1
|
Thulasinathan B, Suvilesh KN, Maram S, Grossmann E, Ghouri Y, Teixeiro EP, Chan J, Kaif JT, Rachagani S. The impact of gut microbial short-chain fatty acids on colorectal cancer development and prevention. Gut Microbes 2025; 17:2483780. [PMID: 40189834 PMCID: PMC11980463 DOI: 10.1080/19490976.2025.2483780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
Cancer is a long-term illness that involves an imbalance in cellular and immune functions. It can be caused by a range of factors, including exposure to environmental carcinogens, poor diet, infections, and genetic alterations. Maintaining a healthy gut microbiome is crucial for overall health, and short-chain fatty acids (SCFAs) produced by gut microbiota play a vital role in this process. Recent research has established that alterations in the gut microbiome led to decreased production of SCFA's in lumen of the colon, which associated with changes in the intestinal epithelial barrier function, and immunity, are closely linked to colorectal cancer (CRC) development and its progression. SCFAs influence cancer progression by modifying epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNA functions thereby affecting tumor initiation and metastasis. This suggests that restoring SCFA levels in colon through microbiota modulation could serve as an innovative strategy for CRC prevention and treatment. This review highlights the critical relationship between gut microbiota and CRC, emphasizing the potential of targeting SCFAs to enhance gut health and reduce CRC risk.
Collapse
Affiliation(s)
- Boobalan Thulasinathan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Kanve N. Suvilesh
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
| | - Sumanas Maram
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Erik Grossmann
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Yezaz Ghouri
- Department of Medicine, Digestive Centre, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
| | - Emma Pernas Teixeiro
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| | - Joshua Chan
- Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jussuf T. Kaif
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| | - Satyanarayana Rachagani
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Department of Surgery, Ellis Fischel Cancer Centre, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, USA
- Siteman Cancer Centre, Washington University, St. Louis, MO, USA
| |
Collapse
|
2
|
Wu W, Meng T, Wang Y, Chen J, Liang C. Prdx5 regulates macrophage polarization by modulating the TLR4/NF-κB pathway to promote apoptosis in chronic prostatitis. Int Immunopharmacol 2025; 151:114332. [PMID: 40015209 DOI: 10.1016/j.intimp.2025.114332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/01/2025]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a prevalent urological disorder characterized by urinary symptoms, pelvic pain, and sexual dysfunction. Despite its high prevalence, the pathogenesis of CP/CPPS remains poorly understood. Our study revealed that peroxiredoxin 5 (Prdx5) was upregulated in M1 macrophages and in mice with experimental autoimmune prostatitis (EAP), with its expression in macrophages being regulated in a reactive oxygen species (ROS)-dependent manner. Using western blotting, RT-qPCR, immunohistochemical staining, hematoxylin and eosin staining, immunofluorescence staining, flow cytometry, and cell co-culturing, it was demonstrated that the silencing of Prdx5 suppressed the polarization of macrophages towards the M1 phenotype. This inhibition reduced apoptosis in prostate epithelial cells and mitigated the progression of EAP. Furthermore, Prdx5 mediated its effects in macrophages and EAP via the Toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway. Our findings suggest that Prdx5 promoted the occurrence and development of CP/CPPS due to its promotion of M1 polarization and apoptosis of prostate epithelial cells in an ROS-dependent manner via the TLR4/NF-κB axis, indicating its potential as a therapeutic target to treat CP/CPPS.
Collapse
Affiliation(s)
- Weikang Wu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, Anhui, China
| | - Tong Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, Anhui, China
| | - Yufan Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, Anhui, China
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, Anhui, China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, and Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei 230022, Anhui, China.
| |
Collapse
|
3
|
Zhao YY, Wu ZJ, Du Y, Han QQ, Bai YY, Liu B, Li J. Gut microbiome and serum metabolites in neuropathic pain: The PPARα perspective. Behav Brain Res 2025; 482:115442. [PMID: 39864460 DOI: 10.1016/j.bbr.2025.115442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Neuropathic pain (NP) is a chronic disease state centred on neuroinflammation with a high prevalence and limited effective treatment options. Peroxisome proliferator-activated receptor α (PPARα) has emerged as a promising target for NP management due to its anti-inflammatory properties. Recent evidence highlights the critical role of the gut microbiome and its metabolites in NP pathogenesis. This study aimed to investigate whether PPARα modulates the development and alleviation of NP by influencing gut microbial communities and serum metabolites. 16S rDNA sequencing and liquid chromatography-mass spectrometry (LC-MS/MS) untargeted metabolomics analyses performed 14 days after the establishment of a chronic constriction injury (CCI) pain model in C57BL/6 J mice showed significant changes in gut microbial and metabolite levels in CCI mice. Intraperitoneal injection of the PPARα agonist GW7647 (5 mg/kg) significantly attenuated mechanical allodynia and thermal hyperalgesia in CCI mice, whereas injection of the PPARα antagonist GW6471 (20 mg/kg) produced the opposite effect. Immunofluorescence analysis revealed that GW7647 effectively suppressed microglial activation. Additionally, PPARα agonist and antagonist treatments markedly altered the composition and abundance of intestinal microbial communities in CCI mice. Further serum LC-MS/MS analysis identified 258 potential serum metabolic biomarkers, many of which correlated with changes in gut microbial composition. These findings demonstrate that PPARα influences serum metabolite profiles by modulating gut microbiota composition, which subsequently affects NP progression. This study provides novel insights into the mechanisms underlying NP and suggests potential therapeutic avenues targeting PPARα and gut microbiota.
Collapse
Affiliation(s)
- Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yue Du
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Qing-Qing Han
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yuan-Yuan Bai
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bin Liu
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China; Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China.
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
4
|
Deng AQ, Yue SY, Niu D, Zhang DD, Hou BB, Zhang L, Liang CZ, Du HX. The role of microbiota in the chronic prostatitis/chronic pelvis pain syndrome: a review. Front Microbiol 2025; 16:1488732. [PMID: 40143861 PMCID: PMC11937130 DOI: 10.3389/fmicb.2025.1488732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic prostatitis/Chronic pelvis pain syndrome (CP/CPPS), a kind of frequent urinary condition among adult males, has caused a lot of inconvenience to patients in life, whose pathogenesis is unclear. Current evidence suggests that it is most likely to be an autoimmune disease. Symbiotic microbes, a highly diverse biological community that harbors trillions of microbes in each region of the human body, have gradually made people realize their important role in immune regulation, material metabolism, and health maintenance. In recent years, increasing studies have shown a connection between microbiota and CP/CPPS. In view of this, we performed this review to summarize the literature pertaining to microbiota and its association with the pathophysiological mechanism of CP/CPPS. In addition, we gleaned the latest progress in the therapeutic strategy of CP/CPPS that related to microbiota regulation in order to offer new perspectives on the management of CP/CPPS.
Collapse
Affiliation(s)
- An-Qi Deng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
- The Second Clinical Medical School, Anhui Medical University, Hefei, Anhui, China
| | - Shao-Yu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Dan-Dan Zhang
- Clinical College of Anhui Medical University, Hefei, Anhui, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Hefei, Anhui, China
| |
Collapse
|
5
|
Jin L, Chen J, Fu J, Lou J, Guo Y, Liu X, Xu X, Fu H, Shou Q. PARP1 Exacerbates Prostatitis by Promoting M1 Macrophages Polarization through NF-κB Pathway. Inflammation 2025:10.1007/s10753-025-02247-y. [PMID: 40032778 DOI: 10.1007/s10753-025-02247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 03/05/2025]
Abstract
PARP1 is recognized for its role as a DNA damage sensor and its involvement in inflammatory diseases, but its impact on prostatitis remains unclear. We aimed to elucidate how PARP1 affects prostatitis progression. Our results showed that in 1% carrageenan-induced prostatitis mouse model, Parp1-/- prostatitic mice showed less pathological damage, decreased prostate weight, and lower inflammatory indices, decreased macrophage and neutrophil infiltration, down-regulated the expression of pro-inflammatory cytokines (IL-6, IL-12p70, CCL2, TNF) and up-regulated anti-inflammatory cytokine IL-10 in prostate tissue. The expression of NF-κB, TNF, and IL-6 mRNA in the prostate tissue of Parp1-/- prostatitic mice decreased. In vitro experiments revealed that M1(CD206-CD86+) macrophage in LPS-induced macrophage of Parp1-/- mice decreased, as did iNOS, TNF, IL-6 and NF-κB mRNA expression. Mechanically, treatment with the PARP1 inhibitor (AG14361) led to a significant reduction in NF-κB mRNA and Phospho-NF-κB P65 protein expression in macrophages. Following intervention with NF-κB inhibitors (Bay 11-7082), both IL-6 protein and mRNA levels were markedly diminished, meanwhile the secretion of IL-6, IL-10, IL-12p70, CCL2, IFN-γ, and TNF exhibited a pronounced dose-dependent decrease. Collectively, these findings indicated that PARP1 exacerbates carrageenan-induced prostatitis by promoting M1 macrophages polarization via the NF-κB pathway, suggesting PARP1 could be a potential therapeutic target for macrophage-based treatments in prostatitis.
Collapse
Affiliation(s)
- Lu Jin
- The Second Affiliated Hospital & Second Clinical Medical School, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Urology, Jiangshan People's Hospital, Jiangshan, 324100, China
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaxing Chen
- Department of Urology, Jiangshan People's Hospital, Jiangshan, 324100, China
| | - Jianhui Fu
- The Second Affiliated Hospital & Second Clinical Medical School, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingyi Lou
- The Second Affiliated Hospital & Second Clinical Medical School, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingxue Guo
- The Second Affiliated Hospital & Second Clinical Medical School, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xia Liu
- The Second Affiliated Hospital & Second Clinical Medical School, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaojuan Xu
- Chun 'an First People's Hospital, Hangzhou, 310053, China
| | - Huiying Fu
- The Second Affiliated Hospital & Second Clinical Medical School, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiyang Shou
- The Second Affiliated Hospital & Second Clinical Medical School, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Ma X, Lao Y, Bai Y, Guan X, Jiang J, Cui M, Dong Z. Study progress of etiologic mechanisms of chronic prostatitis/chronic pelvic pain syndrome. Int Immunopharmacol 2025; 148:114128. [PMID: 39864227 DOI: 10.1016/j.intimp.2025.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) represents a prevalent condition within the male genitourinary system. CP/CPPS occurs in men of varying ages, with an increasing recurrence rate associated with advancing age. The pathogenesis of CP/CPPS remains unclear, and clinical treatment typically focuses on symptom management with limited efficacy, resulting in significant economic and psychological burdens for patients. Research has increasingly identified several factors potentially associated with the development of CP/CPPS, including lifestyle, psychosocial influences, neuroendocrine elements, and other variables. This paper reviews recent studies on the risk factors and etiological mechanisms of CP/CPPS to enhance understanding of its mechanisms, providing a reference framework for future basic research and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xiyue Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yongfeng Lao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Yanan Bai
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Laboratory Medicine Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Xin Guan
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jingyi Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Minglu Cui
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhilong Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China; Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Ni Z, Chen L, Qian X, Yong Y, Wu M, Li Y, Li J, Wang Y, Li L, Shao Y, Chen A. Preliminary characterization of Ramaria botrytoides polysaccharide RB-P1-1 and analysis of its hypoglycemic effects by altering the gut microbiota and metabolites in mice with type 2 diabetes mellitus. Int J Biol Macromol 2025; 289:138774. [PMID: 39674485 DOI: 10.1016/j.ijbiomac.2024.138774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Gut microbiota has a symbiotic relationship with the host and is closely linked to the development of type 2 diabetes mellitus (T2DM). Polysaccharides are natural bioactive compounds with beneficial effects on T2DM; however, the mechanisms underlying their effects remain unclear. This study investigated the hypoglycemic effects of a purified polysaccharide, RB-P1-1, from Ramaria botrytoides and assessed its association with gut microbiota and metabolite changes using 16S rDNA sequencing and liquid chromatography-mass spectrometry, respectively. Hypoglycemic effects were evaluated after microbial community restoration via fecal microbiota transplantation. RB-P1-1 significantly improved hyperglycemia profiles and reshaped gut microbiota, increasing the abundance of Alistipes, Bacteroides, Ruminococcus, Odoribacter, Akkermansia, and Turicibacter. RB-P1-1 modulated microbiota metabolites associated with hypoglycemic effects, including pyridoxamine, L-histidine, quercetin, 3-phosphonopropionic acid, oleoylethanolamide, 3-ketocholanic acid, 4-phenylbutyric acid, LysoPC(P-16:0/0:0), LysoPC(18:2), and short-chain fatty acids, and altered various metabolic pathways involved in T2DM development. Gut microbiota that showed altered abundance were correlated with metabolites that showed altered concentration. Gut microbiota isolated from the RB-P1-1-treated group alleviated the symptoms associated with T2DM. These results suggest RB-P1-1 is an effective active ingredient in the treatment of T2DM by modulating gut microbiota and metabolites.
