1
|
Cao G, Hu Y, Pan T, Tang E, Asby N, Althaus T, Wan J, Riedell PA, Bishop MR, Kline JP, Huang J. Two-stage CD8 + CAR T-cell differentiation in patients with large B-cell lymphoma. Nat Commun 2025; 16:4205. [PMID: 40328775 PMCID: PMC12055983 DOI: 10.1038/s41467-025-59298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Advancements in chimeric antigen receptor (CAR) T-cell therapy for treating diffuse large B-cell lymphoma (DLBCL) have been limited by an incomplete understanding of CAR T-cell differentiation in patients. Here, we show via single-cell, multi-modal, and longitudinal analyses, that CD8+ CAR T cells from DLBCL patients successfully treated with axicabtagene ciloleucel undergo two distinct waves of clonal expansion in vivo. The first wave is dominated by an exhausted-like effector memory phenotype during peak expansion (day 8-14). The second wave is dominated by a terminal effector phenotype during the post-peak persistence period (day 21-28). Importantly, the two waves have distinct ontogeny from the infusion product and are biologically uncoupled. Precursors of the first wave exhibit more effector-like signatures, whereas precursors of the second wave exhibit more stem-like signatures. We demonstrate that CAR T-cell expansion and persistence are mediated by clonally, phenotypically, and ontogenically distinct CAR T-cell populations that serve complementary clinical purposes.
Collapse
Affiliation(s)
- Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yifei Hu
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Thomas Althaus
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter A Riedell
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Justin P Kline
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Daniels MA, Teixeiro E. The NF-κB signaling network in the life of T cells. Front Immunol 2025; 16:1559494. [PMID: 40370445 PMCID: PMC12075310 DOI: 10.3389/fimmu.2025.1559494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
NF-κB is a crucial transcription factor in lymphocyte signaling. It is activated by environmental cues that drive lymphocyte differentiation to combat infections and cancer. As a key player in inflammation, NF-κB also significantly impacts autoimmunity and transplant rejection, making it an important therapeutic target. While the signaling molecules regulating this pathway are well-studied, the effect of changes in NF-κB signaling levels on T lymphocyte differentiation, fate, and function is not fully understood. Advances in computational biology and new NF-κB-inducible animal models are beginning to clarify these questions. In this review, we highlight recent findings related to T cells, focusing on how environmental cues affecting NF-κB signaling levels determine T cell fate and function.
Collapse
Affiliation(s)
- Mark A. Daniels
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States
- Roy Blunt NextGen Precision Health Building, University of Missouri, Columbia, MO, United States
| |
Collapse
|
3
|
Perez CR, Garmilla A, Nilsson A, Baghdassarian HM, Gordon KS, Lima LG, Smith BE, Maus MV, Lauffenburger DA, Birnbaum ME. Library-based single-cell analysis of CAR signaling reveals drivers of in vivo persistence. Cell Syst 2025:101260. [PMID: 40215972 DOI: 10.1016/j.cels.2025.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/27/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
The anti-tumor function of engineered T cells expressing chimeric antigen receptors (CARs) is dependent on signals transduced through intracellular signaling domains (ICDs). Different ICDs are known to drive distinct phenotypes, but systematic investigations into how ICD architectures direct T cell function-particularly at the molecular level-are lacking. Here, we use single-cell sequencing to map diverse signaling inputs to transcriptional outputs, focusing on a defined library of clinically relevant ICD architectures. Informed by these observations, we functionally characterize transcriptionally distinct ICD variants across various contexts to build comprehensive maps from ICD composition to phenotypic output. We identify a unique tonic signaling signature associated with a subset of ICD architectures that drives durable in vivo persistence and efficacy in liquid, but not solid, tumors. Our findings work toward decoding CAR signaling design principles, with implications for the rational design of next-generation ICD architectures optimized for in vivo function.
