1
|
Ishigaki H, Itoh Y. Translational research on pandemic virus infection using nonhuman primate models. Virology 2025; 606:110511. [PMID: 40139071 DOI: 10.1016/j.virol.2025.110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
After the COVID-19 pandemic, nonhuman primate (NHP) models, which are necessary for the rapid development of vaccines and new medical therapies, have become important in studies on infectious diseases because of their genetic, metabolic, and immunological similarities to humans. Our group has long been using NHP models in studies on infectious diseases including H1N1 influenza pandemic and COVID-19. Despite limitations such as the limited number of animals and the husbandry requirements, NHP models have contributed to the prediction of the pathogenicity of emerging viruses and the evaluation of the efficacy of vaccines and therapeutics due to the similarity of NHP models to humans before starting clinical trials to select good candidates of vaccines and drugs. In this review, the findings obtained in NHP infectious disease models of influenza and COVID-19 are summarized to clarify the benefits of NHP models for studies on infectious diseases. We believe that this review will support future research in exploring new perspectives for the development of vaccines and therapies targeting influenza, COVID-19, and infectious diseases in future pandemics.
Collapse
Affiliation(s)
- Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, 460 Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, 460 Setatsukinowa, Otsu, Shiga, 520-2192, Japan; Central Research Laboratory, Shiga University of Medical Science, 205 Setatsukinowa, Otsu, Shiga, 520-2192, Japan.
| |
Collapse
|
2
|
Marcos-Villar L, Perdiguero B, López-Bravo M, Zamora C, Sin L, Álvarez E, Sorzano CÓS, Sánchez-Cordón PJ, Casasnovas JM, Astorgano D, García-Arriaza J, Anthiya S, Borrajo ML, Lou G, Cuesta B, Franceschini L, Gelpí JL, Thielemans K, Sisteré-Oró M, Meyerhans A, García F, Esteban I, López-Bigas N, Plana M, Alonso MJ, Esteban M, Gómez CE. Heterologous mRNA/MVA delivering trimeric-RBD as effective vaccination regimen against SARS-CoV-2: COVARNA Consortium. Emerg Microbes Infect 2024; 13:2387906. [PMID: 39087555 PMCID: PMC11313003 DOI: 10.1080/22221751.2024.2387906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Despite the high efficiency of current SARS-CoV-2 mRNA vaccines in reducing COVID-19 morbidity and mortality, waning immunity and the emergence of resistant variants underscore the need for novel vaccination strategies. This study explores a heterologous mRNA/Modified Vaccinia virus Ankara (MVA) prime/boost regimen employing a trimeric form of the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein compared to a homologous MVA/MVA regimen. In C57BL/6 mice, the RBD was delivered during priming via an mRNA vector encapsulated in nanoemulsions (NE) or lipid nanoparticles (LNP), followed by a booster with a replication-deficient MVA-based recombinant virus (MVA-RBD). This heterologous mRNA/MVA regimen elicited strong anti-RBD binding and neutralizing antibodies (BAbs and NAbs) against both the ancestral SARS-CoV-2 strain and different variants of concern (VoCs). Additionally, this protocol induced robust and polyfunctional RBD-specific CD4 and CD8 T cell responses, particularly in animals primed with mLNP-RBD. In K18-hACE2 transgenic mice, the LNP-RBD/MVA combination provided complete protection from morbidity and mortality following a live SARS-CoV-2 challenge compared with the partial protection observed with mNE-RBD/MVA or MVA/MVA regimens. Although the mNE-RBD/MVA regimen only protects half of the animals, it was able to induce antibodies with Fc-mediated effector functions besides NAbs. Moreover, viral replication and viral load in the respiratory tract were markedly reduced and decreased pro-inflammatory cytokine levels were observed. These results support the efficacy of heterologous mRNA/MVA vaccine combinations over homologous MVA/MVA regimen, using alternative nanocarriers that circumvent intellectual property restrictions of current mRNA vaccine formulations.