Collapse
Affiliation(s)
- Zaizhong Ni
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lingzhi Chen
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyi Qian
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yidan Yong
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Mengmeng Wu
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yihao Li
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Jinting Li
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yanan Wang
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Lulu Li
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Ying Shao
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Anhui Chen
- College of Food and Bioengineering, Xuzhou University of Technology, Xuzhou 221018, China; Jiangsu Province universities key laboratory (construction) of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou 221018, China.
| |
Collapse
|
8
|
Crabtree D, Seidler K, Barrow M. Pathophysiological mechanisms of gut dysbiosis and food allergy and an investigation of probiotics as an intervention for atopic disease. Clin Nutr ESPEN 2025; 65:189-204. [PMID: 39571752 DOI: 10.1016/j.clnesp.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND AND AIMS Epidemiological studies have associated reduced bacterial diversity and abundance and food allergy. This mechanistic review investigated the link between gut dysbiosis and food allergy with a focus on the role of short-chain fatty acids (SCFAs) in modulating T-cells. T-cell differentiation poses an opportunity to direct the immune cells towards an anergic regulatory T cell (Treg) or allergic T helper 2 (Th2) response. Probiotic intervention to prevent and/or treat atopic disease symptoms through this mechanistic pathway was explored. METHODOLOGY A narrative review was conducted following a three-stage systematic literature search of EMBASE and Medline databases. Ninety-six of 571 papers were accepted and critically appraised using ARRIVE and SIGN50 forms. Thematic analysis identified key pathophysiological mechanisms within the narrative of included papers. RESULTS Preclinical studies provided compelling evidence for SCFAs' modulation of T-cell differentiation, which may act through G-protein coupled receptors 41, 43 and 109a and histone deacetylase inhibition. Foxp3 transcription factor was implicated in the upregulation of Tregs. Human probiotic intervention studies aimed at increasing SCFAs and Tregs and preventing atopic disease showed inconclusive results. However, evidence for probiotic intervention in children with cow's milk protein allergy (CMPA) was more promising and warrants further investigation. CONCLUSION Preclinical evidence suggests that the mechanism of gut dysbiosis and reduced SCFAs may skew T-cell differentiation towards a Th2 response, thus inducing allergy symptoms. Probiotic trials were inconclusive: probiotics were predominantly unsuccessful in the prevention of allergic disease, however, may be able to modulate food allergy symptoms in infants with CMPA.
Collapse
Affiliation(s)
- Danielle Crabtree
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Karin Seidler
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| | - Michelle Barrow
- Centre for Nutrition Education and Lifestyle Management, PO Box 3739, Wokingham, RG40 9UA, UK.
| |
Collapse
|
9
|
Saadh MJ, Allela OQB, Kareem RA, Sanghvi G, Menon SV, Sharma P, Tomar BS, Sharma A, Sameer HN, Hamad AK, Athab ZH, Adil M. From Gut to Brain: The Impact of Short-Chain Fatty Acids on Brain Cancer. Neuromolecular Med 2025; 27:10. [PMID: 39821841 DOI: 10.1007/s12017-025-08830-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
The primary source of short-chain fatty acids (SCFAs), now recognized as critical mediators of host health, particularly in the context of neurobiology and cancer development, is the gut microbiota's fermentation of dietary fibers. Recent research highlights the complex influence of SCFAs, such as acetate, propionate, and butyrate, on brain cancer progression. These SCFAs impact immune modulation and the tumor microenvironment, particularly in brain tumors like glioma. They play a critical role in regulating cellular processes, including apoptosis, cell differentiation, and inflammation. Moreover, studies have linked SCFAs to maintaining the integrity of the blood-brain barrier (BBB), suggesting a protective role in preventing tumor infiltration and enhancing anti-tumor immunity. As our understanding of the gut-brain axis deepens, it becomes increasingly important to investigate SCFAs' therapeutic potential in brain cancer management. Looking into how SCFAs affect brain tumor cells and the environment around them could lead to new ways to prevent and treat these diseases, which could lead to better outcomes for people who are dealing with these challenging cancers.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Balvir S Tomar
- Institute of Pediatric Gastroenterology and Hepatology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Aanchal Sharma
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
10
|
Li J, Fan R, Zhang Z, Zhao L, Han Y, Zhu Y, Duan JA, Su S. Role of gut microbiota in rheumatoid arthritis: Potential cellular mechanisms regulated by prebiotic, probiotic, and pharmacological interventions. Microbiol Res 2025; 290:127973. [PMID: 39541714 DOI: 10.1016/j.micres.2024.127973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects joints and multiple organs and systems, which is long-lasting and challenging to cure and significantly impacting patients' quality of life. Alterations in the composition of intestinal flora in both preclinical and confirmed RA patients indicate that intestinal bacteria play a vital role in RA immune function. However, the mechanism by which the intestinal flora is regulated to improve the condition of RA is not fully understood. This paper reviews the methods of regulating gut microbiota and its metabolites through prebiotics, probiotics, and pharmacological interventions, and discusses their effects on RA. Additionally, it explores the potential predictive role of cellular therapy mechanisms of intestinal flora in treating RA. These findings suggest that restoring the ecological balance of intestinal flora and regulating intestinal barrier function may enhance immune system function, thereby improving rheumatoid arthritis. This offers new insights into its treatment.
Collapse
Affiliation(s)
- Jiashang Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruoying Fan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhe Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lihui Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Han
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
11
|
Altrawy A, Khalifa MM, Abdelmaksoud A, Khaled Y, Saleh ZM, Sobhy H, Abdel-Ghany S, Alqosaibi A, Al-Muhanna A, Almulhim J, El-Hashash A, Sabit H, Arneth B. Metabolites in the Dance: Deciphering Gut-Microbiota-Mediated Metabolic Reprogramming of the Breast Tumor Microenvironment. Cancers (Basel) 2024; 16:4132. [PMID: 39766032 PMCID: PMC11674667 DOI: 10.3390/cancers16244132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/08/2024] [Indexed: 01/05/2025] Open
Abstract
Breast cancer (BC), a major cause of death among women worldwide, has traditionally been linked to genetic and environmental factors. However, emerging research highlights the gut microbiome's significant role in shaping BC development, progression, and treatment outcomes. This review explores the intricate relationship between the gut microbiota and the breast tumor microenvironment, emphasizing how these microbes influence immune responses, inflammation, and metabolic pathways. Certain bacterial species in the gut either contribute to or hinder BC progression by producing metabolites that affect hormone metabolism, immune system pathways, and cellular signaling. An imbalance in gut bacteria, known as dysbiosis, has been associated with a heightened risk of BC, with metabolites like short-chain fatty acids (SCFAs) and enzymes such as β-glucuronidase playing key roles in this process. Additionally, the gut microbiota can impact the effectiveness of chemotherapy, as certain bacteria can degrade drugs like gemcitabine and irinotecan, leading to reduced treatment efficacy. Understanding the complex interactions between gut bacteria and BC may pave the way for innovative treatment approaches, including personalized microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, offering new hope for more effective prevention, diagnosis, and treatment of BC.
Collapse
Affiliation(s)
- Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Maye M. Khalifa
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Asmaa Abdelmaksoud
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Yomna Khaled
- Department of Bioinformatics and Functional Genomics, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Zeinab M. Saleh
- Department of Agriculture Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Hager Sobhy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt;
| | - Amany Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Afnan Al-Muhanna
- King Fahad Hospital of the University, Alkhobar, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jawaher Almulhim
- Department of Biological Sciences, King Faisal University, Alahsa 31982, Saudi Arabia;
| | - Ahmed El-Hashash
- Department of Biomedicine, Texas A&M University, College Station, TX 77840, USA;
| | - Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P. O. Box 77, Egypt; (A.A.); (M.M.K.); (H.S.); (H.S.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University, Feulgen Str., 35392 Giessen, Germany
| |
Collapse
|
12
|
Jin C, Zhang F, Luo H, Li B, Jiang X, Pirozzi CJ, Liang C, Zhang M. The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-κB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation. Cell Commun Signal 2024; 22:584. [PMID: 39633456 PMCID: PMC11619290 DOI: 10.1186/s12964-024-01943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Chronic prostatitis (CP) is a condition markered by persistent prostate inflammation, yet the specific cytokines driving its progression remain largely undefined. This study aims to identify key cytokines involved in CP and investigate their role in driving inflammatory responses through mechanistic and therapeutic exploration. METHODS A 48-cytokine panel test was conducted to compare the plasma cytokine profiles between participants with CP-like symptoms (CP-LS) and healthy controls. Experimental autoimmune prostatitis (EAP) models were used for functional validation, with further mechanistic studies performed through in vivo and in vitro assays. Pharmacological inhibition was applied using maraviroc, and pathway inhibitors to assess therapeutic potential. RESULTS Our analysis identified CCL5 as one of the most prominently elevated cytokines in CP-LS patients. Further validation in the EAP model mice confirmed elevated CCL5 levels, highlighting its role in driving prostatic inflammation. Mechanistic studies revealed that CCL5 interacts with the CCR5 receptor, promoting M1 macrophage polarization and activating key inflammatory signaling pathways, including Stat1 and NF-κB, as indicated by increased phosphorylation of Stat1 and p65. In vitro, CCL5 combined with LPS stimulation amplified these effects, further promoting M1 polarization. CCL5 also sustained Stat1 activation by inhibiting its dephosphorylation through reduced interaction with SHP2, leading to prolonged inflammatory signaling. Single-cell transcriptomics confirmed high CCR5 expression in macrophages, correlating with inflammatory pathways. Pharmacological inhibition of CCR5, or its downstream signaling, significantly reduced macrophage-driven inflammation both in vivo and in vitro. CONCLUSION These findings establish the CCL5/CCR5 axis as a critical driver of persistant prostatic inflammation and present it as a potential therapeutic target for CP.
Collapse
Affiliation(s)
- Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Fei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Hailang Luo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Boyang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xue Jiang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
13
|
Zhang FQ, Chen J, Fan H. Eating for immunity: how diet shapes our defenses. Curr Opin Immunol 2024; 91:102486. [PMID: 39353254 PMCID: PMC11609002 DOI: 10.1016/j.coi.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Emerging studies on the diet-immune axis have uncovered novel dietary immune regulators and identified crucial targets and pathways mediating the crosstalk between specific dietary components and diverse immune cell populations. Here, we discuss the recent discovery and mechanisms by which diet-derived components, such as vitamins, amino acids, fatty acids, and antioxidants, could impact immune cell metabolism, alter signaling pathways, and reprogram the overall cellular responses. We also note crucial considerations that need to be tackled to make these findings clinically relevant, acknowledging that our current understanding often relies on simplified models that may not adequately represent the intricate network of factors influencing the diet-immune axis at the whole organism level. Overall, our growing understanding of how diet shapes our defenses underscores the importance of lifestyle choices and illuminates the potential to fine-tune immune responses through targeted nutritional strategies, thereby fortifying the immune system and bolstering our defenses against diseases.