Collapse
Affiliation(s)
- Caleb R Perez
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Andrea Garmilla
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore; Program in Immunology, Harvard Medical School, Boston, MA, USA; Kranz Family Center for Cancer Research and Cellular Immunotherapy Program, Massachusetts General Hospital, Charlestown, MA, USA
| | - Avlant Nilsson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hratch M Baghdassarian
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Khloe S Gordon
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Louise G Lima
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Blake E Smith
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Kranz Family Center for Cancer Research and Cellular Immunotherapy Program, Massachusetts General Hospital, Charlestown, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA
| | - Michael E Birnbaum
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore; Ragon Institute of MIT, MGH and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Virazels M, Lusque A, Brayer S, Genais M, Dufau C, Milhès J, Filleron T, Pagès C, Sibaud V, Mortier L, Dereure O, Ayyoub M, Fabre A, Andrieu-Abadie N, Pancaldi V, Colacios C, Meyer N, Ségui B, Montfort A. TNF signature in advanced melanoma patients treated with immune checkpoint inhibitors: Results from the MELANFα clinical study. Int J Cancer 2025. [PMID: 40098565 DOI: 10.1002/ijc.35416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/14/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Resistance to immune checkpoint inhibitors (ICI) in cancer patients is not fully understood, and predictive biomarkers are lacking. MELANFα (NCT03348891) is an open-label, prospective, multicenter cohort of 60 patients with advanced melanoma receiving ICI (bitherapy: ipilimumab + nivolumab; monotherapy: pembrolizumab or nivolumab). The primary objective was to evaluate whether changes in plasma TNF between baseline (W0) and week 12 (W12) identified patients with non-progressive disease at W12. Secondary and exploratory objectives were to assess the association between plasma TNF, tumor response, and changes in circulating T cells. Plasma TNF increased along therapy, but its W12/W0 fold change was not associated with non-progressive disease at W12. However, plasma TNF levels at W12 were significantly higher in non-responders than in responders across therapies (p = .0129). The remodeling of circulating T cell subpopulations was mostly triggered by bitherapy. Increased proportions of circulating central memory and effector memory CD8 T cells after bitherapy were positively and negatively associated with response to treatment, respectively. In this cohort, circulating T cells from responders and non-responders also displayed distinct molecular characteristics. Indeed, responders showed an increased proportion of CD8 T cells with low enrichment of TNF-related pathways and high cytotoxic potential, while non-responders displayed increased proportions of circulating CD8 EM T cells enriched for TNF-related pathways and directed toward cytokine expression. In conclusion, our study shows that elevated plasma TNF and enriched TNF pathways in T cells are associated with poorer clinical outcomes, reinforcing the notion that TNF may dampen ICI efficacy.
Collapse
Affiliation(s)
- Mathieu Virazels
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Amélie Lusque
- Biostatistics & Health Data Science Unit, Oncopole Claudius Regaud, Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Stéphanie Brayer
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Service d'Oncodermatologie, IUCT-O, CHU de Toulouse, Toulouse, France
| | - Matthieu Genais
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Carine Dufau
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Jean Milhès
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Thomas Filleron
- Biostatistics & Health Data Science Unit, Oncopole Claudius Regaud, Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Cécile Pagès
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
- Service d'Oncodermatologie, IUCT-O, CHU de Toulouse, Toulouse, France
| | - Vincent Sibaud
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
- Service d'Oncodermatologie, IUCT-O, CHU de Toulouse, Toulouse, France
| | | | - Olivier Dereure
- Department of Dermatology, University of Montpellier, Montpellier, France
| | - Maha Ayyoub
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
| | - Amandine Fabre
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
- Clinical Research Department, Oncopole Claudius Regaud, Toulouse, France
| | - Nathalie Andrieu-Abadie
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Vera Pancaldi
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
| | - Céline Colacios
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Nicolas Meyer
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
- Institut Universitaire du Cancer (IUCT-O), Toulouse, France
- Service d'Oncodermatologie, IUCT-O, CHU de Toulouse, Toulouse, France
| | - Bruno Ségui
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| | - Anne Montfort
- Unité Mixte de Recherche INSERM 1037, CNRS 5071, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse (CRCT), Toulouse, France
- Equipe Labellisée Fondation ARC pour la recherche sur le cancer, Toulouse, France
| |
Collapse
|
5
|
Kim DK, Synn CB, Lee W, Jo HN, Lee CY, Lee S, Hwang JY, Kim Y, Kang SS, Baek S, Na K, Yang SM, Kim MH, Han H, Han YJ, Kim JH, Park SY, Park YJ, Lee GT, Choi SJ, Sohn JO, Ye SK, Lee JB, Lim SM, Hong MH, Pyo KH, Cho BC. Denfivontinib Activates Effector T Cells Through the NLRP3 Inflammasome, Yielding Potent Anticancer Effects by Combination with Pembrolizumab. Mol Cancer Ther 2025; 24:354-369. [PMID: 39632711 PMCID: PMC11876964 DOI: 10.1158/1535-7163.mct-24-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/30/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Various combination therapies have been investigated to overcome the limitations of using immune checkpoint inhibitors. However, determining the optimal combination therapy remains challenging. To overcome the therapeutic limitation, we conducted a translational research to elucidate the mechanisms by which AXL inhibition enhances antitumor effects when combined with anti-PD-1 antibody therapy. Herein, we demonstrated improved antitumor effects through combination treatment with denfivontinib and pembrolizumab which resulted in enhanced differentiation into effector CD4+ and CD8+ memory T cells, accompanied by an increase in IFN-γ expression in the YHIM-2004 xenograft model derived from patients with non-small cell lung cancer. Concurrently, a reduction in the number of immunosuppressive M2 macrophages and myeloid-derived suppressor cells was observed. Mechanistically, denfivontinib potentiated the NOD-like receptor pathway, thereby facilitating NLRP3 inflammasome formation. This leads to macrophage activation via NF-κB signaling pathway activation. We have confirmed that the positive interaction between macrophages and T cells arises from the enhanced antigen-presenting machinery of activated macrophages. Furthermore, the observed tumor effects in AXL knockout mice confirmed that AXL inhibition by denfivontinib enhances the antitumor effects, thus opening new avenues for therapeutic interventions aimed at overcoming limitations in immunotherapy. To demonstrate the extent to which our findings reflect clinical results, we analyzed bulk RNA sequencing data from 21 patients with non-small cell lung cancer undergoing anti-PD-1 immunotherapy. The NLRP3 inflammasome score influenced enhanced immune responses in patient data undergoing anti-PD-1 immunotherapy, suggesting a role for the NLRP3 inflammasome in activating immune responses during treatment.