Collapse
MESH Headings
- Animals
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Mice
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Antibodies, Neutralizing/immunology
- Mice, Inbred C57BL
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Humans
- Female
- Nanoparticles/administration & dosage
- Vaccination
- mRNA Vaccines/administration & dosage
- Mice, Transgenic
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- CD8-Positive T-Lymphocytes/immunology
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/genetics
- Liposomes
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | | | - Pedro J. Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain
| | | | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Shubaash Anthiya
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Mireya L. Borrajo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gustavo Lou
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Belén Cuesta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Josep L. Gelpí
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona (UB), Barcelona, Spain
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Andreas Meyerhans
- Infection Biology Laboratory, Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Felipe García
- Infectious Diseases Department, Hospital Clínic, UB,Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, UB, Barcelona, Spain
| | - Ignasi Esteban
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, UB, Barcelona, Spain
| | - Núria López-Bigas
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Madrid, Spain
| | - Montserrat Plana
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, UB, Barcelona, Spain
| | - María J. Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias (IDIS), Santiago de Compostela, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
3
|
Tscherne A, Kalodimou G, Kupke A, Rohde C, Freudenstein A, Jany S, Kumar S, Sutter G, Krähling V, Becker S, Volz A. Rapid Development of Modified Vaccinia Virus Ankara (MVA)-Based Vaccine Candidates Against Marburg Virus Suitable for Clinical Use in Humans. Vaccines (Basel) 2024; 12:1316. [PMID: 39771978 PMCID: PMC11680136 DOI: 10.3390/vaccines12121316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Marburg virus (MARV) is the etiological agent of Marburg Virus Disease (MVD), a rare but severe hemorrhagic fever disease with high case fatality rates in humans. Smaller outbreaks have frequently been reported in countries in Africa over the last few years, and confirmed human cases outside Africa are, so far, exclusively imported by returning travelers. Over the previous years, MARV has also spread to non-endemic African countries, demonstrating its potential to cause epidemics. Although MARV-specific vaccines are evaluated in preclinical and clinical research, none have been approved for human use. Modified Vaccinia virus Ankara (MVA), a well-established viral vector used to generate vaccines against emerging pathogens, can deliver multiple antigens and has a remarkable clinical safety and immunogenicity record, further supporting its evaluation as a vaccine against MARV. The rapid availability of safe and effective MVA-MARV vaccine candidates would expand the possibilities of multi-factored intervention strategies in endemic countries. METHODS We have used an optimized methodology to rapidly generate and characterize recombinant MVA candidate vaccines that meet the quality requirements to proceed to human clinical trials. As a proof-of-concept for the optimized methodology, we generated two recombinant MVAs that deliver either the MARV glycoprotein (MVA-MARV-GP) or the MARV nucleoprotein (MVA-MARV-NP). RESULTS Infections of human cell cultures with recombinant MVA-MARV-GP and MVA-MARV-NP confirmed the efficient synthesis of MARV-GP and MARV-NP proteins in mammalian cells, which are non-permissive for MVA replication. Prime-boost immunizations in C57BL/6J mice readily induced circulating serum antibodies binding to recombinant MARV-GP and MARV-NP proteins. Moreover, the MVA-MARV-candidate vaccines elicited MARV-specific T-cell responses in C57BL/6J mice. CONCLUSIONS We confirmed the suitability of our two backbone viruses MVA-mCherry and MVA-GFP in a proof-of-concept study to rapidly generate candidate vaccines against MARV. However, further studies are warranted to characterize the protective efficacy of these recombinant MVA-MARV vaccines in other preclinical models and to evaluate them as vaccine candidates in humans.
Collapse
Affiliation(s)
- Alina Tscherne
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Georgia Kalodimou
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Alexandra Kupke
- Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany; (A.K.); (C.R.); (S.B.)
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, 35037 Marburg, Germany
| | - Cornelius Rohde
- Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany; (A.K.); (C.R.); (S.B.)
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, 35037 Marburg, Germany
| | - Astrid Freudenstein
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
| | - Sylvia Jany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
| | - Satendra Kumar
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilians University (LMU Munich), 85764 Oberschleißheim, Germany; (A.T.); (G.K.); (A.F.); (S.J.); (S.K.); (G.S.)
- German Center for Infection Research, Partner Site Munich, 85764 Oberschleißheim, Germany
| | - Verena Krähling
- Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany; (A.K.); (C.R.); (S.B.)
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, 35037 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, 35037 Marburg, Germany; (A.K.); (C.R.); (S.B.)
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, 35037 Marburg, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 30559 Hannover, Germany
| |
Collapse
|
4
|
Koopman G, Verhoeven T, Mooij P, Acar RF, Harmand T, Flanagan L, Bakker J, Böszörményi KP, Bontrop RE, Langermans JAM, Ploegh HL, Verschoor EJ, Vugts DJ, Pishesha N, Stammes MA. Imaging the immune sequelae of infection with SARS-CoV-2 in nonhuman primates by using two nanobody PET-tracers. J Med Virol 2024; 96:e29956. [PMID: 39400953 DOI: 10.1002/jmv.29956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacts multiple anatomical sites. Whether this is due to the virus itself or is a secondary effect caused by the influx and activation of immune cells is not known. Positron emission tomography (PET) with immunoglobulins can provide insights into which sites and cells are activated in a living animal. Our aim is to use two nanobodies as tools to monitor (1) the distribution of antigen presenting cells (APC) by virtue of their Mafa-DR expression profile, (2) virus-infected cells and viral particles using a nanobody against the SARS-CoV-2 spike protein. Two [89Zr]-labeled nanobodies that target the SARS-CoV-2 spike protein and major histocompatability complex (MHC) class II antigens (Mafa-DR), respectively, are used to monitor their distribution during an experimental SARS-CoV-2 infection in a nonhuman primate model. Scans are obtained before infection and on Day 3 and 10 post infection (pi) in two macaques each. The [89Zr]anti-SARS-CoV-2 spike nanobody localized to SARS-CoV-2-associated lung lesions and the nasal mucosa, while the [89Zr]anti-human leukocyte antigen (HLA)-DR nanobody was predominantly found in non-affected lung tissue after infection. We also detected, pi, upregulation of the Mafa-DR signal, indicative of recruitment of professional APCs, in the superior sagittal sinus. [89Zr]-labeled nanobodies show recruitment of macrophages/monocytes in non-lesional lung tissue in cynomolgus macaques after experimental infection with SARS-CoV-2, as well as accumulation of the spike protein in both lung lesions and the nasal mucosa during infection. These results show the possibility of in vivo monitoring the quality and quantity of immune responses during the initial stages of an infection.
