazono T, Hashizume J, Aibara N, Kutsuna YJ, Okamoto M, Sawai T, Hoshino T, Mori Y, Fukuda Y, Awaya Y, Yamanashi H, Furusato Y, Yanagihara T, Miyamoto H, Sato K, Kodama Y, Mizukami S, Sakamoto N, Yamamoto K, Sakamoto K, Yanagihara K, Izumikawa K, Maeda T, Nakashima M, Fukushima K, Mukae H, Ohyama K. Immune complexome analysis reveals an autoimmune signature predictive of COVID-19 severity. Clin Biochem 2025; 135:110865. [PMID: 39689808 DOI: 10.1016/j.clinbiochem.2024.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/24/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND The factors contributing to the development of severe coronavirus disease 2019 (COVID-19) following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remain unclear. Although the presence of immune complexes (ICs), formed between antibodies and their antigens, has been linked to COVID-19 severity, their role requires further investigation, and the antigens within these ICs are yet to be characterized. METHOD Here, a C1q enzyme-liked immunosorbent assay and immune complexome analysis were used to determine IC concentrations and characterize IC antigens, respectively, in the sera of 64 unvaccinated COVID-19 patients with PCR-confirmed SARS-CoV-2 infection, enrolled at seven participating centers in 2020. For the analysis, the patients were split into the severe (n = 35) and non-severe (n = 28) groups on the basis of their COVID-19 symptoms. RESULTS We found that neither serum IC concentration nor IC antigen number was associated with COVID-19 severity. However, we identified six IC antigens, which were significantly enriched in the severe versus non-severe group. These IC antigens were all derived from human proteins, namely haptoglobin, the serum amyloid A-2 protein, the serum amyloid A-1 protein, clusterin, and lipopolysaccharide-binding protein, and complement-factor-H-related protein 3. Meanwhile, we found no association between COVID-19 severity and IC antigens derived from SARS-CoV-2 proteins. Collectively, the six IC antigens predicted COVID-19 severity with a moderate degree of accuracy (area under the receiver operating characteristic curve = 0.90, sensitivity = 94 %, specificity = 79 %). CONCLUSIONS The IC antigen signature identified in this study may have important implications for the diagnosis and treatment of severe COVID-19.
Collapse
Affiliation(s)
- Marino Moriishi
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Junya Hashizume
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Jimbayashi Kutsuna
- Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masaki Okamoto
- Department of Respirology, NHO Kyushu Medical Center, Fukuoka, Japan; Division of Respiratory, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Toyomitsu Sawai
- Department of Respiratory Medicine, Nagasaki Harbor Medical Center, Nagasaki, Japan
| | - Teppei Hoshino
- Department of Internal Medicine, Kitakyushu Municipal Yahata Hospital, Kitakyushu, Fukuoka, Japan
| | - Yusuke Mori
- Department of Internal Medicine, Kitakyushu Municipal Yahata Hospital, Kitakyushu, Fukuoka, Japan
| | - Yuichi Fukuda
- Department of Respiratory Medicine, Sasebo City General Hospital, Sasebo, Japan
| | - Yukikazu Awaya
- Division of Respiratory Medicine, Itabashi Chuo Medical Center, Itabashi-ku, Tokyo, Japan
| | - Hirotomo Yamanashi
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Toyoshi Yanagihara
- Department of Respiratory Medicine, NHO Fukuoka National Hospital, Fukuoka, Japan
| | - Hirotaka Miyamoto
- Department of Pharmaceutics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kayoko Sato
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| | - Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan; Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shusaku Mizukami
- Department of Immune Regulation, Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kazuko Yamamoto
- First Department of Internal Medicine, Division of Infectious, Respiratory, and Digestive Medicine, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan
| | - Kei Sakamoto
- Department of Microbiology and Immunology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Katsunori Yanagihara
- Division of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Maeda
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mikiro Nakashima
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kiyoyasu Fukushima
- Department of Respiratory Medicine, Japanese Red Cross Nagasaki Genbaku Isahaya Hospital, Isahaya, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kaname Ohyama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan; Department of Molecular Pathochemistry, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
4
|
Wang Y, Dede M, Mohanty V, Dou J, Li Z, Chen K. A statistical approach for systematic identification of transition cells from scRNA-seq data. CELL REPORTS METHODS 2024; 4:100913. [PMID: 39644902 PMCID: PMC11704623 DOI: 10.1016/j.crmeth.2024.100913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/01/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.
Collapse
Affiliation(s)
- Yuanxin Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Merve Dede
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziyi Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Roytenberg R, Yue H, DeHart A, Kim E, Bai F, Kim Y, Denning K, Kwei A, Zhang Q, Liu J, Zheng XL, Li W. Thymidine phosphorylase mediates SARS-CoV-2 spike protein enhanced thrombosis in K18-hACE2 TG mice. Thromb Res 2024; 244:109195. [PMID: 39442286 PMCID: PMC11585440 DOI: 10.1016/j.thromres.2024.109195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Thymidine phosphorylase (TYMP), which facilitates platelet activation and thrombosis, is significantly increased in COVID-19 patients. We hypothesize that TYMP mediates SARS-CoV-2 spike protein (SP)-induced thrombosis. MATERIALS AND METHODS Plasmids encoding wildtype SP or empty vector (p3.1) were transfected into COS-7 cells, and cell lysates were prepared as a reservoir for SP or p3.1 (control), respectively. K18-hACE2TG and K18-hACE2TG/Tymp-/- mice were treated with a single dose of SP or p3.1 by intraperitoneal injection and then subjected to thrombosis studies three days later. The role of SP on inflammatory signaling activation was assessed in BEAS-2B cells. RESULTS SARS-CoV-2 SP increased the expression of TYMP, resulting in the activation of STAT3 and NF-κB in BEAS-2B cells. A siRNA-mediated knockdown of TYMP attenuated SP-enhanced activation of STAT3. SP significantly promoted arterial thrombosis in K18-hACE2TG mice. SP-accelerated thrombosis was attenuated by inhibition or genetic ablation of TYMP. SP treatment did not influence ADP- or collagen-induced platelet aggregation but significantly increased platelet adhesion to fibrinogen. SP treatment also significantly shortened activated partial thromboplastin time, which was reversed and even prolonged by TYMP deficiency. Additionally, SP binds to platelet factor 4 (PF4) and TYMP. TYMP does not bind PF4 but enhances the formation of the SP/PF4 complex, which may augment the procoagulant and prothrombotic effect of PF4. CONCLUSIONS We conclude that SP is prothrombotic and upregulates TYMP expression, and TYMP inhibition or knockout mitigates SP-enhanced thrombosis. These findings suggest that inhibition of TYMP may be a novel therapeutic strategy for COVID-19-associated thrombosis.