Collapse
Affiliation(s)
- Dong Kwon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chun-Bong Synn
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wongeun Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha-Ni Jo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chai Young Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Yeon Hwang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngtaek Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-san Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Republic of Korea
| | - Sujeong Baek
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangmin Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Hyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heekyung Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Young Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Joon Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gang-Taik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Choi
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jie-Ohn Sohn
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Sang-Kyu Ye
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Forró B, Kajtár B, Lacza Á, Kereskai L, Vida L, Kőszegi B, Urbán P, Kun J, Gyenesei A, Kosztolányi S, Kehl D, Jáksó P. Multiparameter flow cytometric and transcriptional analyis of CD20 positive T-cells in bone marrow in patients of multiple myeloma and monoclonal gammopathy of undetermined significance. Front Immunol 2025; 16:1464940. [PMID: 40079005 PMCID: PMC11896981 DOI: 10.3389/fimmu.2025.1464940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction CD20+ T-cells were described firstly in peripheral blood and later in bone marrow in patients with hematological tumors, and certain immune-mediated diseases. During our hematological diagnostic work, this peculiar subgroup of lymphocytes has been consistently observed associated with untreated monoclonal gammopathy of undetermined significance (MGUS) and myeloma (MM). Despite the expanding literature data, the exact function of CD20+ T cells remains unclear. Methods We investigated the incidence of CD20+ T-cells in MGUS (n=27), and MM using a larger cohort (n=125) and compared it with control bone marrow samples (n=39). We examined their presence before and after treatment in 32 cases with flow cytometry. Comprehensive flow cytometric analysis included the examination of functional (T-cell activation, cytotoxic molecules and T-cell exhaustion) and maturation markers in a large number of cases. In addition RNA sequencing and subsequent bioinformatics analyses were carried out to detect differentially expressed (DE) genes of FACS sorted CD20+ T-cells versus CD20- T-cells. Results and discussion We found that CD20+ T-cells are phenotypically and transcriptionally different from CD20- T-cells. Elevated incidence of CD20+ T-cells in MGUS and MM and the expression of CD8, NKG2D, and CD28 suggests anti-tumor functionality. Increased PD-1 expression indicates T-cell exhaustion which was mostly detected in the samples of patients with a higher tumor percentage. The majority of CD20+ T-cells are effector or effector memory T-cells. Some of the differentially expressed genes suggest antitumor function via regulating T-cell activation pathways, while other genes involved in tumor escape from immune surveillance by suppressing T-cells or by reprogramming T-cells toward T-cell exhaustion. Our findings suggest that CD20+ T-cells may play a vital role both in immune surveillance and immune escape contributing to progression of multiple myeloma.
Collapse
Affiliation(s)
- Barbara Forró
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Ágnes Lacza
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - László Kereskai
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Livia Vida
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| | - Balázs Kőszegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Péter Urbán
- Genomics and Bioinformatics Core Facility, Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
| | - József Kun
- Genomics and Bioinformatics Core Facility, Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary
| | - Attila Gyenesei
- Genomics and Bioinformatics Core Facility, Szentágothai Research Centre of the University of Pécs, Pécs, Hungary
| | - Szabolcs Kosztolányi
- 1st Department of Internal Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Dániel Kehl
- Faculty of Business and Economics, University of Pécs, Pécs, Hungary
| | - Pál Jáksó
- Department of Pathology, University of Pécs Medical School, Clinical Centre, Pécs, Hungary
| |
Collapse
|
7
|
Shapiro RM, Sheffer M, Booker MA, Tolstorukov MY, Birch GC, Sade-Feldman M, Fang J, Li S, Lu W, Ansuinelli M, Dulery R, Tarannum M, Baginska J, Dwivedi N, Kothari A, Penter L, Abdulhamid YZ, Kaplan IE, Khanhlinh D, Uppaluri R, Redd RA, Nikiforow S, Koreth J, Ritz J, Wu CJ, Soiffer RJ, Hanna GJ, Romee R. First-in-human evaluation of memory-like NK cells with an IL-15 super-agonist and CTLA-4 blockade in advanced head and neck cancer. J Hematol Oncol 2025; 18:17. [PMID: 39948608 PMCID: PMC11827236 DOI: 10.1186/s13045-025-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/02/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Cytokine induced memory-like natural killer (CIML NK) cells combined with an IL-15 super-agonist (N-803) are a novel modality to treat relapsed/refractory head and neck cancer. METHODS We report data from a phase I trial of haploidentical CIML NK cells combined with N-803 with or without ipilimumab (IPI) in relapsed/refractory head and neck cancer patients after a median of 6 prior lines of therapy. The trial adhered to a 3 + 3 dose de-escalation design, with primary endpoint being safety. High-resolution immunophenotypic and transcriptional profiling characterized the NK cells and their interacting partners in vivo. RESULTS The primary safety endpoint was established, with dose-limiting toxicity in 1/10 patients. A transient disease control rate correlated with donor NK cell expansion, the latter occurring irrespective of IPI. The combination of CIML NK cells with N-803 and IPI was associated with increased early NK cell proliferation, contraction of Treg: Tcon, rapid recovery of recipient CD8+ T cells, and subsequent accelerated rejection of donor NK cells. CONCLUSIONS CIML NK cells combined with N-803 and ipilimumab to treat head and neck cancer is safe, and associated with a more proliferative NK cell phenotype. However, the combination leads to reduced HLA mismatched NK cell persistence, resulting in an important limitation affecting NK cell combination therapies in clinical trials. These results inform evaluation of CIML NK therapy for advanced malignancies, with considerations for combination with IPI. TRIAL REGISTRATION NCT04290546.