Collapse
Affiliation(s)
- Freya Q Zhang
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Jing Chen
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| | - Hao Fan
- Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
14
|
Kim J, Lee Y, Chung Y. Control of T-cell immunity by fatty acid metabolism. Ann Pediatr Endocrinol Metab 2024; 29:356-364. [PMID: 39778404 PMCID: PMC11725633 DOI: 10.6065/apem.2448160.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Fatty acids play critical roles in maintaining the cellular functions of T cells and regulating T-cell immunity. This review synthesizes current research on the influence of fatty acids on T-cell subsets, including CD8+ T cells, TH1, TH17, Treg (regulatory T cells), and TFH (T follicular helper) cells. Fatty acids impact T cells by modulating signaling pathways, inducing metabolic changes, altering cellular structures, and regulating gene expression epigenetically. These processes affect T-cell activation, differentiation, and function, with implications for diseases such as autoimmune disease and cancer. Based on these insights, fatty acid pathways can potentially be modulated by novel therapeutics, paving the way for novel treatment approaches for immune-mediated disorders and cancer immunotherapy.
Collapse
Affiliation(s)
- Jaemin Kim
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yoosun Lee
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, Korea
| |
Collapse
|
15
|
Zhang Q, Zhao L, Li Y, Wang S, Lu G, Wang H. Advances in the mechanism of action of short-chain fatty acids in psoriasis. Int Immunopharmacol 2024; 141:112928. [PMID: 39159566 DOI: 10.1016/j.intimp.2024.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
Psoriasis is a prevalent chronic inflammatory and immunological disorder. Its lesions are present as scaly erythema or plaques. Disruptions in the body's immune system play a significant role in developing psoriasis. Recent evidence suggests a potential role of the gut microbiome in autoimmune diseases. Short-chain fatty acids (SCFAs) are the primary metabolites created by gut microbes and play a crucial fuction in autoimmunity. SCFAs act on various cells by mediating signaling to participate in host physiological and pathological processes. These processes encompass body metabolism, maintenance of intestinal barrier function, and immune system modulation. SCFAs can regulate immune cells to enhance the body's immune function, potentially influencing the prevention and treatment of psoriasis. However, the mechanisms underlying the role of SCFAs in psoriasis remain incompletely understood. This paper examines the relationship between SCFAs and psoriasis, elucidating how SCFAs influence the immune system, inflammatory response, and gut barrier in psoriasis. According to the study, in psoriasis, SCFAs have been shown to regulate neutrophils, macrophages, and dendritic cells in the adaptive immune system, as well as T and B cells in the innate immune system. Additionally, we explore the role of SCFAs in psoriasis by maintaining intestinal barrier function, restoring intestinal ecological homeostasis, and investigating the potential therapeutic benefits of SCFAs for psoriasis.
Collapse
Affiliation(s)
- Qin Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Linna Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Yu Li
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Siyao Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China; Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiling Lu
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Hongmei Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China.
| |
Collapse
|
16
|
Sun B, Wang Y, Bai J, Li X, Ma L, Man S. Litchi Procyanidins Ameliorate DSS-Induced Colitis through Gut Microbiota-Dependent Regulation of Treg/Th17 Balance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24823-24832. [PMID: 39315595 DOI: 10.1021/acs.jafc.4c05577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Ulcerative colitis (UC) is a common chronic, relapsing inflammatory bowel condition. Procyanidins (PC) are known for their antiangiogenic, anti-inflammatory, antioxidant, and antimetastatic properties. However, there is comparatively limited information on how PC interacts with UC. In this study, 5 mg/10 mL/kg body weight of PC was administered to mice with dextran sulfate sodium (DSS)-induced colitis mice. PC treatment prolonged the survival period of mice, ameliorated UC symptoms, reduced damage to the intestinal mucosal barrier, and increased the protein expression of ZO-1 and occludin in the DSS-treated mice. Importantly, PC treatment significantly reduced gene expression related to Th17 cell differentiation, including STAT3, SMAD3, TGF-β, and JAK1. The results of the flow cytometry analysis indicated significant increase in the number of Treg cells and a concomitant decrease in the proportion of Th17 cells in the colon following PC treatment. Additionally, PC increased the abundance of gut microbiota such as Bacteroidota, Oscillospiraceae, Muribaculaceae, and Desulfovibrionaceae, as well as the concentrations of acetate acid, propionate acid, and butyrate acid in the feces. PC also activated short-chain fatty acid receptors, such as G-protein coupled receptor 43 in the colon, which promoted the proliferation of Treg cells. The depletion of gut microbiota and subsequent transplantation of fecal microbiota demonstrated that PC's effects on gut microbiota were effective in improving UC and restoring intestinal Th17/Treg homeostasis in a microbiota-dependent manner. This suggests that PC could be a promising functional food for the prevention and treatment of UC in the future.
Collapse
Affiliation(s)
- Benyue Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yunhui Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jingjing Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xuejiao Li
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Key Laboratory of Hereditary Rare Diseases of Health Commission of Henan Province, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine, Henan University of Science and Technology, Luoyang 471003, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
17
|
Wimmer MI, Bartolomaeus H, Anandakumar H, Chen CY, Vecera V, Kedziora S, Kamboj S, Schumacher F, Pals S, Rauch A, Meisel J, Potapenko O, Yarritu A, Bartolomaeus TUP, Samaan M, Thiele A, Stürzbecher L, Geisberger SY, Kleuser B, Oefner PJ, Haase N, Löber U, Gronwald W, Forslund-Startceva SK, Müller DN, Wilck N. Metformin modulates microbiota and improves blood pressure and cardiac remodeling in a rat model of hypertension. Acta Physiol (Oxf) 2024; 240:e14226. [PMID: 39253815 DOI: 10.1111/apha.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
AIMS Metformin has been attributed to cardiovascular protection even in the absence of diabetes. Recent observations suggest that metformin influences the gut microbiome. We aimed to investigate the influence of metformin on the gut microbiota and hypertensive target organ damage in hypertensive rats. METHODS Male double transgenic rats overexpressing the human renin and angiotensinogen genes (dTGR), a model of angiotensin II-dependent hypertension, were treated with metformin (300 mg/kg/day) or vehicle from 4 to 7 weeks of age. We assessed gut microbiome composition and function using shotgun metagenomic sequencing and measured blood pressure via radiotelemetry. Cardiac and renal organ damage and inflammation were evaluated by echocardiography, histology, and flow cytometry. RESULTS Metformin treatment increased the production of short-chain fatty acids (SCFA) acetate and propionate in feces without altering microbial composition and diversity. It significantly reduced systolic and diastolic blood pressure and improved cardiac function, as measured by end-diastolic volume, E/A, and stroke volume despite increased cardiac hypertrophy. Metformin reduced cardiac inflammation by lowering macrophage infiltration and shifting macrophage subpopulations towards a less inflammatory phenotype. The observed improvements in blood pressure, cardiac function, and inflammation correlated with fecal SCFA levels in dTGR. In vitro, acetate and propionate altered M1-like gene expression in macrophages, reinforcing anti-inflammatory effects. Metformin did not affect hypertensive renal damage or microvascular structure. CONCLUSION Metformin modulated the gut microbiome, increased SCFA production, and ameliorated blood pressure and cardiac remodeling in dTGR. Our findings confirm the protective effects of metformin in the absence of diabetes, highlighting SCFA as a potential mediators.
Collapse
Affiliation(s)
- Moritz I Wimmer
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Hendrik Bartolomaeus
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Harithaa Anandakumar
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Chia-Yu Chen
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Valentin Vecera
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Sarah Kedziora
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sakshi Kamboj
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | | | - Sidney Pals
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Ariana Rauch
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Jutta Meisel
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Olena Potapenko
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alex Yarritu
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Theda U P Bartolomaeus
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mariam Samaan
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arne Thiele
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Lucas Stürzbecher
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabrina Y Geisberger
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Peter J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Nadine Haase
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Wolfram Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dominik N Müller
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicola Wilck
- Department of Nephrology and Medical Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), Charité-Universitätsmedizin Berlin, Max Delbruck Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
18
|
Hong Y, Zhang C, Shen K, Dong X, Chen B. Genetically predicted plasma metabolites mediate the causal relationship between gut microbiota and primary immune thrombocytopenia (ITP). Front Microbiol 2024; 15:1447729. [PMID: 39529668 PMCID: PMC11551717 DOI: 10.3389/fmicb.2024.1447729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background Primary immune thrombocytopenia (ITP) is an immune-mediated hematologic disorder characterized by a reduction in platelet count, increasing the risk of bleeding. Recent studies have indicated a close association between alterations in gut microbiota and the development of ITP. However, the mechanisms by which gut microbiota influence the occurrence and progression of ITP through plasma metabolites remain poorly understood. Evidence suggests extensive interactions between gut microbiota and plasma metabolites, implying a potential role for gut microbiota in influencing ITP through alterations in plasma metabolites, which requires further investigation. Methods In this study, summarized GWAS data (including 211 gut microbiota taxa, 1,400 plasma metabolites or ratios, and an ITP patient cohort) were retrieved from the MiBioGen and GWAS Catalog databases. Using a two-sample Mendelian randomization (MR) approach, we screened gut microbiota and plasma metabolites potentially causally related to ITP. We further identified plasma metabolites serving as mediators through which gut microbiota affect ITP and calculated the strength of the mediation effect. To ensure result stability, we primarily used the inverse variance weighted (IVW) method as the main judgment index. We also utilized MR Egger and inverse variance weighted methods to detect heterogeneity in the results, and employed MR-Egger and MR-PRESSO methods to assess the presence of pleiotropy. Results Though two-sample MR analysis, 8 gut microbiota taxa were found to have causal relationships with ITP. After excluding six plasma metabolites with pleiotropy, 39 plasma metabolites were found to be causally related to ITP (P < 0.05). Eleven plasma metabolites were identified as having causal relationships between gut microbiota and plasma metabolites. Finally, using the delta method, it was calculated that Sphingomyelin levels (8.0%, 95%CI: 0.9% to 11.5%, P = 0.047) and Glucose-to-mannose ratio (6.5%, 95%CI: 0.7% to 9.5%, P = 0.039) are intermediates for Intestinimonas influencing ITP, while Bilirubin (Z,Z) to etiocholanolone glucuronide ratio (5.6%, 95%CI: 4.7% to 6.9%, P = 0.043) is an intermediate for Senegalimassilia influencing ITP. Conclusion Gut microbiota can influence the development of ITP through changes in plasma metabolites. Sphingomyelin levels, Glucose-to-mannose ratio, and Bilirubin (Z,Z) to etiocholanolone glucuronide ratio are newly discovered intermediates through which gut microbiota influence ITP, providing potential indicators and targets for clinical diagnosis and treatment. This study highlights the intricate relationship between gut microbiota and plasma metabolites in the context of ITP, suggesting new avenues for clinical diagnosis and treatment.
Collapse
Affiliation(s)
| | | | | | - Xiaoqing Dong
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Chen
- Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
19
|
Chen J, Chen B, Lin B, Huang Y, Li J, Li J, Chen Z, Wang P, Ran B, Yang J, Huang H, Liu L, Wei Q, Ai J, Cao D. The role of gut microbiota in prostate inflammation and benign prostatic hyperplasia and its therapeutic implications. Heliyon 2024; 10:e38302. [PMID: 39386817 PMCID: PMC11462338 DOI: 10.1016/j.heliyon.2024.e38302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Background The gut microbiota thrives in a complex ecological environment and its dynamic balance is closely related to host health. Recent studies have shown that the occurrence of various diseases including prostate inflammation is related to the dysregulation of the gut microbiome. Objective This review focus on the mechanisms by which the gut microbiota induces prostate inflammation and benign prostatic hyperplasia and its therapeutic implications. Materials and methods Publications related to gut microbiota, prostate inflammation, and benign prostatic hyperplasia (BPH) until April 2023 were systematically reviewed. The research questions were formulated using the Problem, Intervention, Comparison/Control, and Outcome (PICO) frameworks. Results Fifteen articles covering the relationship between the gut microbiota and prostate inflammation/BPH, the mechanisms by which the gut microbiota influences prostate inflammation and BPH, and potential therapeutic approaches targeting the gut microbiota for these conditions were included. Conclusion Short-chain fatty acids (SCFAs), which are metabolites of the intestinal microbiota, protect the integrity of the intestinal barrier, regulate immunity, and inhibit inflammation. However, dysregulation of the gut microbiota significantly reduces the SCFA content in feces and impairs the integrity of the gut barrier, leading to the translocation of bacteria and bacterial components such as lipopolysaccharide, mediating the development of prostate inflammation through microbe-associated molecular patterns (MAMPs).