Collapse
Affiliation(s)
- Renat Roytenberg
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Hong Yue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Autumn DeHart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Eugene Kim
- Department of Chemistry, College of Sciences, Marshall University, Huntington, WV 25755, USA
| | - Fang Bai
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Yongick Kim
- Department of Chemistry, College of Sciences, Marshall University, Huntington, WV 25755, USA
| | - Krista Denning
- Department of Pathology, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Alec Kwei
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Quan Zhang
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jiang Liu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wei Li
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
6
|
Shaker MM, Abdelghany AE, Elaraby NM. Expression Levels of PF4, ALOX12, ITGA2B, F131A in Pregnant COVID-19 Survivors. Biochem Genet 2024:10.1007/s10528-024-10958-4. [PMID: 39543003 DOI: 10.1007/s10528-024-10958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
COVID-19 is viral illness caused by SARS-CoV-2. The immediate complications of COVID-19 are well defined and associated with increased mortality. A global effort is required to determine its effects on implantation, fetal growth and labor. Post COVID-19 recovery period presents a further challenge regarding service provision, prevention, and management. To assess the expression of Platelet Factor 4 (PF4), Arachidonate 12-lipoxygenase (ALOX 12), Integrin alpha-IIb (ITGA2B) & Coagulation Factor XIII A Chain F13A1 in post-acute COVID-19 survivors pregnant women. Prospective case control study, conducted on 400 pregnant women. Case group consists of 200 singleton pregnancies who had recovered from COVID-19 since 4-6 weeks before conception. Control group consists of 200 singleton pregnancies with no history for COVID-19. Expression levels of ALOX12, PF4, ITGA2B, and F13A1genes were determined using quantitative reverse transcription polymerase chain reaction method (qRT-PCR). Expression levels of ALOX12, ITGA2B, and F13A1, were significantly higher in the patients group (3.82±9.6, 6.63±8.45, and 8.9±9.1, respectively) (p < 0.05) compared to those in the control group (1.0±6.0, 1.0±8.1, and 0.6±7.6, respectively). No significant difference in PF4 expression between patients and control group (p = 0.3). Results obtained from enrichment analysis have also supported the above findings. Relative expression levels of these candidate genes could be distinguished between post-acute COVID-19 survivors' pregnant women and control group, significant relative gene expression of ALOX12, ITGA2B, and F13A1 may be associated with an increased risk of placenta-mediated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Mai M Shaker
- Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Asia E Abdelghany
- Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Nesma M Elaraby
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Medina MA, Fuentes-Villalobos F, Quevedo C, Aguilera F, Riquelme R, Rioseco ML, Barria S, Pinos Y, Calvo M, Burbulis I, Kossack C, Alvarez RA, Garrido JL, Barria MI. Longitudinal transcriptional changes reveal genes from the natural killer cell-mediated cytotoxicity pathway as critical players underlying COVID-19 progression. eLife 2024; 13:RP94242. [PMID: 39470726 PMCID: PMC11521369 DOI: 10.7554/elife.94242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Patients present a wide range of clinical severities in response severe acute respiratory syndrome coronavirus 2 infection, but the underlying molecular and cellular reasons why clinical outcomes vary so greatly within the population remains unknown. Here, we report that negative clinical outcomes in severely ill patients were associated with divergent RNA transcriptome profiles in peripheral immune cells compared with mild cases during the first weeks after disease onset. Protein-protein interaction analysis indicated that early-responding cytotoxic natural killer cells were associated with an effective clearance of the virus and a less severe outcome. This innate immune response was associated with the activation of select cytokine-cytokine receptor pathways and robust Th1/Th2 cell differentiation profiles. In contrast, severely ill patients exhibited a dysregulation between innate and adaptive responses affiliated with divergent Th1/Th2 profiles and negative outcomes. This knowledge forms the basis of clinical triage that may be used to preemptively detect high-risk patients before life-threatening outcomes ensue.
Collapse
Affiliation(s)
- Matias A Medina
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | | | - Claudio Quevedo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Felipe Aguilera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de ConcepciónConcepciónChile
| | - Raul Riquelme
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Maria Luisa Rioseco
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | - Sebastian Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
- Hospital Dr. Eduardo Schütz SchroederPuerto MonttChile
| | | | - Mario Calvo
- Instituto de Medicina, Facultad de Medicina, Universidad AustralValdiviaChile
| | - Ian Burbulis
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Camila Kossack
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Raymond A Alvarez
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Jose Luis Garrido
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| | - Maria Ines Barria
- Facultad de Medicina y Ciencia, Universidad San SebastiánPuerto MonttChile
| |
Collapse
|
8
|
Kumar S, Ramaraju K, Kakarla MS, Eranezhath SS, Chenthamarakshan C, Alagesan M, Satheesan B, Unniappan I, Wilhalme H, Pīrāgs V, Furst DE. Evaluating Personalized Add-On Ayurveda Therapy in Oxygen-Dependent Diabetic COVID-19 Patients: A 60-Day Study of Symptoms, Inflammation, and Radiological Changes. Cureus 2024; 16:e68392. [PMID: 39355453 PMCID: PMC11444340 DOI: 10.7759/cureus.68392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/03/2024] Open
Abstract
Background Effective management of both acute and post-acute sequelae of SARS-CoV-2 is essential, particularly for type 2 diabetes mellitus (T2DM) patients, who are at increased risk of severe pro-inflammatory responses and complications. Persistent symptoms and residual lung and cardiovascular damage in post-coronavirus disease (COVID-19) individuals highlight the need for comprehensive long-term treatment strategies. Conventional treatments, including Remdesivir and glucocorticoids, have limitations, suggesting that further investigation into Ayurvedic therapies could be beneficial, though controlled trials are currently limited. Objectives Evaluate the effectiveness and safety of Ayurveda with the standard of care (SOC) versus SOC in improving symptoms, moderating immune responses (interleukin-6 (IL-6), C-reactive protein (CRP), neutrophil-lymphocyte ratio (NLR), and radiological outcomes in oxygen-dependent, high-risk, non-vaccinated type 2 diabetes COVID-19 patients over 60 days, and thus addressing their heightened vulnerability to severe infections. Methods A controlled trial with 50 diabetic COVID-19 patients, aged 18-80, with an NLR of >= 4, primarily on Remdesivir, was assigned to Group 1 (Add-on Ayurveda+SOC, n=30) or Group 2 (SOC, n=20) based on their voluntary choice with follow-up on days 14, 28, and 60. Parametric outcomes in group analysis were assessed with robust regression and non-parametric outcomes with Cochran-Mantel-Haenszel, log-rank test, and chi-square tests at 95% confidence interval (CI). Results Group 1 exhibited statistically significant improvements in fever, cough, diarrhea, as well as NLR, IL-6, and CRP by 14 days, and in anosmia, loss of taste, shortness of breath, general weakness, and headache by 60 days. Though the sample size is small, notable improvements can be seen in troponin levels in Group 1 at 28 and 60 days. High-resolution computer tomography COVID-19 reporting and data system (HRCT CO-RADS) scores improved more slowly in Group 2 than in Group 1. Survival rates were 96.4% for Group 1 and 90% for Group 2. Numbers were too small for reliable comparisons at 60 days. Conclusion The add-on Ayurveda group showed a better symptomatic response, and faster normalization in inflammatory markers, including IL-6 and NLR by 14 days, and cardiac markers by 28 days. Minimal clinical and no laboratory adverse events were observed. This study supports the need for a randomized, double-blind trial.
Collapse
Affiliation(s)
- Somit Kumar
- Clinical Research, AVP Research Foundation, Coimbatore, IND
- Research and Development, The Arya Vaidya Pharmacy, Coimbatore, IND
| | - Karthikeyan Ramaraju
- Respiratory Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| | | | | | | | - Murali Alagesan
- General Medicine, PSG Institute of Medical Sciences and Research, Coimbatore, IND
| | - Balagopal Satheesan
- Ayurveda and Integrative Medicine, Saranya Ayurveda Hospital, Coimbatore, IND
| | - Indulal Unniappan
- Ayurveda and Integrative Medicine, AVP Research Foundation, Coimbatore, IND
| | - Holly Wilhalme
- Statistics, University of California Los Angeles, Los Angeles, USA
| | | | - Daniel E Furst
- Rheumatology, University of California Los Angeles, Los Angeles, USA
- Rheumatology, University of Washington, Seattle, USA
- Rheumatology, University of Florence, Florence, ITA
| |
Collapse
|
9
|
Soto ME, Manzano-Pech L, Guarner-Lans V, Palacios-Chavarría A, Valdez-Vázquez RR, Martínez-Memije R, El-Hafidi M, Rodríguez-Fierros FL, Pérez-Torres I. Preliminary Study on the Restoration of the Phospholipid Profile in Serum from Patients with COVID-19 by Treatment with Vitamin E. Curr Issues Mol Biol 2024; 46:7219-7238. [PMID: 39057070 PMCID: PMC11276170 DOI: 10.3390/cimb46070429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
SARS-CoV-2 is an obligatory intracellular pathogen that requires a lipid bilayer membrane for its transport to build its nucleocapsid envelope and fuse with the host cell. The biological membranes are constituted by phospholipids (PLs), and vitamin E (Vit E) protects them from oxidative stress (OS). The aim of this study was to demonstrate if treatment with Vit E restores the modified profile of the FA in PLs in serum from patients with coronavirus disease-19 (COVID-19). We evaluated Vit E, total fatty acids (TFAs), fatty acids of the phospholipids (FAPLs), total phospholipids (TPLs), 8-isoprostane, thromboxane B2 (TXB2), prostaglandins (PGE2 and 6-keto-PGF1α), interleukin-6 (IL-6), and C-reactive protein (CRP) in serum from 22 COVID-19 patients before and after treatment with Vit E and compared the values with those from 23 healthy subjects (HSs). COVID-19 patients showed a decrease in Vit E, TPLs, FAPLs, and TFAs in serum in comparison to HSs (p ≤ 0.01), and Vit E treatment restored their levels (p ≤ 0.04). Likewise, there was an increase in IL-6 and CRP in COVID-19 patients in comparison with HSs (p ≤ 0.001), and treatment with Vit E decreased their levels (p ≤ 0.001). Treatment with Vit E as monotherapy can contribute to restoring the modified FA profile of the PLs in the SARS-CoV-2 infection, and this leads to a decrease in lipid peroxidation, OS, and the inflammatory process.
