1
|
Gül A, Aksentijevich I, Brogan P, Gattorno M, Grayson PC, Ozen S. The pathogenesis, clinical presentations and treatment of monogenic systemic vasculitis. Nat Rev Rheumatol 2025:10.1038/s41584-025-01250-9. [PMID: 40369133 DOI: 10.1038/s41584-025-01250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/16/2025]
Abstract
Many monogenic autoinflammatory diseases, including DADA2 (deficiency of adenosine deaminase 2), HA20 (haploinsufficiency of A20), SAVI (STING-associated vasculopathy with onset in infancy), COPA syndrome, LAVLI (LYN kinase-associated vasculopathy and liver fibrosis) and VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, present predominantly with vasculitis and constitute a substantial subgroup of vasculitic conditions associated with a 'probable aetiology'. The spectrum of monogenic vasculitis encompasses all sizes and types of blood vessel, ranging from large vessels to medium-size and small vessels, and from the arterial side to the venous side of the vasculature. Monogenic vasculitis typically starts early in life during infancy or childhood; VEXAS syndrome, which presents in late adulthood, is an exception. The activation of myeloid cells via inflammasome and nuclear factor-κB pathways, type I interferon-enhanced autoimmune mechanisms and/or dysregulated adaptive immune responses have an important role in the development of immune-mediated endothelial dysfunction and vascular damage. Genetic testing is essential for the diagnosis of underlying monogenic autoinflammatory diseases; however, the penetrance of genetic variants can vary. Increased awareness and recognition of distinctive clinical findings could facilitate earlier diagnosis and allow for more-targeted treatments.
Collapse
Affiliation(s)
- Ahmet Gül
- Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Paul Brogan
- Infection, Immunity and Inflammation, University College London Great Ormond Street Institute of Child Health, London, UK
| | - Marco Gattorno
- UOC Reumatologia e Malattie Autoinfiammatorie, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Peter C Grayson
- National Institutes of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Seza Ozen
- Department of Paediatric Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Bello F, Fagni F, Bagni G, Hill CL, Mohammad AJ, Moiseev S, Olivotto I, Seyahi E, Emmi G. Arterial and venous thrombosis in systemic and monogenic vasculitis. Nat Rev Rheumatol 2025:10.1038/s41584-025-01252-7. [PMID: 40329108 DOI: 10.1038/s41584-025-01252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
Systemic vasculitis, common forms of which include anti-neutrophil cytoplasmic antibody-associated small-vessel vasculitis, large-vessel vasculitis and Behçet syndrome, are frequently complicated by arterial or venous thrombotic events (AVTEs). Newly identified entities such as DADA2 (deficiency of adenosine deaminase 2) and VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, which are driven by genetic mutations, also exhibit vasculitic features and are associated with a high risk of AVTEs. AVTEs in systemic vasculitis, including monogenic forms of vasculitis, are due to the complex interaction of inflammation and coagulation. New insights into the pathogenetic mechanisms implicate endothelial dysfunction, immune complex deposition and the interplay of pro-inflammatory cytokines with prothrombotic factors, which collectively promote thrombus formation. AVTEs impose a substantial disease burden, complicate diagnosis and negatively affect prognosis by increasing the risk of morbidity and mortality. Early diagnosis and treatment are crucial to prevent lasting damage. Management strategies should target both thrombosis and underlying inflammation. Antithrombotic therapies, including low-dose aspirin, or oral anticoagulants should be used on the basis of individual thrombotic risk assessment. Immunosuppressive therapy is the cornerstone of treatment for arterial and venous thrombosis, particularly in Behçet syndrome, in which vascular inflammation has a crucial role in thrombotic complications.
Collapse
Affiliation(s)
- Federica Bello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Giacomo Bagni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Catherine L Hill
- Rheumatology Unit, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Aladdin J Mohammad
- Department of Clinical Sciences, Rheumatology, Lund University, Lund, Sweden
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sergey Moiseev
- Tareev Clinic of Internal Disease, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - Emire Seyahi
- Division of Rheumatology, Department of Internal Medicine and Behçet's Disease Research Centre, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Giacomo Emmi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
- Clinical Medicine and Rheumatology Unit, Cattinara University Hospital, Trieste, Italy.
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Schmidt MF, van der Laden J, Begemann M, Yazdi AS. Vasculopathy with neurological symptoms. J Dtsch Dermatol Ges 2025; 23:660-663. [PMID: 40025897 DOI: 10.1111/ddg.15668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/15/2024] [Indexed: 03/04/2025]
Affiliation(s)
- Morna F Schmidt
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan van der Laden
- Department of Neurology, Rhein-Maas Klinikum Wuerselen, Wuerselen, Germany
| | - Matthias Begemann
- Institute of Human Genetics, University Hospital RWTH Aachen, Aachen, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
4
|
Perez L, Ambroise J, Bearzatto B, Froidure A, Pilette C, Yakoub Y, Palmai-Pallag M, Bouzin C, Ryelandt L, Pavan C, Huaux F, Lison D. Unique transcriptomic responses of rat and human alveolar macrophages in an in vitro model of overload with TiO 2 and carbon black. Part Fibre Toxicol 2025; 22:8. [PMID: 40281615 PMCID: PMC12023592 DOI: 10.1186/s12989-025-00624-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Chronic inhalation of titanium dioxide or carbon black can lead, at high exposure, to lung overload, and can induce chronic inflammation and lung cancer in rats. Whether this rat adverse response is predictive for humans has been questioned for more than 40 years. Currently, these particles are conservatively considered as possible human carcinogens. OBJECTIVE To clarify the mechanisms of the adverse rat response to lung overload and its human relevance. METHODS Primary rat and human alveolar macrophages were exposed in vitro to control, non-overload or overload doses of titanium dioxide (P25) or carbon black (Printex 90) particles, and their activation profile was examined by untargeted transcriptomics. RESULTS Rat macrophages were largely the most responsive to particle overload. In particular, eighteen genes were identified as robust markers of P25 and Printex 90 overload in rat cells. The known functions of these genes can be related to the potential mechanisms of the adverse outcomes recorded in rats in vivo. Most of these 18 genes were similarly modulated in human macrophages, but with a markedly lower magnitude. In addition, a 16 gene signature was observed upon overload in human macrophages, but not in rat macrophages. CONCLUSIONS These findings provide insights into the mechanisms of lung overload and inflammation in rats, and highlight similarities and differences in transcriptomic responses of rat and human alveolar macrophages.