Collapse
Affiliation(s)
- Roman M Shapiro
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Michal Sheffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Matthew A Booker
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, USA
| | | | - Grace C Birch
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jacy Fang
- Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wesley Lu
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michela Ansuinelli
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Remy Dulery
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
- Department of Clinical Hematology and Cellular Therapy, Sorbonne University, Saint-Antoine Hospital, Assistance Publique - Hôpitaux de Paris, Inserm UMRs 938, Centre de recherche Saint-Antoine, Paris, France
| | - Mubin Tarannum
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Joanna Baginska
- Center for Immuno-oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA
| | | | | | - Livius Penter
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Yasmin Z Abdulhamid
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Isabel E Kaplan
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Dinh Khanhlinh
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Ravindra Uppaluri
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert A Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, USA
| | - Sarah Nikiforow
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - John Koreth
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Jerome Ritz
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Catherine J Wu
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Robert J Soiffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Glenn J Hanna
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
- Center for Immuno-oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA.
| | - Rizwan Romee
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
8
|
Abu-Alghayth MH, Abalkhail A, Hazazi A, Alyahyawi Y, Abdulaziz O, Alsharif A, Nassar SA, Omar BIA, Alqahtani SF, Shmrany HA, Khan FR. MicroRNAs and long non-coding RNAs In T-cell lymphoma: Mechanisms, pathway, therapeutic opportunities. Pathol Res Pract 2025; 266:155769. [PMID: 39740285 DOI: 10.1016/j.prp.2024.155769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/07/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
T-cell lymphomas represent non-Hodgkin lymphomas distinguished by the uncontrolled proliferation of malignant T lymphocytes. Classifying these neoplasms and the ongoing investigation of their underlying biological mechanisms remains challenging. Significant subtypes encompass peripheral T-cell lymphomas, anaplastic large-cell lymphomas, cutaneous T-cell lymphomas, and adult T-cell leukemia/lymphoma. A systematic literature survey used electronic databases, including PubMed, Springer Link, Google Scholar, and Web of Science. Search keywords included "T-cell lymphoma," "therapeutic approaches," "RNA therapeutics," "microRNA," and "signaling pathways". T-cell lymphomas are believed to arise from a complex interplay of genetic predispositions and environmental factors. Epstein-Barr virus (EBV) and Human T-cell leukemia virus-1 (HTLV-1), have been implicated as potential etiologic agents. While the exact molecular mechanisms are under investigation, T-cell lymphomas are distinguished by aberrant proliferation of T-cells resulting from dysregulated gene expression. Contemporary research has emphasized the significance of non-coding RNAs, including microRNAs and long non-coding RNAs, in the etiology and advancement of T-cell lymphomas. Certain miRNAs function as tumor suppressors (e.g., miR-451, miR-31, miR-150, miR-29a), while others can act as oncogenes (e.g., miR-223, miR-17-92, miR-155). Additionally, lcRNAs are responsible for modulating gene expression, and their influence on T-cell function suggests their potential outcome as therapeutic targets. Current therapeutic strategies for T-cell lymphomas predominantly rely on chemotherapy, with emerging modalities encompassing immunotherapy and targeted therapies. Despite these advancements, a substantial subset of T-cell lymphomas remains challenging to manage, especially those in advanced stages or refractory to conventional treatments. RNA-based therapeutics represent a promising strategy, offering many advantages such as targeted therapy, potential for personalized medicine, reduced side effects, rapid development, and synergy with other therapies while facing challenges in delivery, immune response, and specificity. Future research should focus on improving delivery systems, modulating immune responses, and optimizing production to unlock its full potential. This review comprehensively explored T-cell lymphomas, delving into their classification, pathogenesis, and existing therapeutic options. Additionally, we explore the evolving function of non-coding RNAs in the pathogenesis of T-cell lymphoma. Furthermore, we discuss the potential of RNA-based therapeutics as a promising treatment strategy.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia.