Collapse
Affiliation(s)
- María Elena Soto
- Research Direction Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (M.E.-H.)
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Adrían Palacios-Chavarría
- Critical Care Units of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City 11200, Mexico; (A.P.-C.); (R.R.V.-V.)
| | - Rafael Ricardo Valdez-Vázquez
- Critical Care Units of the Temporal COVID-19 Unit, Citibanamex Center, Mexico City 11200, Mexico; (A.P.-C.); (R.R.V.-V.)
| | - Raúl Martínez-Memije
- Departamento de Instrumentación Electromecánica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Mohammed El-Hafidi
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (M.E.-H.)
| | - Félix Leao Rodríguez-Fierros
- Laboratorio de Patología Veterinaria, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Querétaro 76230, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (M.E.-H.)
| |
Collapse
|
10
|
Harada Y, Makino M, Nakao R, Shimura Y, Ogata T, Hayakawa M, Shiraishi H, Kuroda J, Matoba S, Tanaka H. An Autopsy Case of Severe COVID-19 Pneumonia Complicated by Intrapulmonary Thrombosis in Myelodysplastic/Myeloproliferative Neoplasm With Ring Sideroblasts and Thrombocytosis. Cureus 2024; 16:e62790. [PMID: 39036222 PMCID: PMC11260265 DOI: 10.7759/cureus.62790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) pneumonia are prone to intrapulmonary thrombosis owing to excessive inflammation and platelet activation. Myelodysplastic/myeloproliferative neoplasm (MDS/MPN) with ring sideroblasts and thrombocytosis (RS-T) is a rare disease in MDS/MPN overlap entities. Patients with MDS/MPN RS-T are known to be at a high risk of thrombosis, and platelet count control with drug therapy does not necessarily reduce this risk. Here, we report the autopsy case of an older male patient with MDS/MPN RS-T and severe COVID-19 pneumonia complicated by intrapulmonary thrombosis. His platelet count had been controlled in the normal range after treatment with hydroxyurea and 5-aza-2'-deoxycytidine. On admission day, he rapidly developed respiratory distress and tested positive on a polymerase chain reaction test for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). After admission, he received supplemental oxygen and was administered remdesivir and dexamethasone; however, his respiratory and circulatory status did not improve. The patient died on day 4 of illness. Autopsy findings revealed massive thrombi within blood vessels and diffuse alveolar damage in both lungs, which were determined to be the cause of death. In patients with MDS/MPN RS-T combined with COVID-19 pneumonia, clinicians may need to pay close attention to the risk of pulmonary thrombosis.
Collapse
Affiliation(s)
- Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Masahiro Makino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Ryuta Nakao
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Yuji Shimura
- Division of Hematology and Oncology, Department of Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Michiyo Hayakawa
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Hirokazu Shiraishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Junya Kuroda
- Division of Hematology and Oncology, Department of Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, JPN
| |
Collapse
|
11
|
Lopuhaä BV, Guzel C, van der Lee A, van den Bosch TPP, van Kemenade FJ, Huisman MV, Kruip MJHA, Luider TM, von der Thüsen JH. Increase in venous thromboembolism in SARS-CoV-2 infected lung tissue: proteome analysis of lung parenchyma, isolated endothelium, and thrombi. Histopathology 2024; 84:967-982. [PMID: 38253958 DOI: 10.1111/his.15143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
AIMS COVID-19 pneumonia is characterized by an increased rate of deep venous thrombosis and pulmonary embolism. To better understand the pathophysiology behind thrombosis in COVID-19, we performed proteomics analysis on SARS-CoV-2 infected lung tissue. METHODS Liquid chromatography mass spectrometry was performed on SARS-CoV-2 infected postmortem lung tissue samples. Five protein profiling analyses were performed: whole slide lung parenchyma analysis, followed by analysis of isolated thrombi and endothelium, both stratified by disease (COVID-19 versus influenza) and thrombus morphology (embolism versus in situ). Influenza autopsy cases with pulmonary thrombi were used as controls. RESULTS Compared to influenza controls, both analyses of COVID-19 whole-tissue and isolated endothelium showed upregulation of proteins and pathways related to liver metabolism including urea cycle activation, with arginase being among the top upregulated proteins in COVID-19 lung tissue. Analysis of isolated COVID-19 thrombi showed significant downregulation of pathways related to platelet activation compared to influenza thrombi. Analysis of isolated thrombi based on histomorphology shows that in situ thrombi have significant upregulation of coronavirus pathogenesis proteins. CONCLUSIONS The decrease in platelet activation pathways in severe COVID-19 thrombi suggests a relative increase in venous thromboembolism, as thrombi from venous origin tend to contain fewer platelets than arterial thrombi. Based on histomorphology, in situ thrombi show upregulation of various proteins related to SARS-CoV-2 pathogenesis compared to thromboemboli, which may indicate increased in situ pulmonary thrombosis in COVID-19. Therefore, this study supports the increase of venous thromboembolism without undercutting the involvement of in situ thrombosis in severe COVID-19.
Collapse
Affiliation(s)
- Boaz V Lopuhaä
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Coşkun Guzel
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | | | | | | | - Menno V Huisman
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Marieke J H A Kruip
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Jin XY, Li DD, Quan W, Chao Y, Zhang B. Leaky gut, circulating immune complexes, arthralgia, and arthritis in IBD: coincidence or inevitability? Front Immunol 2024; 15:1347901. [PMID: 38571963 PMCID: PMC10987687 DOI: 10.3389/fimmu.2024.1347901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
Most host-microbiota interactions occur within the intestinal barrier, which is essential for separating the intestinal epithelium from toxins, microorganisms, and antigens in the gut lumen. Gut inflammation allows pathogenic bacteria to enter the blood stream, forming immune complexes which may deposit on organs. Despite increased circulating immune complexes (CICs) in patients with inflammatory bowel disease (IBD) and discussions among IBD experts regarding their potential pathogenic role in extra-intestinal manifestations, this phenomenon is overlooked because definitive evidence demonstrating CIC-induced extra-intestinal manifestations in IBD animal models is lacking. However, clinical observations of elevated CICs in newly diagnosed, untreated patients with IBD have reignited research into their potential pathogenic implications. Musculoskeletal symptoms are the most prevalent extra-intestinal IBD manifestations. CICs are pivotal in various arthritis forms, including reactive, rheumatoid, and Lyme arthritis and systemic lupus erythematosus. Research indicates that intestinal barrier restoration during the pre-phase of arthritis could inhibit arthritis development. In the absence of animal models supporting extra-intestinal IBD manifestations, this paper aims to comprehensively explore the relationship between CICs and arthritis onset via a multifaceted analysis to offer a fresh perspective for further investigation and provide novel insights into the interplay between CICs and arthritis development in IBD.
Collapse
Affiliation(s)
- Xi-ya Jin
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dan-dan Li
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Chao
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bin Zhang
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
13
|
Yang Y, Du Y, Ivanov D, Niu C, Clare R, Smith JW, Nazy I, Kaltashov IA. Molecular architecture and platelet-activating properties of small immune complexes assembled on heparin and platelet factor 4. Commun Biol 2024; 7:308. [PMID: 38467823 PMCID: PMC10928113 DOI: 10.1038/s42003-024-05982-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Heparin-induced thrombocytopenia (HIT) is an adverse reaction to heparin leading to a reduction in circulating platelets with an increased risk of thrombosis. It is precipitated by polymerized immune complexes consisting of pathogenic antibodies that recognize a small chemokine platelet factor 4 (PF4) bound to heparin. Characterization of these immune complexes is extremely challenging due to the enormous structural heterogeneity of such macromolecular assemblies and their constituents. Native mass spectrometry demonstrates that up to three PF4 tetramers can be assembled on a heparin chain, consistent with the molecular modeling studies showing facile polyanion wrapping along the polycationic belt on the PF4 surface. Although these assemblies can accommodate a maximum of only two antibodies, the resulting immune complexes are capable of platelet activation despite their modest size. Taken together, these studies provide further insight into molecular mechanisms of HIT and other immune disorders where anti-PF4 antibodies play a central role.