Collapse
Affiliation(s)
- Laeticia Perez
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées , Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Bertrand Bearzatto
- Centre de Technologies Moléculaires Appliquées , Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Antoine Froidure
- Pôle Pneumologie, ORL (Airways) et dermatologie (Skin), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Charles Pilette
- Pôle Pneumologie, ORL (Airways) et dermatologie (Skin), Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques Universitaires St-Luc, Brussels, Belgium
| | - Yousof Yakoub
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Mihaly Palmai-Pallag
- Secteur des Sciences de la santé , Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP; RRID:SCR_023378), Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Laurence Ryelandt
- Institute of Mechanics, Materials and Civil Engineering, Université Catholique de Louvain, Louvain-la- Neuve, Belgium
| | - Cristina Pavan
- Department of Chemistry, University of Turin, Turin, Italy
| | - François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Dominique Lison
- Louvain Centre for Toxicology and Applied Pharmacology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
5
|
Oliver-Gutierrez D, Subirà O, Zabalza A, Boy B, Marques-Soares J, Zapata MÁ. Sequential central retinal artery occlusion in two brothers: a fight to prevent blindness. Doc Ophthalmol 2025; 150:105-110. [PMID: 39934596 DOI: 10.1007/s10633-025-10006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
IMPORTANCE Central retinal artery occlusion (CRAO) is typically associated with older patients with cardiovascular risk factors. However, its occurrence in younger patients without these risk factors suggests the need to explore rare genetic conditions. Identifying genetic disorders like adenosine deaminase 2 deficiency (DADA2), a vasculitic disease, can be critical in such cases to prevent further complications. OBJECTIVE To report the challenging diagnosis of two cases of CRAO in brothers under the age of 40, leading to the diagnosis of DADA2, a rare genetic vasculitic disorder. RESULTS A 34-year-old man and his 32-year-old brother, both without significant medical histories, presented with CRAO eight years apart. Extensive diagnostic evaluations, including blood tests, imaging, and autoimmunity panels, failed to identify common causes. Progressive neurological symptoms in the older brother and the similar presentation in his sibling led to further investigation, including genetic testing. A homozygous mutation c.752C > T p.(Pro251Leu) in the CECR1 gene confirmed the diagnosis of DADA2 in both brothers. CONCLUSION These cases underscore the importance of considering genetic disorders like DADA2 in young patients presenting with unexplained vascular occlusions. DADA2, characterized by vasculitis, immune dysregulation, and hematologic disorders, can manifest variably, complicating early diagnosis. Effective treatment with TNF inhibitors can prevent further vision loss and mitigate systemic complications. To our knowledge, these are the first reported cases of DADA2 with CRAO as the initial manifestation without prior clinical findings.
Collapse
Affiliation(s)
| | - Olaia Subirà
- Ophthalmology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ana Zabalza
- Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Departament de Neurologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Bernat Boy
- Departament de Neurologia, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Joana Marques-Soares
- Unitat de Malalties Autoinflamatòries de l'adult, Internal Medicine Department, CSUR Enfermedades Autoinflamatorias, XUEC Malalties Minoritàries - Malalties Autoinflamatòries, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | |
Collapse
|
6
|
Öztürk A, Yagci L, Ugurlu S. Mimics and challenging presentations of DADA2. Clin Exp Immunol 2025; 219:uxaf017. [PMID: 40117338 PMCID: PMC12062958 DOI: 10.1093/cei/uxaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2) has been a challenging diagnosis to make since it was first described in 2014. The disease represents a wide range of phenotypes. Therefore, it may present with various clinical patterns. Throughout the years, several difficult-to-diagnose cases of DADA2 were reported in the literature. Although several studies and reviews were published regarding different phenotypes and manifestations of DADA2, a review of challenging cases with diverse combinations of DADA2 manifestations was needed to integrate the knowledge from the literature into the clinical practice. Immunological, hematologic, autoinflammatory, and adult-onset polyarteritis-nodosa patterns were reported in the literature as cases challenging to diagnose. In this review, we aim to summarize the challenging case reports from the literature, provide an algorithmic approach for these kinds of presentations, and share our perspective and recommendations on the topic. Diagnosing DADA2 on time is a vital issue for preventing fatal and debilitating vascular events with anti-TNF-alpha therapy. Thus, early testing for DADA2 in suspected cases is recommended. Family history and genetic testing of the patient and the first-degree relatives are essential for accurate diagnosis. Thorough systemic examination and imaging might help detect clinically silent findings of vasculitis. Enzymatic activity of ADA2, when available, is also a key diagnostic tool that complements genetic testing and clinical evaluation.
Collapse
Affiliation(s)
- Admir Öztürk
- Medicine, Cerrahpasa Medical Faculty, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Lara Yagci
- Medicine, Cerrahpasa Medical Faculty, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| | - Serdal Ugurlu
- Division of Rheumatology, Department of Internal Medicine, Cerrahpasa Medical Faculty, University of Istanbul-Cerrahpasa, Istanbul, Türkiye
| |
Collapse
|
7
|
Cellai I, Filippi S, Comeglio P, Guarnieri G, Acciai G, Cancedda C, Cipriani S, Maseroli E, Rastrelli G, Morelli A, Maggi M, Vignozzi L. Adenosine relaxes vagina smooth muscle through the cyclic guanosine monophosphate- and cyclic guanosine monophosphate-dependent pathways. J Sex Med 2025; 22:14-25. [PMID: 39611580 DOI: 10.1093/jsxmed/qdae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/10/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND In males, adenosine (ADO) is known to relax penile smooth muscles, although its role in the vagina is not yet fully elucidated. AIM This study investigated the effect of ADO on vagina smooth muscle activity, using a validated female Sprague-Dawley rat model. METHODS Contractility studies, using noradrenaline-precontracted vaginal strips, tested the effects of ADORA1/3 antagonists and ADORA2A/2B antagonists and agonists. Increasing doses of ADO were tested after in vivo or in vitro treatment with Nω-nitro-L-arginine-methyl-ester hydrochloride (L-NAME) or with guanylate or adenylate cyclase inhibitors. Immunopositivity for ADORA2A and ADORA2B was assessed, and messenger RNA (mRNA) analysis was performed. Cyclic ADO monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) were quantified both in rat vagina smooth muscle cells (rvSMCs) and in vaginal tissues with increasing doses of ADO. OUTCOMES Demonstrating ADO's role in the relaxing/contractile mechanism in distal vagina smooth muscle. RESULTS All ADO receptors mRNAs were expressed in vaginal tissue, with a prevalent content of ADORA2B. A high expression of genes regulating ADO catabolism (ADK) and de novo synthesis (NT5E) was found. In vaginal strips, ADO induced relaxation with IC50 = 144.7 μM and a flat pseudo-Hill coefficient value = -0.42, indicating an activity on heterogeneous receptors. Blocking ADORA1/3 shifted ADO response to the left and with a steeper slope. ADORA2A/2B agonists showed a higher potency than ADO in inducing relaxation. Immunolocalization confirmed the presence of ADORA2A/2B in vaginal musculature, in the blood vessels endothelium, and in the epithelium. ADO stimulation of vagina tissues induced a significant increase in cAMP and cGMP contents. Experiments on rvSMCs confirmed that ADO time- and dose-dependently stimulated cAMP production in these cells. However, ADORA2A/2B antagonists, although reducing the ADO-induced relaxation, did not completely block it. A similar inhibition was obtained by blocking adenylate cyclase. Overall, these findings suggest that ADO relaxation involves other pathways, eg, nitric oxide (NO)/cGMP. Accordingly, blocking NO formation through L-NAME substantially blunted ADO responsiveness, as it does the block of cGMP formation through 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one. Simultaneous incubation with cGMP and cAMP blockers completely inhibited ADO responsiveness. CLINICAL TRANSLATION The study highlights ADO's role in regulating vaginal smooth muscle activity, suggesting its potential effect on the vagina. STRENGTHS AND LIMITATIONS This is the first study on ADO in the vagina, although the results are preliminary and limited to the rat model. CONCLUSION These results show that ADO acts as a vaginal relaxing modulator through selective activation of receptors involving not only cAMP but also cGMP.