Collapse
Affiliation(s)
- Gerrit Koopman
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | - Tom Verhoeven
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Petra Mooij
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | - Roja F Acar
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | | | | | - Jaco Bakker
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
| | | | - Ronald E Bontrop
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
- Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Jan A M Langermans
- Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands
- Department Population Health Sciences, Unit Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Danielle J Vugts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Novalia Pishesha
- Cerberus Therapeutics, Cambridge, USA
- Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
5
|
Pérez P, Astorgano D, Albericio G, Flores S, Sánchez-Corzo C, Noriega MA, Sánchez-Cordón PJ, Labiod N, Delgado R, Casasnovas JM, Esteban M, García-Arriaza J. MVA-based vaccine candidates expressing SARS-CoV-2 prefusion-stabilized spike proteins of the Wuhan, Beta or Omicron BA.1 variants protect transgenic K18-hACE2 mice against Omicron infection and elicit robust and broad specific humoral and cellular immune responses. Front Immunol 2024; 15:1420304. [PMID: 39267752 PMCID: PMC11390564 DOI: 10.3389/fimmu.2024.1420304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Despite the decrease in mortality and morbidity due to SARS-CoV-2 infection, the incidence of infections due to Omicron subvariants of SARS-CoV-2 remains high. The mutations acquired by these subvariants, mainly concentrated in the receptor-binding domain (RBD), have caused a shift in infectivity and transmissibility, leading to a loss of effectiveness of the first authorized COVID-19 vaccines, among other reasons, by neutralizing antibody evasion. Hence, the generation of new vaccine candidates adapted to Omicron subvariants is of special interest in an effort to overcome this immune evasion. Here, an optimized COVID-19 vaccine candidate, termed MVA-S(3P_BA.1), was developed using a modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein from the Omicron BA.1 variant. The immunogenicity and efficacy induced by MVA-S(3P_BA.1) were evaluated in mice in a head-to-head comparison with the previously generated vaccine candidates MVA-S(3P) and MVA-S(3Pbeta), which express prefusion-stabilized S proteins from Wuhan strain and Beta variant, respectively, and with a bivalent vaccine candidate composed of a combination of MVA-S(3P) and MVA-S(3P_BA.1). The results showed that all four vaccine candidates elicited, after a single intramuscular dose, protection of transgenic K18-hACE2 mice challenged with SARS-CoV-2 Omicron BA.1, reducing viral loads, histopathological lesions, and levels of proinflammatory cytokines in the lungs. They also elicited anti-S IgG and neutralizing antibodies against various Omicron subvariants, with MVA-S(3P_BA.1) and the bivalent vaccine candidate inducing higher titers. Additionally, an intranasal immunization in C57BL/6 mice with all four vaccine candidates induced systemic and mucosal S-specific CD4+ and CD8+ T-cell and humoral immune responses, and the bivalent vaccine candidate induced broader immune responses, eliciting antibodies against the ancestral Wuhan strain and different Omicron subvariants. These results highlight the use of MVA as a potent and adaptable vaccine vector against new emerging SARS-CoV-2 variants, as well as the promising feature of combining multivalent MVA vaccine candidates.
Collapse
MESH Headings
- Animals
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Mice
- Mice, Transgenic
- Immunity, Humoral
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Humans
- Immunity, Cellular
- Angiotensin-Converting Enzyme 2/immunology
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensin-Converting Enzyme 2/metabolism
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Female
- Vaccines, DNA/immunology
- Vaccinia virus/immunology
- Vaccinia virus/genetics
- Immunogenicity, Vaccine
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cristina Sánchez-Corzo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - María A. Noriega
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Pathology Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Nuria Labiod
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
6
|
Prakash S, Dhanushkodi NR, Singer M, Quadiri A, Zayou L, Vahed H, Coulon PG, Ibraim IC, Tafoya C, Hitchcock L, Landucci G, Forthal DN, El Babsiri A, Tifrea DF, Figueroa CJ, Nesburn AB, Kuppermann BD, Gil D, Jones TM, Ulmer JB, BenMohamed L. A Broad-Spectrum Multi-Antigen mRNA/LNP-Based Pan-Coronavirus Vaccine Induced Potent Cross-Protective Immunity Against Infection and Disease Caused by Highly Pathogenic and Heavily Spike-Mutated SARS-CoV-2 Variants of Concern in the Syrian Hamster Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580225. [PMID: 38405942 PMCID: PMC10888826 DOI: 10.1101/2024.02.14.580225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The first-generation Spike-alone-based COVID-19 vaccines have successfully contributed to reducing the risk of hospitalization, serious illness, and death caused by SARS-CoV-2 infections. However, waning immunity induced by these vaccines failed to prevent immune escape by many variants of concern (VOCs) that emerged from 2020 to 2024, resulting in a prolonged COVID-19 pandemic. We hypothesize that a next-generation Coronavirus (CoV) vaccine incorporating highly conserved non-Spike SARS-CoV-2 antigens would confer stronger and broader cross-protective immunity against multiple VOCs. In the present study, we identified ten non-Spike antigens that are highly conserved in 8.7 million SARS-CoV-2 strains, twenty-one VOCs, SARS-CoV, MERS-CoV, Common Cold CoVs, and animal CoVs. Seven of the 10 antigens were preferentially recognized by CD8+ and CD4+ T-cells from unvaccinated asymptomatic COVID-19 patients, irrespective of VOC infection. Three out of the seven conserved non-Spike T cell antigens belong to the early expressed Replication and Transcription Complex (RTC) region, when administered to the golden Syrian hamsters, in combination with Spike, as nucleoside-modified mRNA encapsulated in lipid nanoparticles (LNP) (i.e., combined mRNA/LNP-based pan-CoV vaccine): (i) Induced high frequencies of lung-resident antigen-specific CXCR5+CD4+ T follicular helper (TFH) cells, GzmB+CD4+ and GzmB+CD8+ cytotoxic T cells (TCYT), and CD69+IFN-γ+TNFα+CD4+ and CD69+IFN-γ+TNFα+CD8+ effector T cells (TEFF); and (ii) Reduced viral load and COVID-19-like symptoms caused by various VOCs, including the highly pathogenic B.1.617.2 Delta variant and the highly transmittable heavily Spike-mutated XBB1.5 Omicron sub-variant. The combined mRNA/LNP-based pan-CoV vaccine could be rapidly adapted for clinical use to confer broader cross-protective immunity against emerging highly mutated and pathogenic VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Hawa Vahed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Izabela Coimbra Ibraim