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, P.O. Box 6666, Buraydah 51452, Saudi Arabia.
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia.
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Somia A Nassar
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt.
| | - Bashir Ibrahim A Omar
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| | - Sultan F Alqahtani
- Laboratory Department, Aliman General Hospital, Riyadh 13782, Saudi Arabia.
| | - Humood Al Shmrany
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia.
| |
Collapse
|
9
|
Savitz J, McKinney BA, Meier TB, Zheng H, Ford BN, Yolken RH, Teague TK, Cole SW. Nuclear factor kappa-B cell (NF-κB), interferon regulatory Factor, and glucocorticoid receptor pathway activation in major depressive Disorder: The role of cytomegalovirus infection. Brain Behav Immun 2025; 123:1052-1060. [PMID: 39532200 PMCID: PMC11624063 DOI: 10.1016/j.bbi.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Altered activity of major immunoregulatory pathways has been reported in major depressive disorder (MDD) and is thought to underlie the elevations in circulating inflammatory mediators present in a subgroup of patients. However, the drivers of these changes in gene expression remain unclear. One potential modulator of immune function is viral infection. Here we examined the relationship between cytomegalovirus (CMV), a common herpesvirus, that has been shown to be a pathological cofactor in inflammatory disorders, and activity of key coordinators of the innate inflammatory response in MDD. We used RNAseq to characterize gene expression differences in in 79 unmedicated individuals with MDD and 80 healthy controls (HCs). A well-established bioinformatic strategy was used to quantify transcription control pathway activity based on the relative prevalence of pre-specified transcription factor-binding motifs in the promoters of differentially expressed genes. The main aim was to characterize diagnostic differences in immunoregulatory pathway activity and determine if these were related to CMV serostatus or antibody titer (viral reactivation). Significantly increased activity of interferon regulatory factor 1 (IRF1) and nuclear factor kappa-B cell (NF-κB) pathways was observed in the MDD group compared with HCs. Transcript Origin Analyses using cell-specific reference transcriptomes indicated that the MDD-associated transcriptome changes derived primarily from myeloid lineage immune cells (classical and non-classical monocytes). A more modest MDD-associated upregulation of glucocorticoid receptor (GR) pathway activity was also present. CMV infection/activity across the combined MDD and HC groups was weakly related to GR pathway activation but not to IRF1 and NF-κB activity; the most salient signature of CMV was activation and/or expansion of the CD8+ T-cell population. The elevated MDD-associated NF-κB (but not IRF1) activity was markedly attenuated after controlling for CMV antibody titer or for CD8+ T-cell prevalence. At least some of the NF-κB signal in MDD may be attributable to the cellular immune response to CMV, suggesting that CMV infection may be one of several pathways contributing to inflammation in depression. The pronounced activation of the antiviral IRF-1 pathway in MDD suggests the contribution of viral processes although this specific antiviral effect was not specific to CMV.CMV may indirectly drive interferon responses by impairing T-cell control of other viral infections.
Collapse
Affiliation(s)
- Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa OK, USA; Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa OK, USA.
| | - Brett A McKinney
- Department of Mathematics and Computer Science, The University of Tulsa, Tulsa, OK, USA
| | - Timothy B Meier
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, Tulsa OK, USA; Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa OK, USA
| | - Bart N Ford
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK, USA; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK, USA; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Steve W Cole
- University of California, Los Angeles, Cousins Center for Psychoneuroimmunology, Los Angeles, CA, USA; University of California, Los Angeles, David Geffen School of Medicine, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA, USA
| |
Collapse
|
10
|
Lu Y, Zheng J, Lin P, Lin Y, Zheng Y, Mai Z, Chen X, Xia T, Zhao X, Cui L. Tumor Microenvironment-Derived Exosomes: A Double-Edged Sword for Advanced T Cell-Based Immunotherapy. ACS NANO 2024; 18:27230-27260. [PMID: 39319751 DOI: 10.1021/acsnano.4c09190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and immune evasion, partially mediated by the activity of the TME-derived exosomes. These extracellular vesicles are pivotal in shaping immune responses through the transfer of proteins, lipids, and nucleic acids between cells, facilitating a complex interplay that promotes tumor growth and metastasis. This review delves into the dual roles of exosomes in the TME, highlighting both their immunosuppressive functions and their emerging therapeutic potential. Exosomes can inhibit T cell function and promote tumor immune escape by carrying immune-modulatory molecules, such as PD-L1, yet they also hold promise for cancer therapy as vehicles for delivering tumor antigens and costimulatory signals. Additionally, the review discusses the intricate crosstalk mediated by exosomes among various cell types within the TME, influencing both cancer progression and responses to immunotherapies. Moreover, this highlights current challenges and future directions. Collectively, elucidating the detailed mechanisms by which TME-derived exosomes mediate T cell function offers a promising avenue for revolutionizing cancer treatment. Understanding these interactions allows for the development of targeted therapies that manipulate exosomal pathways to enhance the immune system's response to tumors.