Collapse
Affiliation(s)
- Jie Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Bin Lin
- West China Hospital, Sichuan University, Jintang Hospital, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Puze Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Biao Ran
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Jiahao Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Huijian Huang
- Department of Urology, Karamay people's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Wang S, Shi H, Cheng Y, Jiang L, Lou Y, Kumar M, Sun M, Shao X, Zhao X, Wang B. Akkermansia muciniphila alleviates abdominal aortic aneurysms via restoring CITED2 activated by EPAS1. Infect Immun 2024; 92:e0017224. [PMID: 39207146 PMCID: PMC11477905 DOI: 10.1128/iai.00172-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease that has been linked to gut microbiome dysbiosis. Therefore, this study aims to investigate the effects of Akkermansia muciniphila (Am) on AAA mice and the biomolecules involved. AAA mice were generated using angiotensin II (Ang II), and 16sRNA sequencing was used to identify an altered abundance of microbiota in the feces of AAA mice. Vascular smooth muscle cell (VSMC) markers and apoptosis, and macrophage infiltration in mouse aortic tissues were examined. The abundance of Am was reduced in AAA mouse feces, and endothelial PAS domain-containing protein 1 (EPAS1) was downregulated in AAA mice and VSMC induced with Ang II. Am delayed AAA progression in mice, which was blunted by knockdown of EPAS1. EPAS1 was bound to the Cbp/p300-interacting transactivator 2 (CITED2) promoter and promoted CITED2 transcription. CITED2 reduced VSMC apoptosis and delayed AAA progression. Moreover, EPAS1 inhibited macrophage inflammatory response by promoting CITED2 transcription. In conclusion, gut microbiome dysbiosis in AAA induces EPAS1-mediated dysregulation of CITED2 to promote macrophage inflammatory response and VSMC apoptosis.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Aortic Aneurysm, Abdominal/microbiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Mice
- Akkermansia
- Gastrointestinal Microbiome
- Trans-Activators/metabolism
- Trans-Activators/genetics
- Male
- Disease Models, Animal
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/microbiology
- Muscle, Smooth, Vascular/pathology
- Apoptosis
- Angiotensin II/metabolism
- Myocytes, Smooth Muscle/metabolism
- Macrophages/metabolism
- Macrophages/microbiology
- Macrophages/immunology
- Mice, Inbred C57BL
- Dysbiosis/microbiology
Collapse
Affiliation(s)
- Siqing Wang
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hang Shi
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Cheng
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Jiang
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Lou
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Manish Kumar
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mingfei Sun
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xianze Shao
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuan Zhao
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Baichun Wang
- Department of Cardiovascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
21
|
Yi Zhang, Feng R, Li H, Wu W, Ma W, Chen X, Chen J, Liang C. CXCR4 influences PUFA desaturation and oxidative stress injury in experimental prostatitis mice by activating Fads2 via PPARγ. Free Radic Biol Med 2024; 223:237-249. [PMID: 39094710 DOI: 10.1016/j.freeradbiomed.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/29/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
Chronic prostatitis-induced excessive inflammation and oxidative stress (OS) damage substantially affect men's quality of life. However, its treatment remains a major clinical challenge. Therefore, the identification of drugs that can decrease chronic prostatitis and oxidative stress targets is urgent and essential. CXCR4 is a classic chemokine receptor that is crucially associated with the occurrence and development of inflammation. This investigation aimed to elucidate how CXCR4 affects prostatitis regression and progression. The effect of CXCR4 on chronic prostatitis was evaluated by HE staining, immunohistochemistry, immunofluorescence, PCR, and TUNEL analyses. Furthermore, CXCR4 influence on metabolism was also evaluated by monitoring body weight, body temperature, food intake, and LC/MS. Additionally, chromatin immunoprecipitation, Western blot, and double luciferase reporter gene assays were carried out to elucidate the mechanism by which CXCR4 modulates Fads2 transcription by PPARγ. Lastly, ROS, DHE, mito-tracker, and ATP were utilized to validate the α-linolenic acid's protective effect against OS in prostate epithelial cells. It was revealed that the inhibition of CXCR4 can effectively alleviate prostatitis in mice. Furthermore, downregulating CXCR4 expression can markedly reduce the inflammatory cell infiltration in mouse prostates, decrease the elevated levels of DNA damage markers,MDA and 4-HNE, and mitigate apoptosis of prostatic epithelial cells. Moreover, treatment of CXCR4 knockdown mice with a PPARγ inhibitor revealed different degrees of changes in the above phenotypes. Mechanistically, the PPARγ protein translocates to the nucleus and serves as a transcription factor to regulate Fads2 expression, thereby altering PUFA metabolism. Additionally, in vitro experiments indicated that α-linolenic acid can effectively alleviate OS damage and RWPE-1 cell apoptosis by protecting mitochondrial function and enhancing the antioxidant capacity of prostatic epithelial cells. In conclusion, reducing the levels of CXCR4 can alleviate inflammation and OS damage in chronic prostatitis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China
| | - Rui Feng
- Department of Urology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Haolin Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China
| | - Weikang Wu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China
| | - Wenming Ma
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China.
| | - Jing Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
22
|
Chandra S, Vassar RJ. Gut microbiome-derived metabolites in Alzheimer's disease: Regulation of immunity and potential for therapeutics. Immunol Rev 2024; 327:33-42. [PMID: 39440834 DOI: 10.1111/imr.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and cause of dementia. Despite the prevalence of AD, there is a lack of effective disease modifying therapies. Recent evidence indicates that the gut microbiome (GMB) may play a role in AD through its regulation of innate and adaptive immunity. Gut microbes regulate physiology through their production of metabolites and byproducts. Microbial metabolites may be beneficial or detrimental to the pathogenesis and progression of inflammatory diseases. A better understanding of the role GMB-derived metabolites play in AD may lead to the development of therapeutic strategies for AD. In this review, we summarize the function of bioactive GMB-derived metabolites and byproducts and their roles in AD models. We also call for more focus on this area in the gut-brain axis field in order to create effective therapies for AD.
Collapse
Affiliation(s)
- Sidhanth Chandra
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert J Vassar
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
23
|
Bakinowska E, Stańska W, Kiełbowski K, Szwedkowicz A, Boboryko D, Pawlik A. Gut Dysbiosis and Dietary Interventions in Rheumatoid Arthritis-A Narrative Review. Nutrients 2024; 16:3215. [PMID: 39339815 PMCID: PMC11435214 DOI: 10.3390/nu16183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease. The pathogenesis of RA is complex and involves interactions between articular cells, such as fibroblast-like synoviocytes, and immune cells. These cells secrete pro-inflammatory cytokines, chemokines, metalloproteinases and other molecules that together participate in joint degradation. The current evidence suggests the important immunoregulatory role of the gut microbiome, which can affect susceptibility to diseases and infections. An altered microbiome, a phenomenon known as gut dysbiosis, is associated with the development of inflammatory diseases. Importantly, the profile of the gut microbiome depends on dietary habits. Therefore, dietary elements and interventions can indirectly impact the progression of diseases. This review summarises the evidence on the involvement of gut dysbiosis and diet in the pathogenesis of RA.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Wiktoria Stańska
- Department of Medical Biology, Medical University of Warsaw, 00-575 Warsaw, Poland
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Agata Szwedkowicz
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
24
|
Yue SY, Li WY, Xu S, Bai XX, Xu WL, Wang X, Ding HK, Chen J, Du HX, Xu LF, Niu D, Liang CZ. Causality investigation among gut microbiota, immune cells, and prostate diseases: a Mendelian randomization study. Front Microbiol 2024; 15:1445304. [PMID: 39323879 PMCID: PMC11422081 DOI: 10.3389/fmicb.2024.1445304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Background The gut microbiota has been demonstrated to have a significant role in the pathogenesis and progression of a variety of diseases, including prostate cancer, prostatitis, and benign prostatic hyperplasia. Potential links between prostate diseases, immune cells and the gut microbiota have not been adequately investigated. Methods MR studies were conducted to estimate the effects of instrumental variables obtained from genome-wide association studies (GWASs) of 196 gut microbial taxa and 731 immune cells on the risk of prostate diseases. The primary method for analysing causal relationships was inverse variance-weighted (IVW) analysis, and the MR results were validated through various sensitivity analyses. Results MR analysis revealed that 28 gut microbiome taxa and 75 immune cell types were significantly associated with prostate diseases. Furthermore, reverse MR analysis did not support a causal relationship between prostate diseases and the intestinal microbiota or immune cells. Finally, the results of the mediation analysis indicated that Secreting Treg % CD4 Treg, Activated & resting Treg % CD4 Treg, and Mo MDSC AC inhibited the role of the class Mollicutes in reducing the risk of PCa. In prostatitis, CD8+ T cells on EM CD8br hinder the increased risk associated with the genus Eubacterium nodatum group. Interestingly, in BPH, CD28- CD25++CD8br AC and CD16-CD56 on HLA DR+ NK promoted the role of the genus Dorea in reducing the risk of BPH. Conclusion This study highlights the complex relationships among the gut microbiota, immune cells and prostate diseases. The involvement of the gut microbiota in regulating immune cells to impact prostate diseases could provide novel methods and concepts for its therapy and management.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Wei-Yi Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Shun Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiao-Xin Bai
- Department of Infectious Disease, The Second People’s Hospital of Fuyang City, Fuyang, China
| | - Wen-Long Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xu Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Kang Ding
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - He-Xi Du
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ling-Fan Xu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Di Niu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| | - Chao-Zhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Urology, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
25
|
Tian YQ, Ren X, Wang J, Li X, Yin YS, Guo ZH, Qin ZL, Zeng XY. Berberine hydrochloride alleviates chronic prostatitis/chronic pelvic pain syndrome by modifying gut microbiome signaling. Asian J Androl 2024; 26:500-509. [PMID: 39012524 PMCID: PMC11449416 DOI: 10.4103/aja202427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/16/2024] [Indexed: 07/17/2024] Open
Abstract
ABSTRACT Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is highly prevalent worldwide and poses a significant threat to men's health, particularly affecting young men. However, the exact causes and mechanisms behind CP/CPPS remain unclear, leading to challenges in its treatment. In this research, a CP/CPPS rat model was established with complete Freund's adjuvant (CFA), and berberine hydrochloride was administered through daily gavage to assess its therapeutic effects. The alterations in the gut microbiome induced by CP/CPPS and berberine hydrochloride were investigated through 16S ribosomal RNA sequencing of cecum content and colonic epithelial cells. To investigate the impact of the gut microbiome on CP/CPPS, a pseudo germ-free rat model was established, and fecal microbiome transplantation (FMT) was performed on these rats. In all, berberine hydrochloride demonstrated effective reduction of inflammation and oxidative stress in the prostate, offering significant therapeutic advantages for CP/CPPS. Through analysis of the gut microbiome using 16S ribosome RNA sequencing, distinct differences were observed between CP/CPPS rats and control rats, and Clostridium butyricum was identified as a key bacteria. Pseudo germ-free rats that underwent FMT from CP/CPPS rats or rats treated with berberine hydrochloride displayed varying levels of inflammatory cytokine production, oxidative stress, and activity of associated signaling pathways. In conclusion, the therapeutic potential of berberine hydrochloride in addressing CP/CPPS is highly significant. The gut microbiome has emerged as a critical factor in the development of CP/CPPS and plays a pivotal role in mediating the therapeutic effects of berberine hydrochloride.