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Christine Tafoya
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Lauren Hitchcock
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Gary Landucci
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
| | - Donald N. Forthal
- BSL-3 Laboratories, High Containment Core Facility, School of Medicine, University of California, Irvine
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Assia El Babsiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, Irvine, CA 92697
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns & Critical Care, School of Medicine, Irvine, CA 92697
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA 92697
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA 92660, USA
| |
Collapse
|
7
|
Pérez P, Albericio G, Astorgano D, Flores S, Sánchez-Corzo C, Sánchez-Cordón PJ, Luczkowiak J, Delgado R, Casasnovas JM, Esteban M, García-Arriaza J. Preclinical immune efficacy against SARS-CoV-2 beta B.1.351 variant by MVA-based vaccine candidates. Front Immunol 2023; 14:1264323. [PMID: 38155964 PMCID: PMC10754519 DOI: 10.3389/fimmu.2023.1264323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
The constant appearance of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs) has jeopardized the protective capacity of approved vaccines against coronavirus disease-19 (COVID-19). For this reason, the generation of new vaccine candidates adapted to the emerging VoCs is of special importance. Here, we developed an optimized COVID-19 vaccine candidate using the modified vaccinia virus Ankara (MVA) vector to express a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein, containing 3 proline (3P) substitutions in the S protein derived from the beta (B.1.351) variant, termed MVA-S(3Pbeta). Preclinical evaluation of MVA-S(3Pbeta) in head-to-head comparison to the previously generated MVA-S(3P) vaccine candidate, expressing a full-length prefusion-stabilized Wuhan S protein (with also 3P substitutions), demonstrated that two intramuscular doses of both vaccine candidates fully protected transgenic K18-hACE2 mice from a lethal challenge with SARS-CoV-2 beta variant, reducing mRNA and infectious viral loads in the lungs and in bronchoalveolar lavages, decreasing lung histopathological lesions and levels of proinflammatory cytokines in the lungs. Vaccination also elicited high titers of anti-S Th1-biased IgGs and neutralizing antibodies against ancestral SARS-CoV-2 Wuhan strain and VoCs alpha, beta, gamma, delta, and omicron. In addition, similar systemic and local SARS-CoV-2 S-specific CD4+ and CD8+ T-cell immune responses were elicited by both vaccine candidates after a single intranasal immunization in C57BL/6 mice. These preclinical data support clinical evaluation of MVA-S(3Pbeta) and MVA-S(3P), to explore whether they can diversify and potentially increase recognition and protection of SARS-CoV-2 VoCs.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Cristina Sánchez-Corzo
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Pathology Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
8
|
Gómez-Carballa A, Albericio G, Montoto-Louzao J, Pérez P, Astorgano D, Rivero-Calle I, Martinón-Torres F, Esteban M, Salas A, García-Arriaza J. Lung transcriptomics of K18-hACE2 mice highlights mechanisms and genes involved in the MVA-S vaccine-mediated immune response and protection against SARS-CoV-2 infection. Antiviral Res 2023; 220:105760. [PMID: 37992765 DOI: 10.1016/j.antiviral.2023.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Unravelling the molecular mechanism of COVID-19 vaccines through transcriptomic pathways involved in the host response to SARS-CoV-2 infection is key to understand how vaccines work, and for the development of optimized COVID-19 vaccines that can prevent the emergence of SARS-CoV-2 variants of concern (VoCs) and future outbreaks. In this study, we investigated the effects of vaccination with a modified vaccinia virus Ankara (MVA)-based vector expressing the full-length SARS-CoV-2 spike protein (MVA-S) on the lung transcriptome from susceptible K18-hACE2 mice after SARS-CoV-2 infection. One dose of MVA-S regulated genes related to viral infection control, inflammation processes, T-cell response, cytokine production and IFN-γ signalling. Down-regulation of Rhcg and Tnfsf18 genes post-vaccination with one and two doses of MVA-S may represent a mechanism for controlling infection immunity and vaccine-induced protection. One dose of MVA-S provided partial protection with a distinct lung transcriptomic profile to healthy animals, while two doses of MVA-S fully protected against infection with a transcriptomic profile comparable to that of non-vaccinated healthy animals. This suggests that the MVA-S booster generates a robust and rapid antigen-specific immune response preventing virus infection. Notably, down-regulation of Atf3 and Zbtb16 genes in mice vaccinated with two doses of MVA-S may contribute to vaccine control of innate immune system and inflammation processes in the lungs during SARS-CoV-2 infection. This study shows host transcriptomic mechanisms likely involved in the MVA-S vaccine-mediated immune response against SARS-CoV-2 infection, which could help in improving vaccine dose assessment and developing novel, well-optimized SARS-CoV-2 vaccine candidates against prevalent or emerging VoCs.