Collapse
Affiliation(s)
- Ilaria Cellai
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, 50139, Italy
| | - Paolo Comeglio
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Giulia Guarnieri
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Gabriele Acciai
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Chiara Cancedda
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Sarah Cipriani
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elisa Maseroli
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Giulia Rastrelli
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Annamaria Morelli
- Section of Human Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, 50134, Italy
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, 00136, Italy
| | - Linda Vignozzi
- Andrology and Gender Endocrinology Unit, Department of Experimental Clinical and Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
- I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, 00136, Italy
| |
Collapse
|
8
|
Tumlin J, Rovin B, Anders HJ, Mysler EF, Jayne DR, Takeuchi T, Lindholm C, Weiss G, Sorrentino A, Woollard K, Ferrari N. Targeting the Type I Interferon Pathway in Glomerular Kidney Disease: Rationale and Therapeutic Opportunities. Kidney Int Rep 2025; 10:29-39. [PMID: 39810777 PMCID: PMC11725820 DOI: 10.1016/j.ekir.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 01/16/2025] Open
Abstract
Type I interferons (IFNs) are immunostimulatory molecules that can activate the innate and adaptive immune systems. In cases of immune dysfunction, prolonged activation of the type I IFN pathway has been correlated with kidney tissue damage in a wide range of kidney disorders, such as lupus nephritis (LN) and focal segmental glomerulosclerosis (FSGS). Genetic mutations, such as APOL1 risk variants in conjunction with elevated type I IFN expression, are also associated with higher rates of chronic kidney disease in patients with LN and collapsing FSGS. Long-term activation of the type I IFN pathway can result in chronic inflammation, leading to kidney tissue damage, cell death, and decline in organ function. Thus, therapeutic strategies targeting type I IFN could provide clinical benefits to patients with immune dysregulation who are at risk of developing impaired kidney function. Here, we present a critical review of type I IFN signaling, the consequences of chronically elevated type I IFN expression, and therapeutic strategies targeting type I IFN signaling in the context of kidney disease.
Collapse
Affiliation(s)
- James Tumlin
- NephroNet Clinical Trials Consortium, Buford, Georgia, USA
| | - Brad Rovin
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | | | | | - Tsutomu Takeuchi
- Department of Rheumatology and Applied Immunology, Saitama Medical University and Division of Rheumatology, Department of Internal Medicine, Keio University, Tokyo, Japan
| | | | - Gudrun Weiss
- Global Medical Affairs, Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Alessandro Sorrentino
- Global Medical Affairs, Respiratory and Immunology, BioPharmaceuticals Medical, AstraZeneca, Cambridge, UK
| | - Kevin Woollard
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Nicola Ferrari
- Translational Science and Experimental Medicine, Early R&I, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
9
|
Dong L, Luo W, Maksym S, Robson SC, Zavialov AV. Adenosine deaminase 2 regulates the activation of the toll-like receptor 9 in response to nucleic acids. Front Med 2024; 18:814-830. [PMID: 39078537 DOI: 10.1007/s11684-024-1067-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/31/2024] [Indexed: 07/31/2024]
Abstract
Human cells contain two types of adenosine deaminases (ADA) each with unique properties: ADA1, which is present in all cells where it modulates intracellular functions and extracellular signaling, and ADA2, which is secreted by immune cells. The exact intracellular functions of ADA2 remain undetermined and less defined than those of ADA1. ADA2 has distinct characteristics, such as low adenosine affinity, heparin-binding ability, and putative lysosomal entry. Here, we confirm that ADA2 is a lysosomal protein that binds toll-like receptor 9 (TLR9) agonists, specifically CpG oligodeoxynucleotides (CpG ODNs). We show that interferon-alpha (IFN-α) is secreted in response to TLR9 activation by CpG ODNs and natural DNA and markedly increases when ADA2 expression is downregulated in plasmacytoid dendritic cells (pDCs). Additionally, the pretreatment of pDCs with RNA further stimulates IFN-α secretion by pDCs after activation with CpG ODNs. Our findings indicate that ADA2 regulates TLR9 responses to DNA in activated pDCs. In conclusion, decreasing ADA2 expression or blocking it with specific oligonucleotides can enhance IFN-α secretion from pDCs, improving immune responses against intracellular infections and cancer.
Collapse
Affiliation(s)
- Liang Dong
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenwen Luo
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Skaldin Maksym
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
- Joint Biotechnology Laboratory, University of Turku, Turku, 20520, Finland
| | - Simon C Robson
- Center for Inflammation Research, Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215, USA
| | - Andrey V Zavialov
- International Center for Aging and Cancer (ICAC), Hainan Medical University, Haikou, 571199, China.