Collapse
Affiliation(s)
- Yang Yang
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Yi Du
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Daniil Ivanov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Chendi Niu
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Rumi Clare
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - James W Smith
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Ishac Nazy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Igor A Kaltashov
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA, USA.
| |
Collapse
|
14
|
He S, Blombäck M, Wallén H. COVID-19: Not a thrombotic disease but a thromboinflammatory disease. Ups J Med Sci 2024; 129:9863. [PMID: 38327640 PMCID: PMC10845889 DOI: 10.48101/ujms.v129.9863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/17/2023] [Accepted: 10/21/2023] [Indexed: 02/09/2024] Open
Abstract
While Coronavirus Disease in 2019 (COVID-19) may no longer be classified as a global public health emergency, it still poses a significant risk at least due to its association with thrombotic events. This study aims to reaffirm our previous hypothesis that COVID-19 is fundamentally a thrombotic disease. To accomplish this, we have undertaken an extensive literature review focused on assessing the comprehensive impact of COVID-19 on the entire hemostatic system. Our analysis revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection significantly enhances the initiation of thrombin generation. However, it is noteworthy that the thrombin generation may be modulated by specific anticoagulants present in patients' plasma. Consequently, higher levels of fibrinogen appear to play a more pivotal role in promoting coagulation in COVID-19, as opposed to thrombin generation. Furthermore, the viral infection can stimulate platelet activation either through widespread dissemination from the lungs to other organs or localized effects on platelets themselves. An imbalance between Von Willebrand Factor (VWF) and ADAMTS-13 also contributes to an exaggerated platelet response in this disease, in addition to elevated D-dimer levels, coupled with a significant increase in fibrin viscoelasticity. This paradoxical phenotype has been identified as 'fibrinolysis shutdown'. To clarify the pathogenesis underlying these hemostatic disorders in COVID-19, we also examined published data, tracing the reaction process of relevant proteins and cells, from ACE2-dependent viral invasion, through induced tissue inflammation, endothelial injury, and innate immune responses, to occurrence of thrombotic events. We therefrom understand that COVID-19 should no longer be viewed as a thrombotic disease solely based on abnormalities in fibrin clot formation and proteolysis. Instead, it should be regarded as a thromboinflammatory disorder, incorporating both classical elements of cellular inflammation and their intricate interactions with the specific coagulopathy.
Collapse
Affiliation(s)
- Shu He
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Margareta Blombäck
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Division of Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Wallén
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Singh M, Pushpakumar S, Zheng Y, Smolenkova I, Akinterinwa OE, Luulay B, Tyagi SC. Novel mechanism of the COVID-19 associated coagulopathy (CAC) and vascular thromboembolism. NPJ VIRUSES 2023; 1:3. [PMID: 38077924 PMCID: PMC10710223 DOI: 10.1038/s44298-023-00003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 01/31/2024]
Abstract
Previous studies from our laboratory revealed that SARS-CoV-2 spike protein (SP) administration to a genetically engineered model expressing the human angiotensin-converting enzyme 2; ACE2 receptor (i.e., hACE2 humanized mouse) mimicked the coronavirus disease-19 (COVID-19) pathology. In humans the cause of high morbidity, and mortality is due to 'cytokine-storm' led thromboembolism; however, the exact mechanisms of COVID-19 associated coagulopathy (CAC) have yet to be discovered. Current knowledge suggests that CAC is distinct from the standard coagulopathy, in that the intrinsic and extrinsic thrombin-dependent coagulation factors, and the pathway(s) that are common to coagulopathy, are not recruited by SARS-CoV-2. Findings from patients revealed that there is little change in their partial thromboplastin, or the prothrombin time coupled with a significant decline in platelets. Further, there appears to be an endothelial dysfunction during COVID-19 suggesting an interaction of the endothelia with immune cells including neutrophils. There are also reports that inflammatory NGAL is elevated during COVID-19. Furthermore, the levels of NPT are also increased indicating an increase in inflammatory M1 macrophage iNOS which sequesters BH4; an essential enzyme co-factor that acts as a potent antioxidant thus causing damage to endothelia. SARS-CoV-2 entry into the host cells is facilitated by a co-operative action between TMPRSS2 and the main ACE2 receptor. Interestingly, after infection ADAMTS13; a von Willebrand factor; VWF cleaving enzyme is found to be decreased. Based on these facts, we hypothesize that vascular thromboembolism is associated with serine and metalloproteinase, and in that context, we opine that inhibition of iNOS might help mitigate COVID-19 harmful effects. To test this hypothesis, we administered SP to the hACE2 mice that were subsequently treated with amino guanidine (AG; a potent inhibitor of glycoxidation, lipoxidation and oxidative vicious cycles). Our results revealed increase in TMPRSS2, and NGAL by SP but treatment with AG mitigated their levels. Similarly, levels of MMP-2, and -9 were increased; however, AG treatment normalized these levels. Our findings suggest that occurrence of CAC is influenced by TMPRSS2, ADAMTS13, NGAL and MMP- 2, and -9 factors, and an intervention with iNOS blocker helped mitigate the CAC condition in experimental settings.
Collapse
Affiliation(s)
- Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- These authors contributed equally: Mahavir Singh, Sathnur Pushpakumar
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- These authors contributed equally: Mahavir Singh, Sathnur Pushpakumar
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Irina Smolenkova
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Oluwaseun E. Akinterinwa
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bana Luulay
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suresh C. Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
16
|
Almeida NBF, Fantone KM, Sarr D, Ashtiwi NM, Channell S, Grenfell RFQ, Martins-Filho OA, Rada B. Variant-dependent oxidative and cytokine responses of human neutrophils to SARS-CoV-2 spike protein and anti-spike IgG1 antibodies. Front Immunol 2023; 14:1255003. [PMID: 37908356 PMCID: PMC10613679 DOI: 10.3389/fimmu.2023.1255003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Severe forms of COVID-19, the disease caused by SARS-CoV-2, are characterized by acute respiratory distress syndrome, robust lung inflammation and death in some patients. Strong evidence has been accumulating that polymorphonuclear neutrophilic granulocytes (PMN) play an important role in the pathophysiology of severe COVID-19. SARS-CoV-2 directly induces in vitro PMN activation, mainly the release of neutrophil extracellular traps (NETs). However, the viral components inducing this PMN response remain unclear. Methods In this work human PMN responses were assessed in vitro in response to the spike (S) protein of two different SARS-CoV-2 variants, anti-S IgG1 antibodies or immune complexes formed by them. Production of reactive oxygen species (ROS) was measured by Diogenes-based chemiluminescence. Release of myeloperoxidase (MPO) was assessed by ELISA while secretion of a list of cytokines and growth factors was determined by high-performance multiplex cytokine assay. Results and discussion We show that the SARS-CoV-2 Omicron variant S protein and anti-spike IgG1, either alone or together, stimulate ROS production in human PMNs. We also observed that the SARS-CoV-2 Wuhan S protein and anti-S IgG1 antibody together trigger MPO release from PMNs. Based on the relevance of SARS-CoV-2 and influenza co-infections, we have also investigated the impact of influenza virus infection on the previous PMN responses to S proteins or anti-S antibodies. We did not detect any significant effect of influenza co-infection on ROS generation in PMNs. Our data also show that PMN stimulation by S proteins induced the release of different chemokines, growth factors, regulatory and proinflammatory cytokines. Overall, our findings show that the SARS-CoV-2 S protein, an anti-spike IgG1 antibody or their immune complex, promote oxidative responses of PMNs in a variant-dependent manner, contributing to a better understanding of the role of PMN responses during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nathalie Bonatti Franco Almeida
- Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Kayla Marie Fantone
- Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Demba Sarr
- Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Nuha Milad Ashtiwi
- Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Sarah Channell
- Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| | - Rafaella Fortini Queiroz Grenfell
- Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | - Balázs Rada
- Department of Infectious Diseases, The University of Georgia, Athens, GA, United States
| |
Collapse
|
17
|
Ihedioha OC, Sivakoses A, Beverley SM, McMahon-Pratt D, Bothwell ALM. Leishmania major-derived lipophosphoglycan influences the host's early immune response by inducing platelet activation and DKK1 production via TLR1/2. Front Immunol 2023; 14:1257046. [PMID: 37885890 PMCID: PMC10598878 DOI: 10.3389/fimmu.2023.1257046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Background Platelets are rapidly deployed to infection sites and respond to pathogenic molecules via pattern recognition receptors (TLR, NLRP). Dickkopf1 (DKK1) is a quintessential Wnt antagonist produced by a variety of cell types including platelets, endothelial cells, and is known to modulate pro-inflammatory responses in infectious diseases and cancer. Moreover, DKK1 is critical for forming leukocyte-platelet aggregates and induction of type 2 cell-mediated immune responses. Our previous publication showed activated platelets release DKK1 following Leishmania major recognition. Results Here we probed the role of the key surface virulence glycoconjugate lipophosphoglycan (LPG), on DKK1 production using null mutants deficient in LPG synthesis (Δlpg1- and Δlpg2-). Leishmania-induced DKK1 production was reduced to control levels in the absence of LPG in both mutants and was restored upon re-expression of the cognate LPG1 or LPG2 genes. Furthermore, the formation of leukocyte-platelet aggregates was dependent on LPG. LPG mediated platelet activation and DKK1 production occurs through TLR1/2. Conclusion Thus, LPG is a key virulence factor that induces DKK1 production from activated platelets, and the circulating DKK1 promotes Th2 cell polarization. This suggests that LPG-activated platelets can drive innate and adaptive immune responses to Leishmania infection.