Collapse
Affiliation(s)
- Alberto Gómez-Carballa
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Julián Montoto-Louzao
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Irene Rivero-Calle
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Federico Martinón-Torres
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain; Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela (CHUS), Santiago de Compostela, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Antonio Salas
- Genetics, Vaccines and Infectious Diseases Research Group (Genvip), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Unidade de Xenética, Instituto de Ciencias Forenses, Facultade de Medicina, Universidade de Santiago de Compostela, and GenPoB Research Group, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servicio Gallego de Salud (SERGAS), Santiago de Compostela, Galicia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain.
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain.
| |
Collapse
|
9
|
Abdelnabi R, Pérez P, Astorgano D, Albericio G, Kerstens W, Thibaut HJ, Coelmont L, Weynand B, Labiod N, Delgado R, Montenegro D, Puentes E, Rodríguez E, Neyts J, Dallmeier K, Esteban M, García-Arriaza J. Optimized vaccine candidate MVA-S(3P) fully protects against SARS-CoV-2 infection in hamsters. Front Immunol 2023; 14:1163159. [PMID: 37920464 PMCID: PMC10619667 DOI: 10.3389/fimmu.2023.1163159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/27/2023] [Indexed: 11/04/2023] Open
Abstract
The development of novel optimized vaccines against coronavirus disease 2019 (COVID-19) that are capable of controlling the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and the appearance of different variants of concern (VoC) is needed to fully prevent the transmission of the virus. In the present study, we describe the enhanced immunogenicity and efficacy elicited in hamsters by a modified vaccinia virus Ankara (MVA) vector expressing a full-length prefusion-stabilized SARS-CoV-2 spike (S) protein [termed MVA-S(3P)]. Hamsters vaccinated with one or two doses of MVA-S(3P) developed high titers of S-binding IgG antibodies and neutralizing antibodies against the ancestral Wuhan SARS-CoV-2 virus and VoC beta, gamma, and delta, as well as against omicron, although with a somewhat lower neutralization activity. After SARS-CoV-2 challenge, vaccinated hamsters did not lose body weight as compared to matched placebo (MVA-WT) controls. Consistently, vaccinated hamsters exhibited significantly reduced viral RNA in the lungs and nasal washes, and no infectious virus was detected in the lungs in comparison to controls. Furthermore, almost no lung histopathology was detected in MVA-S(3P)-vaccinated hamsters, which also showed significantly reduced levels of proinflammatory cytokines in the lungs compared to unvaccinated hamsters. These results reinforce the use of MVA-S(3P) as a vaccine candidate against COVID-19 in clinical trials.
Collapse
Affiliation(s)
- Rana Abdelnabi
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, KU Leuven, Leuven, Belgium
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Winnie Kerstens
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Hendrik Jan Thibaut
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Translational Platform Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Lotte Coelmont
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, KU Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Imaging and Pathology, Translational Cell and Tissue Research, Division of Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | - Nuria Labiod
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Microbiology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, Medical School, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, KU Leuven, Leuven, Belgium
| | - Kai Dallmeier
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology, Molecular Vaccinology and Vaccine Discovery, KU Leuven, Leuven, Belgium
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| |
Collapse
|
10
|
Yusuf M, Destiarani W, Widayat W, Yosua Y, Gumilar G, Tanudireja AS, Rohmatulloh FG, Maulana FA, Baroroh U, Hardianto A, Maharani R, Nurainy N, Wijayadikusumah AR, Ristandi RB, Atmosukarto IIC, Subroto T. Coarse-grained molecular dynamics-guided immunoinformatics to explain the binder and non-binder classification of Cytotoxic T-cell epitope for SARS-CoV-2 peptide-based vaccine discovery. PLoS One 2023; 18:e0292156. [PMID: 37796941 PMCID: PMC10553366 DOI: 10.1371/journal.pone.0292156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
Epitope-based peptide vaccine can elicit T-cell immunity against SARS-CoV-2 to clear the infection. However, finding the best epitope from the whole antigen is challenging. A peptide screening using immunoinformatics usually starts from MHC-binding peptide, immunogenicity, cross-reactivity with the human proteome, to toxicity analysis. This pipeline classified the peptides into three categories, i.e., strong-, weak-, and non-binder, without incorporating the structural aspect. For this reason, the molecular detail that discriminates the binders from non-binder is interesting to be investigated. In this study, five CTL epitopes against HLA-A*02:01 were identified from the coarse-grained molecular dynamics-guided immunoinformatics screening. The strong binder showed distinctive activities from the non-binder in terms of structural and energetic properties. Furthermore, the second residue from the nonameric peptide was most important in the interaction with HLA-A*02:01. By understanding the nature of MHC-peptide interaction, we hoped to improve the chance of finding the best epitope for a peptide vaccine candidate.