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China.
| |
Collapse
|
10
|
Kouyate TS, Nguyen AN, Plotkin AL, Ford R, Idoko OT, Odumade OA, Masiria G, Jude J, Diray-Arce J, McEnaney K, Ozonoff A, Steen H, Kollmann TR, Richmond PC, van den Biggelaar AHJ, Kampmann B, Pomat W, Levy O, Smolen KK. Plasma adenosine deaminase-1 and -2 activities are lower at birth in Papua New Guinea than in The Gambia but converge over the first weeks of life. Front Immunol 2024; 15:1425349. [PMID: 39386208 PMCID: PMC11461337 DOI: 10.3389/fimmu.2024.1425349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Dynamic cellular and molecular adaptations in early life significantly impact health and disease. Upon birth, newborns are immediately challenged by their environment, placing urgent demands on the infant immune system. Adenosine deaminases (ADAs) are enzymatic immune modulators present in two isoforms - ADA-1 and ADA-2. Infants exhibit low ADA activity, resulting in high plasma adenosine concentrations and a consequent anti-inflammatory/anti-Th1 bias. While longitudinal studies of plasma ADA have been conducted in infants in The Gambia (GAM), little is known regarding ADA trajectories in other parts of the world. Methods Herein, we characterized plasma ADA activity in an infant cohort in Papua New Guinea (PNG; n=83) and compared to ontogeny of ADA activity in a larger cohort in GAM (n=646). Heparinized peripheral blood samples were collected at day of life (DOL) 0, DOL7, DOL30, and DOL128. Plasma ADA-1, ADA-2, and total ADA activities were measured by chromogenic assay. Results Compared to GAM infants, PNG infants had significantly lower ADA-1 (0.9-fold), ADA-2 (0.42-fold), and total ADA (0.84-fold) activities at birth which converged by DOL30. Discussion Overall, discovery of a distinct baseline and a consistent pattern of increasing plasma ADA activity in early life in two genetically and geographically distinct populations validates and extends previous findings on the robustness of early life immune ontogeny.
Collapse
Affiliation(s)
- Thomas S Kouyate
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Athena N Nguyen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Alec L Plotkin
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Rebeca Ford
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Olubukola T Idoko
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Oludare A Odumade
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA, United States
| | - Geraldine Masiria
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Joe Jude
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kerry McEnaney
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, MA, United States
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | | | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Pediatrics, School of Medicine, University of Western Australia, Perth Children's Hospital, Perth, WA, Australia
| | - Anita H J van den Biggelaar
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Charité Centre for Global Health and Institute for International Health, Charité - Universitätsmedizin, Berlin, Germany
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, MA, United States
| | - Kinga K Smolen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Coşkun Ç, Ünal Ş. Deficiency of Adenosine Deaminase 2. Turk J Haematol 2024; 41:133-140. [PMID: 39120005 PMCID: PMC11589373 DOI: 10.4274/tjh.galenos.2024.2024.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 08/10/2024] Open
Abstract
Adenosine deaminase 2 (ADA2) deficiency is an autosomal recessively inherited autoinflammatory disorder caused by loss-of-function mutations in the ADA2 gene. Although the pathogenesis involves the triggering of a proinflammatory cascade due to increased production of inflammatory cytokines such as tumor necrosis factor (TNF)-α and dysregulation of neutrophil extracellular trap formation resulting from an excess accumulation of extracellular adenosine, the pathogenetic mechanism still needs further clarification due to the broad clinical spectrum. In addition to the initially described vasculitis-related symptoms, hematological, immunological, and autoinflammatory symptoms are now well recognized. The diagnosis is made by demonstration of pathogenic variants of ADA2 with biallelic loss of function and identification of low plasma ADA2 catalytic activity. Currently, TNF-α inhibitors are the treatment of choice for controlling vasculitis manifestations and preventing strokes. However, in patients presenting with severe hematologic findings, TNF-α inhibitors are not the treatment of choice and hematopoietic stem cell transplantation has been shown to be successful in selected cases. Recombinant ADA2 protein and gene therapy are promising treatment modalities for the future. In conclusion, ADA2 deficiency has a broad phenotype and should be considered in the differential diagnosis of different clinical situations. In this review, we summarize the disease manifestations of ADA2 deficiency and available treatment options.
Collapse
Affiliation(s)
- Çağrı Coşkun
- Hacettepe University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Türkiye
| | - Şule Ünal
- Hacettepe University Faculty of Medicine, Department of Pediatric Hematology, Ankara, Türkiye
- Hacettepe University Research Center for Fanconi Anemia and Other Inherited Bone Marrow Failure Syndromes, Ankara, Türkiye
- Hacettepe University Research Center for Genomics and Rare Diseases, Ankara, Türkiye
| |
Collapse
|
12
|
Cai Q, Feng F, Tian Y, Luo R, Mu D, Yang F, Yang Z, Zhou Z. A case report on deficiency of adenosine deaminase 2 with relapse-remission course and analysis of genotype-phenotype correlation. Am J Med Genet A 2024; 194:e63568. [PMID: 38353426 DOI: 10.1002/ajmg.a.63568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 05/02/2024]
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is a monogenic disease caused by biallelic mutations in adenosine deaminase 2 (ADA2). The varying phenotypes of the disease often lead to delayed diagnosis or misdiagnosis. We report an 11-year-old boy with DADA2 and provide a preliminary analysis of genotype-phenotype correlation. The age of onset of the disease was 8 years old. The disease successively involved the brainstem, muscles, joints, and cerebrum. After three relapse-remission episodes over 3 years, the patient was finally diagnosed with DADA2 by whole-exome sequencing. Compound heterozygous variants in the ADA2 gene (NM_001282225.2: c.1072G>A, p.Gly358Arg; c.419dupC, p.Arg141Lysfs*37) were found in the patient. He did not receive anti-TNF therapy and had no relapse after a 8-month follow-up. We identified a novel variant of the ADA2 gene, and the associated disease course may follow a relapse-remission pattern. Homozygous mutations of p.Gly358Arg can cause pure red cell aplasia, whereas compound heterozygous variations may lead to different phenotypes. Variants in the catalytic domain and frameshift mutations may also cause relatively benign phenotypes besides causing hematological disorders. Further studies are needed to clarify the genotypic-phenotypic relationship of this disease.