Collapse
Affiliation(s)
- Olivia C. Ihedioha
- 1Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anutr Sivakoses
- 1Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine in St Louis, St. Louis, MI, United States
| | - Diane McMahon-Pratt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States
| | - Alfred L. M. Bothwell
- 1Department of Immunobiology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
18
|
Gęgotek A, Zarkovic N, Orehovec B, Jaganjac M, Sunjic SB, Skrzydlewska E. Short Survey on the Protein Modifications in Plasma during SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:14109. [PMID: 37762413 PMCID: PMC10531908 DOI: 10.3390/ijms241814109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Although the COVID-19 pandemic has ended, it is important to understand the pathology of severe SARS-CoV-2 infection associated with respiratory failure and high mortality. The plasma proteome, including protein modification by lipid peroxidation products in COVID-19 survivors (COVID-19; n = 10) and deceased individuals (CovDeath; n = 10) was compared in samples collected upon admission to the hospital, when there was no difference in their status, with that of healthy individuals (Ctr; n = 10). The obtained results show that COVID-19 development strongly alters the expression of proteins involved in the regulation of exocytosis and platelet degranulation (top 20 altered proteins indicated by analysis of variance; p-value (False Discovery Rate) cutoff at 5%). These changes were most pronounced in the CovDeath group. In addition, the levels of 4-hydroxynonenal (4-HNE) adducts increased 2- and 3-fold, whereas malondialdehyde (MDA) adducts increased 7- and 2.5-fold, respectively, in COVID-19 and CovDeath groups. Kinases and proinflammatory proteins were particularly affected by these modifications. Protein adducts with 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) were increased 2.5-fold in COVID-19 patients, including modifications of proteins such as p53 and STAT3, whereas CovDeath showed a decrease of approximately 60% compared with Ctr. This study for the first time demonstrates the formation of lipid metabolism products-protein adducts in plasma from survived and deceased COVID-19 patients, significantly distinguishing them, which may be a predictor of the course of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| | - Neven Zarkovic
- Ruder Boskovic Institute, Div. Molecular Medicine Laboratory for Oxidative Stress Bijenicka 54, HR-10000 Zagreb, Croatia; (N.Z.); (M.J.); (S.B.S.)
| | | | - Morana Jaganjac
- Ruder Boskovic Institute, Div. Molecular Medicine Laboratory for Oxidative Stress Bijenicka 54, HR-10000 Zagreb, Croatia; (N.Z.); (M.J.); (S.B.S.)
| | - Suzana Borovic Sunjic
- Ruder Boskovic Institute, Div. Molecular Medicine Laboratory for Oxidative Stress Bijenicka 54, HR-10000 Zagreb, Croatia; (N.Z.); (M.J.); (S.B.S.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| |
Collapse
|
19
|
Snipaitiene A, Sirataviciene A, Varoneckaite L, Sileikiene R, Jankauskaite L. Platelet role in the prediction of MIS-C severity. Front Pediatr 2023; 11:1153623. [PMID: 37360365 PMCID: PMC10285299 DOI: 10.3389/fped.2023.1153623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Multisystem inflammatory syndrome in children (MIS-C) has been reported as one of the cytokine storm syndromes associated with COVID-19. Despite the several proposed diagnostic criteria, MIS-C remains a diagnostic and clinical challenge. Recent studies have demonstrated that platelets (PLTs) play a crucial role in COVID-19 infection and its prognosis. This study aimed to investigate the clinical importance of PLT count and PLT indices in predicting MIS-C severity in children. Patients and methods We conducted a retrospective single-center study at our university hospital. A total of 43 patients diagnosed with MIS-C during a 2-year period (from October 2020 to October 2022) were included in the study. MIS-C severity was evaluated according to the composite severity score. Results Half of the patients were treated in the pediatric intensive care unit. No single clinical sign was associated with a severe condition, except for shock (p = 0.041). All the routine biomarkers, such as complete blood count (CBC) and C-reactive protein (CRP), used for MIS-C diagnosis were significant in predicting MIS-C severity. Single PLT parameters, such as mean PLT volume, plateletcrit, or PLT distribution width, did not differ between the severity groups. However, we found that a combination of PLT count and the previously mentioned PLT indices had the potential to predict MIS-C severity. Conclusions Our study emphasizes the importance of PLT in MIS-C pathogenesis and severity. It revealed that together with routine biomarkers (e.g., CBC and CRP), it could highly improve the prediction of MIS-C severity.
Collapse
Affiliation(s)
- Ausra Snipaitiene
- Pediatric Department, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Pediatric Department, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
| | - Aurelija Sirataviciene
- Pediatric Department, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Pediatric Department, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
| | - Leila Varoneckaite
- Pediatric Department, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Pediatric Department, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
| | - Rima Sileikiene
- Pediatric Department, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Pediatric Department, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
| | - Lina Jankauskaite
- Pediatric Department, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Pediatric Department, Hospital of Lithuanian University of Health Sciences Kaunas Clinics, Kaunas, Lithuania
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
20
|
Ghanbari EP, Jakobs K, Puccini M, Reinshagen L, Friebel J, Haghikia A, Kränkel N, Landmesser U, Rauch-Kröhnert U. The Role of NETosis and Complement Activation in COVID-19-Associated Coagulopathies. Biomedicines 2023; 11:biomedicines11051371. [PMID: 37239041 DOI: 10.3390/biomedicines11051371] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammation-induced coagulopathy is a common complication associated with coronavirus disease 2019 (COVID-19). We aim to evaluate the association of NETosis and complement markers with each other as well as their association with thrombogenicity and disease severity in COVID-19. The study included hospitalized patients with an acute respiratory infection: patients with SARS-CoV2 infection (COVpos, n = 47) or either pneumonia or infection-triggered acute exacerbated COPD (COVneg, n = 36). Our results show that NETosis, coagulation, and platelets, as well as complement markers, were significantly increased in COVpos patients, especially in severely ill COVpos patients. NETosis marker MPO/DNA complexes correlated with coagulation, platelet, and complement markers only in COVpos. Severely ill COVpos patients showed an association between complement C3 and SOFA (R = 0.48; p ≤ 0.028), C5 and SOFA (R = 0.46; p ≤ 0.038), and C5b-9 and SOFA (R = 0.44; p ≤ 0.046). This study provides further evidence that NETosis and the complement system are key players in COVID-19 inflammation and clinical severity. Unlike previous studies that found NETosis and complement markers to be elevated in COVID-19 patients compared to healthy controls, our findings show that this characteristic distinguishes COVID-19 from other pulmonary infectious diseases. Based on our results, we propose that COVID-19 patients at high risk for immunothrombosis could be identified via elevated complement markers such as C5.