Collapse
Affiliation(s)
- Muhammad Yusuf
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Wanda Destiarani
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Wahyu Widayat
- Faculty of Pharmacy, Pharmaceutical Biology Science, Universitas Mulawarman, Samarinda, East Kalimantan, Indonesia
| | - Yosua Yosua
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Gilang Gumilar
- Research Center for Electronics, National Research and Innovation Agency Republic of Indonesia (BRIN), Bandung, West Java, Indonesia
| | - Angelica Shalfani Tanudireja
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Fauzian Giansyah Rohmatulloh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Farhan Azhwin Maulana
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Umi Baroroh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Department of Biotechnology, Indonesian School of Pharmacy, Bandung, West Java, Indonesia
| | - Ari Hardianto
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Rani Maharani
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Neni Nurainy
- Department of Research and Development, PT Bio Farma, Bandung, West Java, Indonesia
| | | | - Ryan B. Ristandi
- West Java Provincial Reference Laboratory, Bandung, West Java, Indonesia
| | | | - Toto Subroto
- Faculty of Mathematics and Natural Sciences, Department of Chemistry, Universitas Padjadjaran, Bandung, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
11
|
Wang Y. Rendezvous with Vaccinia Virus in the Post-smallpox Era: R&D Advances. Viruses 2023; 15:1742. [PMID: 37632084 PMCID: PMC10457812 DOI: 10.3390/v15081742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Smallpox was eradicated in less than 200 years after Edward Jenner's practice of cowpox variolation in 1796. The forty-three years of us living free of smallpox, beginning in 1979, never truly separated us from poxviruses. The recent outbreak of monkeypox in May 2022 might well warn us of the necessity of keeping up both the scientific research and public awareness of poxviruses. One of them in particular, the vaccinia virus (VACV), has been extensively studied as a vector given its broad host range, extraordinary thermal stability, and exceptional immunogenicity. Unceasing fundamental biological research on VACV provides us with a better understanding of its genetic elements, involvement in cellular signaling pathways, and modulation of host immune responses. This enables the rational design of safer and more efficacious next-generation vectors. To address the new technological advancement within the past decade in VACV research, this review covers the studies of viral immunomodulatory genes, modifications in commonly used vectors, novel mechanisms for rapid generation and purification of recombinant virus, and several other innovative approaches to studying its biology.
Collapse
Affiliation(s)
- Yuxiang Wang
- Vaccine Research Center, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
13
|
Lorenzo MM, Marín-López A, Chiem K, Jimenez-Cabello L, Ullah I, Utrilla-Trigo S, Calvo-Pinilla E, Lorenzo G, Moreno S, Ye C, Park JG, Matía A, Brun A, Sánchez-Puig JM, Nogales A, Mothes W, Uchil PD, Kumar P, Ortego J, Fikrig E, Martinez-Sobrido L, Blasco R. Vaccinia Virus Strain MVA Expressing a Prefusion-Stabilized SARS-CoV-2 Spike Glycoprotein Induces Robust Protection and Prevents Brain Infection in Mouse and Hamster Models. Vaccines (Basel) 2023; 11:1006. [PMID: 37243110 PMCID: PMC10220993 DOI: 10.3390/vaccines11051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The COVID-19 pandemic has underscored the importance of swift responses and the necessity of dependable technologies for vaccine development. Our team previously developed a fast cloning system for the modified vaccinia virus Ankara (MVA) vaccine platform. In this study, we reported on the construction and preclinical testing of a recombinant MVA vaccine obtained using this system. We obtained recombinant MVA expressing the unmodified full-length SARS-CoV-2 spike (S) protein containing the D614G amino-acid substitution (MVA-Sdg) and a version expressing a modified S protein containing amino-acid substitutions designed to stabilize the protein a in a pre-fusion conformation (MVA-Spf). S protein expressed by MVA-Sdg was found to be expressed and was correctly processed and transported to the cell surface, where it efficiently produced cell-cell fusion. Version Spf, however, was not proteolytically processed, and despite being transported to the plasma membrane, it failed to induce cell-cell fusion. We assessed both vaccine candidates in prime-boost regimens in the susceptible transgenic K18-human angiotensin-converting enzyme 2 (K18-hACE2) in mice and in golden Syrian hamsters. Robust immunity and protection from disease was induced with either vaccine in both animal models. Remarkably, the MVA-Spf vaccine candidate produced higher levels of antibodies, a stronger T cell response, and a higher degree of protection from challenge. In addition, the level of SARS-CoV-2 in the brain of MVA-Spf inoculated mice was decreased to undetectable levels. Those results add to our current experience and range of vaccine vectors and technologies for developing a safe and effective COVID-19 vaccine.
Collapse
Affiliation(s)
- María M. Lorenzo
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
| | - Alejandro Marín-López
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (A.M.-L.); (I.U.); (E.F.)
| | - Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Luis Jimenez-Cabello
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Irfan Ullah
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (A.M.-L.); (I.U.); (E.F.)
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Sandra Moreno
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Alejandro Matía
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
| | - Alejandro Brun
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Juana M. Sánchez-Puig
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
| | - Aitor Nogales
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; (W.M.); (P.D.U.)
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA; (W.M.); (P.D.U.)
| | - Priti Kumar
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal, INIA CSIC, Carretera Valdeolmos a El Casar, Valdeolmos, E-28130 Madrid, Spain; (L.J.-C.); (S.U.-T.); (E.C.-P.); (G.L.); (A.B.); (A.N.); (J.O.)
| | - Erol Fikrig
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA; (A.M.-L.); (I.U.); (E.F.)