Collapse
Affiliation(s)
- Qianyun Cai
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Fan Feng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Yanmei Tian
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Rong Luo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatrics, Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | | | | | - Zhongjie Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Xu D, Tang L, Wang Y, Pan J, Su C. LC-MS-based rheumatoid arthritis serum metabolomics reveals the role of deoxyinosine in attenuating collagen-induced arthritis in mice. Heliyon 2024; 10:e30903. [PMID: 38778995 PMCID: PMC11108858 DOI: 10.1016/j.heliyon.2024.e30903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune condition with no identified cure currently. Recently, scientists have applied metabolomics to investigate altered metabolic profiles and unique diseases-associated metabolic signatures. Herein, we applied metabolomics approach to analyze serum samples of 41 RA patients and 42 healthy controls (HC) with the aim to characterize RA patients' metabolic profile, investigate related underlying pathological processes, and identify target metabolites. By utilizing ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry, we found 168 proposed metabolites and 45 vital metabolic pathways. Our analysis revealed that deoxyinosine (DI), a metabolite of the purine metabolic pathway, was the most significant reduced metabolite in RA patients. Furthermore, through targeted detection, we confirmed lower concentration of DI in RA patients' peripheral blood. Moreover, DI inhibited lipopolysaccharide-induced inflammation both in vitro and in vivo. We further assessed DI's therapeutic potential in a collagen-induced arthritis (CIA) murine model. The results revealed that DI attenuated CIA, as evidenced by significantly lowered clinical scores of arthritis, alleviated joint swelling, and mitigated bone destruction. Moreover, we elucidated the underlying mechanism by which DI increased the population of myeloid-derived suppressor cells (MDSCs) and suppressed the proliferation of induced T cells. Collectively, these findings suggested that DI potentially ameliorated RA by inducing immunosuppressive MDSCs. The study provides key observations on RA pathogenesis and may contribute to developing novel therapeutic strategies for this debilitating condition.
Collapse
Affiliation(s)
- Delai Xu
- Corresponding author. Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 21500, China.
| | | | - Yueyuan Wang
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jie Pan
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Cunjin Su
- Department of Pharmacy, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| |
Collapse
|
14
|
Wu YL, Zhu AQ, Zhou XT, Zhang KW, Yuan XJ, Yuan M, He J, Pineda MA, Li KP. A Novel Ultrafiltrate Extract of Propolis Exerts Anti-inflammatory Activity through Metabolic Rewiring. Chem Biodivers 2024; 21:e202301315. [PMID: 38189169 DOI: 10.1002/cbdv.202301315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Thousands of years ago, humans started to use propolis because of its medicinal properties, and modern science has successfully identified several bioactive molecules within this resinous bee product. However, a natural propolis extract which has been removed the adhesive glue and preserved propolis bioactive compounds is urgently needed to maximise the therapeutic opportunities. In this study, a novel ultrafiltrate fraction from Brazilian green propolis, termed P30K, was demonstrated with anti-inflammatory properties, both in vitro and in vivo. Total flavonoids and total phenolic acids content in P30K were 244.6 mg/g and 275.8 mg/g respectively, while the IC50 value of inhibition of cyclooxygenase-2 (COX-2) was 8.30 μg/mL. The anti-inflammatory activity of P30K was furtherly corroborated in experimental models of lipopolysaccharides (LPS)-induced acute liver and lung injury. Mechanistically, integrated GC-MS and LC-MS based serum metabolomics analysis revealed that P30K modulated citrate cycle (TCA), pyruvate, glyoxylate and dicarboxylate metabolism pathways to inhibit secretion of pro-inflammatory cytokines. Results of network pharmacology and molecular docking suggested that P30K targeted catechol-O-methyltransferases (COMT), 11β-hydroxysteroid dehydrogenases (HSD11B1), and monoamine oxidases (MAOA and MAOB) to promote cellular metabolomic rewiring. Collectively, our work reveals P30K as an efficient therapeutic agent against inflammatory conditions and its efficacy is related to metabolic rewiring.
Collapse
Affiliation(s)
- Yong-Lin Wu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - An-Qi Zhu
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Xiao-Ting Zhou
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Ke-Wei Zhang
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Xu-Jiang Yuan
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Min Yuan
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| | - Jian He
- BYHEALTH Institute of Nutrition & Health., Guangzhou, 510000, China
| | - Miguel A Pineda
- Centre for the Cellular Microenvironment, University of Glasgow, University Place, Glasgow, G12 8TA, UK
| | - Kun-Ping Li
- Institute of Chinese Medicinal Sciences, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, 280 East Road, Outer Ring, Guangzhou Higher Education Mega Center, Guangzhou, China, 510006
| |
Collapse
|
15
|
Miano M, Bertola N, Grossi A, Dell’Orso G, Regis S, Rusmini M, Uva P, Vozzi D, Fioredda F, Palmisani E, Lupia M, Lanciotti M, Grilli F, Corsolini F, Arcuri L, Giarratana MC, Ceccherini I, Dufour C, Cappelli E, Ravera S. Impaired Mitochondrial Function and Marrow Failure in Patients Carrying a Variant of the SRSF4 Gene. Int J Mol Sci 2024; 25:2083. [PMID: 38396760 PMCID: PMC10888539 DOI: 10.3390/ijms25042083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Serine/arginine-rich splicing factors (SRSFs) are a family of proteins involved in RNA metabolism, including pre-mRNA constitutive and alternative splicing. The role of SRSF proteins in regulating mitochondrial activity has already been shown for SRSF6, but SRSF4 altered expression has never been reported as a cause of bone marrow failure. An 8-year-old patient admitted to the hematology unit because of leukopenia, lymphopenia, and neutropenia showed a missense variant of unknown significance of the SRSF4 gene (p.R235W) found via whole genome sequencing analysis and inherited from the mother who suffered from mild leuko-neutropenia. Both patients showed lower SRSF4 protein expression and altered mitochondrial function and energetic metabolism in primary lymphocytes and Epstein-Barr-virus (EBV)-immortalized lymphoblasts compared to healthy donor (HD) cells, which appeared associated with low mTOR phosphorylation and an imbalance in the proteins regulating mitochondrial biogenesis (i.e., CLUH) and dynamics (i.e., DRP1 and OPA1). Transfection with the wtSRSF4 gene restored mitochondrial function. In conclusion, this study shows that the described variant of the SRSF4 gene is pathogenetic and causes reduced SRSF4 protein expression, which leads to mitochondrial dysfunction. Since mitochondrial function is crucial for hematopoietic stem cell maintenance and some genetic bone marrow failure syndromes display mitochondrial defects, the SRSF4 mutation could have substantially contributed to the clinical phenotype of our patient.