Collapse
Affiliation(s)
- Emily Parissa Ghanbari
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Kai Jakobs
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Marianna Puccini
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Leander Reinshagen
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Julian Friebel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicolle Kränkel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ursula Rauch-Kröhnert
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| |
Collapse
|
21
|
Kolb P, Giese S, Voll RE, Hengel H, Falcone V. Immune complexes as culprits of immunopathology in severe COVID-19. Med Microbiol Immunol 2023; 212:185-191. [PMID: 35871171 PMCID: PMC9308473 DOI: 10.1007/s00430-022-00743-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023]
Abstract
Infection with the pandemic human coronavirus SARS-CoV-2 elicits a respiratory tract disease, termed Coronavirus disease 2019 (COVID-19). While a variable degree of disease-associated symptoms may emerge, severe COVID-19 is commonly associated with respiratory complications such as acute respiratory distress syndrome (ARDS), the necessity for mechanical ventilation or even extracorporeal membrane oxygenation (ECMO). Amongst others, disease outcome depends on age and pre-existing conditions like cardiovascular diseases, metabolic disorders but also age and biological sex. Intriguingly, increasing experimental and clinical evidence suggests that an exacerbated inflammatory response and in particular IgG immune complexes (ICs), significantly contribute to severe and prolonged COVID-19 disease progression. Vast amounts of deposited, unresolved ICs in tissue are capable to initiate an exaggerated Fc gamma receptor (FcγR) mediated signalling cascade which eventually results in common IC-associated organ diseases such as vasculitis, glomerulonephritis and arthritis, comorbidities that have been frequently reported for COVID-19. Moreover and independent of deposited ICs, very recent work identified soluble ICs (sIC) to be also present in the circulation of a majority of severely ill patients, where their systemic abundance correlated with disease severity. Thus, detection of circulating sICs in patients represents a potential marker for critical COVID-19 disease progression. Their detection early after clinical deterioration might become an indicator for the requirement of prompt anti-inflammatory treatment. Here, we review the role of ICs in COVID-19 progression, their possible origins and potential intervention strategies.
Collapse
Affiliation(s)
- Philipp Kolb
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Sebastian Giese
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Reinhard Edmund Voll
- Faculty of Medicine, Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Valeria Falcone
- Faculty of Medicine, Institute of Virology, Freiburg University Medical Center, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Yang Y, Du Y, Ivanov D, Niu C, Clare R, Smith JW, Nazy I, Kaltashov IA. Molecular architecture and platelet-activating properties of small immune complexes assembled on intact heparin and their possible involvement in heparin-induced thrombocytopenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.11.528150. [PMID: 36798284 PMCID: PMC9934687 DOI: 10.1101/2023.02.11.528150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Heparin-induced thrombocytopenia (HIT) is an adverse reaction to heparin leading to a reduction in circulating platelets with an increased risk of thrombosis. It is precipitated by polymerized immune complexes consisting of pathogenic antibodies that recognize a small chemokine platelet factor 4 (PF4) bound to heparin, which trigger platelet activation and a hypercoagulable state. Characterization of these immune complexes is extremely challenging due to the enormous structural heterogeneity of such macromolecular assemblies and their constituents (especially heparin). We use native mass spectrometry to characterize small immune complexes formed by PF4, heparin and monoclonal HIT-specific antibodies. Up to three PF4 tetramers can be assembled on a heparin chain, consistent with the results of molecular modeling studies showing facile polyanion wrapping along the polycationic belt on the PF4 surface. Although these assemblies can accommodate a maximum of only two antibodies, the resulting immune complexes are capable of platelet activation despite their modest size. Taken together, these studies provide further insight into molecular mechanisms of HIT and other immune disorders where anti-PF4 antibodies play a central role.
Collapse
|
23
|
Coagulation Disorders in Sepsis and COVID-19-Two Sides of the Same Coin? A Review of Inflammation-Coagulation Crosstalk in Bacterial Sepsis and COVID-19. J Clin Med 2023; 12:jcm12020601. [PMID: 36675530 PMCID: PMC9866352 DOI: 10.3390/jcm12020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Sepsis is a major cause of morbidity and mortality worldwide. Sepsis-associated coagulation disorders are involved in the pathogenesis of multiorgan failure and lead to a subsequently worsening prognosis. Alongside the global impact of the COVID-19 pandemic, a great number of research papers have focused on SARS-CoV-2 pathogenesis and treatment. Significant progress has been made in this regard and coagulation disturbances were once again found to underlie some of the most serious adverse outcomes of SARS-CoV-2 infection, such as acute lung injury and multiorgan dysfunction. In the attempt of untangling the mechanisms behind COVID-19-associated coagulopathy (CAC), a series of similarities with sepsis-induced coagulopathy (SIC) became apparent. Whether they are, in fact, the same disease has not been established yet. The clinical picture of CAC shows the unique feature of an initial phase of intravascular coagulation confined to the respiratory system. Only later on, patients can develop a clinically significant form of systemic coagulopathy, possibly with a consumptive pattern, but, unlike SIC, it is not a key feature. Deepening our understanding of CAC pathogenesis has to remain a major goal for the research community, in order to design and validate accurate definitions and classification criteria.
Collapse
|
24
|
Katsouras CS, Papafaklis MI, Giannopoulos S, Karapanayiotides T, Tsivgoulis G, Michalis LK. Cerebro-/Cardiovascular Collateral Damage During the COVID-19 Pandemic: Fact or Fiction? J Clin Neurol 2023; 19:1-11. [PMID: 36606641 PMCID: PMC9833878 DOI: 10.3988/jcn.2023.19.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 01/04/2023] Open
Abstract
Numerous observational studies have identified a decline in cerebro-/cardiovascular (CV) admissions during the initial phase of the COVID-19 pandemic. Recent studies and meta-analyses indicated that the overall decrease was smaller than that found in initial studies during the first months of 2020. Two years later we still do not have clear evidence about the potential causes and impacts of the reduction of CV hospitalizations during the COVID-19 pandemic. It has becoming increasingly evident that collateral damage (i.e., incidental damage to the public and patients) from the COVID-19 outbreak is the main underlying cause that at least somewhat reflects the effects of imposed measures such as social distancing and self-isolation. However, a smaller true decline in CV events in the community due to a lack of triggers associated with such acute syndromes cannot be excluded. There is currently indirect epidemiological evidence about the immediate impact that the collateral damage had on excess mortality, but possible late consequences including a rebound increase in CV events are yet to be observed. In the present narrative review, we present the reporting milestones in the literature of the rates of CV admissions and collateral damage during the last 2 years, and discuss all possible factors contributing to the decline in CV hospitalizations during the COVID-19 pandemic. Healthcare systems need to be prepared so that they can cope with the increased hospitalization rates for CV events in the near future.
Collapse
Affiliation(s)
- Christos S Katsouras
- 2nd Department of Cardiology, University Hospital of Ioannina, University of Ioannina, Ioannina, Greece.
| | - Michail I Papafaklis
- 2nd Department of Cardiology, University Hospital of Ioannina, University of Ioannina, Ioannina, Greece
| | - Sotirios Giannopoulos
- 2nd Department of Neurology, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, University Hospital of Ioannina, University of Ioannina, Ioannina, Greece
| | - Theodoros Karapanayiotides
- 2nd Department of Neurology, Faculty of Health Sciences, School of Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tsivgoulis
- 2nd Department of Neurology, ATTIKON University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Lampros K Michalis
- 2nd Department of Cardiology, University Hospital of Ioannina, University of Ioannina, Ioannina, Greece
| |
Collapse
|
25
|
Capozzi A, Riitano G, Recalchi S, Manganelli V, Longo A, Falcou A, De Michele M, Garofalo T, Pulcinelli FM, Sorice M, Misasi R. Antiphospholipid antibodies in patients with stroke during COVID-19: A role in the signaling pathway leading to platelet activation. Front Immunol 2023; 14:1129201. [PMID: 36936925 PMCID: PMC10017527 DOI: 10.3389/fimmu.2023.1129201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Background Several viral and bacterial infections, including COVID-19, may lead to both thrombotic and hemorrhagic complications. Previously, it has been demonstrated an "in vitro" pathogenic effect of "antiphospholipid" antibodies (aPLs), which are able to activate a proinflammatory and procoagulant phenotype in monocytes, endothelial cells and platelets. This study analyzed the occurrence of aPL IgG in patients with acute ischemic stroke (AIS) during COVID-19, evaluating the effect of Ig fractions from these patients on signaling and functional activation of platelets. Materials and methods Sera from 10 patients with AIS during COVID-19, 10 non-COVID-19 stroke patients, 20 COVID-19 and 30 healthy donors (HD) were analyzed for anti-cardiolipin, anti-β2-GPI, anti-phosphatidylserine/prothrombin and anti-vimentin/CL antibodies by ELISA. Platelets from healthy donors were incubated with Ig fractions from these patients or with polyclonal anti-β2-GPI IgG and analyzed for phospho-ERK and phospho-p38 by western blot. Platelet secretion by ATP release dosage was also evaluated. Results We demonstrated the presence of aPLs IgG in sera of patients with AIS during COVID-19. Treatment with the Ig fractions from these patients or with polyclonal anti-β2-GPI IgG induced a significant increase of phospho-ERK and phospho-p38 expression. In the same vein, platelet activation was supported by the increase of adenyl nucleotides release induced by Ig fractions. Conclusions This study demonstrates the presence of aPLs in a subgroup of COVID-19 patients who presented AIS, suggesting a role in the mechanisms contributing to hypercoagulable state in these patients. Detecting these antibodies as a serological marker to check and monitor COVID-19 may contribute to improve the risk stratification of thromboembolic manifestations in these patients.