Collapse
Affiliation(s)
- Yi-Qun Tian
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Xiang Ren
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Jing Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Xing Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Yi-Sheng Yin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Zi-Hao Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Zhen-Liang Qin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| | - Xiao-Yong Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Institute of Urology of Hubei Province, Wuhan 430000, China
| |
Collapse
|
26
|
Liu D, Mei Y, Ji N, Zhang B, Feng X. Causal effect of gut microbiota on the risk of prostatitis: a two-sample Mendelian randomization study. Int Urol Nephrol 2024; 56:2839-2850. [PMID: 38573543 PMCID: PMC11322328 DOI: 10.1007/s11255-024-04020-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Recent studies demonstrated that chronic prostatitis (CP) is closely related to the gut microbiota (GM). Nevertheless, the causal relationship between GM and CP has not been fully elucidated. Therefore, the two-sample Mendelian randomization (MR) analysis was employed to investigate this association. METHODS The summary data of gut microbiota derived from a genome-wide association study (GWAS) involving 18,340 individuals in the MiBioGen study served as the exposure, and the corresponding summary statistics for CP risk, representing the outcome, were obtained from the FinnGen databases (R9). The causal effects between GM and CP were estimated using the inverse-variance weighted (IVW) method supplemented with MR-Egger, weighted median, weighted mode, and simple mode methods. Additionally, the false discovery rate (FDR) correction was performed to adjust results. The detection and quantification of heterogeneity and pleiotropy were accomplished through the MR pleiotropy residual sum and outlier method, Cochran's Q statistics, and MR-Egger regression. RESULTS The IVW estimates indicated that a total of 11 GM taxa were related to the risk of CP. Seven of them was correlated with an increased risk of CP, while the remained linked with a decreased risk of CP. However, only Methanobacteria (OR 0.86; 95% CI 0.74-0.99), Methanobacteriales (OR 0.86; 95% CI 0.74-0.99), NB1n (OR 1.16; 95% CI 1.16-1.34), Methanobacteriaceae (OR 0.86; 95% CI 0.74-0.99), Odoribactergenus Odoribacter (OR 1.43; 95% CI 1.05-1.94), and Sutterellagenus Sutterella (OR 1.33; 95% CI 1.01-1.76) still maintain significant association with CP after FDR correction. Consistent directional effects for all analyses were observed in the supplementary methods. Subsequently, sensitivity analyses indicated the absence of heterogeneity, directional pleiotropy, or outliers concerning the causal effect of specific gut microbiota on CP (p > 0.05). CONCLUSION Our study demonstrated a gut microbiota-prostate axis, offering crucial data supporting the promising use of the GM as a candidate target for CP prevention, diagnosis, and treatment. There is a necessity for randomized controlled trials to validate the protective effect of the linked GM against the risk of CP, and to further investigate the underlying mechanisms involved.
Collapse
Affiliation(s)
- Dalu Liu
- Department of General Surgery, The Affiliated Chuzhou Hospital of Anhui Medical University, Chuzhou, Anhui, China
| | - Yangyang Mei
- Department of Urology, Jiangyin People's Hospital of Jiangsu Province, Jiangyin, Jiangsu, China
| | - Nuo Ji
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Bo Zhang
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Xingliang Feng
- Department of Urology, The First People's Hospital of Changzhou, Changzhou, Jiangsu, China.
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China.
| |
Collapse
|
27
|
Yue SY, Niu D, Ma WM, Guan Y, Liu QS, Wang XB, Xiao YZ, Meng J, Ding K, Zhang L, Du HX, Liang CZ. The CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in experimental autoimmune prostatitis through the PI3K/AKT pathway. Andrology 2024; 12:1408-1418. [PMID: 38095276 DOI: 10.1111/andr.13571] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 08/15/2024]
Abstract
OBJECTIVE To investigate the mechanism of the CXCL10/CXCR3 axis regulating Th1 cell differentiation and migration through the PI3K/AKT pathway in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). METHODS Experimental autoimmune prostatitis (EAP) model, a well-described and validated animal model of CP/CPPS, was used in our study. After treatment with CXCL10, the severity of EAP and Th1 cell proportion were respectively measured by HE stains, immunohistochemistry, and flow cytometry. Then, the protein expression of the PI3K/AKT pathway in CXCL10/CXCR3-regulated Th1 cell differentiation and migration was evaluated by western blotting. Additionally, by the CXCR3 antagonist AMG487 and the PI3K inhibitor LY294002 applications, the effects of CXCL10/CXCR3 through PI3K/AKT pathway on the Th1 cell differentiation and migration were further assessed. RESULTS The EAP model was successfully built. CXCL10 increased the proportion of Th1 cells in EAP mice, accompanied by upregulation of the PI3K/AKT pathway. Additionally, the PI3K/AKT pathway was found to be involved in CXCL10/CXCR3 axis-mediated Th1 cell differentiation and migration. CONCLUSIONS Our investigations indicate that the CXCL10/CXCR3 axis regulates Th1 cell differentiation and migration in EAP through the PI3K/AKT pathway, which provides a new perspective on the immunological mechanisms of CP/CPPS.
Collapse
Affiliation(s)
- Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Wen-Ming Ma
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Qiu-Shi Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Bin Wang
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yun-Zheng Xiao
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Jialin Meng
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Ke Ding
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
28
|
Chang S, Wang Z, An T. T-Cell Metabolic Reprogramming in Atherosclerosis. Biomedicines 2024; 12:1844. [PMID: 39200308 PMCID: PMC11352190 DOI: 10.3390/biomedicines12081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Atherosclerosis is a key pathological basis for cardiovascular diseases, significantly influenced by T-cell-mediated immune responses. T-cells differentiate into various subtypes, such as pro-inflammatory Th1/Th17 and anti-inflammatory Th2/Treg cells. The imbalance between these subtypes is critical for the progression of atherosclerosis (AS). Recent studies indicate that metabolic reprogramming within various microenvironments can shift T-cell differentiation towards pro-inflammatory or anti-inflammatory phenotypes, thus influencing AS progression. This review examines the roles of pro-inflammatory and anti-inflammatory T-cells in atherosclerosis, focusing on how their metabolic reprogramming regulates AS progression and the associated molecular mechanisms of mTOR and AMPK signaling pathways.
Collapse
Affiliation(s)
| | | | - Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.C.); (Z.W.)
| |
Collapse
|
29
|
Jiang P, Li C, Su Z, Chen D, Li H, Chen J, Mi H. Mendelian randomization study reveals causal effects of specific gut microbiota on the risk of interstitial cystitis/bladder pain syndrome (IC/BPS). Sci Rep 2024; 14:18405. [PMID: 39117770 PMCID: PMC11310512 DOI: 10.1038/s41598-024-69543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
Evidence from previous studies have demonstrated that gut microbiota are closely associated with occurrence of interstitial cystitis/bladder pain syndrome (IC/BPS), yet the causal link between the two is not well known. In this study, we performed a two-sample Mendelian randomization (MR) analysis to determine the possible causal association between gut microbiota with IC/BPS. Gut microbiota summary level data were derived from the genome-wide association study (GWAS) conducted by MiBioGen and the IC/BPS GWAS summary level data were obtained from the GWAS Catalog. Next, we performed an MR study to investigate the causal link between gut microbiota and IC/BPS. The primary method for causal analysis was the inverse variance weighted (IVW), and the MR results were validated through multiple sensitivity analyses. A positive association was found between IC/BPS and eight gut microbial taxa, including genus Bacteroides, genus Haemophilus, genus Veillonella, genus Coprococcus1, genus Butyricimonas, family Bacteroidaceae, family Christensenellaceae, and order Lactobacillales. Sensitivity analysis revealed lack of significant pleiotropy or heterogeneity in the obtained results. This MR analysis reveals that a causal association exists between some gut microbiota with IC/BPS. This finding may is expected to guide future research and development of IC/BPS preventions and treatments based on the bladder-gut axis. However, given the clinical complexity and diagnostic challenges of IC/BPS, along with the limitations of using large-scale GWAS summary data for analysis, our MR results require further validation through additional research.
Collapse
Affiliation(s)
- Peng Jiang
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530001, Guangxi, China
| | - Cheng Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530001, Guangxi, China
| | - Zhiyong Su
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530001, Guangxi, China
| | - Di Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530001, Guangxi, China
| | - Hua Li
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530001, Guangxi, China
| | - Jinji Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530001, Guangxi, China
| | - Hua Mi
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530001, Guangxi, China.
| |
Collapse
|
30
|
Cao H, Zhang D, Wang P, Wang Y, Shi C, Wu H, Du H, Zhang W, Gou Z, Zhou H, Wang S. Gut microbiome: a novel preventive and therapeutic target for prostatic disease. Front Cell Infect Microbiol 2024; 14:1431088. [PMID: 39135640 PMCID: PMC11317475 DOI: 10.3389/fcimb.2024.1431088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
The human gut microbiome (GM) impacts various physiological processes and can lead to pathological conditions and even carcinogenesis if homeostasis is disrupted. Recent studies have indicated a connection between the GM and prostatic disease. However, the underlying mechanisms are still unclear. This review aims to provide a summary of the existing information regarding the connection between the GM and various prostatic conditions such as chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), benign prostatic hyperplasia (BPH), and prostate cancer (PCa). Furthermore, the review aims to identify possible pathogenic mechanisms and suggest potential ways of targeting GM to prevent and treat prostatic disease. Due to the complexity of the mechanism between GM and prostatic diseases, additional research is required to comprehend the association between the two. This will lead to more effective treatment options for prostatic disease.
Collapse
Affiliation(s)
- Hongliang Cao
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Difei Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Pengyu Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Chengdong Shi
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Hao Wu
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Hao Du
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Wenqiang Zhang
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| | - Song Wang
- Department of Urology II, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Du HX, Yue SY, Niu D, Liu XH, Li WY, Wang X, Chen J, Hu DK, Zhang LG, Guan Y, Ji DX, Chen XG, Zhang L, Liang CZ. Alcohol intake exacerbates experimental autoimmune prostatitis through gut microbiota driving cholesterol biosynthesis-mediated Th17 differentiation. Int Immunopharmacol 2024; 139:112669. [PMID: 39029231 DOI: 10.1016/j.intimp.2024.112669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is very common worldwide, and alcohol consumption is a notable contributing factor. Researches have shown that gut microbiota can be influenced by alcohol consumption and is an important mediator in regulating Th17 cell immunity. However, it is still unclear the exact mechanism by which alcohol exacerbates the CP/CPPS and the role of gut microbiota in this process. METHOD We first constructed the most-commonly used animal model for CP/CPPS, the experimental autoimmune prostatitis (EAP) model, through immunoassay. Based on this, mice were divided into EAP group and alcohol-consuming EAP group. By 16S rRNA sequencing and non-targeted metabolomics analysis, differential gut microbiota and their metabolites between the two groups were identified. Subsequently, metabolomics detection targeting cholesterols was carried out to identify the exact difference in cholesterol. Furthermore, multiple methods such as flow cytometry and immunohistochemistry were used to detect the differentiation status of Th17 cells and severity of prostatitis treated with 27-hydroxycholesterol (the differential cholesterol) and its upstream regulatory factor-sterol regulatory element-binding protein 2 (SREBP2). Lastly, fecal transplantation was conducted to preliminary study on whether alcohol intake exacerbates EAP in immune receptor mice. RESULTS Alcohol intake increased the proportion of Th17 cells and levels of related inflammatory factors. It also led to an altered gut bacterial richness and increased gut permeability. Further metabolomic analysis showed that there were significant differences in a variety of metabolites between EAP and alcohol-fed EAP mice. Metabolic pathway enrichment analysis showed that the pathways related to cholesterol synthesis and metabolism were significantly enriched, which was subsequently confirmed by detecting the expression of metabolic enzymes. By targeting cholesterol synthesis, 27-hydroxycholesterol was significantly increased in alcohol-fed EAP mice. Subsequent mechanistic research showed that supplementation with 27-hydroxycholesterol could aggravate EAP and promote Th17 cell differentiation both in vivo and in vitro, which is regulated by SREBP2. In addition, we observed that fecal transplantation from mice with alcohol intake aggravated EAP in immunized recipient mice fed a normal diet. CONCLUSION Our study is the first to show that alcohol intake promotes Th17 cell differentiation and exacerbates EAP through microbiota-derived cholesterol biosynthesis.