Collapse
Affiliation(s)
- Maurizio Miano
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Nadia Bertola
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | - Alice Grossi
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (A.G.); (M.R.); (I.C.)
| | - Gianluca Dell’Orso
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Marta Rusmini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (A.G.); (M.R.); (I.C.)
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Diego Vozzi
- Genomics Facility, Istituto Italiano di Tecnologia (IIT), 16163 Genoa, Italy;
| | - Francesca Fioredda
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Elena Palmisani
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Michela Lupia
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Marina Lanciotti
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Federica Grilli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Fabio Corsolini
- Laboratory for the Study of Inborn Errors of Metabolism (LABSIEM), Pediatric Clinic and Endocrinology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Luca Arcuri
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Maria Carla Giarratana
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (A.G.); (M.R.); (I.C.)
| | - Carlo Dufour
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.M.); (G.D.); (F.F.); (E.P.); (M.L.); (M.L.); (F.G.); (L.A.); (M.C.G.); (C.D.)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
16
|
Paciaroni K, Sangiorgi E, Pulvirenti F, Villiva N, Andrizzi C, Campagna S, Tordi A, Celesti F, Manna R, Gurrieri F, Licci S, di Toritto TC. Severe chronic primary neutropenia: findings from a patient who underwent exstensive evaluation including adenosine deaminase 2 gene variant assessment. Leuk Lymphoma 2023; 64:2343-2346. [PMID: 37698115 DOI: 10.1080/10428194.2023.2255912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Affiliation(s)
| | - Eugenio Sangiorgi
- Istituto di Medicina Genomica, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Pulvirenti
- Reference Centre for Primary Immune Deficiencies, Policlinico Umberto I, Rome, Italy
| | | | | | | | | | | | - Raffaele Manna
- Istituto di Medicina Interna, Rare diseases and periodic Fevers Research Center, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fiorella Gurrieri
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Stefano Licci
- Istituto di Medicina Interna, Rare diseases and periodic Fevers Research Center, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
- Pathology Unit, San Filippo Neri Hospital, Rome, Italy
| | | |
Collapse
|
17
|
Grim A, Veiga KR, Saad N. Deficiency of Adenosine Deaminase 2: Clinical Manifestations, Diagnosis, and Treatment. Rheum Dis Clin North Am 2023; 49:773-787. [PMID: 37821195 DOI: 10.1016/j.rdc.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is a monogenic vasculitis syndrome caused by biallelic mutations in the adenosine deaminase 2 gene. The diagnosis of DADA2 is confirmed by decreased enzymatic activity of ADA2 and genetic testing. Symptoms range from cutaneous vasculitis and polyarteritis nodosa-like lesions to stroke. The vasculopathy of DADA2 can affect many organ systems, including the gastrointestinal and renal systems. Hematologic manifestations occur early with hypogammaglobulinemia, lymphopenia, pure red cell aplasia, or pancytopenia. Treatment can be challenging. Tumor necrosis factor inhibitors are helpful to control inflammatory symptoms. Hematopoietic stem cell transplant may be needed to treat refractory cytopenias, vasculopathy, or immunodeficiency.
Collapse
Affiliation(s)
- Andrew Grim
- Division of Pediatric Rheumatology, Department of Pediatrics, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Keila R Veiga
- Division of Pediatric Rheumatology, Department of Pediatrics, New York Medical College/Maria Fareri Children's Hospital, 100 Woods Road, Valhalla, NY 10595, USA
| | - Nadine Saad
- Division of Pediatric Rheumatology, Department of Pediatrics, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
18
|
Lažetić V, Batachari LE, Russell AB, Troemel ER. Similarities in the induction of the intracellular pathogen response in Caenorhabditis elegans and the type I interferon response in mammals. Bioessays 2023; 45:e2300097. [PMID: 37667453 PMCID: PMC10694843 DOI: 10.1002/bies.202300097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Although the type-I interferon (IFN-I) response is considered vertebrate-specific, recent findings about the Intracellular Pathogen Response (IPR) in nematode Caenorhabditis elegans indicate that there are similarities between these two transcriptional immunological programs. The IPR is induced during infection with natural intracellular fungal and viral pathogens of the intestine and promotes resistance against these pathogens. Similarly, the IFN-I response is induced by viruses and other intracellular pathogens and promotes resistance against infection. Whether the IPR and the IFN-I response evolved in a divergent or convergent manner is an unanswered and exciting question, which could be addressed by further studies of immunity against intracellular pathogens in C. elegans and other simple host organisms. Here we highlight similar roles played by RIG-I-like receptors, purine metabolism enzymes, proteotoxic stressors, and transcription factors to induce the IPR and IFN-I response, as well as the similar consequences of these defense programs on organismal development.
Collapse
Affiliation(s)
- Vladimir Lažetić
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Lakshmi E. Batachari
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Alistair B. Russell
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Emily R. Troemel
- School of Biological SciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
19
|
Dzhus M, Ehlers L, Wouters M, Jansen K, Schrijvers R, De Somer L, Vanderschueren S, Baggio M, Moens L, Verhaaren B, Lories R, Bucciol G, Meyts I. A Narrative Review of the Neurological Manifestations of Human Adenosine Deaminase 2 Deficiency. J Clin Immunol 2023; 43:1916-1926. [PMID: 37548813 PMCID: PMC10661818 DOI: 10.1007/s10875-023-01555-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Deficiency of human adenosine deaminase type 2 (DADA2) is a complex systemic autoinflammatory disorder characterized by vasculopathy, immune dysregulation, and hematologic abnormalities. The most notable neurological manifestations of DADA2 are strokes that can manifest with various neurological symptoms and are potentially fatal. However, neurological presentations can be diverse. We here present a review of the neurological manifestations of DADA2 to increase clinical awareness of DADA2 as the underlying diagnosis. We reviewed all published cases of DADA2 from 1 January 2014 until 19 July 2022 found via PubMed. A total of 129 articles describing the clinical features of DADA2 were included in the analysis. Six hundred twenty-eight patients diagnosed with DADA2 were included in the review. 50.3% of patients had at least signs of one reported neurological event, which was the initial or sole manifestation in 5.7% and 0.6%, respectively. 77.5% of patients with neurological manifestations had at least signs of one cerebrovascular accident, with lacunar strokes being the most common and 35.9% of them having multiple stroke episodes. There is a remarkable predilection for the brain stem and deep gray matter, with 37.3% and 41.6% of ischemic strokes, respectively. Other neurological involvement included neuropathies, focal neurological deficits, ophthalmological findings, convulsions, and headaches. In summary, neurological manifestations affect a significant proportion of patients with DADA2, and the phenotype is broad. Neurological manifestations can be the first and single manifestation of DADA2. Therefore, stroke, encephalitis, posterior reversible encephalopathy syndrome, mononeuropathy and polyneuropathy, and Behçet's disease-like presentations should prompt the neurologist to exclude DADA2, especially but not only in childhood.