Collapse
Affiliation(s)
- Antonella Capozzi
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Serena Recalchi
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Valeria Manganelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Agostina Longo
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Anne Falcou
- Emergency Department, “Sapienza” University of Rome, Rome, Italy
| | | | - Tina Garofalo
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Fabio M. Pulcinelli
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
- *Correspondence: Maurizio Sorice,
| | - Roberta Misasi
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
26
|
Jankauskaite L, Malinauskas M, Snipaitiene A. Effect of stimulated platelets in COVID-19 thrombosis: Role of alpha7 nicotinic acetylcholine receptor. Front Cardiovasc Med 2022; 9:1037369. [PMID: 36312286 PMCID: PMC9614055 DOI: 10.3389/fcvm.2022.1037369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
Since early 2020, SARS-CoV-2-induced infection resulted in global pandemics with high morbidity, especially in the adult population. COVID-19 is a highly prothrombotic condition associated with subsequent multiorgan failure and lethal outcomes. The exact mechanism of the prothrombotic state is not well understood and might be multifactorial. Nevertheless, platelets are attributed to play a crucial role in COVID-19-associated thrombosis. To date, platelets' role was defined primarily in thrombosis and homeostasis. Currently, more focus has been set on their part in inflammation and immunity. Moreover, their ability to release various soluble factors under activation as well as internalize and degrade specific pathogens has been highly addressed in viral research. This review article will discuss platelet role in COVID-19-associated thrombosis and their role in the cholinergic anti-inflammatory pathway. Multiple studies confirmed that platelets display a hyperactivated phenotype in COVID-19 patients. Critically ill patients demonstrate increased platelet activation markers such as P-selectin, PF4, or serotonin. In addition, platelets contain acetylcholine and express α7 nicotinic acetylcholine receptors (α7nAchR). Thus, acetylcholine can be released under activation, and α7nAchR can be stimulated in an autocrine manner and support platelet function. α7 receptor is one of the most important mediators of the anti-inflammatory properties as it is associated with humoral and intrinsic immunity and was demonstrated to contribute to better outcomes in COVID-19 patients when under stimulation. Hematopoietic α7nAchR deficiency increases platelet activation and, in experimental studies, α7nAchR stimulation can diminish the pro-inflammatory state and modulate platelet reactiveness via increased levels of NO. NO has been described to inhibit platelet adhesion, activation, and aggregation. In addition, acetylcholine has been demonstrated to decrease platelet aggregation possibly by blocking the e p-38 pathway. SARS-CoV-2 proteins have been found to be similar to neurotoxins which can bind to nAChR and prevent the action of acetylcholine. Concluding, the platelet role in COVID-19 thrombotic events could be explained by their active function in the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Lina Jankauskaite
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania,Department of Pediatrics, Medical Faculty, Lithuanian University of Health Sciences, Kaunas, Lithuania,*Correspondence: Lina Jankauskaite
| | - Mantas Malinauskas
- Institute of Physiology and Pharmacology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ausra Snipaitiene
- Department of Pediatrics, Medical Faculty, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
27
|
Root-Bernstein R, Huber J, Ziehl A. Complementary Sets of Autoantibodies Induced by SARS-CoV-2, Adenovirus and Bacterial Antigens Cross-React with Human Blood Protein Antigens in COVID-19 Coagulopathies. Int J Mol Sci 2022; 23:ijms231911500. [PMID: 36232795 PMCID: PMC9569991 DOI: 10.3390/ijms231911500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/11/2022] Open
Abstract
COVID-19 patients often develop coagulopathies including microclotting, thrombotic strokes or thrombocytopenia. Autoantibodies are present against blood-related proteins including cardiolipin (CL), serum albumin (SA), platelet factor 4 (PF4), beta 2 glycoprotein 1 (β2GPI), phosphodiesterases (PDE), and coagulation factors such as Factor II, IX, X and von Willebrand factor (vWF). Different combinations of autoantibodies associate with different coagulopathies. Previous research revealed similarities between proteins with blood clotting functions and SARS-CoV-2 proteins, adenovirus, and bacterial proteins associated with moderate-to-severe COVID-19 infections. This study investigated whether polyclonal antibodies (mainly goat and rabbit) against these viruses and bacteria recognize human blood-related proteins. Antibodies against SARS-CoV-2 and adenovirus recognized vWF, PDE and PF4 and SARS-CoV-2 antibodies also recognized additional antigens. Most bacterial antibodies tested (group A streptococci [GAS], staphylococci, Escherichia coli [E. coli], Klebsiella pneumoniae, Clostridia, and Mycobacterium tuberculosis) cross-reacted with CL and PF4. while GAS antibodies also bound to F2, Factor VIII, Factor IX, and vWF, and E. coli antibodies to PDE. All cross-reactive interactions involved antibody-antigen binding constants smaller than 100 nM. Since most COVID-19 coagulopathy patients display autoantibodies against vWF, PDE and PF4 along with CL, combinations of viral and bacterial infections appear to be necessary to initiate their autoimmune coagulopathies.
Collapse
|
28
|
Ankerhold J, Giese S, Kolb P, Maul-Pavicic A, Voll RE, Göppert N, Ciminski K, Kreutz C, Lother A, Salzer U, Bildl W, Welsink T, Morgenthaler NG, Grawitz AB, Emmerich F, Steinmann D, Huzly D, Schwemmle M, Hengel H, Falcone V. Circulating multimeric immune complexes contribute to immunopathology in COVID-19. Nat Commun 2022; 13:5654. [PMID: 36163132 PMCID: PMC9513013 DOI: 10.1038/s41467-022-32867-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
A dysregulated immune response with high levels of SARS-CoV-2 specific IgG antibodies characterizes patients with severe or critical COVID-19. Although a robust IgG response is considered to be protective, excessive triggering of activating Fc-gamma-receptors (FcγRs) could be detrimental and cause immunopathology. Here, we document excessive FcγRIIIA/CD16A activation in patients developing severe or critical COVID-19 but not in those with mild disease. We identify two independent ligands mediating extreme FcγRIIIA/CD16A activation. Soluble circulating IgG immune complexes (sICs) are detected in about 80% of patients with severe and critical COVID-19 at levels comparable to active systemic lupus erythematosus (SLE) disease. FcγRIIIA/CD16A activation is further enhanced by afucosylation of SARS-CoV-2 specific IgG. Utilizing cell-based reporter systems we provide evidence that sICs can be formed prior to a specific humoral response against SARS-CoV-2. Our data suggest a cycle of immunopathology driven by an early formation of sICs in predisposed patients. These findings suggest a reason for the seemingly paradoxical findings of high antiviral IgG responses and systemic immune dysregulation in severe COVID-19. The involvement of circulating sICs in the promotion of immunopathology in predisposed patients opens new possibilities for intervention strategies to mitigate critical COVID-19 progression. During viral infections high levels of antibodies can form soluble immune complexes (sICs) with antigen and trigger Fcγ receptors (FcγR) leading to increased immunopathology. Here the authors measure FcγRs activation by sICs and consider how these may lead to excessive immunopathology during severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jakob Ankerhold
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Sebastian Giese
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Philipp Kolb
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andrea Maul-Pavicic
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Nathalie Göppert
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Clemens Kreutz
- Institute of Medical Biometry and Statistics, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Achim Lother
- Department of Cardiology and Angiology I, University Heart Center, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Interdisciplinary Medical Intensive Care, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Tim Welsink
- InVivo BioTech Services GmbH, Hennigsdorf, Germany
| | | | - Andrea Busse Grawitz
- Institute of Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Florian Emmerich
- Institute for Transfusion Medicine and Gene Therapy, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Steinmann
- Occupational Medical Service, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| | - Valeria Falcone
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany.