Collapse
Affiliation(s)
- Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Wang L, Zhou X, Yan H, Miao Y, Wang B, Gu Y, Fan W, Xu K, Huang S, Liu J. Deciphering the role of tryptophan metabolism-associated genes ECHS1 and ALDH2 in gastric cancer: implications for tumor immunity and personalized therapy. Front Immunol 2024; 15:1460308. [PMID: 39328412 PMCID: PMC11424447 DOI: 10.3389/fimmu.2024.1460308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Background Tryptophan Metabolism-associated Genes (TMGs), such as ECHS1 and ALDH2, are crucial in cancer progression through immunosuppressive mechanisms, particularly in Gastric Cancer (GC). This study explores their effects on the Tumor Microenvironment (TME). Additionally, it examines their potential as novel immunotherapy targets. Methods We utilized single-cell and bulk transcriptomic technologies to analyze the heterogeneity of GC. Non-negative Matrix Factorization (NMF) clustering identified key TMGs, and extensive RNA-seq analyses were performed to pinpoint prognostic genes and potential immunotherapy targets. Furthermore, through PCR analyses we found that ECHS1 and ALDH2 gene expression plays a regulatory role in the migration, invasion and inflammatory factor in AGS and SNU-1 cell lines. The interference effect of si-ECHS1 and ad-ALDH2 was validated using cell scratch assay in AGS and SNU-1 cell line. Results We observed a statistically significant correlation between ECHS1 and ALDH2 expression and increased TME heterogeneity. Our findings also revealed that ECHS1 down-regulation and ALDH2 up-regulation contribute to reduced TME heterogeneity, decreased inflammation, and inhibited AGS and SNU-1 tumor cells migration and proliferation. GSVA enrichment analysis highlighted the NF-kappa B(NF-κB) signaling pathway as specifically regulated by TMGs. Furthermore,ECHS1 and ALDH2 modulated CD8+ and CD4+ T cell activities, impacting GC progression. In vitro experiments further solidified our conclusions by showcasing the inhibitory effects of Si-ECHS1 and ad-ALDH2 on the invasive and proliferative capabilities of AGS and SNU-1 cells. Moreover, Si-ECHS1 and ad-ALDH2 gene expression effectively reduced the expression of inflammatory factors IL-10,IL-7,CXCL8 and IL-6, leading to a remarkable alleviation of chronic inflammation and the heterogeneous nature of the TME. Conclusion This research highlights the importance of ECHS1 and ALDH2 in GC progression and immune modulation, suggesting that targeted therapies focusing on these genes offer promising avenues for personalized immunotherapy in GC. These findings hold potential for improving patient survival and quality of life. Future studies on the NF-κB signaling pathway's role in this context are warranted to further elucidate the mechanisms underlying TMG-mediated immune modulation in GC.
Collapse
Affiliation(s)
- Lexin Wang
- General Hospital of Ningxia Medical University, Department of Clinical Medicine, Yinchuan, Ningxia, China
- Ningxia Medical University, Department of Clinical Medicine, Yinchuan, Ningxia, China
| | - Xue Zhou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Haisheng Yan
- General Hospital of Ningxia Medical University, Department of Clinical Medicine, Yinchuan, Ningxia, China
- Ningxia Medical University, Department of Clinical Medicine, Yinchuan, Ningxia, China
| | - Yaping Miao
- General Hospital of Ningxia Medical University, Department of Clinical Medicine, Yinchuan, Ningxia, China
- Ningxia Medical University, Department of Clinical Medicine, Yinchuan, Ningxia, China
| | - Binbin Wang
- Intensive Care Unit, Xichong People’s Hospital, Nanchong, China
| | - Yuheng Gu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Weining Fan
- General Hospital of Ningxia Medical University, Department of Clinical Medicine, Yinchuan, Ningxia, China
- Ningxia Medical University, Department of Clinical Medicine, Yinchuan, Ningxia, China
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
12
|
Bonilla ME, Radyk MD, Perricone MD, Elhossiny AM, Harold AC, Medina-Cabrera PI, Kadiyala P, Shi J, Frankel TL, Carpenter ES, Green MD, Mitrea C, Lyssiotis CA, Pasca di Magliano M. Metabolic landscape of the healthy pancreas and pancreatic tumor microenvironment. JCI Insight 2024; 9:e180114. [PMID: 39315547 PMCID: PMC11457849 DOI: 10.1172/jci.insight.180114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Pancreatic cancer, one of the deadliest human malignancies, is characterized by a fibro-inflammatory tumor microenvironment and wide array of metabolic alterations. To comprehensively map metabolism in a cell type-specific manner, we harnessed a unique single-cell RNA-sequencing dataset of normal human pancreata. This was compared with human pancreatic cancer samples using a computational pipeline optimized for this study. In the cancer cells we observed enhanced biosynthetic programs. We identified downregulation of mitochondrial programs in several immune populations, relative to their normal counterparts in healthy pancreas. Although granulocytes, B cells, and CD8+ T cells all downregulated oxidative phosphorylation, the mechanisms by which this occurred were cell type specific. In fact, the expression pattern of the electron transport chain complexes was sufficient to identify immune cell types without the use of lineage markers. We also observed changes in tumor-associated macrophage (TAM) lipid metabolism, with increased expression of enzymes mediating unsaturated fatty acid synthesis and upregulation in cholesterol export. Concurrently, cancer cells exhibited upregulation of lipid/cholesterol receptor import. We thus identified a potential crosstalk whereby TAMs provide cholesterol to cancer cells. We suggest that this may be a new mechanism boosting cancer cell growth and a therapeutic target in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiaqi Shi