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (K.C.); (C.Y.); (J.-G.P.); (P.K.)
| | - Rafael Blasco
- Departamento de Biotecnología, INIA CSIC, Carretera La Coruña km 7.5, E-28040 Madrid, Spain; (M.M.L.); (S.M.); (A.M.); (J.M.S.-P.)
| |
Collapse
|
14
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
15
|
Koopman G, Amacker M, Stegmann T, Verschoor EJ, Verstrepen BE, Bhoelan F, Bemelman D, Böszörményi KP, Fagrouch Z, Kiemenyi-Kayere G, Mortier D, Verel DE, Niphuis H, Acar RF, Kondova I, Kap YS, Bogers WMJM, Mooij P, Fleury S. A low dose of RBD and TLR7/8 agonist displayed on influenza virosome particles protects rhesus macaque against SARS-CoV-2 challenge. Sci Rep 2023; 13:5074. [PMID: 36977691 PMCID: PMC10044094 DOI: 10.1038/s41598-023-31818-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Influenza virosomes serve as antigen delivery vehicles and pre-existing immunity toward influenza improves the immune responses toward antigens. Here, vaccine efficacy was evaluated in non-human primates with a COVID-19 virosome-based vaccine containing a low dose of RBD protein (15 µg) and the adjuvant 3M-052 (1 µg), displayed together on virosomes. Vaccinated animals (n = 6) received two intramuscular administrations at week 0 and 4 and challenged with SARS-CoV-2 at week 8, together with unvaccinated control animals (n = 4). The vaccine was safe and well tolerated and serum RBD IgG antibodies were induced in all animals and in the nasal washes and bronchoalveolar lavages in the three youngest animals. All control animals became strongly sgRNA positive in BAL, while all vaccinated animals were protected, although the oldest vaccinated animal (V1) was transiently weakly positive. The three youngest animals had also no detectable sgRNA in nasal wash and throat. Cross-strain serum neutralizing antibodies toward Wuhan-like, Alpha, Beta, and Delta viruses were observed in animals with the highest serum titers. Pro-inflammatory cytokines IL-8, CXCL-10 and IL-6 were increased in BALs of infected control animals but not in vaccinated animals. Virosomes-RBD/3M-052 prevented severe SARS-CoV-2, as shown by a lower total lung inflammatory pathology score than control animals.
Collapse
Grants
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
- TRANSVAC2 2002-08-AVVAX-COVID-19, TRANSVAC2_TNA2002-08 European Commission
Collapse
Affiliation(s)
- Gerrit Koopman
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands.
| | - Mario Amacker
- Mymetics SA, 4 Route de La Corniche, 1066, Epalinges, Switzerland
- Department for BioMedical Research DBMR, Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Toon Stegmann
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Ernst J Verschoor
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Babs E Verstrepen
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Farien Bhoelan
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Denzel Bemelman
- Mymetics BV, JH Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Kinga P Böszörményi
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Zahra Fagrouch
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | | | - Daniella Mortier
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Dagmar E Verel
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Henk Niphuis
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Roja Fidel Acar
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Ivanela Kondova
- Animal Science Department, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Yolanda S Kap
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Willy M J M Bogers
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Petra Mooij
- Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
| | - Sylvain Fleury
- Mymetics SA, 4 Route de La Corniche, 1066, Epalinges, Switzerland.
| |
Collapse
|
16
|
Villadiego J, García-Arriaza J, Ramírez-Lorca R, García-Swinburn R, Cabello-Rivera D, Rosales-Nieves AE, Álvarez-Vergara MI, Cala-Fernández F, García-Roldán E, López-Ogáyar JL, Zamora C, Astorgano D, Albericio G, Pérez P, Muñoz-Cabello AM, Pascual A, Esteban M, López-Barneo J, Toledo-Aral JJ. Full protection from SARS-CoV-2 brain infection and damage in susceptible transgenic mice conferred by MVA-CoV2-S vaccine candidate. Nat Neurosci 2023; 26:226-238. [PMID: 36624276 DOI: 10.1038/s41593-022-01242-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Vaccines against SARS-CoV-2 have been shown to be safe and effective but their protective efficacy against infection in the brain is yet unclear. Here, in the susceptible transgenic K18-hACE2 mouse model of severe coronavirus disease 2019 (COVID-19), we report a spatiotemporal description of SARS-CoV-2 infection and replication through the brain. SARS-CoV-2 brain replication occurs primarily in neurons, leading to neuronal loss, signs of glial activation and vascular damage in mice infected with SARS-CoV-2. One or two doses of a modified vaccinia virus Ankara (MVA) vector expressing the SARS-CoV-2 spike (S) protein (MVA-CoV2-S) conferred full protection against SARS-CoV-2 cerebral infection, preventing virus replication in all areas of the brain and its associated damage. This protection was maintained even after SARS-CoV-2 reinfection. These findings further support the use of MVA-CoV2-S as a promising vaccine candidate against SARS-CoV-2/COVID-19.
Collapse
Affiliation(s)
- Javier Villadiego
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.
| | - Juan García-Arriaza
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain.
| | - Reposo Ramírez-Lorca
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Roberto García-Swinburn
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Daniel Cabello-Rivera
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alicia E Rosales-Nieves
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - María I Álvarez-Vergara
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Fernando Cala-Fernández
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Ernesto García-Roldán
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Juan L López-Ogáyar
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
| | - Carmen Zamora
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - David Astorgano
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Guillermo Albericio
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Patricia Pérez
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Madrid, Spain
| | - Ana M Muñoz-Cabello
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Mariano Esteban
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Juan José Toledo-Aral
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla, Spain.