Collapse
Affiliation(s)
- Mariia Dzhus
- Department of Microbiology, Immunology and Transplantation, Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Lisa Ehlers
- Department of Microbiology, Immunology and Transplantation, Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Marjon Wouters
- Department of Microbiology, Immunology and Transplantation, Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of General Internal Medicine-Allergy and Clinical Immunology, Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Department of Pediatric Rheumatology, Laboratory of Immunobiology, Rega Institute, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases, University Hospital Leuven and KU Leuven, Leuven, Belgium
| | - Steven Vanderschueren
- Department of General Internal Medicine, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases, Department of Microbiology, Immunology and Transplantation, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Marco Baggio
- Department of Microbiology, Immunology and Transplantation, Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | | | - Rik Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Division of Rheumatology, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Giorgia Bucciol
- Department of Microbiology, Immunology and Transplantation, Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Inborn Errors of Immunity, Department of Pediatrics, European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases, University Hospitals Leuven and KU Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Colangelo A, Tromby F, Cafaro G, Gerli R, Bartoloni E, Perricone C. Vasculitis associated with adenosine deaminase 2 deficiency: at the crossroads between Behçet's disease and autoinflammation. A viewpoint. Reumatismo 2023; 75. [PMID: 37721348 DOI: 10.4081/reumatismo.2023.1578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/28/2023] [Indexed: 09/19/2023] Open
Abstract
Adenosine deaminase 2 deficiency (DADA2) is a rare monogenic vasculopathy caused by loss-of-function homozygous or compound heterozygous mutations in ADA2, formerly CECR1 (cat eye syndrome chromosome region 1) gene. The DADA2 phenotype is widely heterogeneous, and patients may present with fever, weight loss, livedo reticularis/racemosa, digital ischemia, cutaneous ulceration, peripheral neuropathy, abdominal pain, bowel perforation, and portal or nephrogenic hypertension. More specific manifestations include early-onset ischemic or hemorrhagic stroke, mild immunodeficiency and hypogammaglobinemia, cytopenia, and vision disturbances. Herein, we present the case of a young male with vasculitis associated with DADA2. The presence of HLA-B51 and the clinical features of this patient raised the question of similarities between ADA2 deficiency, Behçet's disease, and NOD2-associated diseases. Treatment of this rare monogenic disease is challenging and based on small case series. The long-term experience of this patient proved the difficulties of prednisone tapering and the lack of satisfactory therapeutic strategies.
Collapse
Affiliation(s)
- A Colangelo
- Section of Rheumatology, Department of Medicine and Surgery, University of Perugia.
| | - F Tromby
- Section of Rheumatology, Department of Medicine and Surgery, University of Perugia.
| | - G Cafaro
- Section of Rheumatology, Department of Medicine and Surgery, University of Perugia.
| | - R Gerli
- Section of Rheumatology, Department of Medicine and Surgery, University of Perugia.
| | - E Bartoloni
- Section of Rheumatology, Department of Medicine and Surgery, University of Perugia.
| | - C Perricone
- Section of Rheumatology, Department of Medicine and Surgery, University of Perugia.
| |
Collapse
|
21
|
Wang B, Wang T, Yang C, Nan Z, Ai D, Wang X, Wang H, Qu X, Wei F. Co-inhibition of adenosine 2b receptor and programmed death-ligand 1 promotes the recruitment and cytotoxicity of natural killer cells in oral squamous cell carcinoma. PeerJ 2023; 11:e15922. [PMID: 37663280 PMCID: PMC10474825 DOI: 10.7717/peerj.15922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Adenosine promotes anti-tumor immune responses by modulating the functions of T-cells and natural killer (NK) cells in the tumor microenvironment; however, the role of adenosine receptors in the progression of oral squamous cell carcinoma (OSCC) and its effects on immune checkpoint therapy remain unclear. In this study, we obtained the tumor tissues from 80 OSCC patients admitted at the Shandong University Qilu Hospital between February 2014 and December 2016. Thereafter, we detected the expression of adenosine 2b receptor (A2BR) and programmed death-ligand 1 (PD-L1) using immunohistochemical staining and analyzed the association between their expression in different regions of the tumor tissues, such as tumor nest, border, and paracancer stroma. To determine the role of A2BR in PD-L1 expression, CAL-27 (an OSCC cell line) was treated with BAY60-6583 (an A2BR agonist), and PD-L1 expression was determined using western blot and flow cytometry. Furthermore, CAL-27 was treated with a nuclear transcription factor-kappa B (NF-κ B) inhibitor, PDTC, to determine whether A2BR regulates PD-L1 expression via the NF-κ B signaling pathway. Additionally, a transwell assay was performed to verify the effect of A2BR and PD-L1 on NK cell recruitment. The results of our study demonstrated that A2BR and PD-L1 are co-expressed in OSCC. Moreover, treatment with BAY60-6583 induced PD-L1 expression in the CAL-27 cells, which was partially reduced in cells pretreated with PDTC, suggesting that A2BR agonists induce PD-L1 expression via the induction of the NF-κ B signaling pathway. Furthermore, high A2BR expression in OSCC was associated with lower infiltration of NK cells. Additionally, our results demonstrated that treatment with MRS-1706 (an A2BR inverse agonist) and/or CD274 (a PD-L1-neutralizing antibody) promoted NK cell recruitment and cytotoxicity against OSCC cells. Altogether, our findings highlight the synergistic effect of co-inhibition of A2BR and PD-L1 in the treatment of OSCC via the modulation of NK cell recruitment and cytotoxicity.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University & Institute of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University & Institute of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University & Institute of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaodi Nan
- Institute of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dan Ai
- Institute of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Wang
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huayang Wang
- Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xun Qu
- Institute of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengcai Wei
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University & Institute of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
22
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
23
|
Simão Raimundo D, Cordeiro AI, Parente Freixo J, Valente Pinto M, Neves C, Farela Neves J. Case Report: Patient with deficiency of ADA2 presenting leukocytoclastic vasculitis and pericarditis during infliximab treatment. Front Pediatr 2023; 11:1200401. [PMID: 37388286 PMCID: PMC10303984 DOI: 10.3389/fped.2023.1200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
Deficiency of adenosine deaminase 2 (DADA2), first reported in 2014, is a disease with great phenotypic variability, which has been increasingly reported. Therapeutic response depends on the phenotype. We present a case of an adolescent with recurrent fever, oral aphthous ulcers, and lymphadenopathy from 8 to 12 years of age and subsequently presented with symptomatic neutropenia. After the diagnosis of DADA2, therapy with infliximab was started, but after the second dose, she developed leukocytoclastic vasculitis and showed symptoms of myopericarditis. Infliximab was switched to etanercept, with no relapses. Despite the safety of tumor necrosis factor alpha inhibitors (TNFi), paradoxical adverse effects have been increasingly reported. The differential diagnosis between disease new-onset manifestations of DADA2 and side effects of TNFi can be challenging and warrants further clarification.