- Rogel Cancer Center
- Department of Pathology
| | | | - Eileen S. Carpenter
- Rogel Cancer Center
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Michael D. Green
- Program in Cancer Biology
- Rogel Cancer Center
- Department of Radiation Oncology; and
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Radiation Oncology, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | | | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology
- Rogel Cancer Center
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Marina Pasca di Magliano
- Rogel Cancer Center
- Department of Surgery
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Carvalho WA, Gaspar EB, Domingues R, Regitano LCA, Cardoso FF. Genetic factors underlying host resistance to Rhipicephalus microplus tick infestation in Braford cattle: a systems biology perspective. Mamm Genome 2024; 35:186-200. [PMID: 38480585 DOI: 10.1007/s00335-024-10030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/29/2024] [Indexed: 05/29/2024]
Abstract
Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.
Collapse
|
14
|
Perez CR, Garmilla A, Nilsson A, Baghdassarian HM, Gordon KS, Lima LG, Smith BE, Maus MV, Lauffenburger DA, Birnbaum ME. Library-based single-cell analysis of CAR signaling reveals drivers of in vivo persistence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591541. [PMID: 38746119 PMCID: PMC11092467 DOI: 10.1101/2024.04.29.591541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The anti-tumor function of engineered T cells expressing chimeric antigen receptors (CARs) is dependent on signals transduced through intracellular signaling domains (ICDs). Different ICDs are known to drive distinct phenotypes, but systematic investigations into how ICD architectures direct T cell function-particularly at the molecular level-are lacking. Here, we use single-cell sequencing to map diverse signaling inputs to transcriptional outputs, focusing on a defined library of clinically relevant ICD architectures. Informed by these observations, we functionally characterize transcriptionally distinct ICD variants across various contexts to build comprehensive maps from ICD composition to phenotypic output. We identify a unique tonic signaling signature associated with a subset of ICD architectures that drives durable in vivo persistence and efficacy in liquid, but not solid, tumors. Our findings work toward decoding CAR signaling design principles, with implications for the rational design of next-generation ICD architectures optimized for in vivo function.
Collapse
|
15
|
Ham SD, Abraham MN, Deutschman CS, Taylor MD. Single-cell RNA sequencing reveals Immune Education promotes T cell survival in mice subjected to the cecal ligation and puncture sepsis model. Front Immunol 2024; 15:1366955. [PMID: 38562928 PMCID: PMC10982361 DOI: 10.3389/fimmu.2024.1366955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background Individual T cell responses vary significantly based on the microenvironment present at the time of immune response and on prior induced T cell memory. While the cecal ligation and puncture (CLP) model is the most commonly used murine sepsis model, the contribution of diverse T cell responses has not been explored. We defined T cell subset responses to CLP using single-cell RNA sequencing and examined the effects of prior induced T cell memory (Immune Education) on these responses. We hypothesized that Immune Education prior to CLP would alter T cell responses at the single cell level at a single, early post-CLP time point. Methods Splenic T cells were isolated from C57BL/6 mice. Four cohorts were studied: Control, Immune-Educated, CLP, and Immune-Educated CLP. At age 8 weeks, Immune-Educated and Immune-Educated CLP mice received anti-CD3ϵ antibody; Control and CLP mice were administered an isotype control. CLP (two punctures with a 22-gauge needle) was performed at 12-13 weeks of life. Mice were sacrificed at baseline or 24-hours post-CLP. Unsupervised clustering of the transcriptome library identified six distinct T cell subsets: quiescent naïve CD4+, primed naïve CD4+, memory CD4+, naïve CD8+, activated CD8+, and CD8+ cytotoxic T cell subsets. T cell subset specific gene set enrichment analysis and Hurdle analysis for differentially expressed genes (DEGs) were performed. Results T cell responses to CLP were not uniform - subsets of activated and suppressed T cells were identified. Immune Education augmented specific T cell subsets and led to genomic signatures favoring T cell survival in unoperated and CLP mice. Additionally, the combination of Immune Education and CLP effected the expression of genes related to T cell activity in ways that differed from CLP alone. Validating our finding that IL7R pathway markers were upregulated in Immune-Educated CLP mice, we found that Immune Education increased T cell surface IL7R expression in post-CLP mice. Conclusion Immune Education enhanced the expression of genes associated with T cell survival in unoperated and CLP mice. Induction of memory T cell compartments via Immune Education combined with CLP may increase the model's concordance to human sepsis.