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.
| |
Collapse
|
17
|
Pérez P, Astorgano D, Albericio G, Flores S, Sánchez-Cordón PJ, Luczkowiak J, Delgado R, Casasnovas JM, Esteban M, García-Arriaza J. Intranasal administration of a single dose of MVA-based vaccine candidates against COVID-19 induced local and systemic immune responses and protects mice from a lethal SARS-CoV-2 infection. Front Immunol 2022; 13:995235. [PMID: 36172368 PMCID: PMC9510595 DOI: 10.3389/fimmu.2022.995235] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Current coronavirus disease-19 (COVID-19) vaccines are administered by the intramuscular route, but this vaccine administration failed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infection in the upper respiratory tract, mainly due to the absence of virus-specific mucosal immune responses. It is hypothesized that intranasal (IN) vaccination could induce both mucosal and systemic immune responses that blocked SARS-CoV-2 transmission and COVID-19 progression. Here, we evaluated in mice IN administration of three modified vaccinia virus Ankara (MVA)-based vaccine candidates expressing the SARS-CoV-2 spike (S) protein, either the full-length native S or a prefusion-stabilized [S(3P)] protein; SARS-CoV-2-specific immune responses and efficacy were determined after a single IN vaccine application. Results showed that in C57BL/6 mice, MVA-based vaccine candidates elicited S-specific IgG and IgA antibodies in serum and bronchoalveolar lavages, respectively, and neutralizing antibodies against parental and SARS-CoV-2 variants of concern (VoC), with MVA-S(3P) being the most immunogenic vaccine candidate. IN vaccine administration also induced polyfunctional S-specific Th1-skewed CD4+ and cytotoxic CD8+ T-cell immune responses locally (in lungs and bronchoalveolar lymph nodes) or systemically (in spleen). Remarkably, a single IN vaccine dose protected susceptible K18-hACE2 transgenic mice from morbidity and mortality caused by SARS-CoV-2 infection, with MVA-S(3P) being the most effective candidate. Infectious SARS-CoV-2 viruses were undetectable in lungs and nasal washes, correlating with high titers of S-specific IgGs and neutralizing antibodies against parental SARS-CoV-2 and several VoC. Moreover, low histopathological lung lesions and low levels of pro-inflammatory cytokines in lungs and nasal washes were detected in vaccinated animals. These results demonstrated that a single IN inoculation of our MVA-based vaccine candidates induced potent immune responses, either locally or systemically, and protected animal models from COVID-19. These results also identified an effective vaccine administration route to induce mucosal immunity that should prevent SARS-CoV-2 host-to-host transmission.
Collapse
Affiliation(s)
- Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sara Flores
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Pathology Department, Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Joanna Luczkowiak
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Microbiology, Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Rafael Delgado
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Department of Microbiology, Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - José M. Casasnovas
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- *Correspondence: Mariano Esteban, ; Juan García-Arriaza,
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- *Correspondence: Mariano Esteban, ; Juan García-Arriaza,
| |
Collapse
|
18
|
Sakamoto A, Osawa H, Hashimoto H, Mizuno T, Hasyim AA, Abe YI, Okahashi Y, Ogawa R, Iyori M, Shida H, Yoshida S. A replication-competent smallpox vaccine LC16m8Δ-based COVID-19 vaccine. Emerg Microbes Infect 2022; 11:2359-2370. [PMID: 36069348 PMCID: PMC9527789 DOI: 10.1080/22221751.2022.2122580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Viral vectors are a potent vaccine platform for inducing humoral and T-cell immune responses. Among the various viral vectors, replication-competent ones are less commonly used for coronavirus disease 2019 (COVID-19) vaccine development compared with replication-deficient ones. Here, we show the availability of a smallpox vaccine LC16m8Δ (m8Δ) as a replication-competent viral vector for a COVID-19 vaccine. M8Δ is a genetically stable variant of the licensed and highly effective Japanese smallpox vaccine LC16m8. Here, we generated two m8Δ recombinants: one harbouring a gene cassette encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein, named m8Δ-SARS2(P7.5-S)-HA; and one encoding the S protein with a highly polybasic motif at the S1/S2 cleavage site, named m8Δ-SARS2(P7.5-SHN)-HA. M8Δ-SARS2(P7.5-S)-HA induced S-specific antibodies in mice that persisted for at least six weeks after a homologous boost immunization. All eight analysed serum samples displayed neutralizing activity against an S-pseudotyped virus at a level similar to that of serum samples from patients with COVID-19, and more than half (5/8) also had neutralizing activity against the Delta/B.1.617.2 variant of concern. Importantly, most serum samples also neutralized the infectious SARS-CoV-2 Wuhan and Delta/B.1.617.2 strains. In contrast, immunization with m8Δ-SARS2(P7.5-SHN)-HA elicited significantly lower antibody titres, and the induced antibodies had less neutralizing activity. Regarding T-cell immunity, both m8Δ recombinants elicited S-specific multifunctional CD8+ and CD4+ T-cell responses even after just a primary immunization. Thus, m8Δ provides an alternative method for developing a novel COVID-19 vaccine.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hiroaki Osawa
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hinata Hashimoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Tetsushi Mizuno
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan.,Department of Global Infectious Diseases, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Ammar A Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Yu-Ichi Abe
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Yuto Okahashi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Ryohei Ogawa
- Department of Radiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hisatoshi Shida
- Division of Molecular Virology, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| |
Collapse
|