Collapse
Affiliation(s)
- He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xian-Hong Liu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Wei-Yi Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Xu Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Jia Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - De-Kai Hu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Li-Gang Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Yu Guan
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China
| | - Duo-Xu Ji
- Clinical Medical College, Anhui Medical University, Hefei, Anhui, PR China
| | - Xian-Guo Chen
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
32
|
Gazerani P, Papetti L, Dalkara T, Cook CL, Webster C, Bai J. The Brain, the Eating Plate, and the Gut Microbiome: Partners in Migraine Pathogenesis. Nutrients 2024; 16:2222. [PMID: 39064664 PMCID: PMC11280178 DOI: 10.3390/nu16142222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review summarizes the relationship between diet, the gut microbiome, and migraine. Key findings reveal that certain dietary factors, such as caffeine and alcohol, can trigger migraine, while nutrients like magnesium and riboflavin may help alleviate migraine symptoms. The gut microbiome, through its influence on neuroinflammation (e.g., vagus nerve and cytokines), gut-brain signaling (e.g., gamma-aminobutyric acid), and metabolic function (e.g., short-chain fatty acids), plays a crucial role in migraine susceptibility. Migraine can also alter eating behaviors, leading to poor nutritional choices and further exacerbating the condition. Individual variability in diet and microbiome composition highlights the need for personalized dietary and prebiotic interventions. Epidemiological and clinical data support the effectiveness of tailored nutritional approaches, such as elimination diets and the inclusion of beneficial nutrients, in managing migraine. More work is needed to confirm the role of prebiotics, probiotics, and potentially fecal microbiome translation in the management of migraine. Future research should focus on large-scale studies to elucidate the underlying mechanisms of bidirectional interaction between diet and migraine and develop evidence-based clinical guidelines. Integrating dietary management, gut health optimization, and lifestyle modifications can potentially offer a holistic approach to reducing migraine frequency and severity, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Parisa Gazerani
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0130 Oslo, Norway
- Department of Health Science & Technology, Faculty of Medicine, Aalborg University, 9260 Gistrup, Denmark
| | - Laura Papetti
- Developmental Neurology, Bambino Gesù Children’s Hospital, IRCCS, Piazza di Sant’Onofrio 4, 00165 Rome, Italy;
| | - Turgay Dalkara
- Departments of Neuroscience and Molecular Biology and Genetics, Bilkent University, Ankara 06800, Turkey;
| | - Calli Leighann Cook
- Emory Brain Health Center, General Neurology, Atlanta, GA 30329, USA;
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Caitlin Webster
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
| | - Jinbing Bai
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA 30322, USA; (C.W.); (J.B.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Lin L, Ren R, Xiong Q, Zheng C, Yang B, Wang H. Remodeling of T-cell mitochondrial metabolism to treat autoimmune diseases. Autoimmun Rev 2024; 23:103583. [PMID: 39084278 DOI: 10.1016/j.autrev.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
T cells are key drivers of the pathogenesis of autoimmune diseases by producing cytokines, stimulating the generation of autoantibodies, and mediating tissue and cell damage. Distinct mitochondrial metabolic pathways govern the direction of T-cell differentiation and function and rely on specific nutrients and metabolic enzymes. Metabolic substrate uptake and mitochondrial metabolism form the foundational elements for T-cell activation, proliferation, differentiation, and effector function, contributing to the dynamic interplay between immunological signals and mitochondrial metabolism in coordinating adaptive immunity. Perturbations in substrate availability and enzyme activity may impair T-cell immunosuppressive function, fostering autoreactive responses and disrupting immune homeostasis, ultimately contributing to autoimmune disease pathogenesis. A growing body of studies has explored how metabolic processes regulate the function of diverse T-cell subsets in autoimmune diseases such as systemic lupus erythematosus (SLE), multiple sclerosis (MS), autoimmune hepatitis (AIH), inflammatory bowel disease (IBD), and psoriasis. This review describes the coordination of T-cell biology by mitochondrial metabolism, including the electron transport chain (ETC), oxidative phosphorylation, amino acid metabolism, fatty acid metabolism, and one‑carbon metabolism. This study elucidated the intricate crosstalk between mitochondrial metabolic programs, signal transduction pathways, and transcription factors. This review summarizes potential therapeutic targets for T-cell mitochondrial metabolism and signaling in autoimmune diseases, providing insights for future studies.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruyu Ren
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Xiong
- Department of Infectious Disease, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu 610041, China; Laboratory Medicine Research Center of West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
34
|
Jia Z, Lv D, Chen T, Shi Z, Li X, Ma J, Gao Z, Zhong C. Network pharmacology and in vivo experiment-based strategy for investigating the mechanism of chronic prostatitis/chronic pelvic pain syndrome in QianLieJinDan tablets. Heliyon 2024; 10:e29975. [PMID: 38726171 PMCID: PMC11078777 DOI: 10.1016/j.heliyon.2024.e29975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
Background Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common urinary system disease that is prone to recurrence. It typically leads to varying degrees of pelvic pain and discomfort, as well as symptoms related to the urinary system in affected patients. QianLieJinDan tablets (QLJD), a traditional Chinese medicine, have shown promising therapeutic effects on CP/CPPS in clinical practice, but the underlying mechanisms of QLJD in treating CP/CPPS have not been determined. Objective To reveal the phytochemical characterization and multitarget mechanism of QLJD on CP/CPPS. Methods The concentrations of the components of QLJD were determined using UHPLC-Q Exactive Orbitrap-MS. Utilizing network pharmacology approaches, the potential components, targets, and pathways involved in the treatment of CP/CPPS caused by QLJD were screened. Molecular docking calculations were employed to assess the affinity between the components of the QLJD and potential targets, revealing the optimal molecular conformation and binding site. Finally, the therapeutic efficacy and potential underlying mechanisms of QLJD were investigated through pharmacological experiments. Results In this study, a total of 35 components targeting 29 CP-related genes were identified, among which quercetin, baicalin, icariin, luteolin, and gallic acid were the major constituents. Enrichment analysis revealed that the potential targets were involved mainly in the regulation of cytokines, cell proliferation and apoptosis, and the oxidative stress response and were primarily associated with the cytokine‒cytokine receptor interaction pathway, the IL-17 signaling pathway, the Th17 cell differentiation pathway, and the JAK-STAT signaling pathway. In vivo experiments demonstrated that QLJD effectively attenuated the infiltration of CD3+ T cells and the expression of ROS in a CP/CPPS model rat prostate tissue. Furthermore, through the inhibition of IL-6 and STAT3 expression, QLJD reduced the differentiation of Th17 cells, thereby ameliorating pathological injury and prostatic index in prostate tissue. Conclusion The potential of QLJD as an anti-CP/CPPS agent lies in its ability to interfere with the expression of IL-6 and STAT3, inhibit Th17 cell differentiation, reduce inflammatory cell infiltration in rat prostate tissue, and alleviate oxidative stress damage through its multi-component, multi-target, and multi-pathway effects.
Collapse
Affiliation(s)
- Zhichao Jia
- Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Dongfang Lv
- Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Tengfei Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Zhuozhuo Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Xiaolin Li
- Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Junguo Ma
- Shandong Zhongda Pharmaceutical Company Ltd., Shandong Jinan 250000, China
| | - Zhaowang Gao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| | - Chongfu Zhong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Jinan 250000, China
| |
Collapse
|
35
|
Wang T, Su W, Li L, Wu H, Huang H, Li Z. Alteration of the gut microbiota in patients with lung cancer accompanied by chronic obstructive pulmonary diseases. Heliyon 2024; 10:e30380. [PMID: 38737249 PMCID: PMC11088322 DOI: 10.1016/j.heliyon.2024.e30380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
Aim To explore the abundance and diversity of the gut microbiota in patients with lung cancer accompanied by chronic obstructive pulmonary disease (LC-COPD). Methods The study cohort comprised 15 patients with LC-COPD, 49 patients with lung cancer, and 18 healthy control individuals. ELISA was used to detect inflammatory factors in venous blood. 16S rDNA sequencing was performed to determine the abundance and diversity of the gut microbiota. Gas chromatography-mass spectrometry was used to determine the concentration of short-chain fatty acids (SCFAs) in feces samples. Results The α-diversity index indicated that the richness and diversity of the gut microbiota were lower in patients with LC-COPD compared with patients with lung cancer and controls. Principal component analysis revealed significant differences among the three groups (P < 0.05). The linear discriminant analysis effect size algorithm indicated that the o_Lactobacillales, g_Lactobaccillus, f_Lactobaccillaceae, s_Lactobaccillus_oris, c_Bacilli, g_Anaerofustis, s_uncultured organism, and s_bacterium_P1C10 species were prevalent in patients with LC-COPD, while the g_Clostridium_XIVa and g_Butyricicoccus species were prevalent in patients with lung cancer. Furthermore, the concentrations of the SCFAs butyric acid, isobutyric acid, isovaleric acid, and valeric acid tended to be lower in patients with LC-COPD compared with patients with lung cancer and healthy controls, although these intergroup differences were not significant (P > 0.05). Patients with lung cancer had the lowest serum concentration of tumor necrosis factor (TNF)-a. There were no intergroup differences in the concentrations of other inflammatory factors. Conclusions The present study indicated that the abundance and structure of the gut microbiota is altered, and the concentrations of SCFAs may be decreased in patients with LC-COPD. In addition, patients with lung cancer had the lowest serum concentration of TNF-a.
Collapse
Affiliation(s)
- Tingxiang Wang
- Department of Oncology, Zhejiang Hospital Affiliated with the Medical SChool of Zhejiang University, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang 310012, China
| | - Wanting Su
- Zhejiang Chinese Medical University, 348 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310000, China
| | - Li Li
- Department of Respiratory Medicine, Zhejiang Hospital Affiliated with the Medical School of Zhejiang University, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang 310012, China
| | - Haiyan Wu
- Department of Respiratory Medicine, Zhejiang Hospital Affiliated with the Medical School of Zhejiang University, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang 310012, China
| | - He Huang
- Department of Respiratory Medicine, Zhejiang Hospital Affiliated with the Medical School of Zhejiang University, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang 310012, China
| | - Zhijun Li
- Department of Respiratory Medicine, Zhejiang Hospital Affiliated with the Medical School of Zhejiang University, 1229 Gudun Road, Xihu District, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
36
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
37
|
Niu D, Yue SY, Wang X, Li WY, Zhang L, Du HX, Liang CZ. High glucose intake exacerbates experimental autoimmune prostatitis through mitochondrial reactive oxygen species-dependent TGF-β activation-mediated Th17 differentiation. Int Immunopharmacol 2024; 130:111682. [PMID: 38394885 DOI: 10.1016/j.intimp.2024.111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a common inflammatory immune disease of the urogenital system. High glucose intake is considered to be a potential promoter of autoimmune diseases. However, the influence of high glucose intake on CP/CPPS is unknown. This research aimed to explore the influences of high glucose intake on experimental autoimmune prostatitis (EAP), a valid animal model of CP/CPPS, and the underlying mechanism. NOD mice received 20% glucose water or normal water treatment during EAP induction. EAP severity and Th17 cell responses were evaluated. Then, we explored the effects of an IL-17A neutralizing antibody, an inhibitor of TGF-β, the reactive oxygen species (ROS) inhibitor NAC, and the mitochondrial ROS (mtROS) antioxidant MitoQ on glucose-fed EAP mice. The results demonstrated that high glucose intake aggravated EAP severity and promoted Th17 cell generation, which could be ameliorated by the neutralization of IL-17A. In vitro experiments showed that high dextrose concentrations promoted Th17 cell differentiation through mtROS-dependent TGF-β activation. Treatment with TGF-β blockade, NAC, or MitoQ suppressed Th17 cell generation both in vivo and in vitro, resulting in the amelioration of EAP manifestations caused by high glucose intake. This study revealed that high glucose intake exacerbates EAP through mtROS-dependent TGF-β activation-mediated Th17 differentiation. Our results may provide insights into the molecular mechanisms underlying the detrimental effects of an environmental factor, such as high glucose intake, on CP/CPPS.