Collapse
Affiliation(s)
- Steven D. Ham
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Mabel N. Abraham
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Clifford S. Deutschman
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew D. Taylor
- The Division of Critical Care Medicine, Department of Pediatrics, Cohen Children’s Medical Center/Northwell Health, New Hyde Park, NY, United States
- Sepsis Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| |
Collapse
|
16
|
Zarezadeh Mehrabadi A, Tat M, Ghorbani Alvanegh A, Roozbahani F, Esmaeili Gouvarchin Ghaleh H. Revolutionizing cancer treatment: the power of bi- and tri-specific T-cell engagers in oncolytic virotherapy. Front Immunol 2024; 15:1343378. [PMID: 38464532 PMCID: PMC10921556 DOI: 10.3389/fimmu.2024.1343378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/09/2024] [Indexed: 03/12/2024] Open
Abstract
Bi- or tri-specific T cell engagers (BiTE or TriTE) are recombinant bispecific proteins designed to stimulate T-cell immunity directly, bypassing antigen presentation by antigen-presenting cells (APCs). However, these molecules suffer from limitations such as short biological half-life and poor residence time in the tumor microenvironment (TME). Fortunately, these challenges can be overcome when combined with OVs. Various strategies have been developed, such as encoding secretory BiTEs within OV vectors, resulting in improved targeting and activation of T cells, secretion of key cytokines, and bystander killing of tumor cells. Additionally, oncolytic viruses armed with BiTEs have shown promising outcomes in enhancing major histocompatibility complex I antigen (MHC-I) presentation, T-cell proliferation, activation, and cytotoxicity against tumor cells. These combined approaches address tumor heterogeneity, drug delivery, and T-cell infiltration, offering a comprehensive and effective solution. This review article aims to provide a comprehensive overview of Bi- or TriTEs and OVs as promising therapeutic approaches in the field of cancer treatment. We summarize the cutting-edge advancements in oncolytic virotherapy immune-related genetic engineering, focusing on the innovative combination of BiTE or TriTE with OVs.
Collapse
Affiliation(s)
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
17
|
Zaccai S, Nemirovsky A, Lerner L, Alfahel L, Eremenko E, Israelson A, Monsonego A. CD4 T-cell aging exacerbates neuroinflammation in a late-onset mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2024; 21:17. [PMID: 38212835 PMCID: PMC10782641 DOI: 10.1186/s12974-023-03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disorder characterized by the loss of upper and lower motor neurons in the brain and spinal cord. Accumulating evidence suggests that ALS is not solely a neuronal cell- or brain tissue-autonomous disease and that neuroinflammation plays a key role in disease progression. Furthermore, whereas both CD4 and CD8 T cells were observed in spinal cords of ALS patients and in mouse models of the disease, their role in the neuroinflammatory process, especially considering their functional changes with age, is not fully explored. In this study, we revealed the structure of the CD4 T-cell compartment during disease progression of early-onset SOD1G93A and late-onset SOD1G37R mouse models of ALS. We show age-related changes in the CD4 T-cell subset organization between these mutant SOD1 mouse models towards increased frequency of effector T cells in spleens of SOD1G37R mice and robust infiltration of CD4 T cells expressing activation markers and the checkpoint molecule PD1 into the spinal cord. The frequency of infiltrating CD4 T cells correlated with the frequency of infiltrating CD8 T cells which displayed a more exhausted phenotype. Moreover, RNA-Seq and immunohistochemistry analyses of spinal cords from SOD1G37R mice with early clinical symptoms demonstrated immunological trajectories reminiscent of a neurotoxic inflammatory response which involved proinflammatory T cells and antigen presentation related pathways. Overall, our findings suggest that age-related changes of the CD4 T cell landscape is indicative of a chronic inflammatory response, which aggravates the disease process and can be therapeutically targeted.
Collapse
Affiliation(s)
- Shir Zaccai
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Anna Nemirovsky
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Livnat Lerner
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| | - Alon Monsonego
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
18
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|