| |
Collapse
|
29
|
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J 2022; 479:1653-1708. [PMID: 36043493 PMCID: PMC9484810 DOI: 10.1042/bcj20220154] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Ischaemia-reperfusion (I-R) injury, initiated via bursts of reactive oxygen species produced during the reoxygenation phase following hypoxia, is well known in a variety of acute circumstances. We argue here that I-R injury also underpins elements of the pathology of a variety of chronic, inflammatory diseases, including rheumatoid arthritis, ME/CFS and, our chief focus and most proximally, Long COVID. Ischaemia may be initiated via fibrin amyloid microclot blockage of capillaries, for instance as exercise is started; reperfusion is a necessary corollary when it finishes. We rehearse the mechanistic evidence for these occurrences here, in terms of their manifestation as oxidative stress, hyperinflammation, mast cell activation, the production of marker metabolites and related activities. Such microclot-based phenomena can explain both the breathlessness/fatigue and the post-exertional malaise that may be observed in these conditions, as well as many other observables. The recognition of these processes implies, mechanistically, that therapeutic benefit is potentially to be had from antioxidants, from anti-inflammatories, from iron chelators, and via suitable, safe fibrinolytics, and/or anti-clotting agents. We review the considerable existing evidence that is consistent with this, and with the biochemical mechanisms involved.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland 7602, South Africa
| |
Collapse
|
30
|
Žarković N, Jastrząb A, Jarocka-Karpowicz I, Orehovec B, Baršić B, Tarle M, Kmet M, Lukšić I, Łuczaj W, Skrzydlewska E. The Impact of Severe COVID-19 on Plasma Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165323. [PMID: 36014561 PMCID: PMC9416063 DOI: 10.3390/molecules27165323] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Several studies suggested the association of COVID-19 with systemic oxidative stress, in particular with lipid peroxidation and vascular stress. Therefore, this study aimed to evaluate the antioxidant signaling in the plasma of eighty-eight patients upon admission to the Clinical Hospital Dubrava in Zagreb, of which twenty-two died within a week, while the other recovered. The differences between the deceased and the survivors were found, especially in the reduction of superoxide dismutases (SOD-1 and SOD-2) activity, which was accompanied by the alteration in glutathione-dependent system and the intensification of the thioredoxin-dependent system. Reduced levels of non-enzymatic antioxidants, especially tocopherol, were also observed, which correlated with enhanced lipid peroxidation (determined by 4-hydroxynonenal (4-HNE) and neuroprostane levels) and oxidative modifications of proteins assessed as 4-HNE-protein adducts and carbonyl groups. These findings confirm the onset of systemic oxidative stress in patients with severe SARS-CoV-2, especially those who died from COVID-19, as manifested by strongly reduced tocopherol level and SOD activity associated with lipid peroxidation. Therefore, we propose that preventive and/or supplementary use of antioxidants, especially of lipophilic nature, could be beneficial for the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Neven Žarković
- Laboratory for Oxidative Stress (LabOS), Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| | - Anna Jastrząb
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Biserka Orehovec
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Bruno Baršić
- Department of Internal Medicine, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marko Tarle
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Marta Kmet
- Clinical Department of Laboratory Diagnostics, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
| | - Ivica Lukšić
- Department of Maxillofacial Surgery, Clinical Hospital Dubrava, HR-10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
31
|
De Michele M, d'Amati G, Leopizzi M, Iacobucci M, Berto I, Lorenzano S, Mazzuti L, Turriziani O, Schiavo OG, Toni D. Evidence of SARS-CoV-2 spike protein on retrieved thrombi from COVID-19 patients. J Hematol Oncol 2022; 15:108. [PMID: 35974404 PMCID: PMC9380658 DOI: 10.1186/s13045-022-01329-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/30/2022] [Indexed: 12/30/2022] Open
Abstract
The pathophysiology of COVID-19-associated coagulopathy is complex and not fully understood. SARS-CoV-2 spike protein (SP) may activate platelets and interact with fibrin(ogen). We aimed to investigate whether isolated SP can be present in clots retrieved in COVID-19 patients with acute ischemic stroke (by mechanical thrombectomy) and myocardial infarction. In this pilot study, we could detect SP, but not nucleocapsid protein, on platelets of COVID-19 patients’ thrombi. In addition, in all three COVID-19 thrombi analyzed for molecular biology, no SARS-CoV-2 RNA could be detected by real-time polymerase chain reaction. These data could support the hypothesis that free SP, besides the whole virus, may be the trigger of platelet activation and clot formation in COVID-19.
Collapse
Affiliation(s)
- Manuela De Michele
- Emergency Department, Stroke Unit, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
| | - Giulia d'Amati
- Department of Radiology, Oncology and Pathological Science, Sapienza University of Rome, Rome, Italy
| | - Martina Leopizzi
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latin, Italy
| | - Marta Iacobucci
- Department of Human Neurosciences, Neuroradiology Unit, Sapienza University of Rome, Rome, Italy
| | - Irene Berto
- Emergency Department, Stroke Unit, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Svetlana Lorenzano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Laura Mazzuti
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | | - Oscar G Schiavo
- Emergency Department, Stroke Unit, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Danilo Toni
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Khan SA, Lee TKW. Network pharmacology and molecular docking-based investigations of Kochiae Fructus’s active phytomolecules, molecular targets, and pathways in treating COVID-19. Front Microbiol 2022; 13:972576. [PMID: 35992697 PMCID: PMC9389148 DOI: 10.3389/fmicb.2022.972576] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 disease is caused by SARS-CoV-2. Hyper-inflammation mediated by proinflammatory cytokines is humans’ primary etiology of SARS-CoV-2 infection. Kochiae Fructus is widely used in China as traditional Chinese medicine (TCM) to treat inflammatory diseases. Due to its anti-inflammatory properties, we hypothesized that Kochiae Fructus would be a promising therapeutic agent for COVID-19. The active phytomolecules, targets, and molecular pathways of Kochiae Fructus in treating COVID-19 have not been explored yet. Network pharmacology analysis was performed to determine the active phytomolecules, molecular targets, and pathways of Kochiae Fructus. The phytomolecules in Kochiae Fructus were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and their potential targets were predicted with the SwissTargetPrediction webserver. COVID-19-related targets were recovered from the GeneCards database. Intersecting targets were determined with the VENNY tool. The Protein-protein interaction (PPI) and Molecular Complex Detection (MCODE) network analyses were constructed using the Cytoscape software. Using the DAVID tool, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed on the intersecting targets. AutoDock Vina (version 1.2.0.) was used for molecular docking analysis. Six active phytomolecules and 165 their potential targets, 1,745 COVID-19-related targets, and 34 intersecting targets were identified. Network analysis determined 13 anti-COVID-19 core targets and three key active phytomolecules (Oleanolic acid, 9E,12Z-octadecadienoic acid, and 11,14-eicosadienoic acid). Three key pathways (pathways in cancer, the TNF signaling pathway, and lipid and atherosclerosis) and the top six anti-COVID-19 core targets (IL-6, PPARG, MAPK3, PTGS2, ICAM1, and MAPK1) were determined to be involved in the treatment of COVID-19 with active phytomolecules of Kochiae Fructus. Molecular docking analysis revealed that three key active phytomolecules of Kochiae Fructus had a regulatory effect on the identified anti-COVID-19 core targets. Hence, these findings offer a foundation for developing anti-COVID-19 drugs based on phytomolecules of Kochiae Fructus.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- *Correspondence: Shakeel Ahmad Khan,
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Terence Kin Wah Lee,
| |
Collapse
|
33
|
Exploiting Bacteria for Improving Hypoxemia of COVID-19 Patients. Biomedicines 2022; 10:biomedicines10081851. [PMID: 36009399 PMCID: PMC9405060 DOI: 10.3390/biomedicines10081851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Although useful in the time-race against COVID-19, CPAP cannot provide oxygen over the physiological limits imposed by severe pulmonary impairments. In previous studies, we reported that the administration of the SLAB51 probiotics reduced risk of developing respiratory failure in severe COVID-19 patients through the activation of oxygen sparing mechanisms providing additional oxygen to organs critical for survival. Methods: This “real life” study is a retrospective analysis of SARS-CoV-2 infected patients with hypoxaemic acute respiratory failure secondary to COVID-19 pneumonia undergoing CPAP treatment. A group of patients managed with ad interim routinely used therapy (RUT) were compared to a second group treated with RUT associated with SLAB51 oral bacteriotherapy (OB). Results: At baseline, patients receiving SLAB51 showed significantly lower blood oxygenation than controls. An opposite condition was observed after 3 days of treatment, despite the significantly reduced amount of oxygen received by patients taking SLAB51. At 7 days, a lower prevalence of COVID-19 patients needing CPAP in the group taking probiotics was observed. The administration of SLAB51 is a complementary approach for ameliorating oxygenation conditions at the systemic level. Conclusion: This study proves that probiotic administration results in an additional boost in alleviating hypoxic conditions, permitting to limit on the use of CPAP and its contraindications.
Collapse
|