Collapse
Affiliation(s)
- Di Niu
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China
| | - Shao-Yu Yue
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China
| | - Xu Wang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China
| | - Wei-Yi Li
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China
| | - Li Zhang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China.
| | - He-Xi Du
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China.
| | - Chao-Zhao Liang
- Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China; Institute of Urology, Anhui Medical University, Hefei, Anhui, PR China; Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, Anhui, PR China.
| |
Collapse
|
38
|
Chen J, Ma W, Yue S, Li D, Chen L, Zhang C, Guan Y, Li C, Jiang C, Liao G, Liang C, Wang H, Tai S. Dual deficiency of melatonin and dihydrotestosterone promotes stromal cell damage and mediates prostatitis via the cGAS-STING pathway in sleep-deprived mice. Cell Commun Signal 2024; 22:183. [PMID: 38491517 PMCID: PMC10941623 DOI: 10.1186/s12964-024-01554-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/02/2024] [Indexed: 03/18/2024] Open
Abstract
PURPOSE Prostatitis is a highly prevalent condition that seriously affects men's physical and mental health. Although epidemiological investigations have provided evidence of a correlation between insufficient sleep and prostatitis, the pathogenesis of prostatitis remains unclear. We sought to identify the underlying mechanism involved and identify a promising therapeutic target. METHODS Sleep deprivation (SD) was utilized to establish a mouse model of insufficient sleep in a special device. Prostatitis was observed at different time points post-SD. The degree of prostatitis was evaluated by pathological section and behavioural tests. Using immunofluorescence, western blot, and proteomic analyses, the underlying mechanism of SD-related prostatitis was investigated, and the development and therapeutic target of prostatitis were elucidated. RESULTS SD, as an initial pathological trigger, resulted in a reduction in dihydrotestosterone and melatonin levels. Proteomic analysis revealed that the cGAS-STING pathway may play a significant role in inducing prostatitis. The subsequent results illustrated that the dual reduction in dihydrotestosterone and melatonin led to an accumulation of reactive oxygen species and the release of mitochondrial DNA (mt-DNA). The accumulation of mt-DNA activated the cGAS-STING pathway, which recruited inflammatory cells into the prostatic stroma through the secretion of interferon-β. Consequently, an inflammatory microenvironment was formed, ultimately promoting the development of prostatitis. Notably, mice with SD-induced prostatitis gradually recovered to a normal state within 7 days of recovery sleep. However, after being subjected to SD again, these mice tended to have a more pronounced manifestation of prostatitis within a shorter timeframe, which suggested that prostatitis is prone to relapse. CONCLUSIONS The cGAS-STING pathway activated by dual deficiency of dihydrotestosterone and melatonin plays a comprehensive inflammatory role in SD-related prostatitis. This research provides valuable insights into the pathogenesis, therapeutic targets, and prevention strategies of prostatitis.
Collapse
Affiliation(s)
- Jia Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Wenming Ma
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Shaoyu Yue
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Dongsheng Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Yu Guan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Chun Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Changqin Jiang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Guiyi Liao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China.
| | - Hui Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China.
| | - Sheng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Anhui Province Key Laboratory of Genitourinary Diseases, Hefei, 230022, P.R. China.
| |
Collapse
|
39
|
Liu X, Dong Q. Associations between gut microbiota and three prostate diseases: a bidirectional two-sample Mendelian randomization study. Sci Rep 2024; 14:4019. [PMID: 38369514 PMCID: PMC10874943 DOI: 10.1038/s41598-024-54293-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024] Open
Abstract
According to previous observational researches and clinical trials, the gut microbiota is related to prostate diseases. However, the potential association between gut microbiota and prostate disorders is still uncertain. We first identified groups of gut microbiota based on the phylum, class, order, family, and genus levels from consortium MiBioGen. And we acquired prostate diseases statistics from the FINNGEN study and PRACTICAL consortium. Next, two-sample Mendelian randomization was used to investigate the potential associations between three prevalent prostate disease and gut microbiota. In addition, we performed a reverse MR analysis and Benjamini-Hochberg (BH) test for further research. We investigated the connection between 196 gut microbiota and three prevalent prostate diseases. We identified 42 nominally significant associations and 2 robust causative links. Upon correction for multiple comparisons using the Benjamini-Hochberg procedure, our analysis revealed a positive correlation between the risk of prostatitis and the presence of the taxonomic order Gastranaerophilales. Conversely, the risk of prostate cancer exhibited an inverse correlation with the presence of the taxonomic class Alphaproteobacteria. Our study revealed the potential association between gut microbiota and prostate diseases. The results may be useful in providing new insights for further mechanistic and clinical studies of prostate diseases.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
40
|
Cui H, Wang N, Li H, Bian Y, Wen W, Kong X, Wang F. The dynamic shifts of IL-10-producing Th17 and IL-17-producing Treg in health and disease: a crosstalk between ancient "Yin-Yang" theory and modern immunology. Cell Commun Signal 2024; 22:99. [PMID: 38317142 PMCID: PMC10845554 DOI: 10.1186/s12964-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024] Open
Abstract
The changes in T regulatory cell (Treg) and T helper cell (Th) 17 ratios holds paramount importance in ensuring internal homeostasis and disease progression. Recently, novel subsets of Treg and Th17, namely IL-17-producing Treg and IL-10-producing Th17 have been identified. IL-17-producing Treg and IL-10-producing Th17 are widely considered as the intermediates during Treg/Th17 transformation. These "bi-functional" cells exhibit plasticity and have been demonstrated with important roles in multiple physiological functions and disease processes. Yin and Yang represent opposing aspects of phenomena according to the ancient Chinese philosophy "Yin-Yang" theory. Furthermore, Yin can transform into Yang, and vice versa, under specific conditions. This theory has been widely used to describe the contrasting functions of immune cells and molecules. Therefore, immune-activating populations (Th17, M1 macrophage, etc.) and immune overreaction (inflammation, autoimmunity) can be considered Yang, while immunosuppressive populations (Treg, M2 macrophage, etc.) and immunosuppression (tumor, immunodeficiency) can be considered Yin. However, another important connotation of "Yin-Yang" theory, the conversion between Yin and Yang, has been rarely documented in immune studies. The discovery of IL-17-producing Treg and IL-10-producing Th17 enriches the meaning of "Yin-Yang" theory and further promotes the relationship between ancient "Yin-Yang" theory and modern immunology. Besides, illustrating the functions of IL-17-producing Treg and IL-10-producing Th17 and mechanisms governing their differentiation provides valuable insights into the mechanisms underlying the dynamically changing statement of immune statement in health and diseases.
Collapse
Affiliation(s)
- Huantian Cui
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Ning Wang
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hanzhou Li
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuhong Bian
- College of Integrative Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Weibo Wen
- First School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fudi Wang
- The First Affiliated Hospital, Institute of Translational Medicine, The Second Affiliated Hospital, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Rogovskii V. Cancer and Autoimmune Diseases as Two Sides of Chronic Inflammation and the Method of Therapy. Curr Cancer Drug Targets 2024; 24:1089-1103. [PMID: 38288812 DOI: 10.2174/0115680096282480240105071638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 09/20/2024]
Abstract
Chronic inflammation is associated with a prolonged increase in various inflammatory factors. According to clinical data, it can be linked with both cancer and autoimmune diseases in the same patients. This raises the critical question of how chronic inflammation relates to seemingly opposing diseases - tumors, in which there is immunosuppression, and autoimmune diseases, in which there is over-activation of the immune system. In this review, we consider chronic inflammation as a prerequisite for both immune suppression and an increased likelihood of autoimmune damage. We also discuss potential disease-modifying therapies targeting chronic inflammation, which can be helpful for both cancer and autoimmunity. On the one hand, pro-inflammatory factors persisting in the areas of chronic inflammation stimulate the production of anti-inflammatory factors due to a negative feedback loop, eliciting immune suppression. On the other hand, chronic inflammation can bring the baseline immunity closer to the threshold level required for triggering an autoimmune response using the bystander activation of immune cells. Focusing on the role of chronic inflammation in cancer and autoimmune diseases may open prospects for more intensive drug discovery for chronic inflammation.
Collapse
Affiliation(s)
- Vladimir Rogovskii
- Department of Molecular Pharmacology and Radiobiology, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
42
|
Liu YF, Xie WJ, Xi P, Zhang ZC, Chen R, Fu SQ, Lei KY, Liu J, Cheng XF, Nie YC, Yang XR, Ma M, Sun T, Gong BB. Astaxanthin alleviates chronic prostatitis/chronic pelvic pain syndrome by increasing colonization of Akkermansia muciniphila in the intestine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155249. [PMID: 38056144 DOI: 10.1016/j.phymed.2023.155249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Astaxanthin (AST) is a natural compound with anti-inflammatory/immunomodulatory properties that has been found to have probiotic properties. However, the role and mechanism of AST in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) are still not fully understood. PURPOSE The aim of this study was to evaluate the effect of AST on CP/CPPS and elucidate the mediating role of the gut microbiota. MATERIALS AND METHODS An experimental autoimmune prostatitis (EAP) mouse model was utilized to test the potential role of AST on CP/CPPS. Antibiotic cocktail (ABX) treatment and fecal microbiota transplantation (FMT) were used to elucidate the gut microbiota-mediated effects on AST. In addition, 16S rRNA gene sequencing and qRT-PCR analyses were used to analyze changes in the gut microbiota of EAP mice and CP/CPPS patients. Finally, the mechanism by which AST exerts a protective effect on CP/CPPS was explored by untargeted metabolomics and gut barrier function assays. RESULTS Oral administration of AST reduced prostate inflammation scores, alleviated tactile sensitization of the pelvic region in EAP mice, reduced CD4+ T cell and CD68+ macrophage infiltration in the prostatic interstitium, and inhibited the up-regulation of systemic and localized pain/pro-inflammatory mediators in the prostate. After ABX, the protective effect of AST against CP/CPPS was attenuated, whereas colonization with fecal bacteria from AST-treated EAP mice alleviated CP/CPPS. 16S rRNA gene sequencing and qRT-PCR analyses showed that Akkermansia muciniphila in the feces of EAP mice and CP/CPPS patients showed a trend toward a decrease, which was associated with poor progression of CP/CPPS. In contrast, oral administration of AST increased the relative abundance of A. muciniphila, and oral supplementation with A. muciniphila also alleviated inflammation and pain in EAP mice. Finally, we demonstrated that both AST and A. muciniphila interventions increased serum levels of SCFAs acetate, up-regulated expression of colonic tight junction markers, and decreased serum lipopolysaccharide levels in EAP mice. CONCLUSION Our results showed that AST improved CP/CPPS by up-regulating A. muciniphila, which provides new potentially effective strategies and ideas for CP/CPPS management.
