1
|
Yuan F, Cui J, Wang T, Qin J, Jeon JH, Ding H, Whittaker CA, Xu R, Cao H, Chen J. Selection, Design and Immunogenicity Studies of ASFV Antigens for Subunit mRNA Cocktail Vaccines with Specific Immune Response Profiles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617156. [PMID: 39416081 PMCID: PMC11482780 DOI: 10.1101/2024.10.08.617156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Development of safe and effective subunit vaccines for controlling African Swine Fever Virus (ASFV) infection has been hampered by a lack of protective viral antigens, complex virion structures, and multiple mechanisms of infection. Here, we selected ASFV antigens based on their localization on the virion, known functions, and homologies to the subunits of the protective vaccinia virus vaccine. We also engineered viral capsid proteins for inducing optimal antibody responses and designed T cell-directed antigen for inducing broad and robust cellular immunity. The selected antigens in lipid nanoparticle-mRNA formulations were evaluated for immunogenicity in both mice and pigs with concordant results. Different antigens induced divergent immune response profiles, including the levels of IgG and T cell responses and effector functions of anti-sera. We further developed a computational approach to combine antigens into cocktails for inducing specific immune response profiles and validated candidate cocktail vaccines in mice. Our results provide a basis for further evaluating candidate subunit mRNA vaccines in challenge studies.
Collapse
Affiliation(s)
- Fangfeng Yuan
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Junru Cui
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tianlei Wang
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jane Qin
- ARV Technologies, Inc., North Bethesda, MD, USA
| | | | - Huiming Ding
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles A. Whittaker
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Renhuan Xu
- ARV Technologies, Inc., North Bethesda, MD, USA
| | - Helen Cao
- InnovHope, Inc., Framingham, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
2
|
Jaishwal P, Jha K, Singh SP. Revisiting the dimensions of universal vaccine with special focus on COVID-19: Efficacy versus methods of designing. Int J Biol Macromol 2024; 277:134012. [PMID: 39048013 DOI: 10.1016/j.ijbiomac.2024.134012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/28/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Even though the use of SARS-CoV-2 vaccines during the COVID-19 pandemic showed unprecedented success in a short time, it also exposed a flaw in the current vaccine design strategy to offer broad protection against emerging variants of concern. However, developing broad-spectrum vaccines is still a challenge for immunologists. The development of universal vaccines against emerging pathogens and their variants appears to be a practical solution to mitigate the economic and physical effects of the pandemic on society. Very few reports are available to explain the basic concept of universal vaccine design and development. This review provides an overview of the innate and adaptive immune responses generated against vaccination and essential insight into immune mechanisms helpful in designing universal vaccines targeting influenza viruses and coronaviruses. In addition, the characteristics, safety, and factors affecting the efficacy of universal vaccines have been discussed. Furthermore, several advancements in methods worthy of designing universal vaccines are described, including chimeric immunogens, heterologous prime-boost vaccines, reverse vaccinology, structure-based antigen design, pan-reactive antibody vaccines, conserved neutralizing epitope-based vaccines, mosaic nanoparticle-based vaccines, etc. In addition to the several advantages, significant potential constraints, such as defocusing the immune response and subdominance, are also discussed.
Collapse
Affiliation(s)
- Puja Jaishwal
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | - Kisalay Jha
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, India
| | | |
Collapse
|
3
|
Montoya B, Melo-Silva CR, Tang L, Kafle S, Lidskiy P, Bajusz C, Vadovics M, Muramatsu H, Abraham E, Lipinszki Z, Chatterjee D, Scher G, Benitez J, Sung MMH, Tam YK, Catanzaro NJ, Schäfer A, Andino R, Baric RS, Martinez DR, Pardi N, Sigal LJ. mRNA-LNP vaccine-induced CD8 + T cells protect mice from lethal SARS-CoV-2 infection in the absence of specific antibodies. Mol Ther 2024; 32:1790-1804. [PMID: 38605519 PMCID: PMC11184341 DOI: 10.1016/j.ymthe.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The role of CD8+ T cells in SARS-CoV-2 pathogenesis or mRNA-LNP vaccine-induced protection from lethal COVID-19 is unclear. Using mouse-adapted SARS-CoV-2 virus (MA30) in C57BL/6 mice, we show that CD8+ T cells are unnecessary for the intrinsic resistance of female or the susceptibility of male mice to lethal SARS-CoV-2 infection. Also, mice immunized with a di-proline prefusion-stabilized full-length SARS-CoV-2 Spike (S-2P) mRNA-LNP vaccine, which induces Spike-specific antibodies and CD8+ T cells specific for the Spike-derived VNFNFNGL peptide, are protected from SARS-CoV-2 infection-induced lethality and weight loss, while mice vaccinated with mRNA-LNPs encoding only VNFNFNGL are protected from lethality but not weight loss. CD8+ T cell depletion ablates protection in VNFNFNGL but not in S-2P mRNA-LNP-vaccinated mice. Therefore, mRNA-LNP vaccine-induced CD8+ T cells are dispensable when protective antibodies are present but essential for survival in their absence. Hence, vaccine-induced CD8+ T cells may be critical to protect against SARS-CoV-2 variants that mutate epitopes targeted by protective antibodies.
Collapse
Affiliation(s)
- Brian Montoya
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carolina R Melo-Silva
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samita Kafle
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter Lidskiy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Csaba Bajusz
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Máté Vadovics
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edit Abraham
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary; MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltan Lipinszki
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary; MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Debotri Chatterjee
- Department of Neurosciences, Thomas Jefferson University Vickie and Jack Farber Institute for Neuroscience, Philadelphia, PA, USA
| | - Gabrielle Scher
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Juliana Benitez
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Nicholas J Catanzaro
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ralph S Baric
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Immunobiology, Center for Infection and Immunity, Yale School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
4
|
Rak A, Isakova-Sivak I, Rudenko L. Overview of Nucleocapsid-Targeting Vaccines against COVID-19. Vaccines (Basel) 2023; 11:1810. [PMID: 38140214 PMCID: PMC10747980 DOI: 10.3390/vaccines11121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The new SARS-CoV-2 coronavirus, which emerged in late 2019, is a highly variable causative agent of COVID-19, a contagious respiratory disease with potentially severe complications. Vaccination is considered the most effective measure to prevent the spread and complications of this infection. Spike (S) protein-based vaccines were very successful in preventing COVID-19 caused by the ancestral SARS-CoV-2 strain; however, their efficacy was significantly reduced when coronavirus variants antigenically different from the original strain emerged in circulation. This is due to the high variability of this major viral antigen caused by escape from the immunity caused by the infection or vaccination with spike-targeting vaccines. The nucleocapsid protein (N) is a much more conserved SARS-CoV-2 antigen than the spike protein and has therefore attracted the attention of scientists as a promising target for broad-spectrum vaccine development. Here, we summarized the current data on various N-based COVID-19 vaccines that have been tested in animal challenge models or clinical trials. Despite the high conservatism of the N protein, escape mutations gradually occurring in the N sequence can affect its protective properties. During the three years of the pandemic, at least 12 mutations have arisen in the N sequence, affecting more than 40 known immunogenic T-cell epitopes, so the antigenicity of the N protein of recent SARS-CoV-2 variants may be altered. This fact should be taken into account as a limitation in the development of cross-reactive vaccines based on N-protein.
Collapse
Affiliation(s)
- Alexandra Rak
- Department of Virology, Institute of Experimental Medicine, St. Petersburg 197022, Russia; (I.I.-S.); (L.R.)
| | | | | |
Collapse
|