Collapse
Affiliation(s)
- Diana Simão Raimundo
- Pediatrics Department, Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | - Ana Isabel Cordeiro
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - João Parente Freixo
- Centro de Genética Preditiva e Preventiva, Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, Caparica, Almada, Portugal
| | - Conceição Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, Centro Hospitalar Universitário de Lisboa Central, Lisboa, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
- CHRC, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Asna Ashari K, Aslani N, Parvaneh N, Assari R, Heidari M, Fathi M, Tahghighi Sharabian F, Ronagh A, Shahrooei M, Moafi A, Rezaei N, Ziaee V. A case series of ten plus one deficiency of adenosine deaminase 2 (DADA2) patients in Iran. Pediatr Rheumatol Online J 2023; 21:55. [PMID: 37312195 PMCID: PMC10265890 DOI: 10.1186/s12969-023-00838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessive autoinflammatory disease caused by mutations in the ADA2 gene. DADA2 has a broad spectrum of clinical presentations. Apart from systemic manifestations, we can categorize most of the signs and symptoms of DADA2 into the three groups of vasculitis, hematologic abnormalities, and immunologic dysregulations. The most dominant vasculitis features are skin manifestations, mostly in the form of livedo racemosa/reticularis, and early onset ischemic or hemorrhagic strokes. Hypogammaglobulinemia that is found in many cases of DADA2 brings immunodeficiencies into the differential diagnosis. Cytopenia, pure red cell aplasia (PRCA), and bone marrow failure (BMF) are the hematologic abnormalities commonly found in DADA. CASE PRESENTATION We introduce eleven patients with DADA2 diagnosis, including two brothers and sisters, one set of twin sisters, and one father and his daughter and son. Ten patients (91%) had consanguineous parents. All the patients manifested livedo racemose/reticularis. Ten patients (91%) reported febrile episodes, and seven (64%) had experienced strokes. Only one patient had hypertension. Two of the patients (11%) presented decreased immunoglobulin levels. One of the patients presented with PRCA. Except for the PRCA patient with G321E mutation, all of our patients delivered G47R mutation, the most common mutation in DADA2 patients. Except for one patient who unfortunately passed away before the diagnosis was made and proper treatment was initiated, the other patients' symptoms are currently controlled; two of the patients presented with mild symptoms and are now being treated with colchicine, and the eight others responded well to anti-TNFs. The PRCA patient still suffers from hematologic abnormalities and is a candidate for a bone marrow transplant. CONCLUSIONS Considering the manifestations and the differential diagnoses, DADA2 is not merely a rheumatologic disease, and introducing this disease to hematologists, neurologists, and immunologists is mandatory to initiate prompt and proper treatment. The efficacy of anti-TNFs in resolving the symptoms of DADA2 patients have been proven, but not for those with hematologic manifestations. Similarly, they were effective in controlling the symptoms of our cohort of patients, except for the one patient with cytopenia.
Collapse
Affiliation(s)
- Kosar Asna Ashari
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nahid Aslani
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- Department of Pediatrics, Isfahan University of Medical Sciences, Tehran, Iran
| | - Nima Parvaneh
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Raheleh Assari
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Department of Pediatric Neurology, Pediatric Center of Excellence, Children's Medical Center, Tehran, Iran
| | - Mohammadreza Fathi
- Pediatric Rheumatology ward, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medica Sciences, Ahvaz, Iran
| | - Fatemeh Tahghighi Sharabian
- Pediatric Rheumatology Society of Iran, Tehran, Iran
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ronagh
- Department of Pediatric Neurology, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Alireza Moafi
- Department of Pediatrics, Isfahan University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ziaee
- Pediatric Rheumatology Society of Iran, Tehran, Iran.
- Children's Medical Center, Pediatrics Center of Excellence, Tehran, Iran.
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Division of Pediatric Rheumatology, Children's Medical Center, No. 62 Dr. Gharib St., Keshavarz Blvd, Tehran, 14194, IR, Iran.
| |
Collapse
|
25
|
Long A, Kleiner A, Looney RJ. Immune dysregulation. J Allergy Clin Immunol 2023; 151:70-80. [PMID: 36608984 DOI: 10.1016/j.jaci.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 01/05/2023]
Abstract
The understanding of immune dysregulation in many different diseases continues to grow. There is increasing evidence that altered microbiome and gut barrier dysfunction contribute to systemic inflammation in patients with primary immunodeficiency and in patients with rheumatic disease. Recent research provides insight into the process of induction and maturation of pathogenic age-associated B cells and highlights the role of age-associated B cells in creating tissue inflammation. T follicular regulatory cells are shown to help maintain B-cell tolerance, and therapeutic approaches to increase or promote T follicular regulatory cells may help prevent or decrease immune dysregulation. Meanwhile, novel studies of systemic-onset juvenile idiopathic arthritis reveal a strong HLA association with interstitial lung disease and identify key aspects of the pathogenesis of macrophage activation syndrome. Studies of hyperinflammatory syndromes, including the recently described multisystem inflammatory syndrome of children, characterize similarities and differences in cytokine profiles and T-cell activation. This review focuses on recent advances in the understanding of immune dysregulation and describes potential key factors that may function as biomarkers for disease or targets for therapeutic interventions. Future trials are necessary to address the many remaining questions with regards to pathogenesis, diagnosis, and treatment of autoimmune, inflammatory, and immunodeficiency syndromes.
Collapse
Affiliation(s)
- Andrew Long
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Anatole Kleiner
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - R John Looney
- Allergy Immunology Rheumatology Division, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|