Collapse
Affiliation(s)
- Yi-Fu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Wen-Jie Xie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ping Xi
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Zhi-Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ru Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Sheng-Qiang Fu
- Department of Proctology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China
| | - Kun-Yang Lei
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ji Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Xiao-Feng Cheng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ye-Chen Nie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Xiao-Rong Yang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China.
| | - Bin-Bin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang 330000, Jiangxi Province, China; Jiangxi Institute of Urology, Nanchang 330000, Jiangxi Province, China.
| |
Collapse
|
43
|
Zhang H, Li C, Han L, Xiao Y, Bian J, Liu C, Gong L, Liu Z, Wang M. MUP1 mediates urolithin A alleviation of chronic alcohol-related liver disease via gut-microbiota-liver axis. Gut Microbes 2024; 16:2367342. [PMID: 38889450 PMCID: PMC11188796 DOI: 10.1080/19490976.2024.2367342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Alcohol-related liver disease (ALD) is recognized as a global health crisis, contributing to approximately 20% of liver cancer-associated fatalities. Dysbiosis of the gut microbiome is associated with the development of ALD, with the gut microbial metabolite urolithin A (UA) exhibiting a potential for alleviating liver symptoms. However, the protective efficacy of UA against ALD and its underlying mechanism mediated by microbiota remain elusive. In this study, we provide evidence demonstrating that UA effectively ameliorates alcohol-induced metabolic disorders and hepatic endoplasmic reticulum (ER) stress through a specific gut-microbiota-liver axis mediated by major urinary protein 1 (MUP1). Moreover, UA exhibited the potential to restore alcohol-induced dysbiosis of the intestinal microbiota by enriching the abundance of Bacteroides sartorii (B. sartorii), Parabacteroides distasonis (P. distasonis), and Akkermansia muciniphila (A. muciniphila), along with their derived metabolite propionic acid. Partial attenuation of the hepatoprotective effects exerted by UA was observed upon depletion of gut microbiota using antibiotics. Subsequently, a fecal microbiota transplantation (FMT) experiment was conducted to evaluate the microbiota-dependent effects of UA in ALD. FMT derived from mice treated with UA exhibited comparable efficacy to direct UA treatment, as it effectively attenuated ER stress through modulation of MUP1. It was noteworthy that strong associations were observed among the hepatic MUP1, gut microbiome, and metabolome profiles affected by UA. Intriguingly, oral administration of UA-enriched B. sartorii, P. distasonis, and A. muciniphila can enhance propionic acid production to effectively suppress ER stress via MUP1, mimicking UA treatment. Collectively, these findings elucidate the causal mechanism that UA alleviated ALD through the gut-microbiota-liver axis. This unique mechanism sheds light on developing novel microbiome-targeted therapeutic strategies against ALD.
Collapse
Affiliation(s)
- Hongbo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Chaoyue Li
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Yao Xiao
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Ji Bian
- Kolling Institute, Sydney Medical School, Royal North Shore Hospital, University of Sydney, Sydney, Australia
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, P.R. China
| | - Lan Gong
- UNSW Microbiome Research Centre, St George and Sutherland Clinical Campus, University of New South Wales, Sydney, Australia
| | - Zhigang Liu
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yang ling, Shaanxi, China
| |
Collapse
|
44
|
Satoh T. New prebiotics by ketone donation. Trends Endocrinol Metab 2023:S1043-2760(23)00091-7. [PMID: 37271711 DOI: 10.1016/j.tem.2023.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Integrity of the microbiome is an essential element for human gut health. 3-Hydroxybutyrate (3HB) secreted into the gut lumen has gained attention as a regulator of gut physiology, including stem cell expansion. In this opinion, I propose new prebiotics leading to gut health by use of a ketone (3HB) donor. When exogenous 3HB is supplied through ketone donation, it has the potential to markedly improve gut health by altering the gut microbiome and systemic metabolic status. Poly-hydroxybutyrate (PHB) donates 3HB and primarily influences microbiota, making it an effective prebiotic for improving the gut environment. Thus, exogenous 3HB donation to the lumen of the gut may aid gut health by maintaining the integrity of microbiome.
Collapse
Affiliation(s)
- Takumi Satoh
- Department of Antiaging Food Research, School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Japan.
| |
Collapse
|
45
|
Zhou Z, Feng D, Shi D, Gao P, Wang L, Wu Z. Untargeted and targeted metabolomics reveal bile acid profile changes in rats with ethylene glycol-induced calcium oxalate nephrolithiasis. Chem Biol Interact 2023; 381:110570. [PMID: 37244400 DOI: 10.1016/j.cbi.2023.110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Calcium oxalate (CaOx) nephrolithiasis is a prevalent disorder linked to metabolism. Examining metabolic alterations could potentially give an initial understanding of the origins of CaOx nephrolithiasis. This study aims to determine gut metabolic biomarkers differentiating CaOx nephrolithiasis utilizing untargeted and targeted metabolomics. CaOx nephrolithiasis model rats were built by 1% ethylene glycol administration. Histologic staining and renal function measurement revealed the presence of crystals in the lumen of the renal tubules, the renal injury and interstitial fibrosis in CaOx rats, demonstrating that the models of CaOx were established successfully. Hematoxylin & eosin (H&E) staining showed that CaOx group had inflammation and damage in the ileal tissue. Immunofluorescence and PCR results displayed that the tight junction proteins, ZO-1 and Occludin levels were decreased in the ileal tissues of the CaOx group. The untargeted metabolomic analysis revealed that 269 gut metabolites were differentially expressed between the CaOx group and the control group. Meanwhile, bile secretion, the main metabolic pathway in CaOx nephrolithiasis, was identified. Following, five significant bile acid metabolites were selected utilizing the targeted bile acid metabolomics, including Hyodeoxycholic acid (HDCA), Glycohyodeoxycholic acid (GHDCA), Nor-Deoxycholic Acid, omega-muricholic acid, and Taurolithocholic acid. Among these metabolites, HDCA and GHDCA presented the highest predictive accuracy with AUC = 1 to distinguish the CaOx group from the control group. As a result of network pharmacology, target genes of HDCA and GHDCA in CaOx nephrolithiasis were enriched in oxidative stress and apoptosis pathways. Conclusively, our study provides insight into bile acids metabolic changes related to CaOx nephrolithiasis. Although alterations in biochemical pathways indicate a complex pathology in CaOx rats, bile acid changes may serve as biomarkers of CaOx nephrolithiasis.
Collapse
Affiliation(s)
- Zijian Zhou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China
| | - Dexiang Feng
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, Suzhou, 215123, PR China
| | - Donghui Shi
- Department of Urology, Suzhou Wu Zhong People's Hospital, Suzhou, 215100, PR China
| | - Peng Gao
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China; Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, PR China
| | - Lujia Wang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China; Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, PR China.
| | - Zhong Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040, PR China; Clinical Research Center of Urolithiasis, Shanghai Medical College, Fudan University, Shanghai, 200040, PR China.
| |
Collapse
|
46
|
Sun CY, Yang N, Zheng ZL, Liu D, Xu QL. T helper 17 (Th17) cell responses to the gut microbiota in human diseases. Biomed Pharmacother 2023; 161:114483. [PMID: 36906976 DOI: 10.1016/j.biopha.2023.114483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The gut microbiota colonizing the gastrointestinal tract, is an indispensable "invisible organ" that affects multiple aspects of human health. The gut microbial community has been assumed to be an important stimulus to the immune homeostasis and development, and increasing data support the role of the gut microbiota-immunity axis in autoimmune diseases. Host's immune system requires recognition tools to communicate with the gut microbial evolutionary partners. Among these microbial perceptions, T cells enable the widest spectrum of gut microbial recognition resolution. Specific gut microbiota direct the induction and differentiation of Th17 cells in intestine. However, the detailed links between the gut microbiota and Th17 cells have not been well established. In this review, we describe the generation and characterization of Th17 cells. Notably, we discuss the induction and differentiation of Th17 cells by the gut microbiota and their metabolites, as well as recent advances in our understanding of interactions between Th17 cells and the gut microbiota in human diseases. In addition, we provide the emerging evidences in support of interventions targeting the gut microbes/Th17 cells in human diseases.
Collapse
Affiliation(s)
- Chao-Yue Sun
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Na Yang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | | | - Dong Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China
| | - Qi-Lin Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, China; Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, China.
| |
Collapse
|
47
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Yi S, Zhang G, Liu M, Yu W, Cheng G, Luo L, Ning F. Citrus Honey Ameliorates Liver Disease and Restores Gut Microbiota in Alcohol-Feeding Mice. Nutrients 2023; 15:nu15051078. [PMID: 36904078 PMCID: PMC10005585 DOI: 10.3390/nu15051078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Citrus honey (CH) is rich in nutrients that have a wide variety of biological functions, such as antibacterial, anti-inflammatory, and antioxidant activities, and which demonstrate therapeutic properties, such as anti-cancer and wound-healing abilities. However, the effects of CH on alcohol-related liver disease (ALD) and the intestinal microbiota remain unknown. This study aimed to determine the alleviating effects of CH on ALD and its regulatory effects on the gut microbiota in mice. In total, 26 metabolites were identified and quantified in CH, and the results suggested that the primary metabolites were abscisic acid, 3,4-dimethoxycinnamic acid, rutin, and two markers of CH, hesperetin and hesperidin. CH lowered the levels of aspartate aminotransferase, glutamate aminotransferase, and alcohol-induced hepatic edema. CH could promote the proliferation of Bacteroidetes while reducing the abundance of Firmicutes. Additionally, CH also showed some inhibitory effects on the growth of Campylobacterota and Turicibacter. CH enhanced the secretion of short-chain fatty acids (SCFAs), such as acetic acid, propionic acid, butyric acid, and valeric acid. Given its alleviating functions in liver tissue damage and its regulatory effects on the gut microbiota and SCFAs, CH could be a promising candidate for the therapeutic treatment of ALD.
Collapse
Affiliation(s)
- Shengxiang Yi
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gaowei Zhang
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Mingyan Liu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Wenjie Yu
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Guohua Cheng
- Agriculture and Rural Affairs Bureau of Nanfeng County, Fuzhou 344500, China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (L.L.); (F.N.); Tel./Fax: +86-0791-83969519 (L.L.)
| | - Fangjian Ning
- School of Life Sciences, Nanchang University, Nanchang 330031, China
- College of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Correspondence: (L.L.); (F.N.); Tel./Fax: +86-0791-83969519 (L.L.)
| |
Collapse
|
49
|
Yoon JH, Do JS, Velankanni P, Lee CG, Kwon HK. Gut Microbial Metabolites on Host Immune Responses in Health and Disease. Immune Netw 2023; 23:e6. [PMID: 36911800 PMCID: PMC9995988 DOI: 10.4110/in.2023.23.e6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.
Collapse
Affiliation(s)
- Jong-Hwi Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jun-Soo Do
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Priyanka Velankanni
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
| | - Choong-Gu Lee
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, Korea Institute of Science and Technology (KIST) School, University of Science and Technology, Seoul 02792, Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul 03722, Korea
- Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
- Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
50
|
Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines 2023; 11:294. [PMID: 36830830 PMCID: PMC9953403 DOI: 10.3390/biomedicines11020294] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbes and their metabolites are actively involved in the development and regulation of host immunity, which can influence disease susceptibility. Herein, we review the most recent research advancements in the gut microbiota-immune axis. We discuss in detail how the gut microbiota is a tipping point for neonatal immune development as indicated by newly uncovered phenomenon, such as maternal imprinting, in utero intestinal metabolome, and weaning reaction. We describe how the gut microbiota shapes both innate and adaptive immunity with emphasis on the metabolites short-chain fatty acids and secondary bile acids. We also comprehensively delineate how disruption in the microbiota-immune axis results in immune-mediated diseases, such as gastrointestinal infections, inflammatory bowel diseases, cardiometabolic disorders (e.g., cardiovascular diseases, diabetes, and hypertension), autoimmunity (e.g., rheumatoid arthritis), hypersensitivity (e.g., asthma and allergies), psychological disorders (e.g., anxiety), and cancer (e.g., colorectal and hepatic). We further encompass the role of fecal microbiota transplantation, probiotics, prebiotics, and dietary polyphenols in reshaping the gut microbiota and their therapeutic potential. Continuing, we examine how the gut microbiota modulates immune therapies, including immune checkpoint inhibitors, JAK inhibitors, and anti-TNF therapies. We lastly mention the current challenges in metagenomics, germ-free models, and microbiota recapitulation to a achieve fundamental understanding for how gut microbiota regulates immunity. Altogether, this review proposes improving immunotherapy efficacy from the perspective of microbiome-targeted interventions.
Collapse
Affiliation(s)
- Connor Campbell
- Department of Physiology & Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Mrunmayee R. Kandalgaonkar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rachel M. Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|